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Abstract

Slater’s condition – existence of a “strictly feasible solution” – is a

common assumption in conic optimization. Without strict feasibility,

first-order optimality conditions may be meaningless, the dual prob-

lem may yield little information about the primal, and small changes

in the data may render the problem infeasible. Hence, failure of strict

feasibility can negatively impact off-the-shelf numerical methods, such

as primal-dual interior point methods, in particular. New optimization

modeling techniques and convex relaxations for hard nonconvex prob-

lems have shown that the loss of strict feasibility is a more pronounced

phenomenon than has previously been realized. In this text, we de-

scribe various reasons for the loss of strict feasibility, whether due to

poor modeling choices or (more interestingly) rich underlying struc-

ture, and discuss ways to cope with it and, in many pronounced cases,

how to use it as an advantage. In large part, we emphasize the facial

reduction preprocessing technique due to its mathematical elegance,

geometric transparency, and computational potential.

D. Drusvyatskiy and H. Wolkowicz. The Many Faces of Degeneracy in Conic

Optimization . Foundations and Trends R© in Optimization, vol. 3, no. 2,
pp. 77–170, 2016.
DOI: 10.1561/2400000011.
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1

What this monograph is about

Conic optimization has proven to be an elegant and powerful modeling

tool with surprisingly many applications. The classical linear program-

ming problem revolutionized operations research and is still the most

widely used optimization model. This is due to the elegant theory and

the ability to solve in practice both small and large scale problems ef-

ficiently and accurately by the well known simplex method of Dantzig

[37] and by more recent interior-point methods for convex and non-

convex problems, e.g., [151, 100, 27]. The size (number of variables)

of linear programs that could be solved before the interior-point revo-

lution was on the order of tens of thousands, whereas it immediately

increased to millions for many applications. A large part of modern

success is due to preprocessing, which aims to identify (primal and

dual slack) variables that are identically zero on the feasible set. The

article [98] is a good reference.

The story does not end with linear programming. Dantzig himself

recounts in [38]: “the world is nonlinear”. Nonlinear models can sig-

nificantly improve on linear programs if they can be solved efficiently.

Conic optimization has shown its worth in its elegant theory, efficient

algorithms, and many applications e.g., [149, 10, 21]. Preprocessing

2
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1.1. Related work 3

to rectify possible loss of “strict-feasibility” in the primal or the dual

problems is appealing for general conic optimization as well. In con-

trast to linear programming, however, the area of preprocessing for

conic optimization is in its infancy; see e.g., [31, 140, 32, 109, 111] and

Section 1.1, below. In contrast to linear programming, numerical error

makes preprocessing difficult in full generality. This being said, surpris-

ingly, there are many specific applications of conic optimization, where

the rich underlying structure makes preprocessing possible, leading to

greatly simplified models and strengthened algorithms. Indeed, exploit-

ing structure is essential for making preprocessing viable. In this mono-

graph, we present the background and the elementary theory of such

regularization techniques in the framework of facial reduction (FR).

We focus on notable case studies, where such techniques have proven

to be useful.

1.1 Related work

To put this text in perspective, it is instructive to consider nonlinear

programming. Nontrivial statements in constrained nonlinear optimiza-

tion always rely on some regularity of the constraints. To illustrate,

consider a minimization problem over a set of the form {x : f(x) = 0}

for some smooth f . How general are such constraints? A celebrated

result of Whitney [146] shows that any closed set in a Euclidean space

can written as a zero-set of some C∞-smooth function f . Thus, in this

generality, there is little difference between minimizing over arbitrary

closed sets and sets of the form {x : f(x) = 0}, for smooth f . Since little

can be said about optimizing over arbitrary closed sets, one must make

an assumption on the equality constraint. The simplest one, eliminat-

ing Whitney’s construction, is that the gradient of f is nonzero on the

feasible region – the earliest form of a constraint qualification. There

have been numerous papers, developing weakened versions of regular-

ity (and optimality conditions) in nonlinear programming; some good

examples are [64, 26, 23].

The Slater constraint qualification, we discuss in this text, is in a

similar spirit, but in the context of (convex) conic optimization. Some

Full text available at: http://dx.doi.org/10.1561/2400000011



4 What this monograph is about

good early references on the geometry of the Slater condition, and weak-

ened variants, are [59, 95, 96, 147, 20]. The concept of facial reduction

for general convex programs was introduced in [24, 25], while an early

application to a semi-definite type best-approximation problem was

given in [148]. Recently, there has been a significant renewed interest

in facial reduction, in large part due to the success in applications for

graph related problems, such as Euclidean distance matrix completion

and molecular conformation [78, 77, 48, 6] and in polynomial optimiza-

tion [112, 113, 76, 144, 143]. In particular, a more modern explanation

of the facial reduction procedure can be found in [89, 106, 109, 138, 145].

We note in passing that numerous papers show that strict feasi-

bility holds “generically” with respect to unstructured perturbations.

In contrast, optimization problems appearing in applications are often

highly structured and such genericity results are of little practical use.

1.2 Outline of the monograph

The monograph is divided into two parts. In Part I, we present the

necessary theoretical grounding in conic optimization, including ba-

sic optimality and duality theory, connections of Slater’s condition to

the distance to infeasibility and sensitivity theory, the facial reduc-

tion procedure, and the singularity degree. In Part II, we concentrate

on illustrative examples and applications, including matrix completion

problems (semi-definite, low-rank, and Euclidean distance), relaxations

of hard combinatorial problems (quadratic assignment and max-cut),

and sum of squares relaxations of polynomial optimization problems.

1.3 Reflections on Jonathan Borwein and FR

These are some reflections on Jonathan Borwein and his role in the

development of the facial reduction technique, by Henry Wolkowicz.

Jonathon Borwein passed away unexpectedly on Aug. 2, 2016. Jon was

an extraordinary mathematician who made significant contributions in

an amazing number of very diverse areas. Many details and personal

memories by myself and many others including family, friends, and

colleagues, are presented at the memorial website jonborwein.org.

Full text available at: http://dx.doi.org/10.1561/2400000011
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1.3. Reflections on Jonathan Borwein and FR 5

This was a terrible loss to his family and all his friends and colleagues,

including myself. The facial reduction process we use in this monograph

originates in the work of Jon and the second author (myself). This work

took place from July of 1978 to July of 1979 when I went to Halifax to

work with Jon at Dalhousie University in a lectureship position. The

optimality conditions for the general abstract convex program using

the facially reduced problem is presented in the two papers [24, 23].

The facial reduction process is then derived in [25].
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