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Abstract. We examine the history of linear programming from computational, geometric, and complexity
points of view, looking at simplex, ellipsoid, interior-point, and other methods.
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1. Introduction

At the last Mathematical Programming Symposium in Lausanne, we celebrated the
50th anniversary of the simplex method. Here, we are at or close to several other
anniversaries relating to linear programming: the sixtieth of Kantorovich’s 1939 paper
on “Mathematical Methods in the Organization and Planning of Production” (and the
fortieth of its appearance in the Western literature) [55]; the fiftieth of the historic
0th Mathematical Programming Symposium which took place in Chicago in 1949 on
Activity Analysis of Production and Allocation [64]; the forty-fifth of Frisch’s suggestion
of the logarithmic barrier function for linear programming [37]; the twenty-fifth of the
awarding of the 1975 Nobel Prize in Economics to Kantorovich and to Koopmans (and
most disappointingly not to Dantzig – see the article [8] by Balinski for some related
history) for their contributions to the theory of optimum allocation of resources; the
twentieth anniversaries of Khachiyan’s 1979 and 1980 papers [57,58] using the ellipsoid
method to prove polynomiality of the linear programming problem; and the fifteenth of
Karmarkar’s paper introducing the projective method to again establish polynomiality
and reinvigorating the study of interior-point methods to such a remarkable extent.

Let me start by giving two quotes from the Nobel prizewinners (two of the notable
list of individuals with the initial K who have made significant contributions to linear
programming, including also Klee, Khachiyan, Karmarkar, and Kalai, who will figure
later in this paper) and one from Dantzig:

Kantorovich writes in the introduction of [55]: “I want to emphasize again that the
greater part of the problems of which I shall speak, relating to the organization and
planning of production, are connected specifically with the Soviet system of economy
and in the majority of cases do not arise in the economy of a capitalist society.” (This was
undoubtedly added to make the paper, with its disguised decadent ideas of dual prices,
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more palatable to his communist censors – and we shall see more instances where the
science of linear programming came up against the realities of the Cold War. In this
regard, see the comments [24] on the translated version by Charnes and Cooper and the
following rebuttal by Koopmans. See also the article by B.T. Polyak in this volume.)

A prescient quote from Tjalling Koopmans in the introduction to [64] reads: “It
has been found so far that, for any computation method which seems useful in relation
to some set of data, another set of data can be constructed for which that method
is obviously unsatisfactory.” (This compares strikingly with the quote from Bixby et
al. [13] at the end of this section.)

In [30], Dantzig writes: “Luckily the particular geometry used in my thesis was
the one associated with the columns of the matrix instead of its rows. This column
geometry gave me the insight which led me to believe that the simplex method would
be an efficient solution technique. I earlier had rejected the method when I viewed it in
the row geometry because running around the outside edges seemed so unpromising.”

Since much has been written about the early history (and pre-history) of linear pro-
gramming, for example in [29], Chap. 2, [30], and [83], pp. 209–225, this paper will
concentrate more on developments since the seventies. I hope to intrigue the reader
enough to investigate some of the byways and alleys associated with linear program-
ming as well as the more well-travelled highways. We will look at simplex, ellipsoid,
and interior-point methods, and also at least mention some other approaches. Of course,
I hope the reader will forgive my personal bias in the topics selected. (Let me men-
tion here Megiddo’s article [75], which also surveys some recent developments from
a different viewpoint.)

Following the development of the simplex method in 1947 [27], the ’50s had been
the decade of developing the theoretical underpinnings of linear programming, of ex-
tending its applicability in industrial settings and to certain combinatorial problems,
and of the first general-purpose codes. The ’60s saw the emergence of large-scale lin-
ear programming, of exploitation of special structure (again pioneered by Dantzig and
Dantzig-Wolfe in [28,31]), and of extensions to quadratic programming and linear com-
plementarity. If the ’50s and the ’60s were the decades of unbridled enthusiasm, the ’70s
were the decade of doubt, as the theory of computational complexity was developed and
Klee and Minty [60] showed that the simplex method with a common pivot rule was
of exponential complexity. We will concentrate on the developments since that time;
hope has been restored by new polynomial-time algorithms, by bounds on the expected
number of pivot steps, and by amazing computational studies on problems with numbers
of variables ranging up to the millions.

Linear programming studies the optimization of a linear function over a feasible set
defined by linear inequalities, hence a polyhedron. The problem is in some sense trivial,
since it is only necessary to examine a finite number of vertices (and possibly edges),
but if one is interested in efficient computation, the topic is wonderfully rich and has
been the subject of numerous surprising new insights.

A geometric view can be at times helpful (but also profoundly misleading, as men-
tioned by Dantzig on several occasions). Let us consider two paradigms: optimization of
a linear function over a simplex or over an ellipsoid. In the first case the feasible region
is “spiky”; there are few vertices, and any one can be reached from any other in one
step: here the simplex method is a natural choice. In the second case, an optimal solution
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can easily be found by calculus, but there are an infinite number of extreme points. Are
the feasible regions of large-scale instances arising in important problem domains more
like “quartz crystals” [51], with long edges from one side to the other, so that combi-
natorial algorithms will be efficient, or more like “disco balls” [50], where simplex-like
methods seem doomed to be slow (as in Dantzig’s earlier intuition mentioned above)
but approximations by ellipsoids as in the ellipsoid method or interior-point methods
look promising? The remarkable success of algorithms from both classes suggests that
real problems have both features.

After a short section setting our notation, the subsequent sections consider the
simplex method, the ellipsoid method, interior-point methods, and other approaches. In
each section we start with an overview and historical comments, and then provide some
more technical material relating to understanding the methods better or giving relations
between them. I have of course omitted much that is highly important (everything
concerned with efficient computation and exploitation of special structure, for example!),
but I hope to have mentioned some avenues that are new to readers. The paper concludes
with some very brief remarks on the future.

Let me close this section with an anecdote: One day in April, I experienced an
interesting time warp. I read a paper by Hoffman et al. from 1953 [49], discussing
computational experiments comparing three methods for linear programming problems
and computing optimal strategies for zero-sum games (the simplex method, fictitious
play, and the relaxation method); the authors concluded that the simplex method was
most effective, and could even solve large-scale problems with dimensions of the order
of 50 by 100, using the SEAC (Standards Eastern Automatic Computer)! (Also see
Hoffman’s recollections of this [48].) I later attended a seminar by Bob Bixby, also
recounting computational experience in solving linear programming problems, and
giving results for a particular problem of size 49,944 by 177,628. The contrast was
quite striking. Incidentally, Bixby was also comparing three methods (primal and dual
simplex methods and a primal-dual interior-point method), and his conclusion was that,
for a suite of large problems, the dual simplex method using the steepest-edge pivot rule
was the fastest (see [13]). Bixby and his co-authors indicate that the figures given can
be viewed as biased against the interior-point (barrier) code, but state: “What can one
say in general about the best way to solve large models? Which algorithm is best? If this
question had been asked in 1998, our response would have been that barrier was clearly
best for large models. If that question were asked now, our response would be that there
is no clear, best algorithm. Each of primal, dual, and barrier is superior in a significant
number of important instances.”

2. Preliminaries

We consider a primal-dual pair of linear programming problems:

(P) minimize cT x subject to Ax = b, x ≥ 0,

(D) maximize bT y subject to AT y ≤ c,

where c ∈ Rn , A ∈ Rm×n and b ∈ Rm are given data, and x ∈ Rn and y ∈ Rm are the
decision vectors. For simplicity of argument, we assume that the matrix A has full row
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rank m and that both problems have feasible solutions. Then the feasible region of (P) is
the intersection of a d := n−m dimensional affine subspace with the nonnegative orthant
in Rn , while the feasible region of (D) is the intersection of n halfspaces in Rm . Both are
polyhedra with vertices, by virtue of our assumption on A. Some of our arguments are
most easily expressed in one formulation or the other, but it is easy to switch between
them: the d-dimensional affine subspace can be parametrized by d variables, and then
the feasible region of (P) is the intersection of n halfspaces in Rd; and the dual slack
vector s := c − AT y lies in an m-dimensional affine subspace and is also required to be
nonnegative.

Both of these viewpoints consider the geometry of the set of feasible solutions,
but another perspective, the column geometry of Dantzig [29], pp. 160 ff., is also very
valuable: indeed, without this perspective, the simplex method might have been still-
born (see [30]). Here we consider the convex cone C spanned by the vectors (a j; c j) in
Rm+1, where a j is the jth column of A and c j the jth component of c. If the objective
function is not constant on the feasible region, this cone will have dimension m + 1. We
seek the “lowest” point (in terms of its last component) that lies in the intersection of
this cone and the “vertical” line {(b; ζ) : ζ ∈ R}.

Different solution strategies for linear programming arise from different views of
these geometries. Since we are optimizing a linear function over a polyhedron with
vertices, an optimal solution (if it exists) will occur at a vertex; it is therefore natural
to consider only the vertices and the adjacency between them given by the edges of the
polyhedron. This is the viewpoint of the simplex method, and it relies on considering
the combinatorial structure of the faces of polyhedra. In terms of the column geometry,
we consider the set of simplicial subcones of dimension (m +1) of the cone C described
above that intersect the vertical line, with two cones adjacent if they share an m-face.
This simplex interpretation is described in [27], in [49], and in more detail in [29].

Other methods instead view the feasible region as a convex set, which can be approx-
imated by simpler convex sets with smooth boundaries over which linear optimization is
trivial. Then the focus is on obtaining “good” approximations to the feasible polyhedron
by suitable simpler sets.

3. The simplex method

For definiteness we consider the primal simplex method, which moves from vertex
to vertex of the primal feasible region until it reaches an optimal solution (or gets an
indication of unboundedness). Each vertex corresponds to a basic feasible solution and
hence to a choice of m basic variables from the n variables in total.

It is clear that, with hindsight, we can move from the initial vertex to the final vertex
in at most m basic exchanges, at each step replacing one of the initial basic variables by
one of the final basic variables. However, there is no reason why the intermediate basic
solutions should be feasible. Moreover, the simplex method cannot use hindsight, and
indeed uses only local information at the current vertex. It is therefore worth emphasizing
the

Remarkable fact: the (primal) simplex method typically requires at most 2m to 3m
pivots to attain optimality.
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This serendipitous property was recognized quite early (something similar is mentioned
by Hoffman et al. in [49] in 1953), and was stated in Dantzig [29], page 160, as based on
empirical experience with thousands of practical problems. Numerical evidence can be
found in Wolfe and Cutler [96] and Kuhn and Quandt [66]. This experience was perhaps
a factor in discouraging the development of other algorithms from the late ’50s and
’60s, although some alternatives continued to be advanced. Of course, the dual simplex
method of Lemke [69] was of great importance, both for reoptimization following
a change in the right-hand sides and to solve problems from scratch (indeed the dual
steepest-edge simplex method studied and made practical by Forrest and Goldfarb [36]
seems to be the simplex method of choice today), but for our purposes here it can
be viewed as the primal simplex method applied to the dual problem. More recent
evidence for the claim comes from computational experiments carried out to demonstrate
the competitive behavior of the simplex method following the great excitement and
provocative computational results of interior-point methods. For example, Bixby [11]
gives results for an early version of CPLEX (1.0) on 90 Netlib [39] problems. For 72,
the number of total iterations was at most 3 times the row size; for 16, the ratio was
between 3 and 7; and for the remaining three, it was 10.7, 39.5 and 469.1. (The last
three had “unbalanced” m and n: their m × n sizes were 1000 x 8806, 24 x 1026,
and 25 x 10,500 respectively; here m denotes the number of general linear constraints,
while the last two problems had both upper and lower bounds on all the variables, so
that perhaps m should be taken as 1050 and 10525, and then the ratios are under 1.2.)
On a set of 8 larger problems considered in [12], the ratios for CPLEX 2.2 (primal)
were from .46 to 1.99 on three, from 4.52 to 9.02 on four, and 17.58 on the last.
Note that these problems (especially the largest) were chosen to present difficulties for
linear programming algorithms; their general favorable performance is then even more
surprising.

3.1. Diameter

One way to try to explain the success of the simplex method is to study the diameter of
a polyhedron, the largest number of edges in a shortest path joining two of its vertices.
Let �(d, n) denote the largest diameter of a d-dimensional polyhedron with n facets;
this represents the best-possible number of iterations for the worst linear programming
problem of these dimensions, initiated at the worst vertex. W.M. Hirsch conjectured
in 1957 that �(d, n) ≤ n − d (so that m steps would be sufficient in the remarkable
fact above), see Dantzig [29], pp. 160. It is known that this bound fails for unbounded
polyhedra (Klee and Walkup [61]), and it also fails for bounded polyhedra (polytopes)
if the path is required to be monotonic with respect to the objective function [87]. The
general case for polytopes is still open.

The best bounds available are �(d, n) ≤ 2d−3n due to Larman [67], and �(d, n) ≤
n1+log d due to Kalai and Kleitman [54]. The Hirsch conjecture holds for 0–1 poly-
topes (Naddef [77]) and for dual transportation polyhedra (Balinski [7]); and the diam-
eters of certain combinatorial polytopes (e.g., the assignment polytope and the asym-
metric traveling salesman polytope) are just 2 (Balas and Padberg [6], Padberg and
Rao [79]).



Michael J. Todd

Klee and Kleinschmidt [59] give an excellent survey on these matters, and Klein-
schmidt [62] provides an update and some algorithmic consequences. (Note added in
proof: see also Amenta and Ziegler [102].)

3.2. Exponential and subexponential pivot rules

Klee and Minty [60] were the first to give an example of a class of linear programming
problems for which Dantzig’s classic most-negative-reduced-cost pivot rule required an
exponential number of pivots. Since then exponential examples have been found for
several other pivot rules, including the best-neighbor rule which solves linear optimiza-
tion over the simplex (and the original Klee-Minty examples) in just one pivot, and the
steepest-edge rule which is the basis for the fast simplex codes of today.

It is therefore surprising that subexponential (but superpolynomial) pivot rules have
been found, by Kalai [52] and Matousek, Sharir, and Welzl [73]. These are all (thus far)
randomized, with a best bound on the expected number of pivots of exp(K

√
d log n) for

some constant K . One version is particularly easy to describe (roughly):

• Given a vertex v, choose a facet F containing v at random.
• Apply the algorithm recursively to find the optimizing vertex w in F.
• Repeat the algorithm from w.

The analysis, and much more fascinating material, is in Kalai [53].

3.3. Probabilistic analysis

Instead of randomizing the pivot rule, we can ask for the expected behavior of a deter-
ministic rule on a random linear programming problem drawn from some distribution.
This was a topic under intense study in the late ’70s and early ’80s. Major contributions
were made by Borgwardt [15,16], Smale [85], Adler [1], Haimovich [47], Adler, Karp,
and Shamir [2], Adler and Megiddo [3], and Todd [88].

Borgwardt was the first to obtain a polynomial bound. His final estimate, from [18],
gives a bound 0(m3n1/(m−1)) for the expected total number of iterations of a dimension-
by-dimension simplex method for the dual problem (D). Here, the data b, a1, ..., an,

where a j denotes the jth column of A, are required to come from a rotationally sym-
metric distribution, and c is the vector of ones. Hence the origin is always feasible, and
is used by the algorithm as a starting point. The generated problems are always feasible
and have optimal solutions with high probability if n � m. Some results have also been
obtained for a related parametric method where the c j ’s are also random and can be
negative (Borgwardt [17]).

In contrast, Adler and Megiddo [3], Adler, Karp, and Shamir [2], and Todd [88] deal
with the so-called sign-invariant model, and obtain a bound of 0(min{d2, m2}) on the
expected total number of iterations to show infeasibility, show unboundedness, or attain
optimality for a lexicographic parametric method. One (severe) disadvantage of this
probabilistic model is that problems are either infeasible or unbounded with probability
approaching 1 as n tends to ∞; however, in the case that n = 2m it is possible to
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derive a bound of 0(m
5
2 ) expected total iterations with the expectation conditioned on

the problem’s having an optimal solution.
For a survey of these and related results, see the 0th chapter of Borgwardt’s book [16]

or the last section of [18]. There is also a discussion of these issues in [90].

3.4. Big faces, little faces, long edges

To conclude this section we describe some results that try to give some intuition as to
why the simplex method works so well.

First, there may be a few “big” faces on which most of the action takes place.
Kuhn [65] did some experiments in 1953 in which he “shot” ten random bullets from
the centroid of the asymmetric travelling salesman polytope on 5 cities, finding which
facet each penetrated. Each shot led to a 21 x 25 LP problem which was (just) within the
capability of the SEAC, and each went through a trivial (nonnegativity) facet. In 1991,
he repeated the experiment on a larger scale. Of over 150,000 shots, 80% went through
these trivial facets, which numbered 20 out of the 390 facets in all.

Of course, polytopes with a relatively small number of vertices can have a large
number of facets. The symmetric travelling salesman polytope on 7 cities has 360
vertices and 3,437 facets: for 8 cities, the figures are 2,520 vertices and 194,187 facets
(Christof et al. [25]). How many of these are “significant”? Goemans [41] showed that
several classes of facets for the graphical travelling salesman problem had a very small
effect on the optimal value when their inequalities were added to an LP relaxation.
We can infer that perhaps many of these facets are “small.”

By polarity, these results have implications for the vertices of polytopes with a rela-
tively small number of facets (i.e., the feasible region of LP problems). There may be
many vertices: the d-cube has 2d facets and 2d vertices, and a polytope with n = 2d can

have as many as �(d
d
2 ) vertices. But many of these vertices may be optimal for a very

small set of objective functions, and may be relevant for a very small set of simplex
algorithms.

Lastly, let us briefly consider long edges. It has been known for a long time that
in dimension d ≥ 4 there are neighborly polytopes (every pair of vertices is joined by
an edge) with arbitrarily many vertices [46,100]. Clearly such polytopes are not simple
(each vertex has degree much larger than the dimension) unless they are simplices, but
at least there is some basis representation of the initial vertex such that a single pivot
reaches the optimal vertex. As mentioned above, there are classes of polyhedra arising
in practice whose diameters are two. To complement these results I ran a very simple
experiment to suggest that many polyhedra had “long edges” going from one side of
the polyhedron to the other. For d = 3, 4, ..., 11, and n = 2d and 2d+1, I generated
100 polytopes as the convex hull of n d-vectors. For the first type, each component of
each vector was independently drawn from the standard normal distribution. For the
second type, the resulting vectors were each scaled independently to have length the
reciprocal of a number drawn uniformly at random from [0,1]. For the first type of
polytope, at least half of the vectors were in fact vertices. I took the two maximally
distant vertices and checked whether they were joined by an edge: this was true in
between 3% and 49% of the cases, depending on the dimension d. For the second
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type, only a few of the vectors were vertices (only an average of 46 to 48 for the
problems of dimension 10), but from 67% to 100% of the polytopes (and from 99%
to 100% for those with d ≥ 7) had their maximally-distant vertices joined by an
edge.

4. The ellipsoid method

The ellipsoid method was originally developed by Yudin and Nemirovski [99] and
Shor [84] for convex nonlinear programming, but it become famous when Khachiyan [57,
58] used it to obtain a polynomial-time algorithm for linear programming. This was
a major theoretical advance, but the popular press misinterpreted it in a rather ludi-
crous way (with headlines like “Soviet Answer to ‘Travelling Salesmen’ ”; see Lawler’s
article [68]); later headlines retreated from their earlier excesses by invoking cold-war
suspicions (as in the New York Times’s “A Russian’s Solution in Math Questioned,”
21 March 1980, p. A13).

For a problem with n inequalities and integral data with total bit size L, the method
generates an approximate solution from which an exact solution can easily be obtained
in 0(n2 L) iterations, requiring 0(n4L) arithmetic operations on numbers with 0(L)

digits. (These bounds appear in Khachiyan [58]; his earlier extended abstract [57] gave
a bound of 0(n5L) arithmetic operations on numbers with 0(nL) digits.) This gives
a polynomial bound, and thus Khachiyan was the first to show that linear programming
was in the class P of polynomial-time solvable problems. Nevertheless, the performance
in practice was typically very close to its worst-case bound, so that despite a number of
refinements the method is not competitive for linear programming; for example, see the
discussion in Bland et al. [14].

The basic idea of the ellipsoid method is well-known. At each iteration an ellipsoid
is given which contains all optimal solutions. By considering the center of the ellipsoid,
a hyperplane is constructed so that all optimal solutions lie on one side of the hyperplane
(and the center either lies strictly on the other side (a deep cut) or on the hyperplane
itself (a central cut)). Then a new ellipsoid is found which contains all points in the old
ellipsoid and on the correct side of the hyperplane.

We will give some formulae below (as well as a new interpretation of the process).
But first, let us mention that from this geometric view it appears that the method is
quite insensitive to the number of inequalities, and seems likely to work well when the
feasible region of the linear programming problem is close to a “disco ball” (as opposed
to a “quartz crystal”) — in this way it seems to complement the simplex method. Also,
as long as a suitable hyperplane can be found, there is no need for the problem to
be of linear programming type. Hence it can be used for convex programming, and
is also highly useful for theoretically analyzing combinatorial optimization problems
via the polyhedral combinatorics paradigm. This leads to the famous “separation =
optimization” meta-theorem: if you can separate efficiently, you can optimize efficiently
(over a suitable collection of convex bodies). We will not pursue this, as it falls outside
the scope of this article, but instead refer the reader to the excellent monograph by
Grötschel, Lovász, and Schrijver [45].



The many facets of linear programming

4.1. Update formulae

Now we briefly discuss the mechanics of an iteration, in order to describe the new
interpretation. For simplicity, we assume that we are just trying to find a feasible point
for (D), i.e., a point in Y := {y : AT y ≤ c}. We write the individual constraints as
aT

j y ≤ c j , j = 1, 2, ..., n, and assume that Y ⊆ E0, where

E0 := {y : ‖y‖2 ≤ R}. (1)

Any ellipsoid in �m can be written in the form

E = E(ȳ, B) = {
y : (y − ȳ)T B−1(y − ȳ) ≤ 1

}
, (2)

where ȳ is its center and B is a symmetric positive definite matrix of order m. Indeed,
E0 = E(y0, B0), with y0 = 0 and B0 = R2 I . Given Ek = E(yk, Bk), Ek+1 =
E(yk+1, Bk+1) can be constructed as follows:

Find j so that aT
j yk > c j (if none, STOP: yk ∈ Y ). Set

yk+1 := yk − τBka j(
aT

j Bka j
) 1

2

, (3)

Bk+1 = δ

(
Bk − σ

Bka jaT
j Bk

aT
j Bka j

)
, (4)

where τ = 1/(m + 1), δ = m2/(m2 − 1), and σ = 2/(m + 1). This gives Ek+1 as the
ellipsoid of minimum volume that contains the semi-ellipsoid {y ∈ Ek : aT

j y ≤ aT
j yk}; if

the minimum-volume ellipsoid containing {y ∈ Ek : aT
j y ≤ c j} is desired, the formulae

are similar with different choices for τ, δ, and σ (deep cuts). It can be shown that vol
(Ek+1)/vol(Ek) ≤ exp(−1/[2m + 2]), and this systematic volume reduction leads to
the complexity bound: see, e.g., Bland et al. [14].

4.2. An alternate representation

There is another way to represent the ellipsoid that leads to a surprising parallel with
interior-point methods (see also [89]). Since we assume that Y ⊆ E0, we can find lower
bounds on aT

j y for y ∈ Y for each j . So suppose Y = {y : � ≤ AT y ≤ c}. Now let D be

a nonnegative diagonal matrix. Then since AT y − � ≥ 0 and AT y − c ≤ 0 for all y ∈ Y,

Y ⊆ Ē(D, �) := {
y : (AT y − �

)T
D
(

AT y − c
) ≤ 0

}
, (5)

and the set on the right-hand side is an ellipsoid as long as ADAT is positive definite.
The advantage of this representation is that it gives a short certificate that E = Ē(D, �)

contains Y . (The disadvantage is that it can only be used with linear programming and not
with convex or combinatorial optimization where the constraints are not pre-specified.)
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From this viewpoint, the ellipsoid method generates a sequence Ek = Ē(Dk, �k) of
ellipsoids containing Y . The center of Ek is yk, the solution of

ADk AT y = ADk(�k + c)/2, (6)

or equivalently of the weighted least-squares problem

D
1
2
k AT y ≈ D

1
2
k (�k + c)/2. (7)

At the kth iteration, the index j of a violated constraint is found, the jth component
of the vector �k is possibly updated, and the jth diagonal entry of the matrix Dk is
increased. Since only one entry of Dk is changed, yk can be updated cheaply (the update
is exactly that given in (3)), as can Bk = (ADk AT )−1. Details can be found in Burrell
and Todd [22]. That paper also shows how �k is updated (each component is guaranteed
to be a suitable lower bound by an application of the Farkas lemma).

Besides showing that the quadratic inequality defining each ellipsoid can be viewed
as a weighted sum of quadratic constraints that ensure that each aT

j y lies in an appropriate
range, this representation gives a clue to the slow convergence of the ellipsoid method.
Suppose the lower-bound vector � remains unchanged. Then the volume of Ē(D, �) is
a function of just the diagonal entries of D, and the ellipsoid method can be thought
of as a coordinate descent method to minimize this nonlinear function. It is known that
coordinate descent methods can be very slow, and the ellipsoid method is no exception,
although dramatic volume reductions are possible at some iterations. (See also Liao and
Todd [71].)

5. Interior-point methods

The idea of moving through the interior of the feasible region goes back at least to Frisch
in 1955 [37], who proposed using a logarithmic barrier function. Barrier and penalty
methods for nonlinear programming were studied in depth in the 1960s, leading to the
classic text of Fiacco and McCormick [35], but came into disfavor as their numerical
drawbacks became more recognized. The modern reincarnation of these methods is
due to Karmarkar [56] in 1984, who established the polynomial-time boundedness of
the projective method and also obtained some very competitive times (comparing with
Fortran implementations of the simplex method) on a widely-used set of test problems.
It turns out that the interior-point method implemented by Karmarkar (the affine-scaling
method), besides being discovered simultaneously by a number of researchers in the mid
1980s, had in fact been proposed in 1967 and analyzed in 1974 by I.I. Dikin, a student
of Kantorovich [33,34].

Karmarkar’s results and claims led to a furor of activity, though the popular press was
much more accurate this time (viz. the front-page New York Times article “Breakthrough
in Problem Solving” of Monday, November 19, 1984, written by James Gleick of chaos
fame). The complexity bound was only slightly better than that of the ellipsoid method
(0(n3.5L) arithmetic operations on a problem with n inequalities and integer data of total
bit length L, although in practice the behavior is much better). However, the new ideas
employed were very intriguing: at each iteration a projective transformation was used to
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bring the current iterate into the center of the feasible region, and a nonlinear potential
function, invariant under such transformations, was used to measure progress. This
potential function is close to Frisch’s logarithmic barrier, and Gill, Murray, Saunders
and Wright [40] showed that Karmarkar’s search direction in fact is equivalent to that
arising from a barrier function method with a suitable choice of barrier parameter
(sometimes negative!) at each iteration.

The idea of making a projective transformation is to bring the current iterate to
a point far from the constraints so that a steepest descent step (on the transformed
objective function or the potential function) will give good decrease. However, projective
transformations are not used much in interior-point methods nowadays. The key concept
of making a transformation or changing the metric so the current iterate is in some
sense far from the boundary remains highly valuable. I will discuss briefly dual and
primal-dual path-following methods, and then make some remarks about potential-
reduction algorithms. For more details, I recommend Gonzaga [44] and Wright [97]
for path-following methods and Anstreicher [5] and Todd [91] for potential-reduction
algorithms.

5.1. Dual path-following

Suppose we have a current strictly feasible solution ȳ to the dual problem max{bT y :
AT y ≤ c}; strictly feasible means that the dual slack vector s̄ := c − AT ȳ is positive
in each component (written s̄ > 0). The largest ellipsoid around s̄ that is contained in

the nonnegative orthant is Es := {s ∈ �n : (s − s̄)T S̄
−2

(s − s̄) ≤ 1}, where S̄ is the
diagonal matrix with the components of s̄ on its diagonal. Thus the set of feasible dual
solutions whose slack vectors lie in Es is

E := {y ∈ �m : (y − ȳ)T AS̄
−2

AT (y − ȳ) ≤ 1},
and E ⊆ Y := {y ∈ �m : AT y ≤ c}. Note that here we have a point ȳ that lies in Y ,
and E is inscribed in Y rather than circumscribing it, but that otherwise the ellipsoid E
is remarkably similar to Ē(D, �) in (5).

In addition to the fact that E ⊆ Y , the matrix AS̄
−2

AT appearing therein defines
a highly useful local metric at ȳ. Note that this matrix arises as the Hessian of the
logarithmic barrier function

f(y) := −
∑

j

ln
(
c − AT y

)
j (8)

evaluated at ȳ. This is a special case of a very general theory of self-concordant bar-
rier functions developed by Nesterov and Nemirovski: see their monograph [78]. The
knowledge of such a barrier function and its derivatives for a convex set is a sufficient
condition for devising theoretically efficient algorithms for optimizing a linear function
over the set. For any such barrier, the ball of radius 1 at any point defined by the local
norm given by the Hessian of the barrier function is always contained in the set. At the
analytic center, the point that minimizes the barrier (assuming it exists), a corresponding
ball of radius a constant times the so-called complexity value of the barrier (n for the
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function f above) contains the convex set. Hence the metric defined by the local norm
gives a very useful approximation to the local geometry of the set. For our interests, this
gives a differential geometry view of a polyhedron as compared to the combinatorial
geometry viewpoint of the simplex method.

Let us now return to our strictly feasible point ȳ and the metric defined by the matrix

AS̄
−2

AT . With respect to this metric, the steepest ascent direction for the objective
function is

dAFF := (
AS̄

−2
AT )−1

b (9)

(the affine-scaling direction), while the steepest descent direction for the logarithmic
barrier function is

dCEN := −(AS̄
−2

AT )−1
As̄−1 (10)

(the centering direction), where s̄−1 denotes the vector whose components are the re-
ciprocals of those of s̄. Dual interior-point methods generally choose as search direction
a linear combination of these two directions.

Strictly feasible points ȳ where these two directions are diametrically opposed (so
that µAs̄−1 = b for some positive µ) lie on the so-called dual central path. Such points
maximize the dual penalized function bT y − µ f(y) over strictly feasible y. Note that
then x̄ := µs̄−1 is a strictly feasible point for (P), and it is not hard to see that x̄
minimizes the primal penalized function cT x − µ

∑
j ln x j over strictly feasible x; x̄ is

then a point on the primal central path. Together x̄, ȳ, and s̄ solve

AT y + s = c, s > 0,

Ax = b, x > 0,

x ◦ s = µe,
(11)

where x ◦ s is the vector of component-wise products of x and s and e is the n-vector of
ones.

Note that points satisfying (11) are strictly feasible, with duality gap

cT x − bT y = xT s = nµ.

So as µ tends to zero from above, points on the central paths converge to optimal
solutions (this requires additional work to show that limits exist). It thus makes sense to
approximately follow the central path(s) as µ decreases.

We say that ȳ is close to the dual central path if for some µ > 0, the Newton step
for the penalized function, µ−1dAFF + dCEN , is below some tolerance δ in the local
norm, i.e., [(

b − µAs̄−1)T [
AS̄

−2
AT ]−1(

b − µAs̄−1)] 1
2 ≤ δµ.

We then try to find such a point for a smaller value of µ, say σµ for 0 < σ < 1, by
taking a Newton step. It turns out that we can choose σ as 1 − O(1/

√
n) and guarantee

that we stay close to the central path. Iterating this procedure gives an O(
√

n ln(1/ε))-
iteration algorithm to obtain an ε-optimal solution. Such methods were first developed
by Renegar [80].
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Note that every iteration requires the solution of a linear system with coefficient

matrix AS̄
−2

AT . This compares nicely with the ellipsoid method (see (6)) except that

now every diagonal entry of S̄
−2

changes, whereas only one entry of Dk changed before.
To compensate, far fewer iterations are typically necessary in practical interior-point
methods.

5.2. Primal-dual path-following

We have gone into some detail concerning dual path-following methods, in order to
highlight their motivation from a special local metric defined on the interior of the dual
feasible region with very attractive properties. We shall be much more brief here.

Of course, we can define primal path-following methods by following the argu-
ments of the previous subsection: these require the solution of a linear system with

coefficient matrix AX̄
2

AT at each iteration, where X̄ is the diagonal matrix containing
the components of the current iterate x̄.

Primal-dual methods are usually motivated by considering the system of nonlinear
equalities (11). Given a strictly feasible triple (x̄, ȳ, s̄) that is close to the central path
(i.e., the Euclidean norm of µ−1x ◦ s − e is small), we move in the direction of the
Newton step for (11) with µ replaced by σµ. These methods are admirably discussed
and analyzed in Gonzaga [44] and Wright [97].

There is a another way we can view these methods. If we wanted to simultan-
eously increase the dual penalized function and decrease the primal penalized function,

we could solve two linear systems with coefficient matrices AS̄
−2

AT and AX̄
2

AT .

These can be viewed as Newton steps or alternatively as steepest descent steps with
respect to the local norms. To avoid the work of solving two linear systems, we
can use steepest descent with respect to the local norm at a point intermediate be-

tween x̄ and s̄−1, their geometric mean x̄
1
2 s̄− 1

2 (interpreted component-wise). This
leads to requiring the solution of just a single linear system to obtain the steepest
descent directions for both penalized functions, and the resulting search directions
are exactly those found by the primal-dual Newton approach of the previous para-
graph.

5.3. Potential-reduction methods

Karmarkar used the primal function

φP(x) := n ln
(
cT x − z∗

)−
∑

j

ln x j ,

where z∗ is the known optimal value of (P), to monitor progress of his projective
algorithm [56], and showed that this function could be decreased by a constant at each
iteration. Later research removed the assumption that the optimal value is known, but it
seems better to use instead the primal-dual potential function
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�PD(x, y) := (n + ρ) ln
(
cT x − bT y

)−
∑

j

ln x j −
∑

j

ln
(
c − AT y

)
j ,

defined for strictly feasible pairs, where ρ is a nonnegative parameter. The latter function
was introduced independently by Tanabe [86] and by Todd and Ye [92]; [92] (in a re-
stricted setting) and then Ye [98] and Kojima, Mizuno, and Yoshise [63] proved that, as
long as ρ ≥ √

n, it can be reduced by a constant at each iteration.
In both primal and primal-dual guises, this constant reduction suffices to obtain

polynomial-time bounds on the number of iterations required to obtain ε-optimal so-
lutions, of O(n ln( 1

ε
)) and O(ρ ln( 1

ε
)) respectively. Hence the primal-dual method can

attain the same bound as path-following methods by choosing ρ = θ(
√

n). More signifi-
cantly, these bounds can be achieved without any restrictions on the iterates remaining
close to the central path: as long as a sufficient reduction in the potential function is
maintained, the iteration bound stays valid.

The symmetric primal-dual search directions used by Kojima et al., while motivated
by scaled steepest descent for the potential function, turn out to coincide with those
arising from the path-following approach with σ = n/(n+ρ). Thus choosing ρ = θ(

√
n)

corresponds to choosing σ = 1 − θ(1/
√

n).

Modern implementation of interior-point methods are usually called path-following
variants, although there is rarely an attempt to maintain the iterates in any neighborhood
of the central path. The parameter σ is typically chosen adaptively, often very close to
zero. Apart from the adaptive choice of σ, these methods could just as easily be viewed
as potential-reduction methods which do not check that the potential function is actually
reduced.

As a final remark on potential-reduction methods, note that, for the more gen-
eral area of semidefinite programming, Benson et al. [9,10] have shown that dual
potential-reduction methods can exploit the structure of certain classes of problems
more effectively than path-following methods.

5.4. Exponential gaps

To conclude this section, I want to point out an interesting parallel between worst-case
and typical behaviors of the simplex method and interior-point methods. As I have
indicated, the best bound we have on the number of steps of the (deterministic) simplex
method grows exponentially with the dimension, while its usual behavior is linear.
Moreover, there are examples showing that the gap is real: for many simplex pivot rules,
there are examples where the number of pivots required is exponential.

For interior-point methods, the best bounds are polynomial in the dimension, growing
with n or

√
n. Due to the cost of each iteration, such growth would be disastrous in

practical cases, and thus it is fortunate that the observed growth is much slower —
perhaps logarithmic in the dimension (see Lustig et al. [72]). This is again an exponential
gap! The question arises as to whether it is “real,” or just an artefact of our inability
to prove a better bound. The answer is that the gap is indeed real: for many practical
interior-point methods, there are examples showing that the number of iterations grows

at least as fast as �(n
1
3 ); see Todd and Ye [93].
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6. Other methods

Here we collect some miscellaneous methods that have been proposed for linear pro-
gramming, and provide some references. Despite some encouraging results quoted in
some of these papers (often on small random instances), none is regarded as competitive
with simplex or interior-point methods (but we should note the excellent results of De
Leone and Mangasarian [32] using an SOR (successive over-relaxation) method on very
large sparse random problems in 1987).

6.1. Gradient-like methods

These try to follow projected gradient directions from one feasible point to another.
Since this seems like such a natural strategy, and apparently so obviously superior to
edge-following methods, such methods have been proposed numerous times in slightly
varying guises. Indeed, Brown and Koopmans discussed such a method [20] in the
same volume that contained Dantzig’s initial publication [27]. Later references include
Zoutendijk’s method of feasible directions ([101], Chap. 9), Rosen’s projected gradient
method [82], the constrained gradient method of J.K. Thurber and Lemke [70], and
Chang and Murty’s steepest descent gravitational method [23].

6.2. Fictitious play

An iterative method to find optimal strategies and the value of 2-person zero-sum
games was devised by Brown [19] and shown to be convergent by Robinson [81]. This
method is iterative, and at each stage selects a strategy for each player that is a best
response to the empirical mixed strategy exhibited by the previous choices of his or
her opponent. Convergence is slow, but the method is very simple to implement. Since
linear programming problems can be reduced to the solution of (symmetric) games, this
provides a method for general LP problems also.

The idea behind the method can also be based on differential equations, and Brown
and von Neumann prove the existence of the value and of optimal strategies based
on a system of differential equations in [21]. The proof is semi-constructive, in that
no particular technique for solving the resulting initial value problem is mentioned.
Apparently the paper is based on results obtained independently by the two authors.
This similarity in the approaches is perhaps the reason that Dantzig states in [30] that
Hoffman et al. [49] compared a scheme of von Neumann to the simplex method and
relaxation methods, whereas their comparison is of Brown’s fictitious play method.

A much-cited note of von Neumann, in which he proposed another method for
linear programming soon after Dantzig visited him in 1947, eventually appeared in
his collected works [95]. Again, a system of differential equations is proposed, but
the details of a specific algorithm are not given. The approaches of Brown and of von
Neumann are very similar, but while Brown adjusts the weight on just one strategy (and
changes the others proportionately), von Neumann adjusts the weights on many of the
strategies based on a residual vector.

Finally, a more refined analysis of a related method appears in von Neumann [94].
Again the emphasis is on solving a zero-sum game, but here an explicit bound on the
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computational complexity (the first in mathematical programming?) is given: to approx-
imate the value of an m × n matrix game to within a multiple ε of the range of payoffs
requires at most m+n

ε2 iterations, each requiring about 4mn flops. If only the 1
ε2 factor

could be replaced by ln( 1
ε
), this would yield a polynomial algorithm!

6.3. Relaxation methods

The classical relaxation method of Agmon [4] and Motzkin and Schoenberg [76],
closely related to iterative methods for linear equations, was of great interest in the
1950s, partly because each iteration requires minimal computation, merely some matrix-
vector multiplications. To find a point in Y := {y : AT y ≤ c}, at every iteration the
current point is projected onto the hyperplane defined by a violated constraint (actually,
a stepsize λ ∈ (0, 2] is usually included, where λ = 1 (respectively, 2) corresponds
to projection onto (respectively, reflection in) the hyperplane). This method is closely
related to the classical Gauss-Seidel and Jacobi iterative methods for “solving” the
system AT Av = c of linear equations. (Here, at each iteration, one component of
v is changed to satisfy the corresponding equation, again usually with a relaxation
parameter to speed convergence.) However, it did not perform well in the computational
experiments of Hoffman et al. [49] due to its very slow convergence. The appearance of
the ellipsoid method (which can be viewed as a variable-metric form of the relaxation
method) prompted some further study: see Goffin [42,43].

Much more successful were variants of the successive over-relaxation (SOR) tech-
nique applied to either a linear complementarity form of the problem or to an augmented
Lagrangian dual problem. Indeed, De Leone and Mangasarian [32] report very encour-
aging results for this method applied to random sparse linear programming problems of
dimensions from 25, 000 × 100, 000 up to 125, 000 × 500, 000. Once again, each itera-
tion requires only some matrix-vector multiplications with the original sparse coefficient
matrix. However, choosing the augmented Lagrangian penalty parameter presents some
problems.

6.4. Methods based on ideas of computational geometry

Here we collect a number of methods motivated by two concerns: the desire for a strongly
polynomial linear programming algorithm (both the ellipsoid and interior-point methods
have iteration bounds depending on the bit length of the data, not just its dimension), and
the interest in solving low-dimensional problems with a large number of constraints.

Megiddo was the first to obtain a method that is linear in n for fixed dimension d [74].
However, the dependence on d was doubly exponential. Clarkson [26] devised a ran-
domized algorithm needing only O(d2n + d4√n ln n + [O(d)]d/2+O(1) ln n) arithmetic
operations. One key idea of Clarkson was to take a sample of the constraints, solve the
resulting smaller problem (by another algorithm), and find the set of constraints violated
by its solution. These constraints are then either forced into the next sample, or given
increased probability, and the process is continued.

Gärtner and Welzl [38] describe an O(d2n + exp(K
√

d ln d))-operation algorithm
that combines two methods of Clarkson with the subexponential pivoting methods of
Kalai [52] and Matousek et al. [73]. This paper also gives a nice historical review of this
class of methods.
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7. The future

What will we see in the next fifty, or even five, years? Linear programming has a history
of reinventing itself. At present there is a rough computational parity between simplex
and interior-point methods: variants of the simplex method are usually better for small
problems, hold a significant edge in post-optimal analysis, and are more effective for
some large-scale problems, while interior-point methods hold sway for other large prob-
lems. Will our complacency in the status quo be shattered by another computationally
effective class of methods? I wouldn’t bet on it in the next five years, but over the next
ten, I’d take even odds.

On the theoretical side we still have the big questions: does the bounded Hirsch
conjecture hold? Is there a polynomial pivot rule for the simplex method? For interior-
point methods, can we give a theoretical explanation for the difference between worst-
case bounds and observed practical performance? Can we devise an algorithm whose
iteration complexity is better than O(

√
n ln(1/ε)) to attain ε-optimality? Can we find

a theoretically or practically efficient way to reoptimize?
Let us hope that the next fifty years brings as much excitement as the last!
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