
The Many Facets of Natural Computing

Lila Kari0
Department of Computer Science

University of Western Ontario
London, ON, N6A 5B7, Canada

lila@csd.uwo.ca

Grzegorz Rozenberg
Leiden Inst. of Advanced Computer Science

Leiden University, Niels Bohrweg 1
2333 CA Leiden, The Netherlands
Department of Computer Science
University of Colorado at Boulder

Boulder, CO 80309, USA
rozenber@liacs.nl

“Biology and computer science - life and computation - are

related. I am confident that at their interface great discoveries

await those who seek them.” (L.Adleman, [3])

1. FOREWORD

Natural computing is the field of research that investi-
gates models and computational techniques inspired by na-
ture and, dually, attempts to understand the world around
us in terms of information processing. It is a highly in-
terdisciplinary field that connects the natural sciences with
computing science, both at the level of information tech-
nology and at the level of fundamental research, [98]. As
a matter of fact, natural computing areas and topics come
in many flavours, including pure theoretical research, algo-
rithms and software applications, as well as biology, chem-
istry and physics experimental laboratory research.

In this review we describe computing paradigms abstracted
from natural phenomena as diverse as self-reproduction, the
functioning of the brain, Darwinian evolution, group be-
haviour, the immune system, the characteristics of life, cell
membranes, and morphogenesis. These paradigms can be
implemented either on traditional electronic hardware or
on alternative physical media such as biomolecular (DNA,
RNA) computing, or trapped-ion quantum computing de-
vices. Dually, we describe several natural processes that can
be viewed as information processing, such as gene regula-
tory networks, protein-protein interaction networks, biolog-
ical transport networks, and gene assembly in unicellular
organisms. In the same vein, we list efforts to understand
biological systems by engineering semi-synthetic organisms,
and to understand the universe from the point of view of
information processing.

This review was written with the expectation that the
reader is a computer scientist with limited knowledge of nat-
ural sciences, and it avoids dwelling on the minute details of

0Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

various natural phenomena. Thus, rather than being over-
whelmed by particulars, it is our hope that the reader will
see this article as simply a window onto the profound rela-
tionship that exists between nature and computation.

There is information processing in nature, and the natu-
ral sciences are already adapting by incorporating tools and
concepts from computer science at a rapid pace. Conversely,
a closer look at nature from the point of view of information
processing can and will change what we mean by computa-
tion. Our invitation to you, fellow computer scientists, is to
take part in the uncovering of this wondrous connection.1

2. NATURE AS INSPIRATION

Among the oldest examples of nature-inspired models of
computation are the cellular automata conceived by Ulam
and von Neumann in the 1940s. John von Neumann, who
was trained in both mathematics and chemistry, investigated
cellular automata as a framework for the understanding of
the behaviour of complex systems. In particular, he believed
that self-reproduction was a feature essential to both biolog-
ical organisms and computers, [120].

A cellular automaton is a dynamical system consisting
of a regular grid of cells, in which space and time are dis-
crete. Each of the cells can be in one of a finite number
of states. Each cell changes its state according to a list of
given transition rules that determine its future state, based
on its current state and the current states of some of its
neighbors. The entire grid of cells updates its configura-

1A few words are in order about the organization of this ar-
ticle. The classifications and labels we use for various fields
of research are purely for the purpose of organizing the dis-
course. In reality, far from being clear-cut, many of the
fields of research mentioned here overlap, or fit under more
than one category. The very general audience for whom this
paper is intended, our respective fields of expertise, and es-
pecially the limited space available for this review affected
both the depth and breadth of our exposition. In partic-
ular, we did not discuss some fields of research that have
large overlaps with natural computing, such as bioinformat-
ics, computational molecular biology, and their roles in, for
example, genomics and proteomics. In addition, our expla-
nations of various aspects, themes, and paradigms had to
be necessarily oversimplified. As well, the space we devoted
to various fields and topics was influenced by several factors
and, as such, has no relation to the respective importance of
the field or the relative size of the body of research in that
field.

tion synchronously according to the a priori given transition
rules.

Cellular automata have been applied to the study of phe-
nomena as diverse as communication, computation, con-
struction, growth, reproduction, competition, and evolution.
One of the best known examples of cellular automata, the
“game of life”, invented by Conway, [45], was shown to be
computationally universal. Cellular automata have been ex-
tensively studied as an alternative explanation to the phe-
nomenon of emergence of complexity in the natural world,
[125], and used, among others, for modeling in physics, [16],
[118], and biology [36].

In parallel to early comparisons, [119], between comput-
ing machines and the human nervous system, McCulloch
and Pitts, [73], proposed the first model of artificial neu-
rons. This research eventually gave rise to the field of neu-
ral computation, and it also had a profound influence on
the foundations of automata theory, [59]. The goal of neu-
ral computation was two-fold. On one hand, it was hoped
that it would help unravel the structure of computation in
nervous systems of living organisms (How does the brain
work?). On the other hand, it was predicted that, by using
the principles of how the human brain processes information,
neural computation would yield significant computational
advances (How can we build an intelligent computer?). The
first goal has been pursued mainly within the neurosciences
under the name of brain theory or computational neuro-
science, while the quest for the second goal has become
mainly a computer science discipline known as artificial neu-
ral networks or simply neural networks, [6].

An artificial neural network consists of interconnected ar-
tificial neurons, [94]. Modeled after the natural neurons,
each artificial neuron A has n real-valued inputs, x1, x2, . . . , xn,
and it computes its own primitive function fA as follows.
Usually, the inputs have associated weights, w1, w2, . . . , wn.
Upon receiving the n inputs, the artificial neuron A produces
the output fA(w1x1 +w2x2 + · · ·+wnxn). An artificial neu-
ral network is a network of such neurons, and thus a network
of their respective primitive functions. Some neurons are se-
lected to be the output neurons, and the network function
is a vectorial function that, for n input values, associates
the outputs of the m output neurons. Note that different
selections of the weights produce different network functions
for the same inputs. Based on given input-output pairs, the
network can “learn” the weights w1, . . . , wn. Thus, there are
three important features of any artificial neural network: the
primitive function of each neuron, the topology of the net-
work, and the learning algorithm used to find the weights
of the network. One of the many examples of such learning
algorithms is the “backwards propagation of errors”. Back-
propagation is a supervised learning method by which the
weights of the connections in the network are repeatedly
adjusted so as to minimize the difference between the ac-
tual output vector of the net and the desired output vector,
[100]. Artificial neural networks have proved to be a fruitful
paradigm, leading to successful novel applications in both
new and established application areas, [6].

While Turing and von Neumann dreamt of understand-
ing the brain, [115], and possibly designing an intelligent
computer that works like the brain, evolutionary com-
putation, [7], emerged as another computation paradigm
that drew its inspiration from a completely different part of
biology: Darwinian evolution, [26]. Rather than emulating

features of a single biological organism, evolutionary compu-
tation draws its inspiration from the dynamics of an entire
species of organisms. An artificial evolutionary system is
a computational system based on the notion of simulated
evolution. It features a constant- or variable-size popula-
tion of individuals, a fitness criterion according to which
the individuals of the population are being evaluated, and
genetically-inspired operators that produce the next gener-
ation from the current one. In an evolutionary system, the
initial population of individuals is generated at random or
heuristically. At each evolutionary step, the individuals are
evaluated according to a given fitness function. To form
the next generation, firstly offspring are generated from se-
lected individuals by using operators such as mutation of a
parent, or recombination of pairs or larger subsets of par-
ents. The choice of parents for recombination can be guided
by a fitness-based selection operator, thus reflecting the bi-
ological principle of mate selection. Secondly, individuals
of the next generation are selected from the set of newly
created offspring, sometimes also including the old parents,
according to their fitness - a process reflecting the biological
concept of environmental selection.

Evolutionary systems have first been viewed as optimiza-
tion processes in the 1930s, [126]. The basic idea of viewing
evolution as a computational process gained momentum in
the 1960s, and evolved along three main branches, [29]. Evo-
lution strategies, [88], [103], [89], use evolutionary processes
to solve parameter optimization problems, and are today
used for real-valued as well as discrete and mixed types of pa-
rameters. Evolutionary programming, [40], originally aimed
at achieving the goals of artificial intelligence via evolution-
ary techniques, namely by evolving populations of intelli-
gent agents modeled, for example, as finite-state machines.
Today, these algorithms are also often used for real-valued
parameter optimization problems. Genetic algorithms, [53],
[54], originally featured a population of individuals encoded
as fixed-length bit strings, wherein mutations consisted of
bit-flips according to a typically small, uniform mutation
rate, the recombination of two parents consisted of a cut-
and-paste of a prefix of one parent with a suffix of the other,
and the fitness function was problem-dependent. If the ini-
tial individuals were to encode possible solutions to a given
problem, and the fitness function were designed to measure
the optimality of a candidate solution, then such a system
would, in time, evolve to produce a near-optimal solution to
the initial problem. Today, genetic algorithms are also mod-
ified heavily for applications to real-valued parameter opti-
mization problems as well as many types of combinatorial
tasks such as, for example, permutation-based problems. As
another application, if the individuals were computer pro-
grams, then the genetic algorithm technique would result
in “the fittest” computer programs, as is the goal of genetic
programming, [62].

Cellular automata, neural computation, and evolution-
ary computation are the most established “classical” areas
of natural computing. Several other bio-inspired paradigms
emerged more recently, among them swarm intelligence, ar-
tificial immune systems, artificial life, membrane computing,
and amorphous computing.

A computational paradigm straddling at times evolution-
ary computation and neural computation is swarm intel-
ligence, [35]. A swarm is a group of mobile biological or-
ganisms (such as bacteria, ants, termites, bees, spiders, fish,

birds) wherein each individual communicates with others ei-
ther directly or indirectly by acting on its local environment.
These interactions contribute to distributive collective prob-
lem solving. Swarm intelligence, sometimes referred to as
collective intelligence, is defined as the problem-solving be-
havior that emerges from the interaction of such a collection
of individual agents. For example, in research simulating
flocking behavior, [93], each individual was endowed with
three simple possible behaviors: to act as to avoid collision,
to match velocity with neighbors, and to stay close to nearby
flock mates. The simulations showed that flocking was an
emergent behavior that arose from the interaction of these
simple rules.

Particle swarm optimization was introduced, [58], as a
new approach to optimization that had developed from sim-
ple models of social interactions, as well as of flocking be-
havior in birds and other organisms. A particle swarm opti-
mization algorithm starts with a swarm of “particles”, each
representing a potential solution to a problem, similar to
the population of individuals in evolutionary computation.
Particles move through a multidimensional search space and
their positions are updated according to their own experi-
ence and that of their neighbors, by adding “velocity” to
their current positions. The velocity of a particle depends
on its previous velocity (the “inertia” component), the ten-
dency towards the past personal best position (the cognitive,
“nostalgia”, component), and the move towards a global or
local neighborhood best (the “social” component), [35]. The
cumulative effect is that each particle converges towards a
point between the global best and its personal best. Parti-
cle Swarm Optimization algorithms have been used to solve
various optimization problems, and have been applied to un-
supervised learning, game learning, scheduling and planning
applications, and design applications, [35].

Ant algorithms were introduced, [32], to model the forag-
ing behavior of ant colonies. In finding the best path be-
tween their nest and a source of food, ants rely on indirect
communication by laying a pheromone trail on the way back
to the nest if they found food, and following the concentra-
tion of pheromones in the environment if they are looking
for food. This foraging behavior has inspired a large num-
ber of ant algorithms used to solve mainly combinatorial
optimization problems defined over discrete search spaces,
[35].

Artificial immune systems are computational systems
devised starting in the late 1980s and early 1990s, [37], [28],
as computationally interesting abstractions of the natural
immune system of biological organisms. Viewed as an in-
formation processing system, the immune system performs
many complex computations in a highly parallel and dis-
tributed fashion, [27]. It uses learning, memory, associa-
tive retrieval, and other mechanisms to solve recognition
and classification problems such as distinction between self
and nonself cells, and neutralization of nonself pathogenic
agents. Indeed, the natural immune system has sometimes
been called the “second brain”, [97], because of its powerful
information processing capabilities, [27].

The natural immune system’s main function is to protect
our bodies against the constant attack of external pathogens
(viruses, bacteria, fungi, and parasites). The main role of
the immune system is to recognize cells in the body and
categorize them as self or nonself, [28]. There are two parts
of the immune system: innate (non-specific) and adaptive

(acquired). The cells of the innate immune system are im-
mediately available to combat against a wide variety of anti-
gens, without requiring previous exposure to them. These
cells possess the ability of ingesting and digesting several
“known” pathogens. In contrast, the adaptive immune re-
sponse is the antibody production in response to a specific
new infectious agent. Our body maintains a large “combina-
torial database” of immune cells which circulate throughout
the body. When a foreign antigen invades the body, only a
few of these immune cells can detect the invaders and phys-
ically bind to them. This detection triggers the primary im-
mune response: the generation of a large population of cells
that produce matching antibodies which aid in the destruc-
tion or neutralization of the antigen. The immune system
also retains some of these specific-antibody-producing cells
in immunological memory, so that any subsequent exposure
to a similar antigen can lead to a rapid, and thus more ef-
fective, immune response (secondary response).

The computational aspects of the immune system, such as
distinguishing of self from nonself, feature extraction, learn-
ing, memory, self-regulation, and fault tolerance, have been
exploited in the design of artificial immune systems that
have been successfully used in applications. The applica-
tions are varied and include computer virus detection, [41],
anomaly detection in a time series of data, fault diagnosis,
pattern recognition, [27], machine learning, bioinformatics,
optimization, robotics, and control, [116]. Recent research
in immunology departs from the self-nonself discrimination
model to develop what is known as the“danger theory”, [72],
wherein it is believed that the immune system differentiates
between dangerous and non-dangerous entities, regardless of
whether they belong to self or to nonself. These ideas have
started to be exploited in artificial immune systems in the
context of computer security, [49].

While artificial immune systems (a.k.a. immunological
computation, immunocomputing) constitute an example of
a computational paradigm inspired by a very specific subsys-
tem of a biological organism, artificial life takes the opposite
approach. Artificial life (ALife) attempts to understand
the very essence of what it means to be alive by building
ab initio, within in silico computers and other “artificial”
media, artificial systems that exhibit properties normally
associated only with living organisms, [64]. Lindenmayer
systems (L-systems), introduced in 1968, [68], can be con-
sidered as an early example of artificial life. L-systems are
parallel rewriting systems that, starting with an initial word,
proceed by applying rewriting rules in parallel to all the let-
ters of the word, and thus generate new words, [99]. They
have been most famously used to model plant growth and
development, [87], but also for modeling the morphology of
other organisms.

Building on the ideas of evolutionary computation, other
pioneers of artificial life experimented with evolving popu-
lations of “artificial creatures” in simulated environments,
[19]. One example, [111], was the design of evolving vir-
tual block creatures that were selected for their ability to
swim (or walk, or jump), and that competed for a com-
mon resource (controlling a cube) in a physically simulated
world endowed with realistic features such as kinematics,
dynamics, gravity, collisions, and friction. The result was
that creatures evolved which would extend arms towards
the cube, while others would crawl or roll to reach it, and
some even developed legs that they used to walk towards the

cube. These ideas were taken one step further, [69], by com-
bining the computational and experimental approaches, and
using rapid manufacturing technology to fabricate physical
robots that were materializations of their virtually evolved
computational counterparts. In spite of the simplicity of
the task at hand (horizontal locomotion), surprisingly dif-
ferent and complex robots evolved: many of them exhibited
symmetry, some moved sideways in a crab-like fashion, and
some others crawled on two evolved limbs. This marked
the emergence of mechanical artificial life, while the nascent
field of synthetic biology, discussed later, explores a biolog-
ical implementation of similar ideas. At the same time, the
field of Artificial Life continues to explore directions such as
artificial chemistry (abstractions of natural molecular pro-
cesses), as well as traditionally-biological phenomena in ar-
tificial systems, ranging from computational processes such
as co-evolutionary adaptation and development, to physical
processes such as growth, self-replication, and self-repair.

Membrane computing investigates computing models
abstracted from the structure and the functioning of liv-
ing cells, as well as from the way the cells are organized in
tissues or higher order structures, [83], [84]. More specif-
ically, the feature of the living cells that is abstracted by
membrane computing is their compartmentalized internal
structure effected by membranes. A generic membrane sys-
tem is essentially a nested hierarchical structure of cell-like
compartments or regions, delimited by “membranes”. The
entire system is enclosed in an external membrane, called
the skin membrane, and everything outside the skin mem-
brane is considered to be the environment. Each membrane-
enveloped region contains objects and transformation rules
which modify these objects, as well as specify whether they
will be transferred outside or stay inside the region. The
transfer thus provides for communication between regions.
Various formal mechanisms were developed that reflect the
selective manner in which biological membranes allow molecules
to pass through them.

Another biologically-inspired feature of membrane sys-
tems as mathematical constructs is the fact that, instead of
dealing with sets of objects, one uses multisets wherein one
keeps track of the multiplicity of each object. The compu-
tational behavior of a membrane system starts with an ini-
tial input configuration and proceeds in a maximally parallel
manner by the non-deterministic choice of application of the
transformation rules, as well as of the objects to which they
are to be applied. The output of the computation is then col-
lected from an a priori determined output membrane. Next
to the basic features indicated above, many alternatives of
membrane systems have been considered, among them ones
that allow for membranes to be dissolved and created. Typi-
cal applications of membrane systems include biology (mod-
eling photosynthesis and certain signaling pathways, quorum
sensing in bacteria, modeling cell-mediated immunity), com-
puter science (computer graphics, public-key cryptography,
approximation and sorting algorithms, and solving compu-
tationally hard problems), and linguistics, [24].

Amorphous computing is a paradigm that draws in-
spiration from the development of form (morphogenesis) in
biological organisms, wherein interactions of cells guided by
a genetic program give rise to well-defined shapes and func-
tional structures. Analogously, an amorphous computing
medium comprises a multitude of irregularly placed, asyn-
chronous, locally interacting computing elements, [1]. These

identically programmed“computational particles”communi-
cate only with particles situated within a small given radius,
and may give rise to certain shapes and patterns such as, for
example, any pre-specified planar graph, [25]. The goal of
amorphous computing is to engineer specified coherent com-
putational behaviors from the interaction of large quantities
of such unreliable computational particles interconnected in
unknown, irregular, and time-varying ways, [1]. At the same
time, the emphasis is on devising new programming abstrac-
tions that would work well for amorphous computing envi-
ronments. Amorphous computing has been used both as a
programming paradigm using traditional hardware, and as
the basis for “cellular computing”, discussed later, under the
topics synthetic biology and computation in living cells.

3. NATURE AS IMPLEMENTATION SUBSTRATE

In the preceding section we saw cellular automata inspired
by self-reproduction, neural computation by the functioning
of the brain, evolutionary computation by the Darwinian
evolution of species, swarm intelligence by the behavior of
groups of organisms, artificial immune systems by the natu-
ral immune system, artificial life by properties of life in gen-
eral, membrane computing by the compartmentalized orga-
nization of the cells, and amorphous computing by morpho-
genesis. All these are computational techniques that, while
inspired by nature, have been implemented until now mostly
on traditional electronic hardware. An entirely distinct cat-
egory is that of computing paradigms that use a radically
different type of “hardware”. This category includes molec-
ular computing and quantum computing2.

Molecular computing (known also as biomolecular com-
puting, biocomputing, biochemical computing, DNA com-
puting), is based on the idea that data can be encoded as
biomolecules – such as DNA strands–, and molecular biology
tools can be used to transform this data to perform, for ex-
ample, arithmetic or logic operations. The birth of this field
was the 1994 breakthrough experiment by Leonard Adle-
man who solved a small instance of the Hamiltonian Path
Problem solely by manipulating DNA strands in test-tubes,
[2].

DNA (deoxyribonucleic acid) is a linear chain made up of
four different types of nucleotides, each consisting of a base
(Adenine, Cytosine, Guanine, or Thymine) and a sugar-
phosphate unit. The sugar-phosphate units are linked to-
gether by covalent bonds to form the backbone of the DNA
single strand. Since nucleotides may differ only by their
bases, a DNA strand can be viewed as simply a word over
the four-letter alphabet {A, C, G, T}. A DNA single strand
has an orientation, with one end known as the 5’ end, and
the other as the 3’ end, based on their chemical properties.
By convention, a word over the DNA alphabet represents

2There are several research areas that, because of the lim-
ited space, we could not discuss here. Thus, for example,
non-classical, unconventional computation, [113], focuses on
carefully examining and possibly breaking the classical (Tur-
ing, von Neumann) computation assumptions, and develop-
ing a more general science of computation. A substantial
part of this research is concerned with implementing com-
putation on new physical substrates, exploiting in this way
computational properties of various physical, chemical, and
biological media. A majority of this research is entwined
with, and motivated by, natural computing.

the corresponding DNA single strand in the 5’ to 3’ orien-
tation, that is, the word GGTTTTT stands for the DNA
single strand 5’-GGTTTTT-3’. A crucial feature of DNA
single strands is their Watson-Crick complementarity: A is
complementary to T , G is complementary to C, and two
complementary DNA single strands with opposite orienta-
tion bind to each other by hydrogen bonds between their
individual bases. In so doing, they form a stable DNA dou-
ble strand resembling a helical ladder, with the backbones
at the outside and the bound pairs of bases lying inside.
For example, the DNA single strand 5’- AAAAACC - 3’ will
bind to the DNA single strand 5’-GGTTTTT-3’ to form the

7 base-pair-long (7bp) double strand
5′ − AAAAACC − 3′

3′ − TTTTTGG − 5′ .

Another molecule that can be used for computation is RNA,
ribonucleic acid. RNA is similar to DNA, but differs from it
in three main aspects: RNA is usually single-stranded while
DNA is usually double-stranded, RNA nucleotides contain
the sugar ribose, while DNA nucleotides contain the sugar
deoxyribose, and in RNA the nucleotide Uracil, U , substi-
tutes for Thymine, which is present in DNA.

There are many possible DNA bio-operations that one can
use for computations, [56], such as: cut-and-paste operations
achievable by enzymes, synthesizing desired DNA strands
up to a certain length, making exponentially many copies
of a DNA strand, and reading-out the sequence of a DNA
strand. These bio-operations and the Watson-Crick comple-
mentarity binding have all been used to control DNA com-
putations and DNA robotic operations. While initial exper-
iments solved simple instances of computational problems,
more recent experiments tackled successfully sophisticated
computational problems, such as a 20-variable instance of
the 3-Satisfiability-Problem [17]. The efforts towards build-
ing an autonomous molecular computer include implementa-
tions of computational state transitions with biomolecules,
[101], and a DNA implementation of a finite automaton with
potential applications to the design of smart drugs, [106].

More importantly, since 1994, research in molecular com-
puting has gained several new dimensions. One of the most
significant achievements of molecular computing has been its
contribution to the massive stream of research in nanosciences,
by providing computational insights into a number of funda-
mental issues. Perhaps the most notable is its contribution
to the understanding of self-assembly, [124], which is among
the key concepts in nanosciences, [92]. Recent experimental
research into programmable molecular-scale devices has pro-
duced impressive self-assembled DNA nanostructures, [105],
such as cubes, [23], [105], octahedra, [108], Sierpinski tri-
angles, [96], DNA origami, [95], or intricate nanostructures
that achieve computation such as binary counting, [8], or
bit-wise cumulative XOR, [71]. Other experiments include
the construction of DNA-based logic circuits, [104], and ri-
bozymes that can be used to perform logical operations and
simple computations, [114], [66]. In addition, an array of
ingenious DNA nanomachines, [12], were built with poten-
tial uses to nanofabrication, engineering, and computation:
molecular switches that can be driven between two confor-
mations, [67], DNA “tweezers”, [127], DNA “walkers” that
can be moved along a track, [109], [107], and autonomous
molecular motors, [91], [11], [48].

A significant amount of research in molecular comput-
ing has been dedicated to the study of theoretical models
of DNA computation and their properties. The model of

DNA computing introduced by Head, [51], based on splic-
ing (a combination of cut-and-paste operations achievable
by enzymes), predates the experimental proof-of-principle of
DNA computing by almost ten years. Subsequently, stud-
ies on the computational power of such models proved that
various subsets of bio-operations can achieve the computa-
tional power of a Turing machine, showing thus that molec-
ular computers are in principle possible, [85], [56]. Over-
all, molecular computing has created many novel theoreti-
cal questions, and has considerably enriched the theory of
computation.

Quantum Computing is another paradigm that uses an
alternative “hardware” for performing computations, [52],
[80], [57]. Already in 1980 Benioff, [13], introduced simu-
lations of classical Turing Machines on quantum mechani-
cal systems. However the idea of a quantum computer that
would run according to the laws of quantum physics and
operate exponentially faster than a deterministic electronic
computer to simulate physics, was first suggested by Feyn-
man in 1982, [38], [39]. Subsequently, Deutsch introduced
a formal model of quantum computing using a Turing ma-
chine formalism, and described a universal quantum com-
puter, [30].

A quantum computer uses distinctively quantum mechan-
ical phenomena, such as superposition and entanglement, to
perform operations on data stored as quantum bits (qubits).
A qubit can hold a 1, a 0, or a quantum superposition of
these. A quantum computer operates by manipulating those
qubits with quantum logic gates. The notion of information
is different when studied at the quantum level. For instance,
quantum information cannot be measured reliably, and any
attempt at measuring it entails an unavoidable and irre-
versible disturbance.

The 1980s saw an abundance of research in quantum in-
formation processing, such as applications to quantum cryp-
tography, [14], which, unlike its classical counterpart, is not
usually based on the complexity of computation, but on the
special properties of quantum information. Recently, [117],
an open air experiment was reported in quantum cryptogra-
phy (not involving optical cable) over a distance of 144 km,
conducted between two Canary islands.

The theoretical results that catapulted quantum comput-
ing to the forefront of computing research were Shor’s quan-
tum algorithms for factoring integers and extracting discrete
logarithms in polynomial time, obtained in 1994, [110] – the
same year that saw the first DNA computing experiment by
Adleman. A problem where quantum computers were shown
to have a quadratic time advantage when compared to classi-
cal computers is quantum database search that can be solved
by Grover’s algorithm, [50], [18]. Possible applications of
Shor’s algorithm include breaking RSA exponentially faster
than an electronic computer. This joined other exciting ap-
plications, such as quantum teleportation (a technique that
transfers a quantum state, but not matter or energy, to an
arbitrarily distant location), [15], in sustaining the general
interest in quantum information processing.

So far, the theory of quantum computing has been far
more developed than the practice. Practical quantum com-
putations use a variety of implementation methods such
as ion-traps, superconductors, nuclear magnetic resonance
techniques, to name just a few. To date, the largest quan-
tum computing experiment uses liquid state nuclear mag-
netic resonance quantum information processors that can

operate on up to 12 qubits, [79].

4. NATURE AS COMPUTATION

The preceding sections describe research on the theory,
applications and experimental implementations of nature-
inspired computational models and techniques. A dual di-
rection of research in natural computing is one in which the
main goal becomes understanding nature by viewing pro-
cesses that take place in nature as information processing.

This dual aspect can be seen in systems biology, and
especially in computational systems biology, wherein
the adjective “computational” has two meanings. On one
hand it means the use of quantitative algorithms for com-
putations, or simulations that complement experiments in
hypothesis generation and validation, [31]. On the other
hand, it means a qualitative approach that investigates pro-
cesses taking place in cells through the prism of commu-
nications and interactions, and thus of computations. We
shall herein address mostly the second aspect, whereby sys-
tems biology aims to understand the complex interactions
in biological systems by using an integrative as opposed to a
reductionist approach. The reductionist approach to biology
tries to identify all the individual components of functional
processes that take place in an organism, in such a way
that the processes and the interactions between the compo-
nents can be understood. In contrast, systems biology takes
a systemic approach in focusing instead on the interaction
networks themselves, and on the properties of the biologi-
cal systems that arise because of these interaction networks.
Hence, for example, at the cell level, scientific research on
organic components has focused strongly on four different
interdependent interaction networks, based on four different
“biochemical toolkits”: nucleic acids (DNA and RNA), pro-
teins, lipids, carbohydrates, and their building blocks (see
[22], whose categorization we follow here).

The genome consists of DNA sequences, some of which are
genes that can be transcribed into messenger RNA (mRNA),
and then translated into proteins according to the genetic
code that maps 3-letter DNA segments into amino acids. A
protein is a sequence over the 20-letter alphabet of amino
acids. Each gene is associated with other DNA segments
(promoters, enhancers, or silencers) that act as binding sites
for proteins which activate or repress the gene’s transcrip-
tion. Genes interact with each other indirectly, either through
their gene products (mRNA, proteins) which can act as tran-
scription factors to regulate gene transcription – either as
activators or repressors –, or through small RNA species
that directly regulate genes.

These gene-gene interactions, together with the genes’ in-
teractions with other substances in the cell, form the most
basic interaction network of an organism, the gene regula-
tory network. Gene regulatory networks perform informa-
tion processing tasks within the cell, including the assembly
and maintenance of the other networks. Research into mod-
eling gene regulatory networks includes qualitative models
such as random and probabilistic Boolean networks, asyn-
chronous automata, and network motifs, [22].

Another point of view, [55], is that the entire genomic
regulatory system can be thought of as a computational
system, the “genomic computer”. Such a perspective has
the potential to yield insights into both computation as hu-
mans historically designed it, and computation as it occurs

in nature. There are both similarities and significant dif-
ferences between the genomic computer and an electronic
computer. Both perform computations, the genomic com-
puter on a much larger scale. However, in a genomic com-
puter, molecular transport and movement of ions through
electrochemical gradients replace wires, causal coordination
replaces imposed temporal synchrony, changeable architec-
ture replaces rigid structure, and communication channels
are formed on an as-needed basis. Both computers have a
passive memory, but the genomic computer does not place
it in an a priori dedicated and rigidly defined place; in
addition, the genomic computer has a dynamic memory
in which, for example, transcriptional subcircuits maintain
given regulatory states. In a genomic computer robustness
is achieved by different means, such as by rigorous selection:
non (or poorly)-functional processes are rapidly degraded
by various feed-back mechanisms or, at the cell level, non
(or poorly)-functional cells are rapidly killed by apoptosis,
and, at the organism level, non (or poorly)-functional or-
ganisms are rapidly out-competed by more fit species, [26].
Finally, in the case of a genomic computer, the distinction
between hardware and software breaks down: the genomic
DNA provides both the hardware and the digital regulatory
code (software), [55].

Proteins and their interactions form another interaction
network in a cell, that of biochemical networks, which
perform all mechanical and metabolic tasks inside a cell,
[22]. Proteins are folded-up strings of amino acids that take
three-dimensional shapes, with possible characteristic inter-
action sites accessible to other molecules. If the binding
of interaction sites is energetically favourable, two or more
proteins may specifically bind to each other to form a dy-
namic protein complex by a process called complexation.
A protein complex may act as a catalyst by bringing to-
gether other compounds and facilitating chemical reactions
between them. Proteins may also chemically modify each
other by attaching or removing modifying groups, such as
phosphate groups, at specific sites. Each such modification
may reveal new interaction surfaces. There are tens of thou-
sands of proteins in a cell. At any given moment, each of
them has certain available binding sites (which means that
they can bind to other proteins, DNA, or membranes), and
each of them has modifying groups at specific sites either
present or absent. Protein-protein interaction networks are
large and complex, and finding a language to describe them
is a difficult task. A significant progress in this direction was
made by the introduction of Kohn-maps, [61], a graphical
notation that resulted in succinct pictures depicting molec-
ular interactions. Other approaches include the textual bio-
calculus, [77], or the recent use of existing process calculi
(π-calculus), enriched with stochastic features, as the lan-
guage to describe chemical interactions, [90].

Yet another biological interaction network, and the last
that we discuss here, is that of transport networks me-
diated by lipid membranes. Some lipids can self-assemble
into membranes and contribute to the separation and trans-
port of substances, forming transport networks. A biolog-
ical membrane is more than a container: it consists of a
lipid bilayer in which proteins and other molecules, such as
glycolipids, are embedded. The membrane structural com-
ponents, as well as the embedded proteins or glycolipids,
can travel along this lipid bilayer. Proteins can interact
with free-floating molecules, and some of these interactions

trigger signal transduction pathways, leading to gene tran-
scription. Basic operations of membranes include fusion of
two membranes into one, and fission of a membrane into two.
Other operations involve transport, for example transport-
ing an object to an interior compartment where it can be
degraded. Formalisms that depict the transport networks
are few, and include membrane systems described earlier,
and brane calculi, [21].

The gene regulatory networks, the protein-protein interac-
tion networks, and the transport networks are all interlinked
and interdependent. Genes code for proteins which, in turn,
can regulate the transcription of other genes, membranes are
separators but also embed active proteins in their surfaces.
Currently there is no single formal general framework and
notation able to describe all these networks and their inter-
actions. Process calculus, [74], has been proposed for this
purpose, but a generally accepted common language to de-
scribe these biological phenomena is still to be developed and
universally accepted. It is indeed believed that one of the
possible contributions of computer science to biology could
be the development of a suitable language to accurately and
succinctly describe, and reason about, biological concepts
and phenomena, [43], [20].

While systems biology studies complex biological organ-
isms as integrated wholes, synthetic biology is an effort to
engineer artificial biological systems from their constituent
parts. The mantra of synthetic biology is that one can un-
derstand only what one can construct. Thus, the main fo-
cus of synthetic biology is to take parts of natural biological
systems and use them to build an artificial biological system
for the purpose of understanding natural phenomena, or for
a variety of possible applications. In this sense, one can
make an analogy between synthetic biology and computer
engineering, [4]. The history of synthetic biology can be ar-
guably traced back to the discovery in the 1960s, by Jacob
and Monod, [75], of mathematical logic in gene regulation.
Early achievements in genetic engineering using recombinant
DNA technology (the insertion, deletion, or combination of
different segments of DNA strands) can be viewed as the
experimental precursors of today’s synthetic biology which
now extends these techniques to entire systems of genes and
gene products. One goal can be constructing specific syn-
thetic biological modules such as, for example, pulse gener-
ator circuits that display a transient response to variations
in input stimulus, [10].

Advances in DNA synthesis of longer and longer strands
of DNA are paving the way for the construction of synthetic
genomes with the purpose of building an entirely artificial or-
ganism, [128]. Progress includes the generation of a 5,386bp
synthetic genome of a virus, by rapid (14 day) assembly of
chemically synthesized short DNA strands, [112]. Recently
an announcement was made of the near-completion of the
assembly of an entire “minimal genome”of a bacterium, My-
coplasma Genitalium, [9]. Smith and others indeed found
about 100 dispensable genes that can be removed individu-
ally from the original genome. They hope to assemble a min-
imal genome consisting of essential genes only, that would be
still viable but shorter than the 528-gene, 580,000bp genome
of M.Genitalium. This human-made genome could then be
inserted into a Mycoplasma bacterium using a technique,
[65], wherein a whole genome can be transplanted from one
species into another, such that the resulting progeny is the
same species as the donor genome. Counterbalancing objec-

tions to assembling a semi-synthetic cell without fully un-
derstanding its functioning, the creation of a functionally
and structurally understood synthetic genome was proposed,
[42], containing 151 genes (113,000bp) that would produce
all the basic molecular machinery for protein synthesis and
DNA replication.

A third approach to create a human-made cell is the one
pursued by Szostak and others, [102], who would construct a
single type of RNA-like molecule capable of self-replicating,
possibly housed in a single lipid membrane, [76]. Such molecules
can be obtained by guiding the rapid evolution of an initial
population of RNA-like molecules, by selecting for desired
traits, [82].

Lastly, another effort in synthetic biology is towards engi-
neering multi-cellular systems by designing, e.g., cell-to-cell
communication modules that could be used to coordinate
living bacterial cell populations, [123].

Research in synthetic biology faces many challenges, some
of them of an information processing nature. There arguably
is a pressing need for standardization, modularization, and
abstraction, to allow focusing on design principles without
reference to lower-level details, [34].

Besides systems biology that tries to understand biological
organisms as networks of interactions, and synthetic biology
that seeks to engineer and build artificial biological systems,
another approach to understanding nature as computation is
the research on computation in living cells. This is also
sometimes called cellular computing, or in vivo computing,
and one particular study in this area is that of the computa-
tional capabilities of gene assembly in unicellular organisms
called ciliates, [63], [33].

Ciliates possess two copies of their DNA: one copy en-
coding functional genes, in the macronucleus, and another
“encrypted” copy in the micronucleus. In the process of
conjugation, after two ciliates exchange genetic information
and form new micronuclei, they use the new micronuclei to
assemble in real-time new macronuclei necessary for their
survival. This is accomplished by a process that involves
re-ordering some fragments of DNA (permutations and pos-
sibly inversions), and deleting other fragments from the mi-
cronuclear copy. The process of gene assembly is fascinat-
ing from both the biological and the computational point of
view. From the computational point of view, this study led
to many novel and challenging research themes, [33]. Among
others, it was proved that various models of gene assembly
have full Turing machine capabilities, [63]. From the bio-
logical point of view, the joint effort of computer scientists
and biologists led to a plausible hypothesis (supported al-
ready by some experimental data) about the “bioware” that
implements the process of gene assembly, which is based on
the new concept of template-guided recombination, [86], [5],
[81].

Other approaches to cellular computing include develop-
ing of an in vivo programmable and autonomous finite-state
automaton within E.Coli, [78], and designing and construct-
ing in vivo cellular logic gates and genetic circuits that har-
ness the cell’s existing biochemical processes, [60], [122],
[121].

At the end of this spectrum of views of nature as compu-
tation, the idea was even advanced by Zuse and Fredkin in
the 1960s that information is more fundamental than mat-
ter or energy. The Zuse-Fredkin thesis stated that the en-
tire universe is some kind of computational device, namely

a huge cellular automaton continuously updating its rules,
[44], [129], [46]. Along the same lines, it has been recently
suggested, [70], that the universe is a quantum computer
that computes itself and its own behavior.

5. NATURAL SCIENCES: OURS TO DISCOVER

Science advances in ever-widening circles of knowledge.
Sometimes it meticulously crawls. Other times it leaps to a
new dimension of understanding and, in the process, it rein-
vents itself. As the natural sciences are rapidly absorbing
ideas of information processing, and the meaning of compu-
tation is changing as it embraces concepts from the natu-
ral sciences, we have the rare privilege to take part in such
metamorphoses.

At this moment we and our natural scientist fellows are
awash in wave after gigantic wave of experimental, especially
biological, data. Just underneath this tumultuous surface lie
ingenious algorithms waiting to be designed, elegant theo-
rems waiting to be proven, natural laws waiting to be discov-
ered that will put order into chaos. For, as Spinoza wrote,
“nothing happens in nature that does not follow from her
laws”, [47].

Conversely, as this review shows, there is an abundance of
natural phenomena which can inspire computing paradigms,
alternative physical substrates on which to implement com-
putations, while viewing various natural processes as com-
putations has become more and more essential, desirable,
and inevitable. All these developments are challenging our
assumptions about computation, and indeed, our very defi-
nition of it.

In these times brimming with excitement, our task is noth-
ing less than to discover a new, broader, notion of compu-
tation, and to understand the world around us in terms of
information processing.

Let us step up to this challenge. Let us befriend our fellow
the biologist, our fellow the chemist, our fellow the physi-
cist, and let us together explore this new world. Let us,
as computers in the future will, embrace uncertainty. Let
us dare to ask afresh: “What is computation?”, “What is
complexity?”, “What are the axioms that define life?”.

Let us relax our hardened ways of thinking and, with def-
erence to our scientific forebears, let us begin anew.

6. LITERATURE

The upper-bound placed on the number of references was
a real limitation for this review, since the literature on natu-
ral computing is vast. For a more complete list of references
the reader is referred to the full version of this article at
www.csd.uwo.ca/˜lila/Natural-Computing-Review.pdf.

Almost each of the areas we mentioned here has an ex-
tensive scientific literature as well as a number of special-
ized journals and book series. There are also journals and
book series aimed at the general natural computing commu-
nity, among them the journals Natural Computing, Springer,
Theoretical Computer Science, Series C: Theory of Natural
Computing, Elsevier, the Natural Computing book series,
Springer, and the upcoming Handbook of Natural Comput-
ing (G.Rozenberg, T.Bäck, J.Kok, editors, Springer).

7. ACKNOWLEDGEMENTS

We gratefully acknowledge comments on early drafts of
this paper by T. Bäck, D. Bentley, G. Brassard, D. Corne,

M. Hirvensalo, J. Kari, P. Krishna, H. Lipson, R. Mercer,
A. Salomaa, K. Sims, H. Spaink, J. Timmis, C. Torras, S.
Watt, R. Weiss.

This work was supported by NSERC Discovery Grant
and Canada Research Chair Award to L.K., and NSF grant
0622112 to G.R.

8. REFERENCES

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy,
T. Knight Jr., R. Nagpal, E. Rauch, G. Sussman, and
R. Weiss. Amorphous computing. CACM, 43(5):74–82, 2000.

[2] L. Adleman. Molecular computation of solutions to
combinatorial problems. Science, 266:1021–1024, 1994.

[3] L. Adleman. Computing with DNA. Scientific American,
279(2):54–61, 1998.

[4] E. Andrianantoandro, S. Basu, D. Karig, and R. Weiss.
Synthetic biology: new engineering rules for an emerging
discipline. Molecular Systems Biology, 2:1–14, 2006.

[5] A. Angeleska, N. Jonoska, M. Saito, and L. Landweber.
RNA-guided DNA assembly. J. Theoretical Biology,
248:706–720, 2007.

[6] M. Arbib, editor. The Handbook of Brain Theory and Neural
Networks. MIT Press, 2003.

[7] T. Bäck, D. Fogel, and Z. Michalewicz, editors. Handbook of
Evolutionary Computation. IOP Publishing, UK, 1997.

[8] R. Barish, P. Rothemund, and E. Winfree. Two computational
primitives for algorithmic self-assembly: Copying and
counting. Nanoletters, 5(12):2586–2592, 2005.

[9] P. Barry. Life from scratch: learning to make synthetic cells.
Science News, 173(2):27, 2008.

[10] S. Basu, R. Mehreja, S. Thiberge, M. Chen, and R. Weiss.
Spatiotemporal control of gene expression with
pulse-generating networks. PNAS, 101:6355–6360, 2004.

[11] J. Bath, S. Green, and A. Turberfield. A free-running DNA
motor powered by a nicking enzyme. Angew.Chem.Int.Ed.,
44(28):4358–4361, 2005.

[12] J. Bath and A. Turberfield. DNA nanomachines. Nature
Nanotechnology, 2:275–284, May 2007.

[13] P. Benioff. The computer as a physical system: A microscopic
quantum mechanical Hamiltonian model of computers as
represented by Turing machines. J. Stat. Phys.,
22(5):563–591, 1980.

[14] C. Bennett and G. Brassard. Quantum cryptography: Public
key distribution and coin tossing. In Proc. IEEE Int. Conf.
on Comp., Syst., and Signal Processing, pages 175–179, 1984.

[15] C. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. Wootters. Teleporting an unknown quantum state via dual
classical and Einstein-Podolsky-Rosen channels. Phys. Rev.
Lett., 70:1895–1899, 1993.

[16] C. Bennett and G. Grinstein. Role of irreversibility in
stabilizing complex and nonergodic behavior in locally
interacting discrete systems. Phys. Rev. Lett., 55:657–660,
1985.

[17] R. Braich, N. Chelyapov, C. Johnson, P. Rothemund, and
L. Adleman. Solution of a 20-variable 3-SAT problem on a
DNA computer. Science, 296:499–502, 2002.

[18] G. Brassard. Searching a quantum phone book. Science,
275:627–628, 1997.

[19] R. Brooks. Artificial life: From robot dreams to reality.
Nature, 406:945–947, 2000.

[20] L. Cardelli. Bioware languages. In Computer Systems:
Theory, Technology, and Applications—A Tribute to Roger
Needham, pages 59–65. Springer, 2004.

[21] L. Cardelli. Brane calculi: Interactions of biological
membranes. In lncs 3082, pages 257–280. Springer, 2005.

[22] L. Cardelli. Machines of systems biology. Bulletin of the
EATCS, 93:176–204, 2007.

[23] J. Chen and N. Seeman. Synthesis from DNA of a molecule
with the connectivity of a cube. Nature, 350:631–633, 1991.

[24] G. Ciobanu, G. Paun, and M. Perez-Jimenez, editors.
Applications of Membrane Computing. Springer, 2006.

[25] D. Coore. Botanical Computing: A Developmental Approach
to Generating Interconnect Topologies on an Amorphous
Computer. PhD thesis, MIT, 1999.

[26] C. Darwin. The Origin of Species by Means of Natural
Selection. Adamant Media Corp., 2001. Original 1859.

[27] D. Dasgupta, editor. Artificial Immune Systems and Their
Applications. Springer, 1998.

[28] L. de Castro and J. Timmis. Artificial Immune Systems: A
New Computational Intelligence Approach. Springer, 2002.

[29] K. De Jong. Evolutionary Computation: A Unified
Approach. MIT Press, 2006.

[30] D. Deutsch. Quantum theory, the Church-Turing principle
and the universal quantum computer. Proceedings of the
Royal Society of London, A400:97–117, 1985.

[31] B. Di Ventura, C. Lemerle, K. Michalodimitrakis, and
L. Serrano. From in vivo to in silico biology and back.
Nature, 443:527–533, 2006.

[32] M. Dorigo. Optimization, Learning and Natural Algorithms.
PhD thesis, Politecnico di Milano, 1992.

[33] A. Ehrenfeucht, T. Harju, I. Petre, D. Prescott, and
G. Rozenberg. Computation in Living Cells: Gene Assembly
in Ciliates. Springer, 2004.

[34] D. Endy. Foundations for engineering biology. Nature,
438:449–453, 2005.

[35] A. Engelbrecht. Fundamentals of Computational Swarm
Intelligence. Wiley and Sons, 2005.

[36] G. Ermentrout and L. Edelstein-Keshet. Cellular automata
approaches to biological modelling. J. Theoretical Biology,
160:97–133, 1993.

[37] J. Farmer, N. Packard, and A. Perelson. The immune system,
adaptation, and machine learning. Physica D, 22:187–204,
1986.

[38] R. Feynman. Simulating physics with computers. Int. J.
Theoretical Physics, 21(6/7):467–488, 1982.

[39] R. Feynman. Quantum mechanical computers. Optics News,
11:11–46, 1985.

[40] L. Fogel, A. Owens, and M. Walsh. Artificial Intelligence
through Simulated Evolution. Wiley and Sons, 1966.

[41] S. Forrest, A. Perelson, L. Allen, and R. Cherukuri.
Self-nonself discrimination in a computer. In Proc. IEEE
Symp. on Res. in Security and Privacy, pages 202–212, 1994.

[42] A. Forster and G. Church. Towards synthesis of a minimal
cell. Molecular Systems Biology, 2(45), August 2006.

[43] E. Fox Keller and D. Harel. Beyond the gene. PLoS ONE,
2(11):e1231, 2007.

[44] E. Fredkin. Digital mechanics: An informational process based
on reversible universal CA. Physica D, 45:254–270, 1990.

[45] M. Gardner. The fantastic combinations of John Conway’s
new solitaire game “life”. Scientific American, pages 120–123,
October 1970.

[46] M. Gardner. Mathematical games: On cellular automata,
self-reproduction, the Garden of Eden and the game ‘life’.
Scientific American, pages 112–117, February 1971.

[47] C. Gebhardt, editor. Spinoza Opera. Heidelberg, Winters,
1925.

[48] S. Green, L. Lubrich, and A. Turberfield. DNA hairpins: fuel
for autonomous DNA devices. Biophysics J., 91:2966–2975,
2006.

[49] J. Greensmith, U. Aickelin, and J. Twycross. Articulation and
clarification of the dendritic cell algorithm. In lncs 4163,
pages 404–417. Springer, 2006.

[50] L. Grover. A fast quantum mechanical algorithm for database
search. In Proc. STOC, pages 212–219. ACM, 1996.

[51] T. Head. Formal language theory and DNA: an analysis of the
generative capacity of specific recombinant behaviors. Bull. of
Math. Biol., 49:737–759, 1987.

[52] M. Hirvensalo. Quantum Computing, 2nd ed. Springer, 2004.

[53] J. Holland. Outline for a logical theory of adaptive systems.
JACM, 9:297–314, 1962.

[54] J. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, 1975.

[55] S. Istrail, S. Ben-Tabou De-Leon, and E. Davidson. The
regulatory genome and the computer. Developmental Biology,
310:187–195, 2007.

[56] L. Kari. DNA computing—the arrival of biological
mathematics. The Math. Intelligencer, 19(2):9–22, 1997.

[57] P. Kaye, R. Laflamme, and M. Mosca. An Introduction to
Quantum Computing. Oxford University Press, 2007.

[58] J. Kennedy and R. Eberhart. Particle swarm optimization. In
Proc. IEEE Int. Conf. Neural Networks, pages 1942–1948.
IEEE Press, 1995.

[59] S. Kleene. Representation of events in nerve nets and finite
automata. In Automata Studies, Annals of Mathematical
Studies 34, pages 3–41. Princeton, 1956.

[60] T. Knight Jr. and G. Sussman. Cellular gate technology. In
Unconventional Models of Computation, pages 257–272.
Springer, 1998.

[61] K. Kohn. Molecular interaction map of the mammalian cell
cycle control and DNA repair systems. Molecular Biology of
the Cell, 10(8):2703–2734, 1999.

[62] J. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, 1992.

[63] L. Landweber and L. Kari. The evolution of cellular
computing: nature’s solution to a computational problem.
Biosystems, 52(1/3):3–13, 1999.

[64] C. Langton, editor. Artificial Life. Addison-Wesley Longman,
1990.

[65] C. Lartigue et al. Genome transplantation in bacteria:
changing one species to another. Science, 317:632–638, 2007.

[66] H. Lederman, J. Macdonald, D. Stefanovic, and
M. Stojanovic. Deoxyribozyme-based three-input logic gates
and construction of a molecular full adder. Biochemistry,
45(4):1194–1199, 2006.

[67] T. Liedl, M. Olapinski, and F. Simmel. A surface-bound DNA
switch driven by a chemical oscillator. Angew.Chem.Int.Edn.,
45(30):5007–5010, 2006.

[68] A. Lindenmayer. Mathematical models for cellular interaction
in development, parts I and II. J. Theoretical Biology,
18:280–315, 1968.

[69] H. Lipson and J. Pollack. Automatic design and manufacture
of robotic lifeforms. Nature, 406:974–978, 2000.

[70] S. Lloyd. Programming the Universe: A Quantum Computer
Scientist Takes on the Cosmos. Knopf, 2006.

[71] C. Mao, T. LaBean, J. Reif, and N. Seeman. Logical
computation using algorithmic self-assembly of DNA
triple-crossover molecules. Nature, 407:493–496, 2000.

[72] P. Matzinger. The danger model: A renewed sense of self.
Science, 296:301–305, 2002.

[73] W. McCulloch and W. Pitts. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical
Biophysics, 5:115–133, 1943.

[74] R. Milner. Communicating and Mobile Systems: the
π-Calculus. Cambridge University Press, 1999.

[75] J. Monod and F. Jacob. Teleonomic mechanisms in cellular
metabolism, growth, and differentiation. Cold Spring Harb.
Symp. Quant. Biol., 26:389–401, 1961.

[76] G. Murtas, Y. Kuruma, P. Bianchini, A. Diaspro, and P. Luisi.
Protein synthesis in liposomes with a minimal set of enzymes.
Biochem. and Biophys. Res. Comm., 363:12–17, 2007.

[77] M. Nagasaki, S. Onami, S. Miyano, and H. Kitano. Bio-
calculus: Its concept and molecular interaction. Genome
Informatics, 10:133–143, 1999.

[78] H. Nakagawa, K. Sakamoto, and Y. Sakakibara. Development
of an in vivo computer based on Escherichia Coli. In lncs
3892, pages 203–212. Springer, 2006.

[79] C. Negrevergne et al. Benchmarking quantum control methods
on a 12-qubit system. Phys. Rev. Lett., 96:art170501, 2006.

[80] M. Nielsen and I. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

[81] M. Nowacki, V. Vijayan, Y. Zhou, K. Schotanus, T. Doak, and
L. Landweber. RNA-mediated epigenetic programming of a
genome-rearrangement pathway. Nature, 451:153–158, 2008.

[82] N. Paul, G. Springsteen, and G. Joyce. Conversion of a
ribozyme to a deoxyribozyme through in vitro evolution.
Chemistry and Biology, 13(3):329–338, 2006.

[83] G. Paun. Membrane Computing: An Introduction. Springer,
2002.

[84] G. Paun and G. Rozenberg. A guide to membrane computing.
Theoretical Computer Science, 287(1):73–100, 2002.

[85] G. Paun, G. Rozenberg, and A. Salomaa. DNA Computing:
New Computing Paradigms. Springer, 1998.

[86] D. Prescott, A. Ehrenfeucht, and G. Rozenberg. Template-
guided recombination for IES elimination and unscrambling of
genes in stichotrichous ciliates. J. Theoretical Biology,
222(3):323–330, 2003.

[87] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic
Beauty of Plants. Springer, 1990.

[88] I. Rechenberg. Cybernetic solution path of an experimental
problem. Royal AirCraft Establishment, Library Translation,
1122, 1965.

[89] I. Rechenberg. Evolutionsstrategie: Optimierung technischer
Systeme nach Prinzipien der biologischen Evolution.
Fromman-Holzboog, 1973.

[90] A. Regev and E. Shapiro. Cellular abstractions: Cells as
computation. Nature, 419:343–343, 2002.

[91] J. Reif. The design of autonomous DNA nanomechanical
devices: Walking and rolling DNA. In lncs 2568, pages 22–37.
Springer, 2003.

[92] J. Reif and T. LaBean. Autonomous programmable
biomolecular devices using self-assembled DNA
nanostructures. CACM, 50(9):46–53, 2007.

[93] C. Reynolds. Flocks, herds, and schools: A distributed
behavioral model. Computer Graphics, 21(4):25–34, 1987.

[94] R. Rojas. Neural Networks: A Systematic Introduction.
Springer, 1996.

[95] P. Rothemund. Folding DNA to create nanoscale shapes and
patterns. Nature, 440:297–302, 2006.

[96] P. Rothemund, N. Papadakis, and E. Winfree. Algorithmic
self-assembly of DNA Sierpinski triangles. PLoS Biology,
2(12), Dec. 2004.

[97] G. Rowe. The Theoretical Models in Biology. Oxford
University Press, 1994.

[98] G. Rozenberg. Computer science, informatics and natural
computing—personal reflections. In New Computational
Paradigms: Changing Conceptions of What Is Computable,
pages 373–379. Springer, 2008.

[99] G. Rozenberg and A. Salomaa. The Mathematical Theory of
L Systems. Academic Press, 1980.

[100] D. Rumelhart, G. Hinton, and R. Williams. Learning
representations by back-propagating errors. Nature,
323:533–536, 1986.

[101] K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama,
T. Yokomori, and M. Hagiya. Molecular computation by DNA
hairpin formation. Science, 288:1223–1226, 2000.

[102] P. Sazani, R. Larralde, and J. Szostak. A small aptamer with
strong and specific recognition of the triphosphate of ATP. J.
Am. Chem. Soc., 126(27):8370–8371, 2004.

[103] H.-P. Schwefel. Kybernetische Evolution als Strategie der
experimentellen Forschung in der Stromungstechnik. Dipl.-Ing.
Thesis, Tech. Univ. Berlin, 1965.

[104] G. Seelig, D. Soloveichik, D. Zhang, and E. Winfree.
Enzyme-free nucleic acid logic circuits. Science,
314:1585–1588, 2006.

[105] N. Seeman. Nanotechnology and the double helix. Scientific
American Reports, 17(3):30–39, 2007.

[106] E. Shapiro and Y. Benenson. Bringing DNA computers to life.
Scientific American, 294:44–51, May 2006.

[107] W. Sherman and N. Seeman. A precisely controlled DNA
biped walking device. Nanoletters, 4:1203–1207, 2004.

[108] W. Shih, J. Quispe, and G. Joyce. A 1.7 kilobase
single-stranded DNA that folds into a nanoscale octahedron.
Nature, 427:618–621, 2004.

[109] J. Shin and N. Pierce. A synthetic DNA walker for molecular
transport. J. Am. Chem. Soc., 126:10834–10835, 2004.

[110] P. Shor. Algorithms for quantum computation: discrete
logarithms and factoring. In Proc. FOCS, pages 124–134.
IEEE Press, 1994.

[111] K. Sims. Evolving 3D morphology and behavior by
competition. In Proc. Artificial Life IV, pages 28–39. MIT
Press, 1994.

[112] H. Smith, C. Hutchison III, C. Pfannkoch, and C. Venter.
Generating a synthetic genome by whole genome assembly:
φX174 bacteriophage from synthetic oligonucleotides. PNAS,
100(26):15440–15445, 2003.

[113] S. Stepney et al. Journeys in non-classical computation I: a
grand challenge for computing research. Int. J. Parallel,
Emergent and Distributed Systems, 20(1):5–19, 2005.

[114] M. Stojanovic and D. Stefanovic. A deoxyribozyme-based
molecular automaton. Nature Biotechnology, 21:1069–1074,
2003.

[115] C. Teuscher. Turing’s Connectionism: An Investigation of
Neural Networks Architectures. Springer, 2002.

[116] J. Timmis, P. Andrews, N. Owens, and E. Clark. An
interdisciplinary perspective on artificial immune systems.
Evolutionary Intelligence, 1(1):5–26, 2008.

[117] R. Ursin et al. Entanglement-based quantum communication
over 144 km. Nature Physics, 3:481–486, 2007.

[118] G. Vichniac. Simulating physics with cellular automata.
Physica D, 10(1/2):96–116, 1984.

[119] J. von Neumann. The Computer and the Brain. Yale
University Press, 1958.

[120] J. von Neumann. Theory of Self-Reproducing Automata. U.

Illinois Press, 1966. Edited and completed by A.W.Burks.

[121] R. Weiss and S. Basu. The device physics of cellular logic
gates. In Proc. The First Workshop on Non-Silicon
Computation, pages 54–61, 2002.

[122] R. Weiss, G. Homsy, and T. Knight, Jr. Toward in-vivo digital
circuits. In Evolution as Computation, Natural Computing
Series, pages 275–295. Springer, 2002.

[123] R. Weiss and T. Knight, Jr. Engineered communications for
microbial robotics. In lncs 2054, pages 1–16. Springer, 2001.

[124] E. Winfree, X. Yang, and N. Seeman. Universal computation
via self-assembly of DNA: some theory and experiments. In
DIMACS Series 44, pages 191–213. AMS Press, 1999.

[125] S. Wolfram. A New Kind of Science. Wolfram Media, 2002.

[126] S. Wright. The roles of mutation, inbreeding, crossbreeding,
and selection in evolution. In Proc. 6th International
Congress of Genetics, volume 1, pages 356–366, 1932.

[127] B. Yurke, A. Turberfield, A. Mills Jr., F.Simmel, and
J.Neumann. A DNA-fuelled molecular machine made of DNA.
Nature, 406:605–608, 2000.

[128] C. Zimmer. Tinker, tailor: can Venter stitch together a
genome from scratch? Science, 299:1006–1007, 2003.

[129] K. Zuse. Rechnender Raum. Elektronische Datenverarbeitung,
8:336–344, 1967.

Lila Kari (lila@csd.uwo.ca) is Professor and Canada Re-
search Chair in Biocomputing in the Department of Com-
puter Science at the University of Western Ontario, London,
Canada.

Grzegorz Rozenberg (rozenber@liacs.nl) is Professor at the
Leiden Institute of Advanced Computer Science, Leiden Uni-
versity, The Netherlands, and Adjunct Professor in the De-
partment of Computer Science at the University of Colorado
at Boulder, USA.

