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Abstract

The Estrada index of a graph/network is defined as the trace of the adjacency matrix exponen-
tial. It has been extended to other graph-theoretic matrices, such as the Laplacian, distance,
Seidel adjacency, Harary, etc. Here, we describe many of these extensions, including new
ones, such as Gaussian, Mittag–Leffler and Onsager ones. More importantly, we contextual-
ize all of these indices in physico-mathematical frameworks which allow their interpretations
and facilitate their extensions and further studies. We also describe several of the bounds and
estimations of these indices reported in the literature and analyze many of them computation-
ally for small graphs as well as large complex networks. This article is intended to formalize
many of the Estrada indices proposed and studied in the mathematical literature serving as a
guide for their further studies.

Keywords Estrada indices · Matrix functions · Algebraic graph theory · Eigenvalues of
graphs · Complex networks

Mathematics Subject Classification 05C12 · 05C22 · 05C35 · 05C50 · 05C80 · 05C82 ·
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1 Introduction

At the dawn of the XXI century the current author proposed an index to quantify the “degree
of folding” of a linear chain in a three-dimensional space [70]. The motivation of this work
came from the fact that many scientific articles make claims like that the structure A “is more

folded than” the structure B (see examples at: [44,67,128,237]), or that certain structure is
“highly folded” (see for instance: [42,129,142,246]), etc. These expressions could be referring
to protein or polymer structures, but also to brain regions or even geological structures (see
previous refs.). However, in neither of these works there was an index that quantifies how
folded a linear chain is. Thus, the author proposed the index I3 =

∑n
j=1 exp

(

λ j (W )
)

, where
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58 E. Estrada

λ j (W ) are the eigenvalues of certain tridiagonal matrix W whose diagonal entries are related
to the cosines of the dihedral angles between adjacent planes and Wi,i+1 and Wi+1,i are equal
to one. This index characterizes very well the degree of folding of a geometric chain and it
has been mainly applied to the study of the degree of folding of proteins (see for instance
[71,73,211]), although it can be applied to the folding of any linear chain.

Five years after the publication of the “folding degree” paper, the authors of [88] proposed
the “subgraph centrality” as a way to characterize the importance of the nodes in a complex
network. “Complex networks” are large graphs representing the skeleton of complex systems
in social, ecological, cellular, molecular, infrastructural, semantic and other scenarios [78].
The subgraph centrality of a node v in a network is defined as SCv =

∑n
j=1 ψ2

jv exp
(

λ j (A)
)

,
where λ j = λ j (A) are the eigenvalues of the adjacency matrix of the graph and ψ jv is the
vth entry of its j th normalized eigenvector. Then, the so-called subgraph centralization of
the network is

∑

v SCv =
∑n

j=1 exp
(

λ j (A)
)

[88], which is similar to the folding degree I3.
In June 2005 the current author presented the lecture “Topological characterization of

complex networks” at the International Academy of Mathematical Chemistry in Dubrovnik,
Croatia. As a consequence Ivan Gutman proposed to organize a small seminar at a park near
the port of Dubrovnik to discuss some of the mathematical aspects of the index

∑

v SCv =
∑n

j=1 exp
(

λ j

)

for general graphs. As a result, a paper was published in 2006 in Croatica

Chemica Acta introducing
∑

v SCv as a molecular structure descriptor [113]. A year later
the paper “Estimating the Estrada index” was published, where the authors proposed to call
E E (G) =

∑n
j=1 exp

(

λ j

)

the Estrada index [54]. The same year a statistical mechanics
interpretation of E E (G) as the partition function of a graph [83] appeared. A year later, in
2008, there were more than 30 papers published in the mathematical literature containing
“Estrada index” in the title.

It seems a priori that E E (G) has emerged in different, apparently unrelated, scenarios:
folding of linear chains, subgraphs in networks, and partition function in statistical mechanics.
This reminds us the story told by Eugene Wigner in the first paragraph of his paper “The
unreasonable effectiveness of mathematics in the natural sciences” [233] where a fellow asked
a former classmate, now a statistician, about a symbol in a paper dealing with population
trends. The statistician replied that the symbol was “π” and to clarify the skepticism of the
other he added that it is “the ratio of the circumference of the circle to its diameter.” The
fellow then replied more skeptical: “Well, now you are pushing your joke too far, surely

the population has nothing to do with the circumference of the circle.” The situation of the
Estrada index seems murkier than the one in that story, particularly after the ad hoc definition
of several other variations of the index based not on the eigenvalues of the adjacency matrix,
but of the graph Laplacian, distance matrix, resolvent of the adjacency matrix, Hadamard
pseudo-inverse of the distance matrix (a.k.a. Harary matrix), Mittag–Leffler matrix functions
of A, etc.

The goal of this paper is to make an account of the different facets of the Estrada indices.
In doing so we will provide contextualization of several of these indices, many of which have
been proposed in an ad hoc way. Therefore, we will provide a physical and/or mathematical
context and interpretation of these indices. They include a combinatorial interpretation based
on counting subgraphs, a statistical mechanics approach, a probabilistic interpretation in the
context of walk-regular graphs, an interpretation on the basis of oscillations in (quantum and
classical) systems of ball-and-springs, a contextualization on the basis of epidemiological
models (normal and fractional) on graphs, diffusive processes with negative diffusiveness,
nonlocal processes on graphs, quantification of graph radius of gyration. Although this paper
does not intend to describe all the results published in the literature on this topic we make
an account of many of the different bounds and estimations of the Estrada, Seidel Estrada,
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The many facets of the Estrada indices of graphs and networks 59

Harary Estrada, Laplacian Estrada, resolvent Estrada, Mittag–Leffler Estrada, and distance
Estrada indices. For this purpose we include some numerical analysis of these bounds in the
set of 11,117 connected graphs with 8 nodes and in five real-world networks representing
a variety of complex system scenarios. The paper is written in a way that intend to be self-
contained and make the necessary definitions for understanding the concepts used in it. The
paper is then intended as a guide for further studies and developments in this area of spectral
graph theory.

2 General definitions

Here we present some definitions which are used across the paper and settle down the notation.
We consider here simple, connected graphs G = (V , E) with n nodes (vertices) and m edges.

Definition 1 A walk of length k in G is a set of nodes and edgesv1, e1,2, v2 · · · vk−1, ek−1,k, vk

such that for all 1 ≤ l ≤ k, (vl , vl+1) ∈ E . A closed walk is a walk for which v1 = vk+1.

Definition 2 A path of length k in G is a walk in which neither vertices nor edges are repeated.
A cycle is a closed path. The length of the shortest path connecting two vertices v and w is
the (topological) shortest path distance dvw between the two nodes. The diameter of G is the
longest distance between two vertices of G.

Definition 3 A subgraph G ′ = (V ′, E ′) of G is a graph such that V ′ ⊆ V and E ′ ⊆
E ∩

(

V ′ × V ′). An induced subgraph is a subgraph formed by a subset of the vertices of the
graph and all of the edges connecting pairs of vertices in that subset.

Definition 4 A graph G = (V , E) is connected if there is a path between every pair of nodes
v,w ∈ V . If the graph is directed we said that it is strongly connected if there is a directed
path between every pair of nodes v,w ∈ V . A (strongly) connected component in a (directed)
graph is a subgraph in which any two vertices are connected to each other by (directed) paths,
and which is connected to no additional vertices in the rest of the graph.

Definition 5 The degree of a node v is the number kv of edges incident with that node. A
graph is regular if the degree of all its nodes is the same.

The following matrices will be considered (Table 1):
Other matrices such as the Seidel adjacency matrix and Harary matrix, are defined in situ

in the corresponding sections of the paper. The following types of graphs are used in this
work.

Table 1 Definition of some matrices used in this paper

Name Symbol Definition Spectrum

Adjacency A Ai j =
{

1 (i, j) ∈ E

0 (i, j) /∈ E
λ1 ≥ · · · ≥ λn

Laplacian L L i j =

⎧

⎨

⎩

−1 (i, j) ∈ E

ki i = j

0 otherwise
0 = μ1 ≤ · · · ≤ μn

Distance D Di j =
{

di j i �= j

0 i = j
σ1 ≥ · · · ≥ σn
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60 E. Estrada

– Complete graph of n vertices Kn : the graph having an edge between every pair of vertices.
– Empty graph of n vertices K̄n : the graph having n vertices and no edges.
– Complete bipartite graph Kn1,n2 : the graph with n = n1+n2 vertices in which the vertex

set is partitioned into two disjoint subsets of cardinalities n1 and n2, respectively, such
that every vertex in one set is connected to every vertex in the other set.

– Star graph Sn : the particular case of Kn1,n2 in which n1 = 1 and n2 = n − 1.

– Path graph of n vertices Pn : the connected graph in which every vertex has degree 2,
except two vertices which have degree one.

– Cycle Cn : a connected graph in which every vertex has degree 2.

Finally we consider two kinds of random graphs.

– Erdős–Rényi (ER) G (n, p) [68] graph with n nodes: constructed by connecting nodes
randomly in such a way that each edge is included in G (n, p) with probability p inde-
pendent from every other edge.

– Barabási and Albert (BA) one [21]: created on the basis of a preferential attachment
process. The graph is constructed from an initial seed of m0 vertices connected randomly
like in an Erdős–Rényi G (n, p). Then, new nodes are added to the network in such a
way that each new node is connected to c ≤ m0 of the existing ones with a probability
that is proportional to the degree of these existing nodes.

3 Estrada index and subgraph centralization

The main goal in proposing the Estrada index was for the structural characterization of
networks. This index corresponds to the “centralization”, a global structural index, derived
from the node centrality known as “subgraph centrality. In network theory a centrality measure
(see [78] Chapter 7 and refs. therein) is any graph-theoretic quantity that captures the relative
“importance” of a node in the network. Here “importance” means a relevant–mainly from
applications point of view–structural feature such as connectivity, closeness to the rest of the
nodes, position of a node in relation to the shortest paths connecting other others, etc. The
simplest of these centrality measures is the degree of a node, which counts the number of
connections that a node has. Let us first introduce the following result.

Theorem 1 Let G = (V , E) be a simple graph with adjacency matrix A. Let v,w ∈ V , then

the number of walks of length k between the nodes v and w is given by
(

Ak
)

vw
.

Remark 1 The roots of Theorem 1 can be traced back to the paper “The analysis of sociograms
by matrix algebra” by Leo Festinger in 1949 [93], although Festinger mentioned it only for
the case of walks of length three. Then, Leo Katz in his seminal paper “A new status index
derived from sociometric analysis” extended it to longer walks in 1953 [141]. The result
appeared formally in the book of Claude Berge in 1962 in the form of Corollary 1 on page
131 [29].

Then, from a walks perspective, the degree is defined as the number of closed walks of length
two starting at the given node. That is, let v ∈ V , then the degree of v is given by:

kv =
(

A2)

vv
. (3.1)

The degree of a node can be seen as a first order approximation of centrality measures
that accounts for the walks of all length in the graph. That is, in a graph without self-loops
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The many facets of the Estrada indices of graphs and networks 61

the following measures can be defined

Cv − 1 =
∞
∑

k=2

ck

(

Ak
)

vv
, (3.2)

where ck are coefficients which give more weight to the shorter than to the longer walks.
Then, if ck = (k!)−1:

E Ev − 1 =
∞
∑

k=2

(k!)−1
(

Ak
)

vv
= (exp (A))vv − 1, (3.3)

where E Ev is known as the “subgraph centrality” of the node v [88]. The term “subgraph”
in the name of this centrality is due to the following.

Lemma 1 Let G be a (directed) graph. Then, every closed walk of length k starting at the

node v ∈ V encloses one (strongly) connected subgraph having at most k (directed) edges

and at most k vertices including v.

Proof A (directed) graph G is (strongly) connected if there is a (directed) path connecting
every pair of vertices G. By the definition of walk it is clear that a walk of length k between
two nodes v and w cannot visit more than k + 1 vertices. Therefore, a closed walk, where
the initial and final nodes coincide, can visit no more than k nodes. In a closed walk of
length k without backtracking the number of edges visited is k, i.e., in a cycle. For a given
length k, backtracking reduces the number of edges that can be visited. Therefore, a closed
walk of length k cannot visit more than k edges. Obviously, the nodes and edges visited
by the closed walk form the sets V ′ ⊆ V and E ′ ⊆ E ∩

(

V ′ × V ′) , which implies that
G ′ =

(

V ′, E ′
)

is a subgraph of G = (V , E). Finally, because the walk of length k is a
sequence vv, ev,v+1, vv+1 · · · vv−1, ev−1,i , vv there is a (directed) path connecting every pair
of nodes in the subgraph, which means that G ′ is (strongly) connected. ⊓⊔

The previous result implies that we can express E Ev as a weighted sum of subgraphs,
which gives the index its name. However, as we are focused here on the Estrada index let us
move to the fact that the Estrada index is the sum of the subgraph centralities of all nodes in
the graph:

E E (G) =
n
∑

v=1

E Ev . (3.4)

The sum of node centralities in a graph is known as the corresponding centralization of
the graph, or simply as a graph-theoretic invariant. Therefore, the Estrada index of the graph
can be seen as its subgraph centralization.

Theorem 2 Let G be a (directed) graph and let F be the set of all (strongly) connected

subgraphs of G, and let us designate the cardinality of the set F by η. Then,

E E (G) =
η
∑

l=1

cl Fl , (3.5)

where Fl ∈ F and cl ∈ Q.

Proof Using Lemma 1 we can show that that Mk = tr
(

Ak
)

can be expressed as a weighted
sum of (strongly) connected subgraphs. The weight of each subgraph is given by the number
of closed walks of length k in the given subgraph. Then, grouping together all identical
subgraphs and summing their weights we obtain the final result. ⊓⊔
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62 E. Estrada

Fig. 1 Illustration of the small subgraphs appearing in the first seven spectral moments of the adjacency matrix
of simple graphs

For instance, let us consider the first seven powers of the adjacency matrix. Then,

tr
(

A2) = 2F2, (3.6)

tr
(

A3) = 6F4, (3.7)

tr
(

A4) = 2F2 + 4F3 + 8F7, (3.8)

tr
(

A5
)

= 30F4 + 10F8 + 10F10, (3.9)

tr
(

A6) = 2F2 + 12F3 + 24F4 + 6F5 + 12F6 + 48F7

+36F9 + 12F12 + 12F16, (3.10)

tr
(

A7) = 126F4 + 84F8 + 112F9 + 70F10 + 28F11 + 14F13

+14F14 + 56F15 + 14F17 + 84F18 + 28F19 + 14F20, (3.11)

where the subgraphs are illustrated in Fig. 1.
Then, we have the following result.

Lemma 2 Let G be a simple graph. Then, the Estrada index of G is bounded as

E E (G) ≥ F1 +
391

360
F2 +

11

60
F3 +

157

126
F4 +

1

120
F5 +

1

60
F6 +

2

5
F7 +

1

10
F8

+ 13

180
F9 +

7

72
F10 +

1

180
F11 +

1

60
F12 +

1

360
F13 +

1

360
F14

+ 1

90
F15 +

1

60
F16 +

1

360
F17 +

1

60
F18 +

1

180
F19 +

1

360
F20.

(3.12)

123



The many facets of the Estrada indices of graphs and networks 63

Proof Based on the relations shown before for tr
(

Ak
)

for k ≤ 7 and calling F1 = n we have

that the right-hand-side part of Eq. (3.12) is
∑7

k=0
tr
(

Ak
)

k! from which the inequality follows.
⊓⊔

The expressions for calculating these subgraphs are given in the Appendix as adapted
from [9]. The formula for F20 is given here by the first time.

3.1 Some elementary properties of the Estrada index

Before proceeding to more complex properties of the Estrada index let us state a few ele-
mentary ones that could be helpful in understanding the structural nature of this index. The
reader is referred to the following references [54,57,112,116] for details and references.

Lemma 3 Let G be a simple graph and let G− e the same graph from which edge e has been

removed. Then

E E (G − e) ≤ E E (G) . (3.13)

Corollary 1 Let G be a simple graph and let T be a tree with the same number of nodes as

G. Then

E E (T ) ≤ E E (G) . (3.14)

Theorem 3 [53,56] Let G be a simple connected graph with n nodes. Then

E E (Pn) ≤ E E (G) ≤ E E (Kn) . (3.15)

Theorem 4 Let G be a simple graph with n nodes. Then

E E
(

K̄n

)

≤ E E (G) ≤ E E (Kn) . (3.16)

The Estrada indices of some elementary graphs are given below.

– E E (Kn) = en−1 + (n − 1) e−1;
– E E

(

Kn1,n2

)

= n1 + n2 − 2+ 2 cosh
(√

n1n2
)

;
– E E (Sn) = n − 2+ 2 cosh

(√
n − 1

)

;
– limn→∞ E E (Cn) = nI0, where I0 =

1

π

∫ π

0 e2 cos x dx ;

– limn→∞ E E (Pn) = (n − 1)− 2 cosh (2).

3.2 Numerical analysis

We consider here two datasets which will be used in the rest of the paper for the numerical
evaluation of the different indices and bounds. The first one consists of the 11,117 connected
graphs with 8 nodes. The second one is formed by five real-world networks, which correspond
to a food web at Stony stream, a network of the neurons in the worm C. elegans, the protein–
protein interaction network of yeast, a representation of the Internet at the autonomous system
(AS) level, and a network of the USA western power grid system. The number of nodes n,
of edges m, the maximum degree of the nodes kmax , and the diameter dmax of each network
are given in Table 2.

The main goal of these numerical experiments is to show how close the bounds reported
in the literature are to the actual values of the Estrada index. This is done because in most of
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64 E. Estrada

Table 2 General characteristics,
number of nodes n, of edges m,
the maximum degree of the nodes
kmax , and the diameter dmax , of
the five real-world networks
analyzed in this paper

n m kmax dmax References

Stony 112 830 45 4 [17]

Neurons 280 1973 77 6 [232]

Yeast 2224 6829 65 11 [224]

Internet 3015 5156 590 9 [90]

Powergrid 4941 6594 19 46 [231]

Fig. 2 Histogram of the relative
deviation of the bound given in
Lemma 2 for all 11,117
connected graphs with 8 nodes

the papers where these bounds are proposed there are no numerical experiments to illustrate
this relation. When possible we will find some connection between structural characteristics
of the networks studied and the corresponding bounds analyzed to understand why are they
close or far away the actual values of the Estrada index.

First, we consider the deviation of the bound from the actual value as |E Eexact − E Ebound|
/E Eexact expressed as percentage. We do this calculation considering the bound given in
Lemma 2 for all the connected graphs with 8 nodes. The histogram illustrating the number
of graphs having a given relative deviation (frequency) among the 11,117 connected graphs
with 8 nodes is illustrated in Fig. 2. We should remark that we use here the terms “good
bound” or refer to a bound as “better than” another just on the basis of the deviation of this
bound relative to the actual value of the index. This is used only as a guide as for many cases
there is large room for improvement as some of the bounds reported are orders of magnitude
further from the real values of the indices.

The mean deviation is 5.768±4.169, which indicates that this bound is a good estimation
of the Estrada index for these small graphs. The largest deviation is 40.352 obtained for
the complete graph K8. In general, the most densely connected graphs are richer in small
subgraphs than the poorly dense ones, which increases the relative deviation of this bound
for these graphs.

In Table 3 we illustrate the results for the five real-world networks. The largest deviation
occurs for the Internet at AS indicating that in this network there are many larger subgraphs
with important contribution to the Estrada index. On the other hand, the bound is very close
to the actual value for the power grid of western USA, which points out that the Estrada
index of this network is well approximated by counting the number of the 21 subgraphs
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The many facets of the Estrada indices of graphs and networks 65

Table 3 Values of the bound for
the Estrada index in Lemma 2
and the actual values calculated
with Matlab function “expm” for
the five real-world networks
considered in this work

Lemma 2 Actual

Stony 4.590× 105 7.234× 109

Neurons 1.095× 106 1.306× 1010

Yeast 5.057× 105 3.038× 108

Internet 7.142× 106 6.174× 1013

Powergrid 1.961× 104 2.135× 104

described by Lemma 2. These differences point out clearly to the differences in the subgraph
richness contained in different networks, which is what the Estrada index characterizes at the
structural level.

4 Estrada index andmatrix functions

Soon after the definition of the Estrada index and the subgraph centrality several authors
started to be interested in these indices due to their clear relation to functions of the adjacency
matrix. The study of matrix functions is an active area of research in (numerical) linear algebra
[25,97,127,222]. The topic of matrix functions in network theory has been recently reviewed
by the authors of [28]. Therefore, we will not give too many details here and the interested
reader is directed to the excellent review [28]. The goal of this section is then to establish the
connection between the Estrada indices and functions of the corresponding matrices which
pave the way for further sections of the article. Here we will follow the book [127].

Let M be any graph-theoretic matrix, e.g., adjacency, Laplacian, distance, etc. Then, its
Jordan canonical form is given by

Z−1 M Z = J = diag
(

J1, J2, . . . , Jp

)

, (4.1)

where

Jk = Jk (λk) =

⎡

⎢

⎢

⎢

⎢

⎣

λk 1

λk

. . .

. . . 1
λk

⎤

⎥

⎥

⎥

⎥

⎦

∈ Cmk×mk , (4.2)

where Z is nonsingular and m1 + m2 + · · · + m p = n.

Definition 6 Let λ1, . . . , λs be the distinct eigenvalues of M and let and let ni be the order
of the largest Jordan block in which λi appears, which is called the index of λi . The function
f is defined on the spectrum of M if the values

f ( j) (λi ) , j = 0, . . . , ni − 1, i = 1, . . . , s (4.3)

exist, which are called the values of the function f on the spectrum of M . Here f ( j) represents
the j th derivative of f .

Then we have a definition of matrix function via the Jordan canonical form.
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66 E. Estrada

Definition 7 Let f be defined on the spectrum of M and let M have the Jordan canonical
form given before. Then, the matrix function f (M) is given by

f (M) := Z f (J ) Z−1 = Zdiag ( f (Jk)) Z−1, (4.4)

where

f (Jk) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f (λk) f ′ (λk) · · · f (mk−1) (λk)

(mk − 1)!
f (λk)

. . .
...

. . . f ′ (λk)

f (λk)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (4.5)

Another, equivalent, definition is given via the Cauchy integral.

Definition 8 Let M ∈ Cn×n , then

f (M) := 1

2π i

∫

Γ

f (z) (z I − M)−1 dz, (4.6)

here f is analytic on and inside a closed contour Γ that encloses the spectrum of M .

5 Estrada index and spectral graph theory

An obvious connection exists between the Estrada index and the area of algebraic graph
theory. Algebraic graph theory [24,30,105] deals with the use of algebraic methods to solve
problems about graphs. Of particular interest is the use of the spectra of graph theoretic
matrices to understand the structure of graphs, which is known as spectral graph theory
[46,50–52,213,214]. This area of research started in an applied context when Collatz and
Sinogowitz published their paper entitled: “Spektren endlicher grafen” motivated by appli-
cation problems such as the vibrations of a membrane [223]. Let us consider a simple example
of the connections between structural properties of graphs and their spectra: counting trian-
gles in a graph. The number of triangles, which is a combinatorial property of the graph,

can be obtained from the spectrum of the adjacency matrix as:
1

6

∑n
j=1 λ3

j , where λ j are

the eigenvalues of the adjacency matrix. The field of spectral graph theory had a tremendous
impulse in the 1970s due to its connection with electronic properties of conjugated molecules
[59,95,124,215,216,219].

The relation between the trace of a matrix and its eigenvalues immediately implies that
the Estrada index of a graph can be expressed in terms of the eigenvalues of A as follows:

E E (G) =
n
∑

j=1

exp
(

λ j

)

. (5.1)

In general, the exponentiation of A enlarges the spectral gap λ1 − λ2 and contracts the
negative part of the spectrum. On the contrary, exp (−A) largely contracts the positive part
of the spectrum and enlarges its negative part. These simple dilation/contraction effects of
the main parts of the spectrum of A have important consequences on the Estrada index of a
graph as we will see in the next parts of this review.

The analysis of the relation between the spectrum of a graph, i.e., the eigenvalues of its
adjacency matrix, and the structure of the graph is the main goal of spectral graph theory.
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One of the first results on spectral graph theory related to the Estrada index was the following
bounds obtained by the authors of [54].

Theorem 5 Let G be a simple graph with n nodes and m edges. Then, the Estrada index of

G is bounded as
√

n2 + 4m ≤ E E (G) ≤ n − 1+ exp
(√

2m
)

, (5.2)

with equality attained if and only if G ∼= K̄n .

These bounds were further improved in [166] where the following was proved.

Theorem 6 Let G be a simple graph with n nodes and m ≥ 1 edges. Then, the Estrada index

of G is bounded as
√

n2 + 5

3
m < E E (G) < n − 1+ exp

(√
m
)

. (5.3)

Based on Gauss–Radau quadrature rule the authors of [27] obtained the following bounds.

Theorem 7 Let G be a simple graph and let a, b ∈ R be such that the spectrum of A is

contained in [a, b]. Then, the Estrada index of G is bounded as

n
∑

i=1

b2 exp (ki/b)+ ki exp (−b)

b2 + ki

≤ E E (G) ≤
n
∑

i=1

a2 exp (ki/a)+ ki exp (−a)

a2 + ki

, (5.4)

where ki is the degree of the node i.

Remark 2 Two examples of the use of this bound are (i) considering a = −λ1 and b = −λn ;
(b) considering a = −kmax and b = kmax .

Another set of bounds was obtained in 2016 [156] by using the number of triangles t and
tr
(

A4
)

in addition to the number of nodes and edges of the graph.

Theorem 8 Let G be a simple graph with n nodes, m edges, t triangles and let Q = tr
(

A4
)

.

Then, the Estrada index of G is bounded as

m + n ≤
√

n2 + mn + 2nt + 1

12
nQ + m2 ≤ E E (G) ≤ n − 1+ exp

(

4
√

Q
)

, (5.5)

with equality attained if and only if G ∼= K̄n .

Other bounds have been proposed, specially lower bounds, for the Estrada index. Some
examples are given below.

Theorem 9 [247] Let G be a simple graph with n nodes and let Z =
∑n

i=1 k2
i . Then, the

Estrada index of G is bounded as

E E (G) ≥ exp
(

√

Z/n
)

+ (n − 1) exp
(

−
(

√

Z/n
)

/ (n − 1)
)

, (5.6)

with equality attained if and only if G ∼= Kn or G ∼= K̄n .

Theorem 10 [110] Let G be a simple graph with n nodes and m edges either without isolated

vertices or having the property 2m/n > 1, then, the Estrada index of G is bounded as

E E (G) ≥ n cosh
(

√

2m/n
)

, (5.7)

with equality if and only if G is a regular graph of degree 1.
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Theorem 11 [110] Let G be a simple graph with n nodes and m edges, such that 2m/n < 1.

Then, the Estrada index of G is bounded as

E E (G) ≥ n − 2m + 2m cosh (1) , (5.8)

where equality holds if and only if G consists of n − 2m isolated vertices and m copies of

K2.

Theorem 12 [110,119] Let G be a simple graph with n nodes, m edges and graph nullity η0.

Then, the Estrada index of G is bounded as

E E (G) ≥ η0 + (n − η0) cosh

(

2m

n − η0

)

, (5.9)

where equality is attained if and only if n−η0 is even, and if G consists of copies of complete

bipartite graphs Kri ,si
, i = 1, . . . , (n − η0) /2, such that all products ri · si are mutually

equal.

Theorem 13 [190] Let G be a simple graph with n nodes, m edges and minimum degree

kmin . Then, the Estrada index of G is bounded as

E E (G) ≥ 2 cosh

(

2 (m − kmin)

n − 1

)

+ n − 2, (5.10)

with equality if and only if G ∼= K p,p ∪ K1 with n = 2p + 1.

Theorem 14 [190] Let G be a simple graph with n nodes, m edges and minimum degree

kmin . Then, the Estrada index of G is bounded as

E E (G) ≥ 2 cosh

(

2 cos

(

π

n + 1

))

+ n − 2, (5.11)

with equality if and only if G ∼= P2 or G ∼= P4.

Theorem 15 [19] Let G be a simple graph with n nodes, m edges and t triangles. Then, the

Estrada index of G is bounded as

E E (G) ≥
√

n2 + mn + 2nt, (5.12)

with equality if and only if G ∼= K̄n .

Other bounds reported in the literature are based on different graph-theoretic indices and
properties or for specific classes of graphs. A non-exhaustive resume is provided in Table 4.

5.1 Numerical analysis

We now do some calculations to show how close to the actual values of the Estrada index are
some of the bounds studied in the previous sections. In particular, we consider the following
five bounds: Bound 1 (Theorem 5); Bound 2 (Theorem 6; Bound 3 (Theorem 7 using a = −λ1

and b = −λn); Bound 4 (Theorem 7 using a = −kmax and b = kmax ); Bound 5 (Theorem 8).
First, we study these bounds for the 11,117 connected graphs with 8 nodes. The histograms
of the relative deviations of these bounds are illustrated in Fig. 3, where the lower bound is
always drawn in blue and the upper one in red. The means and standard deviations of the
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Table 4 Examples of studies
reported in the literature for some
classes of graphs

Type of graphs References

General [10,38,63,101,121,189,198,201,238]

Weighted general [197,200]

Trees [55,62,159,188,244]

Molecular trees [115,134]

Unicyclic [64]

Bicyclic [228]

Tricyclic [252]

Tetracyclic [186]

Pentacyclic [185]

Bipartite [91,120,245,250]

Line graphs [4,208]

Strongly quotients [33]

Folded hypercubes [165]

Cacti [157]

Cayley [103]

Specific graphs [104]

Ramanujan [199]

Benzenoids [118]

Phenylenes [187]

Fullerenes [14]

Möbius [96]

lower, upper bounds are as follow: Bound 1 (79.672± 9.485, 259.948± 44.555); Bound 2
(82.588± 8.499, 19.205± 14.198); Bound 3 (57.915± 13.701, 30.466± 5.860); Bound 4
(73.741±12.359, 239.249±156.52); Bound 5 (54.629±14.214, 18.276±8.812). Therefore,
the best lower and upper bounds are Bound 5 (Theorem 8) for these small graphs.

In Fig. 4 we illustrate the results for the five real-world networks considered in this work.
In general, with the exception of Bound 3, which is based on eigenvalues, and Bound 5,
which uses tr

(

A4
)

, the rest of the bounds are very far from the actual values for these
four networks. With these two exceptions, the upper bounds exaggerate dramatically the
estimation, in particular the Bound 1. Bound 4, performs very badly when the maximum
degree of the network is very high and not close to the spectral radius, which is the case for
instance of Internet, but also of many real-world networks. All in all, these results point out
to the necessity of improving the bounds for the Estrada index of large graphs.

We then consider simple bounds based on the spectral radius of the adjacency matrix λ1.
That is,

eλ1 < E E (G) < neλ1 . (5.13)

The results are given in Table 5. As can be seen the bounds are very close to the actual
values of the Estrada index. This is a consequence of the relatively large values of the spectral
radius and of the spectral gap observed in most of the real-world networks, which when
exponentiated are significantly enlarged. Notice that the largest deviation is obtained for
powergrid, where the spectral radius is significantly smaller than in the rest of the networks
and the spectral gap is very small.
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(a) (b) (c)

(d) (e)

Fig. 3 Histograms of the relative deviations in percentage for: a Bound 1 (Theorem 5), b Bound 2 (Theorem
6, c Bound 3 (Theorem 7 using a = −λ1 and b = −λn ), d Bound 4 (Theorem 7 using a = −kmax and
b = kmax ), e Bound 5 (Theorem 8). In blue we illustrate the histogram for the lower and in red for the upper
bounds. As usual for histograms, frequency stands for the number of graphs in each bin

Table 5 Naive bounds based on the spectral radius of the adjacency matrix for the Estrada index of real-world
networks

network exp (λ1) Real n exp (λ1) λ1 λ2

Stony 7.2343× 109 7.2343× 109 8.1024× 1011 22.70 6.38

Neurons 1.36061× 1010 1.3062× 1010 3.6569× 1012 23.29 14.06

Yeast 2.9021× 108 3.0383× 108 6.4542× 1011 19.49 16.13

Internet 6.1745× 1013 6.1745× 1013 1.8616× 1017 31.75 20.08

Powergrid 1.7777× 103 2.1347× 104 8.7834× 106 7.48 6.61

5.2 Random graphs

In the study of real-world networks it is desired to investigate how unique are their structural
and dynamical properties in relation to some null model. For instance, suppose that we
have found that certain network displays relatively large Estrada index in relation to other
networks of the same size. Is this a characteristic feature of the topological organization of
this network or just an artifact emerging from a random interconnection of their nodes? A way
to investigate this is by comparing the Estrada index of these networks with those of random
realizations of such networks with the same number of nodes and edges. Then, the use of
random graphs is frequent in the analysis of real-world networks [220]. Two classical models,
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(a) (b) (c)

(d) (e)

Fig. 4 Plot of the estimates of the lower (blue circles) and upper (red squares) for the bounds: (1) (Theorem
5), (2) (Theorem 6, (3) (Theorem 7 using a = −λ1 and b = −λn ), (4) (Theorem 7 using a = −kmax and
b = kmax ), (5) (Theorem 8). The results are for (a) Stony, (b) neurons, (c) yeast, (d) internet and (e) powergrid.
The dashed lines represents the “exact” value of the Estrada index for the networks. Very large values are
obtained by using variable-precision floating-point arithmetic (vpa) in Matlab

although not the only ones, to do such studies are the Erdős–Rényi random graphs [68] and
the Barabási–Albert preferential attachment model [21]. For instance, the Estrada index of the
network “neurons” studied here is E E (Greal) ≈ 1.3062× 1010 and that of an Erdős–Rényi
random graph with the same number of nodes and edges is E E (GER) ≈ 3.4688×106, which
indicates that the large Estrada index of this network is not due to a random interconnection
of the neurons of C. elegans. However, the consideration of a Barabási–Albert network with
the same number of nodes and edges than those in the network “neurons” gives E E (GBA) ≈
1.2131×1010, which clearly points out that the relatively large Estrada index of this network
may be explained by its skewed degree distribution.

For the Estrada index of random graphs, only the Erdős–Rényi model has been consid-
ered so far, indicating the necessity of extending these studied to other classes of random
graphs such as the Barabási–Albert one. The following estimates were found for Erdős–Rényi
random graphs based on the number of nodes and the probability of connection.

Lemma 4 [196] Let Gn,p be an Erdős–Rényi random graph with n nodes and probability

ln n

n
≪ p < 1− ln n

n
. (5.14)

Then, the Estrada index is

E E
(

Gn,p

)

= (1+ o (1)) enp, (5.15)

almost surely as n →∞.
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Theorem 16 [43] Let Gn,p be e an Erdős–Rényi random graph with n nodes and probability

p. Then, the Estrada index is

E E
(

Gn,p

)

=
(

eO(
√

n) + o (1)
)

enp, (5.16)

almost surely (a.s.) if and only if limn→∞ n2/n1 = 1.

In the case of Erdős–Rényi random bipartite graphs the author of [206] proved the fol-
lowing bounds for the Estrada index.

Theorem 17 Let Gn1,n2,p be an Erdős–Rényi random bipartite graph with n = n1 + n2

nodes, such that limn→∞ n2/n1 := y ∈ (0, 1], and probability p. Then, the Estrada index is

bounded as
(

eO(
√

n) + o (1)
)

en2 p ≤ E E
(

Gn,p

)

≤
(

eO(
√

n) + O (1)
)

en1 p, a.s. (5.17)

provided that y = 1.

6 Estrada index and statistical mechanics

The analogy of the Estrada index E E (G) = tr
(

eA
)

with the partition function of a quantum

system Z = tr
(

e− ˆτH
)

(see further for definitions) is remarkable, and was noticed soon after

the definition of this index [83]. The importance of establishing this connection is twofold.
On the one hand, the index can be interpreted in a physical context which at the same time
facilitates its interpretation in other contexts where it is applied. On the other hand, new tools
and techniques from statistical mechanics can be used to enrich the theory behind this index.
Here, we will describe the statistical mechanics interpretation of the Estrada index.

Let us consider a physical system S that can be represented by a graph G, such that the total
energy E of S can be obtained by the time-independent Schrödinger equation: ĤΨ = EΨ ,
where Ψ is the wavefunction and Ĥ is the Hamiltonian describing the interactions between
the elements of S. In certain approaches in physics and chemistry, it is customary to use an
effective Hamiltonian which describes the interaction between nearest-neighbors (NN) in the
system

ĤN N = α I + tN N A, (6.1)

where α is a self-energy parameter for the elements of S and tN N is the energy of the
interaction between pairs of adjacent elements. In Chemistry this model is known as the
Hückel Molecular Orbital (HMO) method [154,239], while in Physics it is better known
as the tight-binding approach [184]. The parameter tN N is negative as it is supposed to be
an attractive interaction. Therefore, it is common to set α = 0 and tN N = −1, such that
Ĥ = −A. Therefore, the energy levels of the system are E j = −λ j and the wavefunctions
correspond to the eigenvectors associated to the eigenvalues of A.

In the statistical mechanics framework [23,69], the Boltzmann probability p j (τ )of finding
the system in a state with energy E j when the inverse temperature of the system is τ =
(kB T )−1 > 0 with kB being a constant and T being the temperature1 is

p j (τ ) = e−τ E j

Z
, (6.2)

1 τ is typically represented by β in statistical physics, but this letter is already reserved here for a different
variable.
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where Z = tr
(

e−τĤN N

)

. Therefore, the Boltzmann probability of the system is given by

p j (τ ) = eτλ j

E E (G, τ )
, (6.3)

where the Estrada index plays the role of the partition function of the graph.
We now can define the entropy of the graph as [83]

S (G, τ ) = −kB

∑

j

p j (τ ) ln p j (τ ) = − 1

T

∑

j

(

p j (τ ) λ j

)

+ kB ln E E (G, τ ) , (6.4)

which in general is bounded as follows.

Lemma 5 Let G be a simple graph. Then, the free energy of G is bounded as

0 ≤
(

ln (exp (n)+ n − 1)− n exp (n)

exp (n)+ n − 1

)

≤ S (G, τ ) ≤ ln n, (6.5)

where the upper bound is attained for the null graph K n and the lower bound is reached for

the complete graph Kn .

From the general expression of the entropy one can obtain the graph “enthalpy” H (G, τ ) =
−
∑

j p jλ j and the graph free energy, which is sometimes named the natural connectivity
of the network [83]:

F (G, τ ) = −τ−1 ln E E (G, τ ) . (6.6)

We can write the logarithm of the Estrada index as follows,

ln E E (G, τ ) = τλ1 + ln
∑

j

eτ(λ j−λ1), (6.7)

which implies that

ln E E (G, τ ) ≤ τλ1 + ln
(

1+ e−τ△
)

, (6.8)

where △ = λ1 − λ2 is the spectral gap. Therefore, we have proved the following.

Lemma 6 Let G be a simple graph. Then, the free energy of G is bounded as

F (G, τ ) ≤ −
[

λ1 + τ−1 ln
(

1+ e−τ△
)]

. (6.9)

More generally, the free energy of a graph can be bounded by using the many bounds obtained
for the Estrada index which have been previously reported in the literature. One important
example is the following [83].

Lemma 7 Let G be a simple graph. Then, the free energy of G is bounded as

(n − 1) < 1− τ−1 ln
(

eτn + n − 1
)

≤ F (G, τ ) ≤ −τ−1 ln n, (6.10)

where the lower bound is obtained for the complete graph Kn and the upper bound for the

null graph K n .
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(a) (b) (c)

Fig. 5 Plots of the entropy (a), enthalpy (b) and free energy (c) versus the number of edges in all connected
graphs with 8 nodes

6.1 Numerical analysis

We consider here numerical experiments to illustrate some general characteristics of the
indices described in the previous section. We report the change of the entropy, enthalpy and
free energy of all connected graphs with the increase of the number of edges in the connected
graphs with 8 nodes, i.e., its edge density. It can be seen in Fig. 5, as expected, that the three
parameters decay with the increase in the edge density. However, it should be noticed that for
graphs with exactly the same number of edges there is a wide variability in these parameters,
particularly for the entropy. The readers interested in more details about the implications of
these parameters on the structure of graphs are referred to [83].

We then computed the three statistical mechanics parameters for the five networks studied
here. The results are in Table 6 where we also give the values of the edge density of these
graphs: δ (G) = 2m/ (n (n − 1)) where n and m are the number of nodes and edges of
the graph. The most densely connected network, Stony, displays the lowest entropy and the
least dense, powergrid, displays the largest one. However, as can be seen for the intermediate
values of δ (G) this trend is not always followed as there are other structural factors influencing
these statistical mechanics parameters. For instance, the network of Internet at AS displays
the second smaller entropy of all the networks and the lowest free energy of all, although it
is not very dense.

Table 6 Values of the entropy, enthalpy and free energy of the five real-world networks analyzed here

S (G) H (G) F (G) δ (G)

Stony 4.447× 10−6 −22.704 −22.704 0.134

Neurons 0.0011 −23.292 −23.293 0.0505

Yeast 0.227 −19.304 −19.532 0.0028

Internet 1.149× 10−4 −31.754 −31.754 0.0011

Powergrid 6.806 −3.162 −9.969 5.403× 10−4
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7 Marginal probability, walk entropy and walk regularity

Having in mind the importance that the probability p j (τ ) has in the definition of statistical
mechanics properties of networks we propose to explore it further in this section. That is, we
consider here the role of the Estrada index in defining some probability-based measures for
graphs. Let us start with two definitions from basic statistics (see for instance [49, Ch. 2]).

Definition 9 The conditional probability P (A |B ) is the probability that the event A occurs
given that the event B occurs.

Definition 10 The marginal probability is the unconditional probability of one event A. That
is, the probability that A occurs regardless of whether B occurs or not.

To obtain the marginal probability of an event A one should sum all possible configurations
of the other event to obtain a weighted average probability

P (A) =
∑

B

P (A |B ) · P (B) . (7.1)

Let us then return to the time-independent Schrödinger equation:

Ĥψ j = E jψ j , (7.2)

where E j are the energy levels of the system and ψ j are the corresponding eigenfunctions.

As usual,
∣

∣ψ j,v

∣

∣

2
represents the probability of finding a quantum particle at a given vertex v

and time conditional to the system to be at the energy level described by the wave function

ψ j . That is,
∣

∣ψ j,v

∣

∣

2 = P (v | j ) using the notation defined before.
On the other hand, p j (τ ) which was defined in the previous section accounts for the

probability that the system is at the j th energy level for a given τ . Then, fixing τ , p j (τ ) =
P ( j) . Therefore, the marginal probability that the node v is occupied by the quantum particle
independently of the energy level in which the system is, is given by:

P (v) =
∑

j

P (v | j ) · P ( j) =
∑

j

∣

∣ψ j,v

∣

∣

2 · p j (τ ) , (7.3)

which can be expressed as [86]:

P (v, τ ) =
∑

j ψ2
j,veτλ j

E E (G, τ )
= E Ev (τ )

E E (G, τ )
. (7.4)

The corresponding entropy, known as the walk-entropy of the graph [86], is defined using
Shannon formula:

Sw (τ ) = −
∑

v

P (v, τ ) ln P (v, τ ) . (7.5)

We now consider a graph property known as walk-regularity and the role that the walk
entropy play in its characterization. Let us introduce the concept of walk regularity first (see
for instance [106]).

Definition 11 A graph is walk-regular if ∀i, j ∈ V and for every nonnegative integer r ,
[Ar ]i i = [Ar ] j j .

The following conjecture was formulated in [86] as an extension of the conjecture related
to the subgraph centrality which had been previously stated in [88].
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Conjecture 1 A graph is walk-regular if and only if Sw (τ ) = ln n for all τ > 0.

Let us then introduce some necessary concepts for the further developments in the proof of
this conjecture.

Definition 12 Two vertices i, j of G are τ -subgraph equivalent if [eτ A]i i = [eτ A] j j .

Definition 13 A graph is τ -subgraph regular if all pairs of vertices are τ -subgraph equivalent.
The following result was a step forwards the proof of Conjecture 1.

Theorem 18 [26] A graph G is walk-regular if and only if G is τ -subgraph regular for all

τ ∈ I ⊆ R, where I is any set of real numbers containing an accumulation point.

In the saga, in [151] the authors found some counterexamples to a new conjecture proposed in
[26] and stated a new conjecture. The final proof of Conjecture 1 came from an elegant Theo-
rem in 2021 [18] where the authors used results from the Lindemann–Weierstrass Theorem.

Theorem 19 [18] Let τ > 0 be an algebraic number and let G be a connected undirected

graph with adjacency matrix A.

1. G is τ -subgraph regular if and only if G is walk-regular.

2. If two vertices i, j are τ -subgraph equivalent, then the degree and eigenvector central-

ities of i and j are equal.

3. If G is τ -subgraph regular, then the degree and eigenvector centralities are also identical

for all nodes.

Walk regular graphs can be constructed by using Kronecker product of the adjacency matrices
of two walk-regular graphs [106]. That is, if G1 and G2 are walk regular graphs, then G1⊗G2

is also walk regular. Therefore, we have the following result.

Proposition 1 [86] Let G1 and G2 be two simple graphs with n1 and n2 vertices, respectively.

Then,

Sw (G1 ⊗ G2, τ ) = ln n1 + ln n2, (7.6)

for all τ > 0 if G1 and G2 are walk-regular.

8 Bipartivity, signed graphs and Seidel Estrada index

A graph G = (V , E) is bipartite if its set of nodes V can be split into two subsets V1 and
V2 such that there are edges only between the two sets but no edge connects vertices in
neither V1 nor V2 . Therefore, a graph is or is not bipartite. However, in certain real-world
situations a graph can be “close to bipartite”, meaning that by removing very few edges the
graph become bipartite. This is the case, for instance, of human sexual contact networks and
human romance or partnership networks as remarked in [130]. In 2003 the authors of [130]
proposed to quantify the “bipartivity” of a graph. The first of their measures is defined by

bH = 1− m f

m
, (8.1)

where m f is the number of edges that if removed the network becomes bipartite.2 The
calculation of this index is computationally intractable as it is NP complete. The authors

2 Physicists call these edges “frustrating” edges.
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[130] then proposed another index in which m f is assessed computationally. Here we will
show how the use of the Estrada index of graphs allows the calculation of an index of
bipartivity which depends only on the eigenvalues of the graph. The first of these approaches
was published in [87] and will not be discussed here. Instead we will consider the index
studied in [82]. Another measure of bipartivity was also proposed in [180]. We will start with
some basic definitions for the sake of completeness of this section.

A bipartite graph is characterized by the following result proved by Konig in 1916 [153]
(see also [15]).

Theorem 20 A graph is bipartite if and only if G has no cycles of odd length.

Corollary 2 A graph G is bipartite if and only if it contains no closed walks of odd length.

The Estrada index of a graph can be expressed in terms of the hyperbolic matrix functions
as

E E (G) = tr (cosh (A))+ tr (sinh (A)) . (8.2)

The tr (sinh (A)) counts the odd-length closed walks in the graph:

tr (sinh (A)) =
∞
∑

k=0

1

(2k + 1)! tr
(

A2k+1
)

. (8.3)

Similarly, tr (cosh (A)) counts the even-length closed walks. An odd closed walk of any
length in the graph exists if and only if the graph contains at least one odd-length cycle.
Therefore, we can reformulate the previous Corollary as.

Corollary 3 A graph G is bipartite if and only if tr (sinh (A)) = 0.

Based on this result the authors of [82] proposed the following.

Definition 14 The bipartivity of a graph is defined as the relative difference between the
number of closed walks of even and odd length,

b (G) = tr (cosh (A))− tr (sinh (A))

tr (cosh (A))+ tr (sinh (A))
= tr (exp (−A))

tr (exp (A))
=

E E
(

G−)

E E (G)
, (8.4)

where G− is the graph in which all the edges are weighted by −1.

It is easy to see that tr (exp (−A)) reaches its minimum for the complete graph, which is also
the graph for which E E (G) is maximum (see an example in Fig. 6). In this figure the reader
can also visualize how the bipartivity index changes monotonically with the increase of the
number of edges “frustrating” the bipartition.

Then, we have the following result.

Lemma 8 Let G be a simple graph. Then, its bipartivity is bounded as

e2−n

(

nen − en + 1

en + n − 1

)

≤ b (G) ≤ 1, (8.5)

where the upper bound is attained for any bipartite graph and the lower bound is reached

for G ∼= Kn .

Therefore, we have that

lim
n→∞

b (Kn) = 0. (8.6)
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Fig. 6 Illustration of the change in the bipartivity index with the increase in the number of edges in a complete
bipartite graph

8.1 Signed graphs

In order to understand why the index b (G) quantifies the bipartivity of a graph we should
start by recognizing that the numerator of b (G) is the trace of the adjacency matrix of a
fully-negative signed graph. For an exhaustive compilation of mathematical results about
signed graphs the reader is referred to [241]. Let us introduce here the necessary concepts
for understanding the connections between bipartivity and signed graphs. We will start with
the following.

Definition 15 A signed graph is the 4-tuple G+− = (V , E,Σ, ϕ), where V = {v1, . . . , vn}
is the set of nodes or vertices representing individual social entities, E ⊆ V × V is the set of
edges formed by (ordered or unordered) pairs of nodes, Σ = {+,−} is a set of signs, positive
and negative relations,3 and ϕ : E → Σ is a mapping assigning one sign to each edge.

Therefore, the numerator of b (G) counts the number of negative cycles in G, where a negative
cycle is any cycle in which the product of the sign of its edges is negative. In a fully-negative
graph, the negative cycles are the odd-length cycles, which are indeed those that break the
bipartivity of the graph. In the theory of signed graphs we have the following important
concept (for a list of references and some critical account see [79]).

Definition 16 A signed graph G+− is balanced if all its cycles are positive.
Then, it is obvious that a fully-negative graph is balanced if and only if it is bipartite. In

the general case of any signed graph the following result is well-known.

Theorem 21 A signed graph G+− is balanced if and only if its nodes can be separated into

two mutually disjoint sets, such that positive edges joint nodes only inside the subsets and

negative edges joint nodes from different subsets.

The adjacency matrix of a signed graph can be expressed as: A = A+ − A−, where
A+ represents the adjacency between pairs of nodes connected by positive edges, and A−

represents the adjacency between pairs of nodes connected by negative edges.

3 In the study of social signed networks, positive edges are used for friendship relations and negative ones for
enmities.

123



The many facets of the Estrada indices of graphs and networks 79

Definition 17 [79,81] The balance of a signed network with adjacency matrix A = A+− A−

can be quantified by

K
(

G+−) =
tr
(

exp
(

A+ − A−
))

tr
(

exp
(∣

∣A+ − A−
∣

∣

)) =
E E

(

G+−)

E E
(∣

∣G+−
∣

∣

) , (8.7)

where |·| represents the entrywise absolute of the corresponding matrix.

The following result was proved in 1980 [2].

Theorem 22 For any signed graph, the matrices A+ − A− and
∣

∣A+ − A−
∣

∣ are isospectral

(cospectral) if and only if the signed graph is balanced.

Then, we have the following.

Theorem 23 Let G+− be a signed graph with adjacency matrix A+ − A−. Then,

e2−n

(

nen − en + 1

en + n − 1

)

≤ K
(

G+−) ≤ 1, (8.8)

where the upper bound is attained for any balanced graph and the lower bound is reached

for a fully-negative complete graph.

Then, we also have that

lim
n→∞

K
(

K−
n

)

= 0, (8.9)

which is a maximally unbalanced graph.

8.2 Seidel Estrada index

Let us focus now on a particular kind of signed graph. Let J and I be the all-ones and identity
matrices, respectively. The following matrix was introduced in [221] and it is nowadays
known as the Seidel matrix.

Definition 18 The Seidel matrix of a simple graph G with adjacency matrix A is defined as

S (G) = J − I − 2A. (8.10)

Obviously, S (G) = A+ − A− is the adjacency matrix of a signed graph G+−, where
A+=J − I − A and A−=− A. Therefore, we have the following result.

Theorem 24 Let G+− be a signed graph with adjacency matrix S (G). Then, G is balanced

if and only if S (G) is isospectral to A (Kn).

Proof The balance index of a signed graph with adjacency matrix S (G) is

K
(

G+−) = tr (exp (J − I − 2A))

tr (exp (J − I ))
= tr (exp (S (G)))

E E (Kn)
, (8.11)

which immediately implies the result. ⊓⊔

Remark 3 The term tr (exp (S (G))) =: SE E (G) was denoted in [122] as the Seidel Estrada
index of the graph. The name Seidel honors mathematician Johan Jacob Seidel (1919–2001).4

4 A biography of Johan Jacob Seidel can be found at: https://mathshistory.st-andrews.ac.uk/Biographies/
Seidel_Jaap/.
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We can prove here the following result.

Theorem 25 Let Kn1,n2 be a complete bipartite graph. Let S
(

Kn1,n2

)

be the Seidel matrix

of Kn1,n2 . Then, S
(

Kn1,n2

)

and A
(

Kn1+n2

)

are cospectral.

Proof Using the structural balance theorem we can show that the signed graph whose adja-
cency matrix is S

(

Kn1,n2

)

is balanced. That is, we can split the set of nodes into two disjoint
sets containing n1 and n2 nodes, respectively, in which the inter-set edges are negative and
all intra-set edges are positive. Then, using Theorem 24 we prove the result. ⊓⊔

Remark 4 The previous result implies that any signed graph with adjacency matrix

A =
(

A
(

Kn1

)

−J

−J A
(

Kn1

)

)

, (8.12)

is balanced. Also that SE E
(

Kn1,n2

)

= E E
(

Kn1+n2

)

= exp (n)+ (n − 1) e−1.

In [122] it was proved the following results for the Seidel Estrada index.

Theorem 26 Let G be a simple graph with n ≥ 2 nodes, m edges, t triangles and Z =
∑

i k2
i .

Then,

SE E (G) >

√

n

3

(

n3 − n + 12

(

Z + 4t − nm + 1

2

))

. (8.13)

Theorem 27 Let G be a simple k-regular graph. Then,

SE E (G) ≥ en−1−2k + (n − 1) exp

(

2k

n − 1
− 1

)

. (8.14)

Theorem 28 Let G be a simple k-regular bipartite graph. Then,

SE E (G) < en−1−2k + 1

e

(

E E (G)− e−k
)2

. (8.15)

In this subsection we have shown that although the so-called Seidel Estrada index was pro-
posed and studied in a completely ad hoc way, it can be connected with the theory of signed
graphs. This may facilitate further studies of this index, its extension to consider statistical
mechanics parameters and its applications to the study of real-world signed graphs.

8.3 Negative absolute temperatures and the Onsager Estrada index

In the definition of the bipartivity index we have considered in the numerator of Eq. (8.4)
the term E E

(

G−) = tr (exp (−A)) . In the context of statistical mechanics which we have
analyzed in Sect. 6 this corresponds to consider the inverse temperature τ = −1. So far,
we have considered the inverse temperature τ to be positive. So, what a negative inverse
temperature could mean? Let us first analyze what is the physical definition of τ . Let S be
the statistical entropy, which is a function of the possible microstates of the system, and let
E be the system’s energy. Then, the absolute temperature is defined as:

τ := 1

T

d S

d E
. (8.16)

Graphically, it corresponds to the slope of the curve of entropy versus energy at a given
point. Therefore, as can be seen in Fig. 7 the inverse temperature can be negative. In a system
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Fig. 7 Sketch of the plot of entropy versus energy used to illustrate the definition of the inverse temperature
which is given by the slope of the curve in a given point. The scale of inverse temperature is given on top of
this plot

at negative temperature the high-energy states are more occupied than low-energy states.
Such systems have been created by physicists in the real-world [35].

From a graph-theory perspective what it means that “the high-energy states are more

occupied than low-energy states”? In the Sect. 6 we have considered that the Hamiltonian
describing the graph as a quantum system is given by the negative of the adjacency matrix
ĤN N = −A, such that the energy levels of the system are E j = −λ j and the wavefunctions
are the eigenvectors associated to the eigenvalues of A. In this case the partition function of
the graph is given by Z =

∑n
j=1

(

eτλ j
)

with τ > 0. Therefore, for τ → ∞, we have that

Z = eτλ1 . In the current case, where τ < 0, we have that when τ → −∞, the partition
function is: Z = eτλn . This means that we have changed the “importance” given to the
different eigenvalues in the Estrada index, giving now more weight to the contributions of
the smallest ones. Because Lars Onsager (1903-1976) was the scientist who first study the
negative absolute temperatures in [178] we propose to name the following index in his honor.5

Definition 19 The Onsager Estrada index of G is defined as

O E E (G) = tr
[

exp (−A)
]

. (8.17)

First let us consider some elementary results, which are presented here by the first time.
First, because tr

[

exp (−A)
]

= tr [cosh (A)]− tr [sinh (A)] , and due to the fact that a graph
is bipartite if and only if it has no odd cycles, we have the following result.

Lemma 9 Let G be a simple graph. Then, O E E (G) = tr [cosh (A)] if and only if G is

bipartite. In this case O E E (G) = E E (G).

Remark 5 Some graphs for which O E E (G) = E E (G) for which we can write explicitly
the indices are

– O E E
(

Kn1,n2

)

= E E
(

Kn1,n2

)

= n1 + n2 − 2+ 2 cosh
(√

n1n2
)

;

5 A biography of Lars Onsager can be found at: https://www.nobelprize.org/prizes/chemistry/1968/onsager/
biographical/.
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– O E E (Sn) = E E (Sn) = n − 2+ 2 cosh
(√

n − 1
)

;

– limn→∞ E E (Cn) = nI0, n even, where I0 =
1

π

∫ π

0 e2 cos x dx ;

– limn→∞ E E (Pn) = (n − 1)− 2 cosh (2).

Lemma 10 Let G be a simple graph and let λn be the least eigenvalue of A. Then,

e−λn ≤ O E E (G) ≤ ne−λn . (8.18)

The following result allows us to compare O E E (G) with E E (G) using Eq. (3.12).

Lemma 11 Let G be a simple graph. Then, the Onsager Estrada index of G is bounded as

O E E (G) ≥ F1 +
391

360
F2 +

11

60
F3 +

1

120
F5 +

1

60
F6 +

2

5
F7 +

1

36
F9 +

1

60
F12 +

1

60
F16

−
(

149

120
F4 +

1

10
F8 +

7

72
F10 +

1

180
F11 +

1

360
F13 +

1

360
F14

+ 1

90
F15 +

1

360
F17 +

1

60
F18 +

1

180
F19 +

1

360
F20

)

.

(8.19)

As we can see only bipartite subgraphs make a positive contribution to the Onsager Estrada
index.

8.4 Numerical analysis

Here we compute the bipartivity index for all connected graphs with 8 nodes. We select
two other network parameters to compare with the bipartivity. The first is the edge density
δ (G) = 2m/ (n (n − 1)) where m is the number of edges. The reason for selecting this
parameter is that as the density of the graph increases the number of cycles of any length
will also increase. For instance, in Erdős–Rényi random graphs we can find that the number
of triangles F4 (see Fig. 1) is bounded as

F4 ≥
1

6
λ3

1 ≥
1

6
(np)3 = 1

6
n3δ3. (8.20)

The second parameter is the clustering coefficient C (G), which is defined as C (G) =
3F4/F3, where F3 is the number of paths of length 2 in the graph (see [78]). Here again
we would expect that the bipartivity and the clustering coefficient are negatively correlated
due to the fact that the increase in clustering means the relative increase in the number of
triangles. However, bipartivity is also related to other odd-cycles in the graphs and we want
to investigate their influence of this network parameter.

In Fig. 8 we plot the results of the bipartivity vs. the clustering coefficient where the points
are colored according to the number of edges that the graph has. As can be seen the most
dense graphs also have the highest clustering and lowest bipartivity, as expected. Although
there is a decaying trend between the bipartivity and the clustering coefficient, it is clear
that even for these small graphs, the contribution of longer cycles to the bipartivity is very
important.

In Table 7 we give the values of the bipartivity for the five networks studied in this work.
The networks of Stony and powergrid have significant bipartivity, while neurons and yeast are
highly non-bipartite. As can be seen in the Table there is not a clear trend between bipartivity
and edge density nor to the clustering coefficient of these graphs.
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Fig. 8 Scatter plot of the
bipartivity and the clustering
coefficient of all connected
graphs with 8 nodes. The points
in the plot are colored by the
number of edges that the
corresponding graph has

Table 7 Values of the bipartivity,
clustering coefficient and edge
density of the five real-world
networks studied in this paper

Network b (G) C (G) δ (G)

Stony 6.3× 10−1 2.0× 10−2 1.3× 10−1

Neurons 1.2× 10−5 1.9× 10−1 5.1× 10−2

Yeast 4.9× 10−4 1.6× 10−1 2.8× 10−3

Internet 4.3× 10−3 1.5× 10−2 1.1× 10−3

Powergrid 7.2× 10−1 1.0× 10−1 5.4× 10−4

In the case of Stony we have obtained a bipartition of the network using a technique also
based on matrix exponentials. The result is illustrated in Fig. 9 where the edges colored in red
or in blue are those that frustrate the bipartition of the network, i.e., those that, if removed,
make the graph bipartite.

9 Gaussian Estrada indices

As we have seen in the previous analysis there are situations in which the Estrada index
of a graph is mainly determined by the spectral radius of the adjacency matrix. That is,
when λ1 ≫ λ2 ≫ 1 the sum

∑

j exp
(

λ j

)

is approximated very well by exp (λ1) . From the
structural point of view, this means that most of the information contained in the eigenvalues
λ j for j > 1 is making almost no contribution to the Estrada index. It is well-known that
structural information encoded by some other eigenvalues other than λ1 is very important
for several kinds of problems [46,50–52,213,214]. For instance, the nullity of the graph (see
[111] for a review), i.e., the multiplicity of the zero eigenvalue of the adjacency matrix, plays
a fundamental role in explaining magnetic properties of materials [230]. In general, many
real-world networks have large multiplicity of λ j = 0 (nullity) and of λ j = −1 which
points to the fact that some important structural information on these networks is encoded in
eigenvalues different from λ1 .

In this section we investigate Estrada indices that give higher weights to the contribution
of eigenvalues other than the spectral radius. In particular we use here a technique known
as spectral folding [36,229] to produce Gaussian Estrada indices [5,80]. In the following let
λ̃ be a given reference eigenvalue, I (z) be the modified Bessel function of the first kinds,
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Fig. 9 Illustration of a bipartition of the network of Stony stream using the method developed by [82]. The
dotted lines joints the two partitions and continuous lines connect vertices inside the same partition, i.e., they
frustrate the bipartition of the network

erf (z) be the error function and erfc (z) = 1 − erf (z) be the complimentary error function
[5,80].

Definition 20 The Gaussian Estrada index of G is defined as

G E Eλ̃ (G) = tr

{

exp

[

−
(

λ̃I − A
)2
]}

. (9.1)

The idea behind this Gaussian Estrada index is explained graphically in Fig. 10. The name
Gaussian honors Carl Friedrich Gauss (1777–1855).6

First we give a few general results for the Gaussian Estrada index (see [5,80]).

Lemma 12 Let G be any graph. Then,

G E Eλ̃ (G) = tr
(

e−λ̃2
e2λ̃Ae−A2

)

= e−λ̃2
tr
(

e2λ̃Ae−A2
)

. (9.2)

Theorem 29 Let G be a graph with n nodes and m edges. Then,

G E Eλ̃ (G) ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

E E
(

Kn, λ̃
)

if λref = 0,

E E
(

K1,n−1, λ̃
)

if λref = −1,

(9.3)

where ki is the degree of the node i in the graph G .

6 A biography of Carl Friedrich Gauss can be found at: https://mathshistory.st-andrews.ac.uk/Biographies/
Gauss/.
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Fig. 10 Illustration of the gaussianized spectrum method. The eigenvalues of the adjacency matrix of the

network are folded at λ̃ into the spectrum of
(

λ̃I − A
)2

. Then they are exponentiated to give more weight to

λref

Lemma 13 Let Kn be the complete graph of n nodes. Then

G E Eλ̃ (Kn) =

⎧

⎪

⎨

⎪

⎩

e−(n−1)2 + n−1
e

if λ̃ = 0,

e−n2 + n − 1 if λ̃ = −1.

(9.4)

Lemma 14 Let Pn be a path having n nodes. Then, asymptotically as n →∞ and for some

c ∈ (0, π)

G E Eλ̃ (Pn) =

⎧

⎨

⎩

e−2 I0 (2) (n + 1)− e−4 if λ̃ = 0,

e−3e−4 cos c
(

(n + 1) I0 (2)− e−2
)

if λ̃ = −1.

(9.5)

Lemma 15 Let Cn be a cycle having n nodes. Then, asymptotically as n →∞ and for some

c ∈ (0, π)

G E Eλ̃ (Cn) =

⎧

⎨

⎩

e−2nI0 (−2) if λ̃ = 0,

ne−3e−4 cos c I0 (−2) if λ̃ = −1.

(9.6)

Lemma 16 Let Kn1,n2 be the complete bipartite graph of n1 + n2 nodes. Then

G E Eλ̃

(

Kn1,n2

)

=

⎧

⎨

⎩

2e−n1n2 + n1 + n2 − 2 if λ̃ = 0,

e−1
(

e−n1n2 cosh(2
√

n1n2)+ n1 + n2 − 2
)

if λ̃ = −1.

(9.7)
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Corollary 4 Let K1,n−1 be the star graph of n nodes. Then

G E Eλ̃

(

K1,n−1
)

=

⎧

⎨

⎩

2e1−n + n − 2 if λ̃ = 0,

e−1
(

e1−n cosh(2
√

n − 1)+ n − 2
)

if λ̃ = −1.

(9.8)

In [210] the authors studied several bounds for the Gaussian Estrada index when λ̃ = 0
which are resumed below.

Theorem 30 Let G be a simple graph with n nodes and m ≤ n

2
edges and let λ̃ = 0. Then,

G E Eλ̃ (G) ≥ n/2m, (9.9)

with equality if and only if G ∼= K̄n .

Theorem 31 Let G be a simple graph with n nodes and m ≤ n

4
+ n (n − 1)

4
exp (−4m/n)

edges and let λ̃ = 0. Then,

G E Eλ̃ (G) ≥
√

n − 4m + n (n − 1) exp (−4m/n), (9.10)

with equality if and only if G ∼= K̄n .

Remark 6 The previous bound can only be applied for very sparse networks where the density
δ (G) = 2m/ (n (n − 1)) is bounded as

δ (G) ≤ 1

2 (n − 1)
+ e−4m/n . (9.11)

Theorem 32 Let G be a simple graph with n ≥ 2 nodes and m ≤ n

2
edges. Let M =

∑

i k2
i ,

then,

G E E0 (G) ≥ exp (−M/n)+ (n − 1) exp ((M/n − 2m) / (n − 1)) , (9.12)

with equality attained if and only if G admits λ1 =
√

M/n , λ2 = · · · = λk =
(n − 2k + 1)−1√M/n and λk+1 = · · · = λn = − (n − 2k + 1)−1√M/n for some

1 ≤ k ≤
⌊n

2

⌋

.

9.1 Random graphs

In this subsection we consider the estimation of the Gaussian Estrada indices of random
graphs. The reasons for studying random graphs have been explained in Sect. 5.2. Here we
will consider both Erdős–Rényi and Barabási–Albert random graphs.

Theorem 33 [5,80] For an Erdős–Rényi random graph Gn,p with ln n
n
≪ p for significantly

large r = 2
√

np (1− p), we have

G E Eλ̃

(

Gn,p

)

= n exp

(−r2

2

)(

I0

(

r2

2

)

+ I1

(

r2

2

))

, (9.13)

if λ̃ = 0, and

G E Eλ̃

(

Gn,p

)

= 2n
√

r2 − 1

r
er2

erfc (r) (9.14)

if λ̃ = −1, as n →∞.
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Theorem 34 [5,80] Let G B A be a Barabási–Albert random graph and let r = 2
√

np (1− p).

Then, when n →∞,

G E Eλ̃ (G B A) = n

r2

(√
πrerf (r)+ e−r2 − 1

)

, (9.15)

if λ̃ = 0, and

G E Eλ̃ (G B A) =
√

π

2
((1− r) erf (1− r)+ (1+ r) erf (1+ r))

−
√

πerf (1)− e−1)
(9.16)

if λ̃ = −1.

9.2 Double Gaussian Estrada index

Another important situation appearing in many molecular systems is the existence of two
reference eigenvalues, typically located around the mid part of the spectrum, which are
of great relevance for understanding the behavior of these systems. In 1952, Fukui et al.
[99] calculated the chemical reactivity of molecules by using molecular orbital theory, but
their method neglects all molecular orbitals except two, the occupied one of higher energy
(HOMO) and the vacant one of lowest energy (LUMO). According to Fukui the HOMO gives
a molecule a character of electron donor, whereas the LUMO acts as an electron acceptor.
The theory was further applied by Woodward and Hoffmann [234] in the interpretation of
the stereochemistry of electrocyclic organic reactions. Both, the Frontiers Molecular Orbital
(FMO) theory of Fukui and the Woodward-Hoffmann rules are paradigmatic examples of
success of theoretical approaches in Chemistry. Both Fukui and Hoffmann won the Nobel
Prize in Chemistry for such works. Since then [98], FMO is widely applied for studying
chemical reactivity [176].

Let us consider here, for instance, molecular systems S where the energy E is obtained
by the time-independent Schrödinger equation: (α I + tN N A) Ψ = EΨ , as described before.
Then, when α = 0 and tN N = −1, the energy levels of the system are E j = −λ j . Typically,
the states with energy levels E j < 0 are occupied by electrons, while those with energy
E j ≥ 0 are empty. Then, the energy level just below E j = 0 is known as the highest
occupied molecular orbital (HOMO) and the one just over E j = 0 is the lowest unoccuppied
molecular orbital (LUMO). These two molecular orbitals are fundamental in understanding
the chemical reactivity of these molecular systems [182]. They can be described in the current
approach by the negative of two references eigenvalues λ̃1 and λ̃2 of the adjacency matrix.
Then, we have the following [6] (Fig. 11).

Definition 21 The double-Gaussianized Estrada index of G is defined as

DG E Eλ̃1,λ̃2
(G) = tr

{

exp

[

−
(

λ̃1 I − A
)2 (

λ̃2 I − A
)2
]}

. (9.17)

Lemma 17 Let G be any graph. Then,

DG E Eλ̃1,λ̃2
(G) = e−λ̃2

1λ̃2
2 tr

(

e
2
(

λ̃2
1λ̃2+λ̃1λ̃

2
2

)

A
e
−
(

λ̃2
1+λ̃2

2+4λ̃1λ̃2

)

A2

e
2
(

λ̃1+λ̃2

)

A3

e−A4
)

.

(9.18)
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Fig. 11 Schematic illustration of the double Gaussianization of the graph spectra. The eigenvalues of the
adjacency matrix are folded at two different reference eigenvalues and then exponentiated as illustrated in the
right part of the figure

Lemma 18 Let λ̃1 = −1 and λ̃2 = 1, such that E E (G,−1, 1) = tr
(

exp
[

−
(

A2 − I
)2
])

.

Let Kn , Kn1,n2 and K1,n−1 be the complete, bicomplete and star graphs of n nodes, respec-

tively. Then

DG E E−1,1 (Kn) = n − 1+ e−n2(n−2)2
, (9.19)

DG E E−1,1
(

Kn1,n2

)

= n1 + n2 − 2

e
+ 2e−(n1n2−1)2

, (9.20)

DG E E−1,1
(

K1,n−1
)

= n − 2

e
+ 2e−(n−2)2

. (9.21)

Lemma 19 Let Gb be connected bipartite graph of n nodes, then

DG E E−1,1 (Gb) ≤ DG E E−1,1 (Kn) . (9.22)

Conjecture 2 Let G be any connected graph of n nodes, then

DG E E−1,1 (G) ≤ DG E E−1,1 (Kn) . (9.23)

Claim 1 The double-Gaussianized Estrada index of a simple graph has the following Taylor
series expansion:

DG E E−1,1 =
1

e

( ∞
∑

k=0

ak trA2k

)

= 1

e

(

trI + 2trA2 + trA4 − 2

3
trA6 − 5

6
trA8

− 1

15
trA10 + 23

90
trA12 + . . .

)

.

(9.24)

where ak =
∑

4a+2b=2k(−1)a 2b

a!b! , and a, b are non negative integers.
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(a) (b)

Fig. 12 Histograms of the relative deviations in percentage of the bounds given in Theorem 30 and in Theorem
32 for all connected graphs with 8 nodes

9.3 Numerical analysis

We consider here the bounds given in Theorem 30 and in Theorem 32 for all connected
graphs with 8 nodes. The bound given in Theorem 31 is not applicable in all the cases and
we do not considered it for this general case. We show in Fig. 12 the histogram of the relative
deviations for these two bounds in these small graphs. The mean relative deviations (in %) of
the two bounds are, respectively 89.84± 2.51 and 66.51± 6.55, which points to the fact that
the second bound is a better approximation than the first one to the Gaussian Estrada index.

In Table 8 we give the values of the three bounds for the five networks studied here as well
as the values of the actual Gaussian Estrada index for λ̃ = 0. The bound given in Theorem 30
is extremely far away from the actual values and practically says the same as the trivial bound
G E E0 (G) > 0. The same happens for Theorem 32 in the cases of Stony and neurons, but it
gives more decent estimations for the cases of the bigger networks of Internet and powergrid.

Table 8 Values of the bounds given in Theorems 30, 31 and in 32 for the Gaussian Estrada index G E E0 (G)

of the five real-world networks studied here. The bound given in Theorem 31 is not applicable (NA) for most
of the networks as they do not fulfill the necessary condition on the edge density

Network Theorem 30 Theorem 31 Theorem 32 G E E0 (G)

Stony 0.0675 NA 8.018× 10−4 41.360

Neurons 0.071 NA 6.260× 10−4 69.083

Yeast 0.163 NA 4.998 1135.731

Internet 0.292 NA 109.2963 2148.635

Powergrid 0.375 309.576 342.947 1907.307
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10 Mittag–Leffler Estrada indices

As we have seen in previous sections of this paper, the Estrada indices of a graph may arise
as the solution of the linear dynamical system

d

dt
u (t) = Mu (t) , (10.1)

where M is a given graph matrix, with initial condition u (0) = u0. The solution of this
system is given by u (t) = exp (t M) u0. The case in which M = A is the adjacency matrix
of the graph has been analyzed in the paper [172].

Let us consider that, instead of using the first derivative of u (t) respect to time, we use a
fractional derivative. Then we have a system of the form:

Dα
t u (t) = Mu (t) , (10.2)

for 0 < α < 1, where the Caputo fractional derivative [37] is given by

Dα
t u (t) = 1

Γ (⌈α⌉ − α)

∫ t

0

u(⌈α⌉) (τ )

(t − τ)α+1−⌈α⌉ dτ, (10.3)

where f (k) represents the kth derivative of f and Γ (z) is the Euler gamma function:

Γ (z) =
∫

x z−1e−x dx, Re (z) > 0. (10.4)

The solution of this system is given by

u (t) = Eα,1
(

tα M
)

u0, (10.5)

where

Eα,1
(

tα M
)

=
( ∞
∑

k=0

(tα M)k

Γ (αk + β)

)

, (10.6)

which are the Mittag–Leffler matrix functions (for properties of Mittag–Leffler matrix func-
tion the reader is referred to [102,183]).

To catch the analogy with the standard Estrada index of a graph we can write is as

E E (G) = tr

( ∞
∑

k=0

Ak

Γ (k + 1)

)

= tr (exp (A)) , (10.7)

due to the fact that Γ (k + 1) = k!,
Therefore we can generalize the Estrada index to account for a wider class of penalization

functions, such that we write

E Eα,β (G) = tr

( ∞
∑

k=0

Ak

Γ (αk + β)

)

. (10.8)

At the same time we keep in mind that E Eα,β (G) is the solution of a system of equations
of the form Dα

t u (t) = Au (t) as we will explore later. We propose the name Mittag–Leffler
Estrada index for E Eα,β (G) in honor to the mathematician Gösta Mittag–Leffler (1846–
1927).7 Some examples of closed formulas are illustrated in Table 9.

7 A biography of Gösta Mittag-Leffler can be found at: https://mathshistory.st-andrews.ac.uk/Biographies/
Mittag-Leffler/.
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Table 9 Examples of
Mittag–Leffler functions of the
adjacency matrix

α β Function

1/2 1 exp
(

A2
)

(I + erf (A))

1 1 exp (A)

2 1 cosh
(√

A
)

3 1 1
3

[

exp
(

A1/3
)

+ 2 exp
(

−A1/3
)

cos
(√

3
2 A1/3

)]

4 1 1
2

[

cos
(

A1/4
)

+ cosh
(

A1/4
)]

One important aspect of these functions in general is that by controlling the parame-
ters α and β we can penalize the walks of k length in different ways. For instance, if
((α − 1) k + β) < 0 for all k, then the walks of any length are penalized less than in
E E1,1 (G). This is for instance, the case of E E1/2,1 (G) (see Table 9). In those cases where
((α − 1) k + β) > 0 for all k, the penalization of all walks is heavier than in the exponential,
which are for instance the cases of E Eα>1,β (G). There is a third case which occurs when
(α − 1) k+β is negative for 0 ≤ k ≤ kc and positive for k > kc, where kc is a given integer.

This is the case, for instance, of the matrix functions where kc < −
(

β

α − 1

)

.

Let us first consider the Estrada index E E1/2,1 (G) = tr
(

exp
(

A2
)

(I + erf (A))
)

. A sim-
ilar index was defined and studied in the paper [89] in the following form:

∞
∑

k=0

Ak

k!! = tr
(

1
2 exp

(

A2

2

) (

2I +
√

2πerf
(

A√
2

)))

, (10.9)

where k!! is the double factorial of k. The goal of defining such index was to account for
less penalization of longer walks, which may play an important role in several applications
(for some examples see [1,89]) . For instance, if we compare the subgraph expansion of
E E1/2,1 (G) with that of E E1,1 (G) (see Eq. (3.12)) we can clearly observe the differences
in the penalization of bigger subgraphs made by both indices. In the case of E E1/2,1 (G) we
have:

E E1/2,1 (G) ≈ F1 +
10

3
F2 + 4F3 +

1674

59
F4 + F5 + 2F6 + 12F7 +

5944

581
F8

+ 1516

97
F9 +

334

37
F10 +

467

194
F11 + 2F12 +

65

54
F13 +

65

54
F14

+ 4F15 +
467

97
F16 + 2F17 +

65

54
F18 +

1336

185
F19 +

467

194
F20 +

65

54
F21,

(10.10)

which points out that triangles are more than 20 times less penalized by this function that
by the exponential, squares are penalized 30 times less, pentagons, hexagons and heptagons
are penalized 93, 120 and 433 times less by E E1/2,1 (G) than by E E1,1 (G). Let us show a
practical example on how these different penalizations influence the Estrada indices of cycle
graphs. In Fig. 13 we illustrate three graphs with 8 nodes but having different length of their
main cycles. In G I there is a triangle and an heptagon, in G I I a square and a hexagon, and in
G I I I two pentagons. The index E E1,1 (G) of the three graphs are: 21.68, 20.64 and 20.38,
respectively. That is, there is a difference of 4.8% between G I and G I I and of 1.25% between
G I I and G I I I . On the other hand, the index E E1/2,1 (G) is 672.24, 540.58 and 507.13 for
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Fig. 13 Examples of three graphs with 8 nodes and chordless cycles of different lengths: G I has a triangle
and an heptagon; G I I has a square and a hexagon; G I I I has two pentagons

G I , G I I and G I I I , respectively, which represent 19.6% of difference between the first pair
and 6.2% between the second one.

Finally, we consider the Mittag–Leffler Estrada indices defined as follow:

MT E E1,β+1 (G) = tr

( ∞
∑

k=0

Ak

Γ (k + β + 1)

)

= tr

( ∞
∑

k=0

Ak

(k + β)!

)

, β = 1, 2, 3, . . . .

(10.11)

These indices were developed and studied in 2010 in the paper [75], as a way to penalize
more heavily the longer walks than in the matrix exponential. The indices E E1,β+1 (G) are
also the trace of the so-called matrix Ψ functions:

MT E E1,β+1 (G) = trΨβ (A) , (10.12)

where

Ψγ (A) := 1

(β − 1)!

∫ 1

0
e(1−t)Ax t−1dt, (10.13)

which obey the following recurrence formula:

Ψβ (A) = AΨβ+1 (A)+ 1

β! I . (10.14)

When the adjacency matrix is not singular we can represent these Estrada indices as follow

MT E E1,2 (G) = tr (Ψ1 (A)) , (10.15)

MT E E1,3 (G) = tr (Ψ2 (A)) , (10.16)

and so forth. Other Mittag–Leffler matrix functions in the context of network theory have
been recently studied in [13].

10.1 Resolvent Estrada index

The context of Mittag–Leffler Estrada indices also allow the consideration of other indices
that were previously proposed in the literature. This is the case of an index proposed in 2010
in [85]. The goal of introducing this index was to change the penalization of the different
powers of the adjacency matrix from k! to (n − 1)k to increase the contribution of walks of
longer lengths. The index proposed in [85] corresponds to the trace of the resolvent of the
adjacency matrix:

RE E (G) = tr

( ∞
∑

k=0

Ak

(n − 1)k

)

= tr

(

(

I − 1

n − 1
A

)−1
)

, (10.17)

123



The many facets of the Estrada indices of graphs and networks 93

which eventually was proposed in [27] to be named as the resolvent Estrada index of the
graph. It can be seen that the resolvent Estrada index is a particular case of Mittag–Leffler
Estrada index:

RE E (G) = MT E E0,1 (G) = tr

( ∞
∑

k=0

(A/n)k

Γ (αk + β)

)

= tr

(

(

I − A

n

)−1
)

. (10.18)

Remark 7 The use of the normalization ck = 1/ (n − 1) in (ck A)k is just one of the many pos-
sibilities that exist. In reality this normalization is not a good one, because the corresponding
Estrada index is very close to the number of nodes of the graph, as can be inferred from the
bounds presented before. Then, other general choices of the type (̺A)k where ̺ < (λ1)

−1

are more appropriate here.

A nice result relating the resolvent Estrada index and the characteristic polynomial of the
adjacency matrix was proved by in [41] and is given below.

Theorem 35 Let G any graph with n nodes and let P (G, x) be the characteristic polynomial

of the adjacency matrix of G, aka its characteristic polynomial. Then,

E E0,1 (G) = (n)
P ′ (G, n)

P (G, n)
, (10.19)

where P ′ (G, n) is the first derivative of P (G, x) evaluated at x = n.

To illustrate the previous result let us consider the three graphs in Fig. 13. Their characteristic
polynomials are, respectively:

P (G I , x) = x8 − 9x6 − 2x5 + 24x4 + 8x3 − 19x2 − 8x, (10.20)

P (G I I , x) = x8 − 9x6 + 22x4 − 16x2 + 1, (10.21)

P (G I I I , x) = x8 − 9x6 + 24x4 − 4x3 − 20x2 + 8x, (10.22)

which give E E0,1 (G I ) = 4023/484,E E0,1 (G I I ) = 2980/359, and E E0,1 (G I I I ) =
2191/264. That is, the difference between the first pair of graphs is only 0.13% and between
the second pair is only 0.02%. This is a direct consequence of penalizing more heavily the
longer walks than in the exponential matrix function.

Some other inequalities have been reported for the resolvent Estrada index in terms of the
number of nodes, edges, maximum degree, etc.

Lemma 20 [41] Let G be a simple graph with n nodes and m edges. Then,

RE E (G) ≥ n2 (n − 1)2

n (n − 1)2 − 2m
, (10.23)

with equality if and only if G ∼= K̄n .

Lemma 21 [114] Let G be a simple noncomplete graph with n > 3 nodes and m edges.

Then,

RE E (G) ≤ n + 4m

(n − 1)2 − 2m
, (10.24)

with equality if and only if G ∼= K̄n .
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Fig. 14 Illustration of a system
formed by three balls of mass M

tied to the ground with springs of
constant K connected by springs
of constant Mω2

Lemma 22 [175] Let G be a simple graph with n nodes, m edges and maximum degree

kmax �= n − 1. Then,

RE E (G) < n

(

1+ kmax

(n − 1) (n − 1− kmax )

)

, (10.25)

RE E (G) < n + 2m

(n − 1) (n − 1− kmax )
. (10.26)

11 Estrada indices and network of oscillators

The study of vibrations on regular graphs, known as lattices, is standard in solid-state physics
(see for instance Chapter 4 in [144]). The techniques of classical as well as of quantum
mechanics are used in the analysis of such vibrational problems. In 2003 this analysis was
extended to consider non-regular networks [146] where the vibrations where analyzed in the
context of a quantum system. Here we investigate the connections existing between some
of the Estrada indices and the network vibrations, used in a metaphorical sense. That is,
although some physical systems represented by non-regular graphs can be analyzed using
the techniques developed here we consider the current approach as an appropriate tool for
giving a physical meaning to the indices involved.

Let us consider a system S consisting of ball of mass M which are connected by springs
with the spring constant Mω2. Let us consider that the ball-spring system is submerged into
a thermal bath at the temperature τ . Then the balls in the complex network oscillate under
thermal disturbances. We will consider that every ball is tied to the ground by a spring which
has spring constant satisfying K ≫ maxv kv (see Fig. 14). This guarantees that the system
can oscillates but do not translate from a fixed position. In this way we can analyze how a
given ball can transmit small oscillations to the rest of the balls of the system.

The general Hamiltonian of this system is written as

H =
∑

v

[

p2
v

2M
+ (K − kv)

Mω2x2
v

2

]

+ Mω2

2

∑

i< j

Avw (xv − xw)2 , (11.1)

where the first term represents the kinetic energy of the corresponding balls and the second
term represents the potential energy of the system, with pv being the momentum and xv the
coordinate of the ball v.

11.1 Quantum oscillators

In this setup we consider that the system obeys the laws of quantum mechanics. Then, the
momenta pw and the coordinates xv are not independent variables but they are operators that
satisfy the commutation relation: [xv, pw] = i�δvw,where i =

√
−1, � is the Dirac constant
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and δvw is Dirac delta. Additionally we will use second quantization to express the creation
and annihilation of oscillations at the given balls of the system. That is, we use the boson
creation and annihilation operators defined by [184]

a†
v =

1√
2�

(

xv

√
MΩ − i√

MΩ
pv

)

, (11.2)

av =
1√
2�

(

xv

√
MΩ + i√

MΩ
pv

)

. (11.3)

With the use of these operators, the Hamiltonian of a network of quantum harmonic
oscillators is given by [84]

Ĥ (S) =
∑

v

�Ω

(

a†
vav +

1

2

)

− �ω2

4Ω

∑

v,w

(

a†
v + av

)

Avw

(

a†
w + aw

)

. (11.4)

where Ω =
√

K/Mω and K is a constant such that K ≫ maxv kv .
Since A is symmetric, we can diagonalize it by means of an orthogonal matrix O as in

Λ = O (K I − A) OT , (11.5)

where Λ is the diagonal matrix with the eigenvalues λμ of (K I − A) on the diagonal. This
generates a new set of boson creation and annihilation operators as

bμ =
∑

v

Oμvav =
∑

v

av

(

OT
)

vμ
, (11.6)

b†
μ =

∑

v

Oμva†
v =

∑

i

a†
v

(

OT
)

vμ
, (11.7)

We can then decouple the Hamiltonian as

Ĥ (S) =
∑

μ

Hμ (S) , (11.8)

with

Hμ (S) ≡ �Ω

(

b†
μbμ +

1

2

)

+ �ω2

4Ω

(

λμ − K
) (

b†
μ + bμ

)2

= �Ω

[

1+ ω2

2Ω2

(

λμ − K
)

](

b†
μbμ +

1

2

)

+ �ω2

4Ω

(

λμ − K
)

[

(

b†
μ

)2 +
(

bμ

)2
]

.

(11.9)

We now introduce an approximation in which each mode of oscillation does not get excited
beyond the first excited state. In other words, we restrict ourselves to the space spanned by
the ground state (the vacuum) |vac〉 and the first excited states b†

μ |vac〉. Then the second term
in the last line of the Hamiltonian (11.9) equals zero and we have

Hμ (S) = �Ω

[

1+ ω2

2Ω2

(

λμ − K
)

](

b†
μbμ +

1

2

)

. (11.10)

Remark 8 This approximation is justified when the energy level spacing �Ω is much greater
than the energy scale of external disturbances, (specifically the temperature fluctuation kB T =
1/τ ), as well as than the energy of the network springs �ω, i.e. τ�Ω >> 1 and Ω >> ω.
This happens when the mass of each oscillator is small, when the springs to the ground,
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MΩ2, are strong, and when the network springs Mω2 are weak. Then an oscillation of tiny
amplitude propagates over the network.

We are going to work in this limit hereafter. The thermal bath represents here an ’external
situation’ which affects all the links in the network at the same time, e.g., economic crisis,
social agitation, extreme physiological conditions, etc. After equilibration, all links in the
network are weighted by the parameter τ = (kB T )−1.

Let us now compute how much an excitation at the node p propagates throughout the
network before coming back to the same node and being annihilated. This information is
obtained through the diagonal thermal Green’s function, which is given in the framework of
quantum mechanics by

Gvv (S, τ ) = 1

Z
〈vac| ave−τ ˆH (S)a†

v |vac〉 , (11.11)

where the partition function is given by

Z (S) =
∏

μ

exp

{

−τ�Ω

2

[

1+ ω2

2Ω2

(

λμ − K
)

]}

. (11.12)

The diagonal thermal Green’s function can then be obtained as [84]

Gvv (S, τ ) = 1

Z

∑

μ,ν

(

OT
)

vμ
〈vac| bμe−τ ˆH (S)b†

ν |vac〉 Oνv

= 1

Z A

∑

μ

⎡

⎣

(

OT
)

vμ

(

OT
)

vμ
〈vac| bμe−τ Hμ b†

μ |vac〉 Oμv

∏

ν( �=μ)

〈vac| e−τ Hν |vac〉

⎤

⎦

=
∑

μ

(

OT
)

vμ

〈vac| bμe−τ Hμ b†
μ |vac〉

〈vac| e−τ Hμ |vac〉
Oμv

=
∑

μ

(

OT
)

vμ
exp

{

−τ�Ω

[

1+ ω2

2Ω2

(

λμ − K
)

]}

Oμv

= e−β�Ω

(

exp

[

τ�ω2

2Ω2
A

])

vv

(11.13)

where we have used the spectral decomposition of A in the last line.

Let us consider � = 1 and K = 1

2
Mω3. Then, [84]

Gvv (S, τ ) = e−τ
√

2ω (exp [τ A])vv = e−τ
√

2ωGvv (G, τ ) . (11.14)

Remark 9 In [84] it is remarked that

E E (G, τ ) =
∑

v

Gvv (G, τ ) = eτ
√

2ω
∑

v

Gvv (S, τ ) , (11.15)

which indicates that the Estrada index represents the sum of the excitations started at every
node of a graph, which propagate throughout the network before coming back to the same
node and being annihilated in a network of quantum harmonic oscillators.
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11.2 Classical oscillators

Here we consider a system S like the one described before but obeying the laws of classical
mechanics. In this case we can write the Hamiltonian of the system by considering only the
potential energy (for justification see [84]):

H = K Mω2

2

∑

v

x2
v −

Mω2

2

∑

v,w

xv Avwxw

= Mω2

2
xT (K I − A) x,

(11.16)

where x = (x1, x2, . . . , xn)T and I is the n × n identity matrix.
We can now diagonalize A as before and by taking a sufficiently large value of the constant

K , we can make all eigenvalues λμ positive. By defining a new set of variables yμ as y = Ox

and x = OT y, we can transform the Hamiltonian in the form

H = Mω2

2
yT Λy = Mω2

2

∑

μ

y2
μ +

Mω2

2

∑

μ

λμy2
μ. (11.17)

Here again we focus of the quantification of those oscillations that start at a given ball of
the system, navigates the whole system and return to the corresponding ball. Namely,

Γvv (S, β) =
〈

x2
v

〉

= 1

Z

∫

x2
v e−τH

∏

w

dxw, (11.18)

where the partition function is given by

Z (S) =
∫

e−τH
∏

v

dxv =
∫

dx exp

(

−τ Mω2

2
xT (K I − A) x

)

, (11.19)

where the integral is n-fold.
Now, because the Jacobian of the orthogonal matrix O is unity we have

∏

i dxi =
∏

μ dyμ.

Therefore, the multi-fold integration in the partition function is decoupled to give

Z (S) =
∏

μ

[∫

exp

(

−τ Mω2

2
λμy2

μ

)

dyμ

]

=
∏

μ

√

2π

τ Mω2λμ

,

(11.20)

which can be written in matrix form as

Z (S) =
(

2π

τ M
ω2
)n/2 1√

det (K I − A)
. (11.21)

Since we have made all the eigenvalues of (K I − A) positive, its determinant is positive.
Similarly, we have

Γvv (S, τ ) = 1

Z

∫

[

∑

σ

(

OT
)

vσ
yσ

]2

e−τH
∏

μ

dyμ. (11.22)
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In the integrand, odd functions with respect to yμ vanish. Therefore, only the terms of
y2
σ survive after integration in the expansion of the square parentheses in the integrand. This

gives

Γvv (S, τ ) = 1

Z

∫

[

∑

σ

(Oσv yσ )2

]

exp

(

−τ Mω2

2

∑

ν

λν y2
ν

)

∏

μ

dyμ

= 1

Z

∑

σ

Oσv

∫

y2
σ exp

(

−τ Mω2

2
λσ y2

σ

)

dyσ

=
∏

μ(�=σ)

(∫

exp

(

−τ Mω2

2
λμy2

μ

)

dyμ

)

.

(11.23)

Comparing this expression with that of the partition function we have [84]

Γvv (S, τ ) =
∑

σ

O2
σv

(

∫

y2
σ e−τ Mω2λσ y2

σ /2dyσ
∫

e−τ Mω2λσ y2
σ /2dyσ

)

=
∑

σ

O2
σv

√

2π

[τ Mω2λσ ]3

√

2π
τ Mω2λσ

=
∑

σ

O2
σv

τ Mω2λσ

= 1

τ Mω2

[

(K I − A)−1]

vv

= 1

τ K Mω2

[

(

I − A

K

)−1
]

vv

.

(11.24)

Remark 10 In [84] it is remarked that if K = n − 1 then we have

RE E (G, τ ) =
∑

v

[

(

I − A

n − 1

)−1
]

vv

= τ (n − 1) Mω2
∑

v

Γvv (S, τ ) , (11.25)

which indicates that the resolvent Estrada index represents the sum of the excitations started
at every node of a graph, which propagate throughout the network before coming back to the
same node in a network of classical harmonic oscillators.

12 Estrada indices and epidemics on networks

In continuation with the previous line of research in which the Estrada index is derived from
a given dynamical systems context we analyze here its connection with epidemiological
models on networks. The field of mathematical epidemiology has a long tradition in applied
mathematics (see for instance [7,34,169]. In 2001, the authors of the seminal work [179]
discovered the tremendous influence of network topology on epidemic spreadings. Since then,
the use of network-theoretic approaches together with epidemiological models have become
a necessary combination [143,149]. Here we will show that such networked epidemiological
models have a clear connection with the Estrada index of a graph.

For that we will briefly introduce the Susceptible/Infected (SI) model on networks. The
reader should be aware that this is a generalist model that can be used in many different
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scenarios, not only on the analysis of diseases propagating on a network. Let G be a graphs
whose nodes can be in either of two states: either susceptible or infected one. An infected
node can transmit the infection to any other node in the graph to which it interacts with. Then,
if ζ is the rate at which such infection is transmitted between nodes, and if sv (t) and xv (t)

are the probabilities that the node v is susceptible or get perturbed at time t , respectively, we
can write the dynamics [170]:

dxv (t)

dt
= ζ (1− xv (t))

∑

w∈N

Avwxw (t) , t ≥ t0, (12.1)

where Avw are the entries of the adjacency matrix of the graph for the pair of nodes v and
w, and N is the set of nearest neighbors of v. In matrix-vector form becomes [170]:

dx (t)

dt
= ζ

[

IN − diag (x (t))
]

Ax (t) , (12.2)

with initial condition x (0) = x0.

The SI model can be rewritten as

1

1− xv(t)

dxv (t)

dt
= ζ

∑

w∈N

Avw

(

1− e−(− log(1−xw(t)))
)

, (12.3)

which is equivalent to

dyv (t)

dt
= ζ

∑

w∈N

Avw f (yw (t)) , (12.4)

where yv (t) := g (xv (t)) = − log (1− xv (t)) ∈ [0,∞], f (y) := 1− e−y = g−1 (y).
Lee et al. [155] have considered the following linearized version of the previous nonlinear

equation

d ŷ (t)

dt
= ζ Adiag (1− x (t0)) ŷ (t)+ ζb (x (t0)) , (12.5)

where x̂ (t) = f
(

ŷ (t)
)

in which x̂ (t) is the approximate solution to the SI model, ŷ (t0) =
g (x (t0)) and b (x) := x + (1− x) log (1− x) . They have found that the solution to this
linearized model is [155]:

ŷ (t) = eζ (t−t0)Adiag(1−x(t0))g (x (t0))

+
∞
∑

k=0

(ζ (t − t0))
k+1

(k + 1)!
[

Adiag (1− x (t0))
]k

Ab (x (t0)) .
(12.6)

When t0 = 0, xi (0) = c/N , i = 1, 2, . . . , N for some c, the previous equation is transformed
to

ŷ (t) = (1/γ − 1) eγ ζ t A1− (1/γ − 1+ log (γ )) 1, (12.7)

where γ = 1−c/N and 1 is the all-ones vector. In [155] the authors proved that this solution
is an upper bound to the exact solution of the SI model.

Therefore, if we take the sum of the entries of ŷ (t) at a given t we have

n
∑

v=1

ŷv (t) = C1

[

tr
(

eγ ζ t A
)

+ tr
(

(J − I )
(

eγ ζ t A
))]

− nC2, (12.8)
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where C1 = (1/γ − 1) and C2 = (1/γ − 1+ log (γ )) . Obviously the first term in the
square bracket is the Estrada index of the graph in which edges are weighted by γ ζ t . This
term represents the circulability of the infection around the nodes of the graph, while the
term tr

(

(J − I )
(

eγ ζ t A
))

, where J is the all-ones matrix, accounts for the transmissibility of
the disease between the nodes.

12.1 Fractional SI model on networks

In recent years there have been an explosion of works in which the classical derivatives used
in the epidemiological models have been substituted by fractional ones [8,11,12,133,192].
There have been several reasons for adopting fractional epidemiological models. They include
for instance

1. the fact that the fractional parameter can be tuned to adjust the output of the model to real
data [8] and so they can be more accurate that models using standard derivatives;

2. the fact that a fractional differential operators may be derived from epidemiological models
whenever the recovery time from the disease is power-law distributed [11];

3. the fact that fractional derivatives capture the history of the variable, that is, they have
memory, and the effect of recent memory is more important than the effect of older
memory [12,192].

In general, fractional derivatives are nowadays widely used to model biological processes
[136] to incorporate different aspects of the dynamics in such systems. Here, we will describe
a model which naturally gives rise to the Mittag–Leffler Estrada index in the context of
epidemiological models.

We proceed by considering fractional time-derivatives in the modified SI model proposed
in [155]. That is, in [1] the authors considered the following linearized fractional SI equation

Dα
t ŷ (t) = ζα Adiag (1− x0) ŷ (t)+ ζα Ab (x (0)) , (12.9)

where x̂ (t) = f
(

ŷ (t)
)

in which x̂ (t) is an approximate solution to the fractional SI
model, ŷ is the solution of (12.9) with initial condition ŷ (0) = g (x (0)) and b (x) :=
x + (1− x) log (1− x) . Here Dα

t f (t) is the fractional time derivative in the Caputo formu-
lation [37], which was previously given in Eq. (10.3).

For convenience, we write Ω := diag (1− x0) , and Â = AΩ. It was then proved that
this solution is an upper bound to the exact fractional SI model.

Let us fix the following notation. Let x and y be two vectors of the same length n. Then,
we say that x � y is xi ≤ yi for all i = 1, . . . n. Let x̃(t) be the solution of the linearized
fractional models of the form: Dα

t x̃(t) = ζ Ax̃(t), which is exponential unstable.

Theorem 36 [1] For any t ≥ 0, we have

x(t) � x̂(t) = f (ŷ(t)) � x̃(t),

under the same initial conditions x0 := x(0) = x̂(0) = x̃(0), where the solution ŷ of (12.9)
is given by

ŷ (t) = Eα,1

(

(ζ t)α Â
)

g (x0)+
∞
∑

n=0

(ζ t)α(n+1) Ân Ab (x0)

Γ (α (n + 1)+ 1)
. (12.10)

Furthermore, ‖x̂(t)− x(t)‖ → 0 and ‖x̃(t)− x(t)‖ → ∞ as t goes to infinity.
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Corollary 5 [1] Let x0 � 1, x0 = c
N

where c ∈ R+, let γ = 1− x0. Then

ŷ (t) =
(

1− γ

γ

)

Eα,1

(

tαζαγ A
)

1−
(

1− γ

γ
+ log γ

)

1, (12.11)

where Eα,1

(

.
)

is the Mittag–Leffler matrix function of the corresponding matrix.

Therefore, here again if we take the sum of the entries of ŷ (t) at a given t we have

n
∑

v=1

ŷv (t) = C1

[

tr
(

Eα,1

(

tαζαγ A
))

+ tr
(

(J − I )
(

Eα,1

(

tαζαγ A
)))]

− nC2,

(12.12)

Thus, again the Mittag–Leffler Estrada index, which is the first term in the squared bracket,
represents the circulability of the infection around the nodes of the graph in the fractional
SI model, while the second term represents the transmissibility of the disease between the
nodes.

13 Estrada indices from piecewise walk penalization

In the same work [75] in which the author proposed the use of the matrix Ψ functions as a
way to increase the penalization of longer walks in graphs, a different strategy was proposed
to drop such penalization relative to the exponential matrix function. This strategy can be
formulated as a piecewise penalization as follows. Suppose that we do not want to penalize
the walks of lengths smaller than certain value t ∈ Z. Then, we define the following stepwise
function:

ft (k) =
{

1 if k < t,

k! if k ≥ t,
(13.1)

such that the piecewise Estrada index of the graph G is defined as:

E Et (G) = tr

( ∞
∑

k=0

Ak

ft (k)

)

= tr

(

t−1
∑

k=0

Ak +
∞
∑

k=t

Ak

k!

)

. (13.2)

In the case that the adjacency matrix has no unity eigenvalue we can write this Estrada
index as [75]:

E Et (G) = tr
[

(I − A)−1
(

I − At
(

I + eA − AeA
))]

. (13.3)

For computational purposes this expression can be adapted for any network as follows.
Let r be a constant sufficiently close to one, such that r �= 1/λ for all λ, which are the
eigenvalues of A. Then,

E Et (G) ≈ tr
[

(I − r A)−1
(

I − (r A)t
(

I + er A − r Aer A
))]

. (13.4)

14 Nonlocal adjacency, Harary Estrada index and beyond

There are physical situations in which the entities of a system not only interact if they are
nearest neighbors, but also through nonlocal interactions. These long-range interactions have
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been documented in physical, chemical and biological systems [3,39,148,164,177,194,195,
235,240]. In a physical context, like the tight-binding kind of models described before, these
nonlocal interactions corresponds to the case where the Hamiltonian of the system describes
not only NN interactions but also next-nearest-neighbor (NNN) and other interactions beyond
them [31,168,174,193]:

Ĥ = ĤN N + ĤN N N + · · · . (14.1)

In this framework we have that the system can be described by the weighted sum of
higher-order adjacency matrices:

Ĥ = α I + tN N A + tN N N A2 + · · · , (14.2)

where A2 is a matrix with entries (A2)i j equal to one if i and j are not adjacent and are
separated by two edges or zero otherwise. We can extend this concept to any other separation,
such that [77]

(Ad)i j =
{

1 if di j = d,

0 otherwise,
(14.3)

where di j is the length of the shortest path between the two nodes. The parameters tN N ,
tN N N , etc. are expected to decay with the length of the separation between the corresponding
entities. That is, the strength of the interaction decays with a given law of their separation d ,
i.e., f (d). In this way we can write [72,218]

Ĥ = α I + tN N A + tN N N A2 + · · · = α I +
diam
∑

d=1

f (d) Ad , (14.4)

where diam is the diameter of the graph. Let us see how we can construct Ĥ.
Here we will use a min-plus algebra to define what otherwise is the shortest path distance

matrix of the graph. We do that because it is a mathematically elegant approach, which may
also open some possibilities for studying other kinds of functions for graphs.

Let (R ∪ {+∞} ,⊕,⊗) be the min tropical semiring with the operations [32,131,139]:

x ⊕ y := min {x, y} ,
x ⊗ y := x + y.

(14.5)

The identity element for ⊕ is +∞ and that for ⊗ is 0. Then, we can define the tropical
adjacency matrix power as

A⊗k+1 = A⊗k ⊗ A, (14.6)

where A⊗0 = Î , which is the tropical identity matrix, i.e., a matrix with zeros in the main
diagonal and ∞ outside it.

Let us fix any α with 0 < α ≤ ∞ and let us define the matrix M =
[

mi j

]

: mi j ∈ (−α, α)

for all i, j = 1, . . . , n. Let f̃ be a real function on the open interval (−α, α) . We define the
pseudo-entrywise (pseudo-Hadamard) matrix function f̃ (M) as

(

f̃ (M)
)

i j
:=

{

f
(

mi j

)

if mi j �= 0
0 if mi j = 0

. (14.7)

Here, the function f could be an exponential, a trigonometric function or simply the
power function. Let us hereafter focus only on the negative power function, such that (−s)
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represents the entrywise power. We can now write:

Ĥ = As =
( ∞
⊕

k=0

A⊗k

)(−s)

. (14.8)

The tropical sum is carried out up to infinity as it converges in all cases where there are no
negative cycles in the graph. A negative cycle is a cycle where the product of the weights
of all its edges is negative. Typically, except for signed graphs, we consider positive edge
weights, which always avoid such negative cycles. The infinite sum

⊕∞
k=0 A⊗k is known as

the Kleene star operator of A [32,131,139]. Obviously, As =
[

Ai j (s)
]

, where [72,218]

Ai j (s) :=
{

d−s
i j if i �= j,

0 if i = j,
(14.9)

which are the entry-wise powers of all nondiagonal entries of the shortest path distance matrix
of the graph. The parameter s accounts for the strength of the nonlocal interaction. Notice
that

lim
s→0

As = A (Kn) .

Here again, in the statistical physics context, the partition function of the system containing
nonlocal interactions is:

Z = tr
(

e−τĤ
)

, (14.10)

where τ is the inverse temperature as before. Because the parameters tN N , tN N N , etc., are
negative we have that

Z = tr
(

eτAs
)

=: E E (As, β) , (14.11)

Then, using the same definitions as the ones given before we can define the entropy, enthalpy
and free energy of the system having local and nonlocal interactions.

It is important to notice that

As = A +
diam
∑

d=2

d−s Ad , (14.12)

which implies that

lim
s→∞

As = A (G) . (14.13)

Let Ãs :=
∑diam

d=2 d−s Ad . Then, because A and Ãs do not commute in general, we have
according to the Golden-Thompson inequality that

E E (As, τ ) = tr

(

e
τ
(

A+Ãs

))

≤ tr
(

eτ AeτÃs

)

. (14.14)

When s = 1, the corresponding matrix As=1 is known in mathematical chemistry as the
Harary matrix [137,167,181] in honor to mathematician Frank Harary (1921–2005).8

Nowadays there are not many results about the HEE index. Hereafter we collect some of
the existing ones for simple graphs [109], H E E (G) = E E (As=1, τ = 1) .

8 A biography of Frank Harary can be found at: https://mathshistory.st-andrews.ac.uk/Biographies/Harary/.
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Theorem 37 [109] Let G be a simple graph with n vertices and m edges. Then, the Harary

Estrada index of G is bounded as
√

n2 + 2

(

3m

2
+ n (n − 1)

4

)

≤ H E E (G) ≤ n − 1+ exp

(
√

3m

2
+ n (n − 1)

4

)

(14.15)

with equalities attained if and only if G ∼= K̄1.

Theorem 38 [138] Let G be a simple graph with n ≥ 2 vertices and let κ = 1
2 tr

(

A2
s=1

)

.

Then, the Harary Estrada index is bounded as

H E E (G) ≥ exp

(
√

2κ

n (n − 1)

)

+ (n − 1) exp

(

−
√

2κ

n (n − 1)

)

. (14.16)

14.1 Numerical analysis

In Fig. 15 we illustrate the histograms of the relative deviations of the lower bounds given
in Theorem 37 and in Theorem 38 as well as of the upper bound given in Theorem 37. We
consider all connected graphs with 8 nodes.

For both lower bounds, the values obtained with these bounds are about 20–40 times
smaller than the actual values. The mean relative deviations are, respectively 93.16 ± 2.19
and 96.591±1.52. The upper bound is as average 1019 times bigger than the actual H E E (G)

indices for these small graphs, which is an extremely poor performance of this bound.
In Table 10 we give the values of the bounds previously considered for the five real-world

networks analyzed here as well as the actual values of H E E (G). As can be seen both lower
and upper bounds are extremely far from the actual values of the Harary Estrada indices of
these real-world networks. In particular, the upper bound is extremely higher than the actual
values.

15 Laplacian Estrada index and backward diffusion

In the study of graph properties, the function K (G) =
(

e−t L
)

, where L is the graph
Laplacian, has found many applications [22,45,150,236]. The name “Laplacian” honors

(a) (b) (c)

Fig. 15 Histogram of the relative deviations for the lower bounds Theorems 37 and 38 (in %) as well as of
the upper bound Theorem 37 (as logarithm) for all 11,117 connected graphs with 8 nodes
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Table 10 Values of the lower bounds Theorems 37 and 38 as well as the upper bound Theorem 37 for the
Harary Estrada index of the five real-world networks analyzed in this paper. The actual values of H E E (G) of
these networks are also given. We have used “very precise arithmetic” (vpa) in Matlab for these calculations

Network Theorem 37 Theorem 38 H E E (G) Theorem 37

Stony 165.738 84.257 3.714× 1024 1.366× 101891

Neurons 403.037 228.631 1.320× 1052 1.163× 109767

Yeast 3148.113 2080.379 6.879× 10242 2.908× 1054,1231

Internet 4265.314 2751.873 1.062× 10390 1.328× 10989,990

Powergrid 6988.691 4912.604 1.927× 10138 1.462× 102,654,419

mathematician Pierre–Simon Laplace (1749–1827).9 The function K (G) is known as
the heat kernel of the graph [125,191] and appears naturally in the solution u (t) =
exp (−tD L) u0 of the diffusion equation on graphs:

du (t)

dt
= −D Lu (t) , u (0) = u0, (15.1)

where D is the diffusivity (see Sect. 16). Therefore, the trace of the heat kernel would
correspond to a sort of diffusion Estrada index. However, in [92] the following index was
proposed and named “the Laplacian Estrada index” of the graph

L E E (G) = tr
(

eL
)

=
n
∑

j=1

eμ j , (15.2)

where μ j are the corresponding eigenvalues of L . Therefore, what the authors of [92] have
proposed can be though as an index related to the solution of the backward diffusion equation,
i.e., negative time, or as a diffusion equation with negative diffusivity D < 0 [65]. There
are physical situations in which such negative diffusivity appears [48,140,173,225,226]. For
instance, in the simultaneous diffusion of boron and point defect in silicon, the diffusivities
of interstitial could be negative [225]. That is, the diffusion process of interstitial or vacancy
could be a backward diffusion in silicon. In other scenarios, a backward diffusive model is
used to detect the potential location of sources in spreading processes.

In [92] the authors proved the following result.

Proposition 2 Let G be a simple graph with n nodes and m edges. Let Z =
∑

i k2
i be the

first Zagreb index of G. Then,

√

n (n − 1) e4m/n + n + 8m + 2Z ≤ L E E (G) ≤ n − 1+ e2m + m − 2m2 + 1

2
Z ,

(15.3)

with equality if and only if G ∼= K̄n .

Further, in [249] the authors proved the following results.

Proposition 3 Let G be a simple graph with n nodes and m edges. Let Z =
∑

i k2
i be the

first Zagreb index of G. Then,

L E E (G) ≤ n − 1+ 2m −
√

Z + 2m + exp
(√

Z + 2m
)

, (15.4)

9 A biography of Pierre–Simon Laplace can be found at: https://mathshistory.st-andrews.ac.uk/Biographies/
Laplace/.
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with equality if and only if G ∼= K2 ∪ K̄n−2 or G ∼= K̄n .

Proposition 4 Let G be a simple graph with n nodes and m edges. Then,

L E E (G) ≥ 2+
√

n (n − 1) e4m + 4− 3n − 4m, (15.5)

with equality if and only if G ∼= K̄n .

Other bounds were obtained in [248] on the basis of the degree sequence of a graph.

Proposition 5 Let G be a simple graph with n nodes and m edges. Let kmax , k2, . . . , kmin be

the nonincreasing ordering of the node degrees of G. Then,

L E E (G) ≥ ekmax+1 +
n−1
∑

i=2

eki + ekmin−1, (15.6)

with equality if and only if G ∼= Sn .

Proposition 6 Let G be a simple graph with n nodes and m edges. Let kmax , k2, . . . , kmin be

the nonincreasing ordering of the node degrees of G. Then,

L E E (G) ≥ n +
∑ ki

ki + 1

(

eki+1 − 1
)

, (15.7)

with equality if and only if G is a vertex disjoint union of complete subgraphs.

Several bounds have been proposed on the basis of the maximum and minimum degrees
of a graph. We resume some of them here.

Theorem 39 [160] Let G be a simple graph with n nodes and m edges. Let kmax and kmin

be the maximum and minimum node degrees of G. Then,

L E E (G) ≥ ekmax+1−2m/n + (n − 2)
(

e4m/n−kmax−1
)1/(n−2)

+ e−2m/n, (15.8)

with equality if and only if G ∼= Kn or G ∼= Sn .

Theorem 40 [40] Let G be a simple graph with n nodes and m edges. Let kmax and kmin be

the maximum and minimum node degrees of G. Then,

L E E (G) ≥ 1+ ekmax+1 + ekmin + (n − 3) e(2m−kmax−kmin−1)/(n−3), (15.9)

with equality if and only if G ∼= 2K1 ∨ Kn−2 or G ∼= K1,n−1 or G ∼= K(n−1)/2 ∪ K(n−1)/2

(n is odd).

Theorem 41 [161] Let G be a simple graph with n nodes and m edges. Let kmax and kmin

be the maximum and minimum node degrees of G. Then,

√

n2 + 4m ≤ L E E (G) ≤ n − 1+ exp
(

√

2m (kmax + kmin + 1− 2m/n)− nkminkmax

)

,

(15.10)

with equality if and only if G ∼= K̄n .

The following is an upper bound found in [163].
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Theorem 42 Let G be a simple graph with n nodes and m edges. Then,

L E E (G) ≤
⌊

2m

n

⌋

en + n −
⌊

2m

n

⌋

− 1+ exp

(
√

2m − n

⌊

2m

n

⌋

)

, (15.11)

with equality if and only if G ∼= Kn or G ∼= Kn − e.

Finally, we present the estimation made in [100] for the Laplacian Estrada index of Erdős–
Rényi random graphs.

Theorem 43 Let Gn,p be an Erdős–Rényi random graph with n nodes and probability p.

Then, the Laplacian Estrada index is given by

L E E
(

Gn,p

)

= enp
(

(n − 1) eo(1)n + o (1)
)

, a.s. (15.12)

In [132] the authors find estimations for the Laplacian Estrada index of random multipartite
graphs.

Remark 11 Other bounds and estimations have been reported for the Laplacian Estrada index
of specific graphs, or based on other graph parameters not considered here. Some non-
exhaustive examples are: [20,58,60,61,117,135,145,162,207,242,243,251].

Remark 12 The normalized Laplacian Estrada index defined as

N L E E (G) = tr
(

eK−1/2 L K−1/2
)

, (15.13)

where K is the diagonal matrix of node degree has been studied in [47,123,158,203,207].

Remark 13 The signless Laplacian Estrada index defined as

SL E E (G) = tr
(

eK+A
)

, (15.14)

has been also studied in [16,117,227].

15.1 Numerical analysis

In Fig. 16 we illustrate the histograms of the relative deviations (in %) of the lower bounds
(Proposition 2), (Proposition 4) (Proposition 5), (Proposition 6), (Theorem 40) and (Theorem
41) for all connected graphs with 8 nodes. The best performance is obtained from the bound
(Proposition 6) followed by (Proposition 5).

We also analyzed the upper bounds given in Proposition 2, Proposition 3, Theorem 41 and
Theorem 42 for the same set of graphs. In these cases the best performances were obtained
for Theorem 41 and Theorem 42, while 2 give very high upper bounds (Fig. 17).

In Table 11 we give the lower bounds for the Laplacian Estrada index of five real-world
networks. In general, the bounds (Proposition 5), (Proposition 6) and (Theorem 40) perform
very well, while (Proposition 2), (Proposition 4) and (Proposition 41) are several orders of
magnitude below the actual values of the Laplacian Estrada indices of these networks.

The case of the upper bound is much more contrasting with values several orders of
magnitude over the actual values of the Laplacian Estrada indices of these five networks.
We have used variable-precision floating-point arithmetic” (VPA) to evaluate each element
of the symbolic input in Matlab for these calculations. It is used to evaluate symbolic inputs
with variable-precision floating-point arithmetic, calculating values to 32 significant digits.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 16 Relative deviations (in %) of the lower bounds (Proposition 2), (Proposition 4) (Proposition 5),
(Proposition 6), (Theorem 40) and (Theorem 41) for all connected graphs with 8 nodes

Table 11 Values of the lower bounds (Proposition 2), (Proposition 4) (Proposition 5), (Proposition 6), (Theo-
rem 40) and (Theorem 41) for the five real-world networks analyzed and well their actual values of L E E (G)

Bound Stony Neurons Yeast Internet Powergrid

Real 2.137× 1022 9.561× 1033 6.848× 1028 4.718× 10256 7.740× 108

Proposition 2 3.049× 108 3.688× 108 1.033× 106 9.218× 104 7.128× 104

Proposition 4 3.049× 108 3.688× 108 1.033× 106 9.218× 104 7.128× 104

Proposition 5 9.498× 1019 7.636× 1033 2.717× 1028 4.656× 10256 5.593× 108

Proposition 6 9.295× 1019 7.771× 1033 4.405× 1028 4.648× 10256 6.512× 108

Theorem 39 3.473× 1013 3.682× 1027 3.648× 1025 1.523× 10255 3.363× 107

Theorem 40 9.496× 1019 7.498× 1033 1.649× 1028 4.656× 10256 4.852× 108

Theorem 41 125.95 293.75 2.230× 103 3.018× 103 4.944× 103

Table 12 Values of the upper bounds given in Propositions 2, 3, Theorem 41 and Theorem 42 for all connected
graphs with 8 nodes for the five real-world networks analyzed and well their actual values of L E E (G)

Bound Stony Neurons Yeast Internet Powergrid

Real 2.137× 1022 9.561× 1033 6.848× 1028 4.718× 10256 7.740× 108

2 4.482× 10720 5.321× 101713 3.927× 105931 2.784× 104478 2.989× 105727

3 1.999× 1087 1.653× 10132 1.006× 10210 2.063× 10425 1.192× 10110

41 3.323× 1095 2.170× 10210 7.351× 10356 3.852× 10899 1.006× 10167

42 6.125× 1049 5.605× 10122 4.457× 10966 7.499× 101309 2.989× 102146
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(a) (b)

(c) (d)

Fig. 17 Relative deviation (in logarithmic scale) of the upper bounds given in Propositiosns 2, 3, Theorems
41 and 42 for all connected graphs with 8 nodes

The results are given in Table 12.
The following bounds based on the largest Laplacian eigenvalue μ1 perform very well

for the four real-world networks analyzed as can be seen in Table 13. The reason is that the
largest eigenvalue of the Laplacian matrix dominates the spectrum of this matrix, i.e., it is
very large and separated from the second largest eigenvalue.

16 Radius of gyration and distance Estrada index

When presenting the diffusion equation on graphs, Eq. (15.1), we mentioned in passing
the diffusion coefficient D , which appears in the equation and in its solution. The diffusion
coefficient is related to the radius r of the spherical particle diffusing on a medium of viscosity
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Table 13 Values of lower and
upper bounds based on μ1for
L E E (G) of the five real-world
networks analyzed based on the
spectral radius of the Laplacian
matrix

Network exp (μ1) Real n exp (μ1)

Stony 2.1362× 1022 2.1370× 1022 2.3925× 1024

Neurons 9.121× 1033 9.561× 1033 2.554× 1036

Yeast 3.112× 1028 6.848× 1028 6.922× 1031

Internet 4.717× 10256 4.718× 10256 1.422× 10260

Powergrid 5.414× 108 7.740× 108 2.375× 1012

η by the Stokes-Einstein equation [66]:

D = 1

6τπηr
, (16.1)

where τ is the inverse temperature. In the case of small molecules like drugs, or macro-
molecular systems like proteins, the particles cannot longer be considered spherical. In these
cases it is customary to replace the radius of the spherical particle by the radius of gyration
of the corresponding molecule [94,107,126,152,171]. The radius of gyration is defined as
follows. Let S = (p1, . . . , pn) be a system formed by n particles or points pi , which are
located in a given region of the three-dimensional Euclidean space. Let ri j be the Euclidean
distance between the particles pi and p j . Then, the radius of gyration of S is defined as

R2
S
= 1

2n2

∑

i, j r2
i j [94]. However, it has been shown that even when the radius of gyration

based on Euclidean distances is used, there are cases of undesired degeneration of the index
for pairs of clusters [74]. That is, there are pairs of nonisomorphic clusters which have the
same radius of gyration. Some examples in 2- and in 3-dimensions are given in Fig. 18.

Fig. 18 Examples of Euclidean objects in 2- (a, b) and 3-dimensions (c, d), which have the same radius of
gyration: (a, b) R2

S
= 1

4 , (c, d) R2
S
= 3

16 . Every edge has length equal to one in each of the objects
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Fig. 19 Example of four nonisomorphic graphs with the same value of R2
G

The radius of gyration is widely used in organic chemistry, polymer sciences, proteins,
and RNA, in general, for the study of their compactness. Most of these molecular systems
can be represented as graphs. For instance, molecules are typically represented by molecular
graphs [217], proteins can be represented by “protein residue networks” [76,212], and the
secondary structure of RNA is also represented by graphs [147]. Then, it is important to
extend the concept of “radius of gyration” to graphs.

Definition 22 Let G be a simple graph. Let di j be the shortest path distance between the
nodes i and j . The graph radius of gyration is defined as

R2
G = 1

2n2

∑

i, j

d2
i j . (16.2)

Let D be the shortest path distance matrix of G. Then, it is straightforward to realize that

tr
(

D2) = 2
∑

i, j

d2
i j = 4n2 R2

G . (16.3)

Then, if σ1 ≥ σ2 ≥ · · · ≥ σn are the eigenvalues of D, the graph radius of gyration is the
second spectral moment of D, i.e.,

R2
G = 1

4n2

n
∑

j=1

σ 2
j . (16.4)

Therefore, we can say that the second moment of the shortest path distance matrix is a
measure of the packing of the graph. In the case of the graph we can have a similar degeneracy
of the index R2

G for nonisomorphic graphs. For instance in Fig. 19 we give an example of

four nonisomorphic graphs with the same value of R2
G = 9

50 .

In order to ameliorate this degeneracy problem we can think on extending the packing
measure to higher moments of D as

P (G) = c2tr
(

D2)+ c3tr
(

D3)+ · · · . (16.5)
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Let us include the term c0tr
(

D0
)

+ c1tr
(

D1
)

(the first is the weighted number of vertices

and the second is zero in simple graphs) and let us consider ck = (k!)−1. Then, we get the
following index, first defined in [108].

Definition 23 Let G be a simple graph. Let D be the shortest path distance matrix of G with
eigenvalues σ1 ≥ σ2 ≥ · · · ≥ σn . Then the distance Estrada index of the graph is

DE E (G) = tr (exp (D)) =
n
∑

j=1

eσ j , (16.6)

which is an index of the packing of the graph.

For instance, for the graphs in Fig. 19 we obtain the following values: DE E (a) ≈ 318.467,
DE E (b) ≈ 300.616, DE E (c) ≈ 284.917, and DE E (d) ≈ 281.697. This means that
among the graphs in Fig. 19, (d) is the most “packed” one in terms of its shortest path
distance and the one in (a) is the least packed.

Several bound have been obtained for the distance Estrada index, some of which are
resumed below.

Theorem 44 [108] Let G be a simple graph with n nodes and m edges. Then, if the diameter

is dmax , the distance Estrada index is bounded as
√

n2 + 4m ≤ DE E (G) ≤ (n − 1) exp
(

dmax

√

n (n − 1)
)

, (16.7)

where equalities are attained if and only if G ∼= K1.

Theorem 45 [202] Let G be a simple graph with n nodes and m edges. Then, if dmax ,

G =
(
∏

i Di

)1/n
and W =

∑

i j di j stand for the diameter, the geometric mean of the graph

distances and the Wiener index of G, the distance Estrada index is bounded as
⎛

⎝

√

4W 2 − nG2

n (n − 1)

⎞

⎠+ n − 1

exp

⎛

⎝

1

n − 1

√

4W 2 − nG2

n (n − 1)

⎞

⎠

≤ DE E (G) ≤ (n − 1)+ e
√

2dmax W ,

(16.8)

where upper bound is attained if and only if G ∼= K1 and the lower one if and only if G ∼= Kn .

Theorem 46 [204] Let G be a simple graph with n nodes with maximum and second maximum

degress kmax and kmax2 and diameter dmax . Then, the distance Estrada index is bounded as

DE E (G) ≥ e

√

(2n−2−kmax )
(

2n−2−kmax2

)

+ (n − 1) e

−

√

√

√

√

(

2−
kmax

n − 1

)(

2−
kmax2

n − 2

)

, (16.9)

DE E (G) < (n − 1)+ e
√

n(n−1)d2
max−1, (16.10)

where equality is attained if and only if G ∼= K2.

Theorem 47 [204] Let G be a simple graph with n nodes and m edges, the distance Estrada

index is bounded as

DE E (G) ≥ e2(n−1)−2m/n + e−(2(n−1)−2m/n) + n − 2 (16.11)

where equality is attained if and only if G ∼= K2.
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16.1 Random graphs

The distance Estrada index has been studied for random graphs where some bounds have
been reported in [205,209].

Theorem 48 Let Gn,p be an Erdős–Rényi random graph with n nodes and probability p.

Then, the distance Estrada index is bounded as

(1+ o (1))+ e2(n−1)−np−O(
√

n) ≤ DE E
(

Gn,p

)

≤ (1+ o (1))+ e(n−1)
√

4−3p,

(16.12)

almost surely (a.s).

Theorem 49 Let Gn1,n2,p be an Erdős–Rényi random bipartite graph with n = n1+n2 nodes

and probability p. If n1 = Θ (n2) , then the distance Estrada index is bounded as

(1+ o (1))+ e5n2−2np−O(
√

n) ≤ DE E
(

Gn,p

)

≤ (1+ o (1))+ e5n1+2n1 p−O(
√

n),

(16.13)

asymptotically almost surely (a.a.s.) which, when n1 = n2 becomes

(1+ o (1))+ en(5/2−p)−O(
√

n) ≤ DE E
(

Gn,p

)

≤ (1+ o (1))+ en(5/2+p)−O(
√

n), a.a.s.

(16.14)

16.2 Numerical analysis

We analyze here the lower bounds in Theorems 44, 45, 46 and 47. The relative deviations (in
%) are illustrated in Fig. 20. As can be seen the closest values are obtained by the bound given
in Theorem 45. The distributions of the relative deviations for Theorems 46 and 47 appears
to show some dependencies with the structure of the graphs, which produce the multi-peak
structures observed in the histograms.

We also considered the upper bounds given in Theorems 44, 45 and 46 were we observe
that these bounds are several order of magnitude over the actual values of DE E (G) even
for small graphs like the ones studied here (Fig. 21).

In Table 14 we give the values of the lower and upper bounds as well as the actual values
calculated with very precise arithmetic (vpa) in Matlab for the five real-world networks
studied. As can be seen in the Table 14 the bound given in Theorem 45 gives the best lower
and upper estimates of the distance Estrada index. It is also interesting to remark that the
network of the western USA power grid displays an extremely large value of DE E (G),
indicating that it is a very poorly packed network. Indeed, this network is planar as the power
stations are embedded in the landscape of the western USA

The results obtained for Erdős–Rényi random graphs Gn,p with 1000 ≤ n ≤ 4000 and
p = 0.5 are illustrated in Table 15, showing good agreement between the actual values and
those predicted by Theorem 48. The values were computed in [209] using variable-precision
floating-point arithmetic (VPA) in Matlab.

17 Conclusions

We presented an account of the many different facets of the Estrada indices of graphs.
Starting from the “classical” Estrada index we give several interpretations of the index based
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(a) (b)

(c) (d)

Fig. 20 Relative deviations of the lower bounds in Theorems 44, 45, 46 and 47 for all connected graphs with
8 nodes

(a) (b) (c)

Fig. 21 Relative deviations (in logarithmic scale) of the upper bounds given in Theorems 44, 45 and 46 for
all connected graphs with 8 nodes
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Table 15 Actual values for Erdős–Rényi random graphs Gn,p as well as the lower and upper bounds found
in [209]

n Lower bound Actual value Upper bound

1000 (1+ o (1)) e1498−O(31.62) e1531.29 (1+ o (1)) e1579.56

2000 (1+ o (1)) e2998−O(44.72) e3022.48 (1+ o (1)) e3160.70

3000 (1+ o (1)) e4498−O(54.77) e4513.71 (1+ o (1)) e4741.84

4000 (1+ o (1)) e5998−O(63.25) e6005.90 (1+ o (1)) e6322.97

on (i) combinatorics of subgraphs, (ii) statistical mechanics, (iii) marginal probability in a
quantum system, (iv) oscillations models on networks, and (v) epidemiological models on
networks. Then we move forward to the analysis of other kinds of Estrada indices. First
we contextualize these indices originally introduced in an ad hoc way in the mathematical
literature. For instance, the Seidel Estrada index is placed in the context of signed graphs,
the theory of balance and the concept of network bipartivity. The resolvent Estrada index is
analyzed as a case of Mittag–Leffler Estrada indices which appear in the context of fractional
epidemiological models on graphs. The Harary Estrada index is understood as a particular
case of nonlocal operator on graphs. The Laplacian Estrada index is now pondered on the
basis of the diffusion equation with negative diffusivity or a backward diffusive process.
Finally, the distance Estrada index is considered in the context of the radius of gyration of a
graph, which can be connected to the diffusion coefficient of graphs via the Stokes-Einstein
equation. In all cases we have provided numerical analysis of several of the bounds and
estimations made for these indices. Such results have revealed the necessity of investigating
more robust bounds, particularly upper bounds, for most of the indices studied. In many
cases the bounds, although correct, are very far away from the actual values of the indices,
which leaves large rooms for improvements. We encourage authors searching for new bounds
to compare them with the existing ones with the challenge of improving them for general
classes of graphs.

Finally, we have not considered many of the results obtained in the literature for specific
classes of graphs, which would make this paper too long to be digested. We advice the reader
that such bounds exist for several of the indices described in this paper and for several classes
of graphs of importance in specific areas of applications.
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Appendix

The following result allows the calculation of the 21 different subgraphs which are used in
the expressions of spectral moments of the adjacency matrix.

Theorem 50 Let ki and ti be the degree and the number of triangles at the node i . Then, the

number of subgraphs illustrated in Fig. 1 are obtained as follow:

F2 =
1

2

∑

i

ki , (17.1)

F3 =
1

2

∑

i

ki (ki − 1) , (17.2)

F4 =
1

6
tr
(

A3) , (17.3)

F5 =
∑

(i, j)∈E

(ki − 1)
(

k j − 1
)

− 3F4, (17.4)

F6 =
1

6

∑

ki≥3

ki (ki − 1) (ki − 2) , (17.5)

F7 =
1

8

(

tr
(

A4)− 4F3 − 2F2
)

, (17.6)

F8 =
∑

ki >2

ti (ki − 2) , (17.7)

F9 =
1

4

∑

i, j

(

(

A2)
i j Ai j

)(

(

A2)
i j · Ai j − 1

)

, (17.8)

F10 =
1

10

(

tr
(

A5
)

− 30F4 − 10F8

)

, (17.9)

F11 =
1

2

∑

ki≥4

ti (ki − 2) (ki − 3) , (17.10)

F12 =
1

2

∑

ki >2

(ki − 2)×
∑

i, j

(
(

A2
)

i j

2

)

− 2F9, (17.11)

F13 =
∑

(i, j)∈E

(

A2)
i j (ki − 2)

(

k j − 2
)

− 2F9, (17.12)

F14 =
∑

i

ti

⎛

⎝

∑

i �= j

(A2)i j

⎞

⎠− 6F4 − 2F8 − 4F9, (17.13)

F15 =
∑

(i, j)∈E

(

A3)
i j

(

A2)
i j − 9F4 − 2F8 − 4F9, (17.14)

F16 =
1

12

(

tr
(

A6)− 2m − 12F3 − 24F4 − 6F5 − 12F6

−48F7 − 36F9 − 12F12 − 24F15) , (17.15)

F17 =
1

2

∑

ki >2

(ki − 2) Bi − 2F16, (17.16)
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where

Bi =
(

A5
)

i i − 20ti − 8ti (ki − 2)− 2
∑

(i, j)∈E

(

A2)
i j

(

k j − 2
)

− 2
∑

(i, j)∈E

(

t j −
(

A2)
i j

)

,

(17.17)

F18 =
∑

(i, j)∈E

(
(

A2
)

i j

3

)

, (17.18)

F19 =
∑

i

ti ·
∑

i �= j

(
(

A2
)

i j

2

)

− 6F9 − 2F16 − 6F19, (17.19)

F20 =
1

14

(

tr
(

A7)− 126F4 − 84F8 − 112F9 − 70F10 − 28F11 − 14F13

−14F14 − 56F16 − 14F18 − 84F19 − 28F20) . (17.20)
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