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Abstract Every enveloped virus fuses its membrane with a host cell membrane,
thereby releasing its genome into the cytoplasm and initiating the viral replication
cycle. In each case, one or a small set of viral surface transmembrane glycoproteins
mediates fusion. Viral fusion proteins vary in their mode of activation and in struc-
tural class. These features combine to yield many different fusion mechanisms. De-
spite their differences, common principles for how fusion proteins function are
emerging: In response to an activating trigger, the metastable fusion protein con-
verts to an extended, in some cases rodlike structure, which inserts into the target
membrane via its fusion peptide. A subsequent conformational change causes the fu-
sion protein to fold back upon itself, thereby bringing its fusion peptide and its
transmembrane domain—and their attached target and viral membranes—into inti-
mate contact. Fusion ensues as the initial lipid stalk progresses through local hemi-
fusion, and then opening and enlargement of a fusion pore. Here we review recent
advances in our understanding of how fusion proteins are activated, how fusion pro-
teins change conformation during fusion, and what is happening to the lipids during
fusion. We also briefly discuss the therapeutic potential of fusion inhibitors in treat-
ing viral infections.

Keywords Membrane fusion protein · Class I fusion protein · Class II fusion protein ·
Influenza HA · HIV Env · Low-pH activation · Receptor activation · Conformational
changes · Membrane dynamics · Anti-fusion antivirals

1
Introduction

Fusion of enveloped viruses with host cells remains an important topic
of research for two major reasons. First, it has recently become clear that
fusion is a good target for therapeutic intervention (Kilby et al. 1998).
Second, viral fusion reactions continue to serve as models for cellular
fusion events. Although several viral fusion proteins, such as influenza
hemagglutinin (HA) and the human immunodeficiency virus (HIV) en-
velope glycoprotein (Env), have emerged as paradigms, it is important
to realize that there are many distinguishing features among viral fusion
proteins (Table 1). Viral fusion proteins can be activated for fusion by
different mechanisms. They have also been classified according to struc-
tural criteria. For some viruses, the viral receptor does not actively par-
ticipate in fusion, whereas for others, one or more receptors are essential
players. The location of the fusion peptide, critical for fusion, can vary.
Finally, whereas some viruses require a single viral glycoprotein to me-
diate fusion, others require multiple viral glycoproteins. There are many
excellent recent reviews on viral fusion and the glycoproteins that
mediate this process (Durell et al. 1997; Eckert and Kim 2001; Heinz and
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Allison 2001; Skehel and Wiley 2000; Weissenhorn et al. 1999). The goal
of this review is to give the reader an appreciation for the diversity of
viral fusion mechanisms.

2
Activation of Viral Fusion Proteins

All fusion proteins exist on virion surfaces in a metastable state in which
the fusion peptide, a critical hydrophobic sequence, is hidden or shield-
ed within the glycoprotein oligomer (Carr et al. 1997; Hernandez et al.

Table 1. Viral membrane fusion proteins

Family Viral proteins
needed

pH of
fusion

Class Fusion peptide

Orthomyxovirus HA Low I N-terminal
Alphavirus E1 Low II Internal
Flavivirus E Low II Internal
Rhabdovirus G Low ? Internal
Bunyavirus G1/G2 Low ? ?
Arenavirus GP Low ? ?
Filovirus GP Lowa I Internal
Retrovirus Env Neutralb I N-terminal, internal
Paramyxovirus F,HN Neutral I N-terminal
Herpesvirus gB, gD, gH, gL Neutral ? ?
Coronavirus S Neutral I Internal
Poxvirus N.D. Neutral ? ?
Hepadnavirus S Neutral?d ? ?e

Iridovirus N.D. N.D. ? ?

a Inferred from infectivity assays.
b Most retroviruses fuse at neutral pH. MMTV appears to require low pH [Ross et
al. (2002) PNAS 99:12386–90] to fuse. Avian retroviruses require receptor priming
at neutral pH followed by exposure to low pH [Mothes et al. (2000) Cell 103:679–89;
see text for a discussion of this model].
c Coronaviruses possess heptad repeats [Chambers et al. (1990) J Gen Virol
71:3075–80] characteristic of class I viral fusion proteins. Recent work indicates that
they are, indeed, class I fusion proteins [Bosch et al. (2003) J Virol 77:8801–11].
d With infectivity assays, hepadnavirus uptake was shown to be pH-independent
[Hagelstein et al. (1997) Virology 229:292–4]. However, recent studies have shown
that duck hepatitis B virus may require low pH [Grgacic et al. (2000) J Virol
74:5116–22].
e The S protein contains a stretch of amino acids predicted to be a fusion peptide
but has not been further characterized.
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1996; Rey et al. 1995; Skehel and Wiley 2000; Wilson et al. 1981). After
activation, the fusion peptides are rendered accessible for interaction
with a target membrane. A major distinction among viral fusion pro-
teins is the “trigger” for activation. There are two well-recognized mech-
anisms: (1) exposure to low pH and (2) specific interactions with target
cell receptors at neutral pH. A third mechanism involving receptor
priming at neutral pH followed by further activation at low pH was re-
cently proposed (Mothes et al. 2000).

2.1
Low pH Activation

Orthomyxoviruses, togaviruses, flaviviruses, rhabdoviruses, bunyavirus-
es, arenaviruses, and, apparently, filoviruses require low pH to fuse with
target membranes (Table 1) (Doms et al. 1985; Gaudin et al. 1999b; Steg-
mann et al. 1987; White and Helenius 1980). These viruses are endocyto-
sed after binding to the target cell surface. The low-pH environment of
the endosome activates the viral fusion protein to convert from a meta-
stable state to one that is capable of driving fusion. Although the pres-
ence of a receptor may modulate the rate or extent of fusion (Ohuchi et
al. 2002; Stegmann et al. 1996; White et al. 1982), receptors are not es-
sential for low-pH-dependent fusion. Low-pH-dependent fusion general-
ly occurs within seconds to minutes at 37�C but can also occur, albeit
more slowly, at T<22�C.

Four main techniques have been used to assess whether a virus re-
quires low pH to fuse. The first technique is testing the effects of agents,
such as bafilomycin, that inhibit endosomal acidification. In some stud-
ies of this type, fusion has been measured directly by assessing the
transfer of fluorescent probes from the virus to the target cell (Earp et
al. 2003; Irurzun et al. 1997; Zarkik et al. 1997). In others, fusion has
been inferred by monitoring postfusion events, such as the synthesis of
viral DNA (Mothes et al. 2000).

A second test is to assess whether fusion of bound virions can be in-
duced by briefly warming virus-cell complexes in low-pH medium
(Mothes et al. 2000; White et al. 1980). A third test is to assess whether
pretreatment of virions at low pH (in the absence of target membranes)
inactivates the virus for fusion. Some (Bron et al. 1993; Corver et al.
2000; Di Simone and Buchmeier 1995; Korte et al. 1999; Nir et al. 1990;
Stegmann et al. 1987), but not all (Puri et al. 1988), viruses that fuse at
low pH can be inactivated by this method. Viral fusion proteins that are
inactivated by low pH undergo irreversible conformational changes. In
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the case of X:31 HA, this results in insertion of the fusion peptide into
the viral membrane (Korte et al. 1999; Weber et al. 1994).

The fourth test is to assess whether cells expressing the viral fusion
protein can fuse. Cell-cell fusion can be observed by light or fluores-
cence microscopy (Frey et al. 1995; Melikyan et al. 1997b; Mothes et al.
2000), or it can be scored with gene reporter assays that monitor inter-
actions of components from the fusing cells (Delos and White 2000;
Earp et al. 2003; Feng et al. 1996; Nussbaum et al. 1994). Although cell-
cell fusion assays are relatively simple to perform, the results do not
always correlate with virus-cell fusion or infection (Earp et al. 2003;
Lavillette et al. 1998; Schmid et al. 2000).

2.2
Receptor Activation at Neutral pH

Many enveloped viruses do not require low pH to fuse with target cells.
This has generally been established in controlled experiments using the
approaches described in Sect. 2.1. Viruses that can fuse at neutral pH in-
clude paramyxoviruses, herpesviruses, coronaviruses, poxviruses, and
most retroviruses (Table 1) (Hernandez et al. 1997; McClure et al. 1990;
Stein et al. 1987; Taguchi and Matsuyama 2002). The fusion proteins of
these viruses are activated via specific interactions with one or more re-
ceptors in the target cell membrane (Hernandez et al. 1996; Hunter 1997;
Stein et al. 1987). Viruses that can fuse at neutral pH are thought to do
so at the plasma membrane. However, they may also be able to fuse with
neutral-pH intracellular compartments (e.g., caveosomes) that can be
accessed through newly recognized endocytic pathways (Pelkmans and
Helenius 2003; Shin and Abraham 2001) (see also the chapter by
Sieczkarski and Whittaker, this volume). It is important to note, howev-
er, that viruses that can fuse at neutral pH may also possess the ability
to fuse at low pH (Earp et al. 2003; Fackler and Peterlin 2000). To date,
neutral-pH fusion has been found to display a sharp temperature thresh-
old, with little or no fusion occurring at T<20�C.

2.3
“Two-Step” Activation

Recently, a third model was proposed for the activation of alpharetro-
viruses. In this model, activation of the alpharetroviral Env begins with
receptor binding at neutral pH (at T>22�C) but is only complete after
exposure to low pH (Mothes et al. 2000). The role of low pH in this
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“two-step” model is derived from two key observations: (1) The continu-
ous presence of endosomal acidification inhibitors prevents production
of alpharetroviral reverse transcripts, and (2) cells expressing Env and
cells expressing the viral receptor only form large syncytia after expo-
sure to low pH (Mothes et al. 2000). Our recent work indicates that al-
pharetrovirus fusion can proceed to the lipid mixing stage at neutral
pH (Earp et al. 2003), and that receptor binding and low pH sequen-
tially induce distinct conformational changes in the alpharetrovial Env
(Matsuyama et al. 2004). Current work is now focused on determining
the precise role of low pH in the fusion cascade.

3
Classification of Fusion Proteins Based on Structural Criteria

All viral fusion proteins contain a relatively large ectodomain, generally
a single transmembrane domain, and all contain a cytoplasmic tail. So
far, two major groups (class I and class II) have been defined based on
structural criteria (Heinz and Allison 2001; Lescar et al. 2001) (Tables 1
and 2).

Class I fusion proteins are synthesized as precursors that are cleaved
into two subunits by host cell proteases. In some cases (e.g., influenza
HA), the two subunits remain associated through a disulfide bond; in
others (e.g., HIV Env), the two subunits remain associated through non-
covalent interactions. The proteolytic processing event that generates
the two subunits is critical, as it creates the metastable state of the fusion
protein (Chen et al. 1998). Class I fusion proteins exist as relatively long
trimeric spikes in both their metastable and activated states. In their
metastable states, they project perpendicularly to the viral membrane.
The activated forms of the fusion subunits of known class I fusion pro-
teins are highly a-helical (Skehel and Wiley 2000), and the final lowest-
energy (which we will refer to as “postfusion”) forms (Fig. 1) contain
“six-helix bundles” (Bullough et al. 1994; Carr and Kim 1993). All six-he-
lix bundles contain a relatively long (65–115 �) central N-terminal tri-
meric coiled-coil. Some (e.g., HIV Env, SIV Env, and paramyxovirus F)
form six-helix bundles that extend to their membrane proximal ends
[i.e., three C-terminal helices (Fig. 1A, green) pack in the grooves of the
central coiled-coil (Fig. 1A, blue)]. Others display a mixture of helical
and nonhelical segments that pack into the grooves of the central coiled-
coil. For example, the HA2 subunit of influenza HA contains a relatively
small six-helix bundle (Fig. 1, green/blue) at its membrane distal end,
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followed by an extended chain (Fig. 1, yellow) that packs in the groove
and extends to the N-terminal (membrane proximal) end of its central
coiled-coil (Fig. 1B). Because of these variations, the postfusion forms
of class I fusion proteins are often referred to as “trimers of hairpins”
(Eckert and Kim 2001).

The general structure of class II fusion proteins is quite different from
that of class I fusion proteins. A well-characterized example is the enve-
lope glycoprotein (E) of tick-borne encephalitis (TBE) virus. During bio-
synthesis, TBE E and a second viral membrane glycoprotein, the precur-
sor to the membrane protein (prM), form heterodimers. As virions ma-

Table 2. Class I vs. class II viral membrane fusion proteins

Property Class I Class II

Type of integral membrane protein Type I Type Ia

Synthesized as Inactive precursor Inactive precursorb

Exist on virion in Metastable state Metastable state
Orientation in virion (to membrane) Perpendicular Parallel
Converted to metastable state by Proteolytic processing

within fusion protein
precursor

Proteolytic processing
of an associated
protein

No. of subunits in fusion protein 2 1
Major secondary structure of fusion
subunit

a-Helixc b-Sheet

Activated to fusogenic form by Low pH or cell
receptor(s)d

Low pH

Oligomeric state of metastable protein Trimer Dimer
Oligomeric state of fusion active
protein

Trimer Trimer

Location of fusion peptide N-terminal or internal Internal loop
Structure of final fusogenic form Trimer of hairpins

(coiled-coil)
Trimer of hairpins
(non-coiled-coil)

a The TBE E glycoprotein has two membrane anchoring segments near its C-termi-
nal end [Heinz and Allison (2001) Curr Opin Microbiol 4:450–5].
b Known class II fusion proteins are activated by proteolytic cleavage of an accesso-
ry protein.
c The postfusion forms of all known class I fusion proteins are a-helical. The fusion
subunit of metastable influenza HA is also highly a-helical, and this appears to be
the case for a paramyxovirus F protein [Chen et al. (2001a) Structure 9:255–66].
Comparable information is not available for the metastable forms of other class I
fusion proteins.
d In the case of paramyxoviruses, the receptor binding protein relays the informa-
tion of receptor binding to the fusion subunit [Lamb 1993; Colman and Lawrence
2003]
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ture, a host cell protease cleaves prM, resulting in reorganization of pro-
teins on the viral surface (Allison et al. 1995). After prM cleavage, the E
proteins exist as metastable homodimers. The ectodomains of the dimer
are oriented antiparallel to one another. In further contrast to the tri-
meric class I fusion protein spikes, the ectodomains of the E homodimer
lie parallel to the viral membrane and close to the surface. The TBE E
protein is composed mostly of b-strand structure (Heinz and Allison
2001; Rey et al. 1995). The architecture of the Semliki Forest virus (SFV)
spike, another well-characterized class II fusion protein, is similar to
that of TBE E, but in this case, the metastable oligomer is a heterodimer
of two membrane-anchored proteins, E1 and E2, with an associated
small protein (E3).

4
Examples of Fusion Activation Mechanisms

In Sects. 4.1–4.4, we discuss a few examples of viral fusion proteins that
employ different fusion mechanisms in more detail. These will include

Fig. 1. Structures of the postfusion forms of SIV Env (A) and influenza HA (B). A
NMR structure of the postfusion form of SIV Env gp41 subunit (PDB accession
number 2EZO). B Crystal structure of the postfusion form of influenza HA2 subunit
(PDB accession number 1QU1). Coiled-coil regions are blue. C-terminal helices are
green. For influenza HA2, the C-terminal extended region is yellow. N and C indicate
the points where the fusion peptide and the transmembrane domain, respectively,
attach
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examples of class I and class II fusion proteins, activated by low pH or
by receptor interactions at neutral pH.

4.1
Influenza HA (Class I Fusion Protein, Low pH)

High-resolution structures are available for both the complete native
(metastable) (Wilson et al. 1981) and activated (Bullough et al. 1994; Chen
et al. 1999) forms of the influenza HA. On the viral surface, HA exists as a
trimer of heterodimers (Fig. 2A). Each heterodimer consists of HA1,
which contains the receptor binding domain (Fig. 2, gray), and HA2,
which contains the fusion peptide (Fig. 2, red) and the transmembrane
domain (located at the C-terminus). In the native (neutral pH) structure,
the fusion peptide is buried within the HA oligomer. Three long helices,
one from each monomer, come together to form the triple-stranded
coiled-coil of the metastable trimer (Fig. 2A and B, blue and green).

Fig. 2A–D. Low-pH-induced conformational changes within influenza HA. HA1 is
depicted in gray. The fusion peptide is red (HA2 residues 1–24). The coiled-coil is
blue, with the C-terminal helix colored green. The C-terminal extended region is yel-
low. The transmembrane domain (not shown) attaches to the C-terminal end, indi-
cated by “C”, of HA2. A model for conformational changes: A In the native, metasta-
ble, structure of HA, the fusion peptides are buried within the trimer interface. HA1
acts as a clamp to hold HA2 in a metastable state. HA2 is largely shielded by HA1.
To illuminate the HA2 core, we have cartooned the portion of HA1 that covers HA2
as a simple (gray) line. B On exposure to low pH, the HA1 headgroups separate, al-
lowing expulsion of the fusion peptide. C A loop-to-helix transition causes the fusion
peptide to be repositioned to one end of HA2, where it can bind to the target mem-
brane. D A helix-to-loop transition causes the C-terminal helix and the C-terminal
extended region to reverse direction and bind to the grooves of the coiled-coil in an
antiparallel orientation
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On exposure to low pH, HA undergoes dramatic conformational
changes. The globular head domains separate, releasing the clamp that
holds HA2 in its metastable state (Fig. 2B). As a result, the fusion pep-
tide is exposed (Fig. 2C, red) at the top of an extended triple-stranded
coiled-coil, in a position where it can interact with the target membrane.
A helix-to-loop transition causes a short helix (Fig. 2D, green) and the
C-terminal extended region (yellow) to flip up and run antiparallel to
the central coiled-coil (Bullough et al. 1994). As a result, the fusion pep-
tide and transmembrane domain are brought into close proximity at the
same end of the molecule (Fig. 2D).

Many regions of HA are important for fusion. The fusion peptide is
critical for hydrophobic attachment of the virus to the target membrane
(Sect. 6.1). Mutations that prevent (1) globular head domain separation
(Godley et al. 1992; Kemble et al. 1992), (2) the “B-loop”-to helix transi-
tion (Gruenke et al. 2002; Qiao et al. 1998), or (3) the C-terminal ex-
tended region from packing into the grooves of the final coiled-coil
(Borrego-Diaz et al. 2003; Park et al. 2003) ablate the ability of HA to
reach the lipid mixing stage of fusion. In our model (Gruenke et al.
2002), conversion of HA to a prehairpin intermediate (Fig. 2C) allows
HA to bind to the target membrane. Further conversion to the hairpin
structure (Fig. 2D) then drives the formation and opening of a fusion
pore.

4.2
HIV Env (Class I Fusion Protein, Neutral pH)

Like influenza HA, HIV Env is synthesized as a single-chain precursor
and cleaved during biosynthesis to yield gp120 and gp41. Native (meta-
stable) HIV Env is a trimer of the heterodimers of gp120 (the receptor
binding subunit) and gp41 (the fusion subunit). Env is activated for
fusion (at neutral pH) after sequential binding to CD4 and a coreceptor
(a chemokine receptor). Binding of Env to CD4 causes conformational
changes in Env that permit binding to the coreceptor. After coreceptor
binding, additional conformational changes occur in Env that lead to fu-
sion (Eckert and Kim 2001).

Crystal structures exist for the core of the gp120 subunit (Kwong et
al. 1998) as well as for the postfusion (Fig. 3, Step 6) form of gp41 (Chan
et al. 1997; Weissenhorn et al. 1997). However, there is not yet a crystal
structure of the native (metastable) Env trimer. Therefore, a detailed pic-
ture of HIV Env activation via receptor interaction is not available. We
presume that the first steps of Env activation are separation of the
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globular head domains, expulsion of the fusion peptide, and extension
of gp41 into a prehairpin intermediate (Fig. 3, Step 1). Several lines of
evidence indicate the existence of the prehairpin intermediate. For ex-
ample, peptide analogs of the C-terminal helix (Fig. 3, green) strongly
inhibit HIV fusion and infection (Chan and Kim 1998; Kilby et al. 1998).
Also, a synthetic peptide corresponding to the C-terminal helix coim-
munoprecipitates with HIV Env after engagement of receptors (Furuta
et al. 1998; He et al. 2003). The C-terminal helix then packs, in an anti-
parallel fashion, into the groove of the N-terminal coiled-coil (Fig. 3,
Step 5). Because the C-terminal helices of gp41 extend along the entire
length of the N-terminal coiled-coil, this packing would bring the fusion
peptide and transmembrane domain very close together. The transition
to the six-helix bundle drives membrane merger (Melikyan et al. 2000a).
Moreover, complete six-helix bundles are needed to form “robust” fu-
sion pores (Markosyan et al. 2003).

As mentioned above, HIV studies, primarily using epitope accessibili-
ty assays, have indicated that engagement of HIV receptors induces con-

Fig. 3. Model of HIV fusion. Env exists as a trimer in the surface of the native viral
membrane, with fusion peptides (red) presumably buried within the trimer inter-
face. SU domains (pictured as gray globular domains at the top of the trimer) pro-
vide the receptor-binding function. For clarity, SU domains are omitted after Step 1.
Target cell receptors are not pictured in this model. On exposure to receptor and
coreceptor at T �22�C and neutral pH, Env undergoes conformational changes that
result in exposure of the fusion peptides (Step 1), which then insert into the target
membrane (Step 2). Multiple Envs may cluster (Step 3) to form a fusion site. Addi-
tional conformational changes (Steps 4 and 5) lead to the formation of a six-helix
bundle, resulting in hemifusion (Step 5) (defined as mixing of the outer leaflets of
the viral and cellular membranes). Eventually a fusion pore forms (Step 6) and en-
larges (not shown)
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formational changes in gp120 and gp41 (Eckert and Kim 2001; Xiang et
al. 2002). A remaining issue for all receptor-activated viral fusion pro-
teins is how information is transmitted (after receptor binding) through
the receptor binding subunit to the fusion subunit. Such transmission is
essential to allow rearrangements in the fusion subunit (e.g., six-helix
bundle formation) that drive fusion. For HIV, part of the mecha-
nism may involve reduction of one or more disulfide bonds in gp120
(Abrahamyan et al. 2003; Barbouche et al. 2003; Fenouillet et al. 2001;
Gallina et al. 2002). In murine retroviral Envs, a proline-rich hinge re-
gion appears to relay receptor binding information from the N-terminal
to the C-terminal region of the receptor binding subunits (SU) (Barnett
and Cunningham 2001; Lavillette et al. 2001). Because the proline-rich
region of SU is linked to TM by a disulfide bond (Pinter et al. 1997), this
may provide a relay system to trigger conformational changes in the fu-
sion subunit. Clearly, the molecular pathways by which receptor-activat-
ed fusion proteins change from their metastable to their activated forms
need to be defined.

In Fig. 3, we show a working model for HIV Env-mediated fusion. It
is derived in part from studies with influenza HA, and it is similar to
other HIV fusion models (Eckert and Kim 2001). Our hypothesis is that
all class I fusion proteins will employ similar mechanisms. We note,
however, that even in the case of influenza HA, alternate models are still
entertained (see Fig. 2 in Jahn et al. 2003). Furthermore, others have
suggested that different class I fusion proteins may use fundamentally
different mechanisms (Chen et al. 2001a).

The features that we predict will be common to the fusion mecha-
nisms of all class I fusion proteins (Fig. 3) include: (1) conversion from
a metastable state to an activated state, (2) exposure and repositioning
of the fusion peptide for binding to the target bilayer, (3) recruitment of
several activated fusion proteins to a fusion site (Blumenthal et al. 1996;
Danieli et al. 1996; Markovic et al. 2001; Markovic et al. 1998), and (4)
subsequent conformational changes that result in close apposition of the
fusion peptide and the transmembrane domain.

4.3
Paramyxovirus F Proteins (Class I Fusion Protein, Neutral pH,
Attachment Protein Assisted)

The viral fusion proteins that have thus far been discussed in detail con-
tain a receptor binding domain (e.g., the gp120 subunit of HIV Env)
within the fusion protein spike. In other cases, the receptor binding do-
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main resides in a separate viral spike. Paramyxoviruses have an attach-
ment protein spike and a separate fusion (F) protein spike. Most, but
not all, paramyxoviruses require both the attachment protein and the F
protein for fusion (Bagai and Lamb 1995; Paterson et al. 2000). In most
cases, the attachment protein must come from the same paramyxovirus
as the fusion protein (Bossart et al. 2002). In the few cases in which the
F protein is sufficient, fusion is enhanced if the attachment protein is
also expressed (Bagai and Lamb 1995). The need for the attachment pro-
tein can be overcome by mutations in the F protein (Paterson et al. 2000;
Seth et al. 2003) or by conducting fusion reactions at T>37�C (Paterson
et al. 2000; Wharton et al. 2000). Paramyxovirus fusion proteins thus re-
present special cases of receptor-activated fusion proteins, in which re-
ceptor activation is communicated from one viral spike glycoprotein to
another.

F proteins are proteolytically cleaved during biosynthesis to generate
two disulfide-bonded subunits, F1 and F2 (Begona Ruiz-Arguello et al.
2002; Gonzalez-Reyes et al. 2001; Lamb 1993), found as metastable tri-
mers of dimers (Baker et al. 1999) on virions. It has been suggested that
binding of the attachment protein to a host cell receptor causes confor-
mational changes in this protein, which in turn cause activating confor-
mational changes in the metastable F protein (Lamb 1993; Russell et al.
2001; Takimoto et al. 2002). The exact mechanism by which attachment
proteins activate F proteins is not known, but several groups have pro-
vided evidence for cross talk between attachment and F proteins (Bos-
sart et al. 2002; Deng et al. 1999; McGinnes et al. 2002; Stone-Hulslander
and Morrison 1997; Takimoto et al. 2002; Yao et al. 1997).

The post-fusion form of the F protein from the paramyxovirus SV5
contains a six-helix bundle (Baker et al. 1999). Similar to HIV Env (He
et al. 2003; Kilby et al. 1998; Munoz-Barroso et al. 1998) and other retro-
viral fusion proteins (Earp et al. 2003; Netter 2002), peptide analogs of
the N- and C-terminal helices of paramyxovirus six-helix bundles are
potent inhibitors of fusion and infection (Bossart et al. 2002; Joshi et al.
1998; Lambert et al. 1996; Young et al. 1999). As is also the case for HIV
Env (Markosyan et al. 2003; Melikyan et al. 2000a), a recent study
showed that conversion of the SV5 F protein to a six-helix bundle drives
membrane fusion (Russell et al. 2001).

Issues yet to be addressed for paramyxoviruses are the structure of
the complete native (metastable) F trimer and how it is converted to its
activated form. The first glimpses at the metastable and postfusion states
of the F trimer came from EM observations of the respiratory syncytial
virus (RSV) F protein. Preparations of purified recombinant F protein
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contained both cone-shaped rods and “lollipop”-shaped structures. On
storage, there appeared to be a shift from the cone-shaped to the “lol-
lipop”-shaped structures (Calder et al. 2000). Examination of F com-
plexed with specific monoclonal antibodies suggested that the “lollipop”
structures contained six-helix bundles composed of N- and C-terminal
heptad repeats (Calder et al. 2000).

A high-resolution structure of an F protein ectodomain was recently
presented (Chen et al. 2001a). The protein used for the analysis contained
a mixture of precursor F0 and proteolytically cleaved F. It also apparently
lacked the second heptad repeat, which forms the C-helix in the postfu-
sion form. This trimeric F protein structure is fundamentally different
from that of influenza HA; the N-terminal end of its coiled-coil is posi-
tioned near the viral membrane end of the molecule (i.e., opposite the
orientation of the coiled-coil in the metastable HA trimer). If this F pro-
tein structure represents the native metastable F trimer, then it suggests a
mechanism of fusion activation for F fundamentally different from that
for HA (Chen et al. 2001a). Additional work is needed to test this idea.

4.4
TBE E and SFV E1 (Class II Fusion Proteins, Low pH)

All known class II fusion proteins are activated by low pH. However, the
mechanism by which class II fusion proteins are initially activated is
quite different than the mechanism by which class I fusion proteins are
initially activated. For example, the ectodomain of the TBE glycoprotein
forms an antiparallel dimer that lies parallel and close to the viral mem-
brane (Fig. 4B). At low pH, the TBE E homodimer converts to an E ho-
motrimer (Allison et al. 1995; Heinz and Allison 2001; Stiasny et al.
2001). This transformation is thought to occur in two steps: dissociation
of the E homodimer, followed by reassociation of E trimers (Stiasny et
al. 1996). Membrane binding occurs after dimer dissociation and pro-
motes the formation of E homotrimers (Stiasny et al. 2002). Homotrimer
formation may involve interactions between a-helices in the stem region
of the E protein (Allison et al. 1999).

The SFV fusion protein also converts from a dimer to a trimer during
fusion activation. On native virions, E1 exists as a tight heterodimeric
complex with a second membrane protein, E2. On exposure to low pH,
E1 dissociates from E2, changes conformation, and forms highly stable
E1 homotrimers (Ahn et al. 1999; Kielian 1995; Wahlberg et al. 1992;
Wahlberg and Garoff 1992). During this process, E1 binds hydrophobi-
cally through its fusion peptide to target membranes and mediates fu-
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sion. Similar to TBE E, it appears that binding to the target bilayer fos-
ters formation of the activated E1 homotrimer (Kielian 1995; Kielian et
al. 2000); the fusion peptide and the transmembrane domain of E1 ap-
pear to be important for E1 homotrimer formation (Kielian et al. 1996,
2000; Sjoberg and Garoff 2003). Thus both class I and class II viral fu-
sion proteins appear to function as trimers during fusion. It has been
proposed that activated TBE E (Helenius 1995) and SFV E1 stand up as
trimeric spikes and present their fusion peptides to the target membrane
(Fig. 4B, right). This would be analogous to Fig. 3, Step 1. If this occurs,

Fig. 4. Structure and cartoon of conformational changes of the TBE E protein. A
Crystal structure of TBE E (PDB accession number 1SVB). The fusion peptide is red.
Domains I, II, and III are pink, blue, and green, respectively. Disulfide bonds are
black. B Cartoon depicting possible rearrangements during the dimer to trimer tran-
sition upon exposure to low pH (Allison et al. 1995). Each of the three dimers (blue,
green, yellow; left) supplies one monomer (light shaded subunits) to the homotrimer
(right). The organization of the dimers is as found in TBE recombinant subviral par-
ticles (Ferlenghi et al. 2001); it may represent an intermediate arrangement (from
that on native virions) found during fusion activation (Kuhm et al. 2002). Note that
other possibilities for the dimer to trimer transition exist (for example involving rel-
ative movements of domains about hinge regions). For very recent developments re-
garding the fusion mechanism of class II fusion proteins, see Bressanelli et al.
(2004), Gibbons et al. (2004) and Modis et al. (2004)
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then the spike would have to refold to bring the viral and cellular mem-
branes together (e.g., analogous to Steps 4 and 5 in Fig. 3). Very recent
evidence indicates that this is, indeed, the case (Bressanelli et al. 2004;
Gibbons et al. 2004; Modis et al. 2004).

5
Membrane Dynamics During Fusion

Thus far we have focused on the conditions that elicit viral fusion reac-
tions and the conformational changes in viral fusion proteins necessary
for fusion. However, it is the viral and cellular bilayer membranes that
merge during fusion. Lipid bilayers are stable structures that do not fuse
spontaneously. Fusion proteins have evolved to catalyze the necessary
lipid rearrangements. We now review a lipid rearrangement model and
focus on the roles of different regions of viral fusion proteins in chore-
ographing the structural changes that the membranes undergo through-
out the fusion cascade (Fig. 3).

The favored model for the lipid transition state during membrane fu-
sion is the stalk model. In this model, two opposing membranes bend
toward each other, creating “dimples” (when viewed from the trans sur-
face) or “nipples” (when viewed from the cis surface) (Fig. 3, Step 4).
Nipples continue to bend until they meet. The two cis leaflets then
merge, creating a lipid stalk (see Fig. 2 in Kozlovsky and Kozlov 2002)
that proceeds to a state of local hemifusion (Fig. 3, Step 5). In a second
step, transient fusion pores form, which give rise to stable pores (Fig. 3,
Step 6).

The first direct visualization of a lipid stalk intermediate was achieved
by electron diffraction studies of the effect of sequential dehydration on
lipid bilayers composed of a lipid that has negative spontaneous curva-
ture (Yang and Huang 2002). The stalk intermediate was stable at inter-
mediate relative humidities. The results suggested that both the forma-
tion of a lipid stalk and its transition to a conformation that can be
equated with pore formation require external forces.

Cellular membranes do not have spontaneous negative curvature and
are highly hydrated. Membrane curvature can be promoted by introduc-
ing defects into the contacting bilayers. Thus roles for the fusion protein
include pulling the fusing bilayers toward one another (dimpling), dehy-
drating the membranes, and creating membrane defects that lower the
energy barrier for stalk and pore formation. Two intermediates in HIV
fusion have been trapped: one in which the two membranes are joined
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by activated Envs, but are not yet fused (Melikyan et al. 2000a), and one
in which small, “labile” pores have formed that can either expand into
stable, “robust” pores or return to the prefusion state (Markosyan et al.
2003). These observations suggest a role for the fusion protein in forma-
tion and stabilization of both the fusion stalk and the fusion pore.

The mechanism by which a small pore enlarges is not known. How-
ever, several possibilities have been proposed. One is that the initial fu-
sion pore is formed by a small number of activated fusion proteins. Ad-
ditional activated fusion proteins then move into the fusion site to but-
tress and stabilize the pore, thereby allowing it to expand (Kozlov and
Chernomordik 2002). Another possibility is that multiple small fusion
pores coalesce to form larger ones. This was supported by EM visualiza-
tion of HA-mediated fusion, in which multiple dimples/nipples were ar-
ranged circularly and lipid fragments were seen at the center of a fusion
ring (Kanaseki et al. 1997).

6
Membrane-Interacting Regions of Viral Fusion Proteins

As discussed above, roles for the fusion protein in the fusion cascade
(Fig. 3) include pulling the fusing bilayers toward one another (dim-
pling) and creating membrane defects that lower the energy barriers for
stalk formation and fusion pore opening/enlargement. The fusion pep-
tide and the transmembrane domain must remain stably associated with
the target and viral membranes, respectively, for fusion to occur. Once
the fusion peptide is stably associated with the target bilayer (Fig. 3, Step
2), we envision that rearrangements in the fusion protein ectodomain
that bring the fusion peptide and transmembrane domains close togeth-
er (Fig. 3, Step 4) result in dimpling of membranes toward one another.
In addition to serving as critical membrane anchors, the fusion peptide
and the transmembrane domain likely create membrane defects that fa-
cilitate the next stages of fusion. Here, we review information about the
structure and function of the fusion peptide and the transmembrane do-
main during fusion. We also review evidence that juxtamembrane se-
quences, on both sides of the transmembrane domain, participate in fu-
sion.
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6.1
The Fusion Peptide

Fusion peptides are relatively apolar sequences that interact with mem-
branes and are central to viral fusion reactions (Martin and Ruysschaert
2000; Martin et al. 1999; Skehel et al. 2001; White 1990). They have been

Fig. 5A, B. Characteristics of viral fusion peptides. A Selected viral fusion peptide se-
quences. N-terminal (Skehel et al. 2001) and internal (Delos et al. 2000) fusion pep-
tide sequences are aligned according to their first noncharged residue. B Model of
HA fusion peptide structure in target membrane at pH 5 (adapted from Tamm et al.
2002). The fusion peptide (red) resides in the target membrane in a kinked structure
composed of two a-helices, each penetrating the outer leaflet. The glycine ridge is
depicted by a yellow box, the hydrophobic interior face by cyan ovals, and the sur-
face charged residues by blue squares. “C” denotes the direction of the HA2 ectodo-
main
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classified as N-terminal or internal depending on their location within
the fusion subunit (Table 1). Although fusion peptides are highly con-
served within each virus family, there is little sequence similarity be-
tween fusion peptides of different families (Fig. 5A). Generally, however,
fusion peptides contain a high percentage of glycines and/or alanines,
as well as several critical bulky hydrophobic residues (Martin and
Ruysschaert 2000; Martin et al. 1999; Skehel et al. 2001; Tamm and Han
2000; Tamm et al. 2002).

6.1.1
Structure of N-terminal Fusion Peptides

A significant body of work has emerged on the structure and function of
synthetic fusion peptides (Martin and Ruysschaert 2000; Martin et al.
1999; Skehel et al. 2001; Tamm and Han 2000; Tamm et al. 2002). Syn-
thetic fusion peptides are disordered in solution but ordered (a-helix
and/or b-sheet) when they associate with membranes. The N-terminal
fusion peptides that have been studied insert into membranes at oblique
angles and do not penetrate the inner leaflet of the membrane. In gener-
al, mutations that abrogate fusion reduce the ability of synthetic fusion
peptides to insert at oblique angles and to disrupt membranes (Martin
et al. 1999). Contradictory conclusions on the precise structure of syn-
thetic fusion peptides in membranes likely stem from the general low
solubility of the peptides in aqueous solution and the different experi-
mental methods employed (Tamm et al. 2002).

To circumvent solubility problems, a polar sequence was added to the
C-terminal end of the influenza HA fusion peptide, rendering it soluble
in both aqueous and hydrophobic environments (Han et al. 2001). At pH
5, the HA fusion peptide consists of an N-terminal helix, a kink, and a
short C-terminal helix (Fig. 5B). Both the N- and C-terminal helices pen-
etrate the outer leaflet of the target bilayer. The kink remains at the
phospholipid surface; the interior (lipid-facing surface) of the kink is
lined with hydrophobic residues. The conserved glycines form a ridge
along the outer face of the N-terminal helix. Three charged residues are
also found on the outer face (Fig. 5B). An HA in which the conserved
glycine at the beginning of the fusion peptide (Gly1) has been changed
to valine cannot mediate fusion. If Gly1 is changed to serine, HA medi-
ates only hemifusion or only forms small nonexpanding fusion pores
(Qiao et al. 1999; Skehel et al. 2001). Interestingly, these mutant fusion
peptides have membrane-associated structures and orientations signifi-
cantly different from those of the wild-type fusion peptide (Li et al.
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2003). Simulations suggested similar membrane penetrating orientations
for the HIV fusion peptide and two fusion-defective mutants (Kamath
and Wong 2002).

6.1.2
Structure of Internal Fusion Peptides

In addition to a significant number of apolar residues, many internal
fusion peptides contain a conserved proline at or near their centers
(Fig. 5A). Mutagenesis of this proline in the avian sarcoma/leukosis vi-
rus (ASLV) EnvA fusion peptide suggested that it stabilizes a b-turn
(Delos et al. 2000). This, coupled with the observation that mutating two
cysteines that flank the fusion peptide abolishes fusion activity (Delos
and White 2000), suggested that the internal EnvA fusion peptide exists
as a looped structure stabilized by a disulfide bond. The ability of the
Ebola virus fusion protein, which also contains an internal fusion pep-
tide, to support infection was similarly inhibited when its central proline
and flanking cysteines were mutated (Ito et al. 1999; Jeffers et al. 2002).
A similar mutation of a proline within the predicted turn segment of the
candidate fusion peptide of VSV G also significantly decreased fusion
and abolished infectivity (Fredericksen and Whitt 1995). The idea of
loop structures for internal fusion peptides is further supported by the
known looped structure of the TBE E and SFV EI fusion peptides (Rey et
al. 1995; Allison et al. 2001; Lescar et al. 2001). In some cases, two or
more noncontiguous sequence loops may function as a collective fusion
peptide (Gaudin et al. 1999a; Li et al. 1993).

Like N-terminal fusion peptides, internal fusion peptides contain a
significant number of glycines and hydrophobic residues (Fig. 5A).
Changing either of two glycines within the SFV E1 fusion peptide to ala-
nines altered the pH threshold for fusion, and changing one of the gly-
cines to aspartic acid abolished fusion (Duffus et al. 1995; Kielian et al.
1996). Alteration of hydrophobic residues at the beginning, middle, or
end of the (internal) ASLV EnvA fusion peptide to charged residues im-
paired the ability of EnvA to mediate fusion (Hernandez and White
1998). Similarly, a tryptophan and a glycine are critical for Ebola GP-me-
diated infection (Ito et al. 1999). Also, a bulky hydrophobic residue is
needed at the tip of the TBE E fusion peptide loop (Rey et al. 1995)
(Fig. 4A, red). Collectively, these results suggest that internal fusion
peptides function as loops that require a mixture of hydrophobic and
flexible residues, similar to those found in N-terminal fusion peptides.
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6.1.3
Roles of Fusion Peptides

Fusion peptides appear to act at several steps along the fusion pathway.
As demonstrated by mutants in which apolar fusion peptide residues
were changed to charged residues (Freed et al. 1992; Gething et al. 1986;
Hernandez and White 1998; Schoch and Blumenthal 1993), fusion pep-
tides clearly play an important role in anchoring the fusion protein to
the target membrane (Fig. 3, Step 2). The energy provided by inserting
the fusion peptides of a single HA trimer into a membrane would be suf-
ficient to initiate stalk formation (Gunther-Ausborn et al. 2000). The
fusion peptide may also assist in creating the stalk by displacing water
from the lipid-water interface, thus decreasing the repulsive force be-
tween the two fusing membranes (Tamm and Han 2000). Fusion pep-
tides may also function in fusion pore opening. In support of this possi-
bility is the observation that an HA mutant in which Gly1 was changed
to serine mediates extensive lipid, but not content mixing (Qiao et al.
1999). Furthermore, defects in syncytium formation and infectivity were
observed for HIV Env harboring the mutation V2E in its fusion peptide
(Freed et al. 1992). Biophysical studies comparing a synthetic fusion
peptide harboring this mutation with the wild-type peptide suggested a
requirement for fusion peptide aggregation in the creation of the HIV
fusion pore (Kliger et al. 1997; Pereira et al. 1995).

6.2
The Transmembrane Domain

Studies with chimeric fusion proteins have suggested that the transmem-
brane domains of some viral fusion proteins do not require a specific se-
quence to support fusion (Armstrong et al. 2000 and references therein).
In contrast, studies with glycosylphosphatidylinositol (GPI)-anchored
fusion proteins have demonstrated that there is a strict requirement for
a proteinaceous membrane anchor for fusion proteins to efficiently me-
diate the transition from hemifusion to full fusion (Kemble et al. 1994;
Melikyan et al. 1997a; Tong and Compans 2000). There also appears to
be a minimum length for the fusion protein transmembrane domain to
be able to support this transition (Armstrong et al. 2000; West et al.
2001). Therefore, it has been suggested that fusion protein transmem-
brane domains must span both leaflets of the viral bilayer to mediate fu-
sion pore opening (Armstrong et al. 2000).
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The transmembrane domains of some fusion proteins appear to have
specific amino acid requirements for fusion function. For example, a
conserved positively charged residue in the middle of the transmem-
brane domains of certain retroviral Envs appears to be important for the
ability to mediate fusion and infection (Einfeld and Hunter 1994; Owens
et al. 1994; Pietschmann et al. 2000; West et al. 2001). Two glycine resi-
dues in the transmembrane domain of VSV-G appear to be important
for the transition from hemifusion to full fusion (Cleverley and Lenard
1998). Studies using a synthetic peptide corresponding to the mutant
VSV-G transmembrane domain (Dennison et al. 2002) suggested that
the VSV-G transmembrane domain lowers the energy barrier for fusion
and stabilizes the transient fusion pore, thereby promoting its conver-
sion to a stable fusion pore. Two glycines may allow the VSV-G trans-
membrane domain to adopt alternative conformations under different
conditions, and such flexibility may be important for function. The
transmembrane domain of HA from the Japan (Melikyan et al. 2000b),
but not the X:31 (Armstrong et al. 2000), strain of influenza appears to
require a glycine near the middle. An ability to adopt alternative confor-
mations was also invoked to explain the requirement for a proline near
the middle of the transmembrane domain of the murine leukemia virus
(MLV) Env glycoprotein (Taylor and Sanders 1999).

The observations that mutations in fusion peptides or transmem-
brane domains (Armstrong et al. 2000; Baker et al. 1999; Tamm et al.
2002) can impair the ability to mediate full fusion (Fig. 3, Step 6) have
suggested that both of these apolar domains function in the transition
from hemifusion to full fusion. Initially, the fusion peptide appears to in-
sert only into the outer leaflet of the target membrane (Tamm and Han
2000). It has been proposed that the transmembrane domain and the
fusion peptide, which are close to each other after membrane merger,
may interact to stabilize the fusion pore (Tamm et al. 2002; Zhou et al.
1997). If this is the case, the fusion peptide might span both leaflets of
the fused membrane in its final conformation (Tamm et al. 2002).

6.3
The Juxtamembrane Region of the Ectodomain

Several lines of evidence suggest that ectodomain sequences that lie just
before the transmembrane domains of certain viral fusion proteins may
be important for fusion. These sequences tend to have a high proportion
of tryptophans or other aromatic residues and are predicted to partition
into the interfacial regions of membranes (Suarez et al. 2000). Indeed,
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synthetic peptides containing juxtamembrane ectodomain sequences
from HIV Env and Ebola GP partition into the interfacial region of tar-
get membranes (Saez-Cirion et al. 2003; Saez-Cirion et al. 2002; Schibli
et al. 2001; Suarez et al. 2000). Mutation of three tryptophans within this
region of HIV gp41 abrogated infection (Salzwedel et al. 1999), appar-
ently by inhibiting fusion pore enlargement (Munoz-Barroso et al.
1999). Extending the HIV gp41 C-terminal heptad repeat peptide to in-
clude the tryptophan-rich juxtamembrane ectodomain sequence ap-
peared to increase the potency of the peptide as an inhibitor of fusion
(Kliger et al. 2001). It was suggested that the extended heptad repeat
peptide was more potent because it could bind to two sites on HIV Env
(the N-terminal coiled-coil and a second, as yet unidentified site) (Kliger
et al. 2001). A likely effect of these peptides on late stages of fusion is to
prevent formation of a required structure in Env that provides addition-
al membrane destabilization. In this manner, partitioning of juxtamem-
brane sequences into the interfacial region of membranes may promote
the transition from a stalk intermediate to a fusion pore (see Sect. 5).

6.4
The Cytoplasmic Tail

A specific cytoplasmic tail sequence does not appear to be essential, but
it can modulate late stages of fusion. The cytoplasmic tail has been
shown to influence the transition from hemifusion to full fusion (Sakai
et al. 2002) or fusion pore enlargement (Dutch and Lamb 2001; Kozerski
et al. 2000) in some viruses. The mechanism by which cytoplasmic tails
may influence these later stages of fusion is not known. Some studies us-
ing synthetic peptides have suggested a direct interaction between the
cytoplasmic tail and the viral membrane (Chen et al. 2001b; Fujii et
al. 1992; Gawrisch et al. 1993; Haffar et al. 1991; Kliger and Shai 1997).
Others have shown that the cytoplasmic tail can influence the structure
of the ectodomain of the fusion protein (Aguilar et al. 2003; Edwards et
al. 2002).

The ability of the cytoplasmic tail to affect ectodomain structure is
most clearly manifested for those viral fusion proteins that harbor
fusion-suppressing sequences. These sequences have been found in the
fusion proteins of MLV (Ragheb and Anderson 1994), other type C
retroviruses (Bobkova et al. 2002), some lentiviruses (Kim et al. 2003;
Luciw et al. 1998), and a paramyxovirus F protein (Tong et al. 2002). The
cytoplasmic tail of MLV Env is cleaved during virus budding (Schultz
and Rein 1985). MLV Envs harboring uncleaved cytoplasmic tails do not
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induce fusion (Yang and Compans 1996). Although viruses lacking
fusion-suppressing sequences display increased cell-cell fusion, they are
more susceptible to neutralizing antibodies (Januszeski et al. 1997; Li et
al. 2001; Rein et al. 1994; Yang and Compans 1996) and are impaired in
their ability to sustain multiple rounds of infection (Cathomen et al.
1998; Freed and Martin 1996; Piller et al. 2000).

Acylation of cytoplasmic tails can also affect fusion, apparently at a
late stage. For example, a mutant HA from the Japan strain of influenza
in which three (normally palmitoylated) cysteine residues were mutated
appeared to fuse normally when monitored by dye redistribution assays
(Melikyan et al. 1997b). However, electrophysiological measurements re-
vealed that fusion pores formed by the mutant HA did not flicker like
those formed by wt-HA (Melikyan et al. 1997b). Similar mutations in
HA from the A/USSR/77 (H1N1) and A/FPV/Rostock/34 (H7N1) influ-
enza subtypes were shown, respectively, to inhibit syncytia formation
(Fischer et al. 1998) and the transition from hemifusion to full fusion
(Sakai et al. 2002). Palmitoylation of HIV Env was also shown to be im-
portant for Env incorporation into virions and for infectivity (Rousso et
al. 2000). Thus acylation of cytoplasmic tails appears to have multiple
effects on viral fusion reactions, the details of which are not completely
understood.

7
Rafts in Viral Membrane Fusion

Lipid rafts are plasma membrane microdomains that are enriched in
cholesterol and glycosphingolipids with saturated acyl chains. They are
organizational platforms for a variety of cellular functions including
sorting of membrane proteins and signaling (Brown and London 2000).
Although there is growing evidence that certain viruses employ rafts, or
raftlike membrane microdomains, during virus assembly (Suomalainen
2002), the question of whether these structures are required at the site of
fusion in the target cell is less clear. Here, we consider the role of rafts in
the fusion of two enveloped viruses, SFVand HIV. It is important to con-
sider whether cholesterol and/or sphingolipids are required for fusion
because they are found in lipid rafts, or if they serve some other pur-
pose. For example, cholesterol may interact directly with the fusion pro-
tein, thereby facilitating its insertion into the target membrane. Alterna-
tively, a need for cholesterol and sphingolipids could reflect an ability of
raft structures to concentrate viral receptors. A third possibility is that
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the cholesterol imparts the membrane fluidity (or other biophysical
properties) needed to lower the energy barrier for fusion.

SFV requires cholesterol and sphingolipids in the target membrane
for fusion. These moieties enable the SFV spike protein to undergo con-
formational changes and bind to the target membrane (Ahn et al. 2002;
Kielian et al. 2000). In a recent study, it was shown that after hydropho-
bic association with target bilayers, the SFV glycoprotein ectodomain as-
sociates with membrane structures with properties similar to rafts.
However, careful studies using liposomes prepared with specific choles-
terol and sphingolipid analogs demonstrated that the cholesterol and
sphingolipid requirements in the target membrane did not correlate with
their ability to form lipid rafts (Ahn et al. 2002). A related conclusion
was drawn based on the fusion activities of both SFV and Sindbis virus
with liposomes (Waarts et al. 2002). For both viruses, the requirement
for cholesterol and sphingolipids in the target membrane appears to be
for insertion of the fusion peptide (Vashishtha et al. 1998).

In the case of HIV, several studies have suggested a need for raftlike
membrane microdomains for virus entry (Kozak et al. 2002; Popik et al.
2002). Depleting plasma membrane cholesterol from target cells resulted
in reduced levels of virus infectivity or cell-cell fusion. Other studies
have concluded that rafts are not necessary for HIV entry (Percherancier
et al. 2003; Viard et al. 2002). In one study, depleting cholesterol from
cells that express low levels of virus receptors inhibited HIV Env-medi-
ated cell-cell fusion, but depleting cholesterol from cells that express
high levels of virus receptors did not (Viard et al. 2002). Therefore, it
was concluded that rafts per se are not needed for fusion. Rather, the
presence of raftlike structures in the plasma membrane may concentrate
virus receptors. Previous work has shown that a critical density of HIV
receptors is required for fusion and infection (Reeves et al. 2002). Clear-
ly more work is needed to clarify the role of rafts in virus-cell fusion
and entry.

8
Inhibitors of Viral Fusion

It has recently become apparent, largely because of the success of T-20
in the inhibition of HIV infection in patients (Jiang et al. 2002; Kilby et
al. 1998), that fusion is a good target for antiviral intervention. This was
originally conceptualized because fusion is an essential early step in the
virus infectious cycle, it happens in an exoplasmic space, and strategies
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can be designed to inhibit fusion without interfering with host cell pro-
teins. Some fusion inhibitors function by inhibiting six-helix bundle for-
mation. Others function by preventing earlier conformational changes
in viral fusion proteins.

8.1
Inhibition of Helix Bundle Formation

The peptide T-20 (also known as Fuzeon) corresponds to the C-termi-
nal helix of HIV Env (Fig. 3, green). T-20 works by preventing six-helix
bundle formation. T-20 is a potent inhibitor of infections in tissue cul-
ture. Peptides corresponding to equivalent regions of other retroviruses
as well as several paramyxoviruses function similarly (Earp et al. 2003;
Russell et al. 2001). Notably, all of the viruses that have been shown to
be highly susceptible to “C-helix” peptide inhibitors function at neutral
pH, at least up to the lipid interacting stage of virus-cell fusion (Earp et
al. 2003). Peptides corresponding to the N-terminal helices of HIV Env
and the SV5 F protein also inhibit fusion, although with lower potency
(Lu et al. 1995; Russell et al. 2001). The mechanism of inhibition by
N-terminal peptides is still under consideration (He et al. 2003). In the
case of the SV5 F, the N-peptide appears to target an earlier intermedi-
ate than the C-peptide (Russell et al. 2001). Other strategies are being
considered to stabilize the prehairpin intermediate (Fig. 3, Step 1) and
thereby prevent six-helix bundle formation. One strategy is the devel-
opment of antibodies that recognize the prehairpin intermediate
(Golding et al. 2002). Another, exemplified in three studies, is the devel-
opment of small molecules that prevent six-helix bundle formation
(Debnath et al. 1999; Eckert et al. 1999; Ferrer et al. 1999). All three
studies targeted a hydrophobic pocket in the groove of the central
coiled-coil of HIV gp41 that is important for interaction with the C-ter-
minal helix in the post-fusion form. In the first approach, two organic
compounds were identified from a screening effort conducted in
conjunction with molecular docking, a method to identify small mole-
cules that fit in a target site (Debnath et al. 1999). The second approach
replaced three residues of the C-terminal helix that bind to the hydro-
phobic pocket with organic moieties, generated by combinatorial chem-
istry (Ferrer et al. 1999). The third approach used a mirror image phage
display library to identify small, d-amino acid containing peptides that
bind to the pocket (Eckert et al. 1999). Although none of the small mo-
lecules identified to date is as potent as T-20, the precedent has been set
for attaining this goal.
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8.2
Inhibition of Other Steps in Fusion

An effort to block the fusion activity of influenza was based on the idea
that maintaining HA in its native metastable state should prevent fusion
and infection. The first trial targeted a site in X:31 HA that includes part
of the fusion peptide. With the use of an antibody-based assay to
monitor fusion peptide exposure, a compound, tert-butylhydroquinone
(TBHQ), that prevents the first stages of the HA conformational change
and inhibits infectivity was discovered (Bodian et al. 1993). A follow-up
study, targeting a site near the B-loop in HA, yielded additional in-
hibitors. Whereas some functioned like TBHQ, a second class was iden-
tified that appeared to push HA to an inactive state (Hoffman et al.
1997). A random screen against an H1 influenza virus identified an in-
hibitor that appears to function similarly to TBHQ. In the latter case,
the binding site for the inhibitor was mapped to the vicinity of the fu-
sion peptide (Cianci et al. 1999). Other small molecules that inhibit con-
formational changes in HA have been identified (Staschke et al. 1998).
To date, none of the HA inhibitors has blocked all HA subtypes and
none has an IC50 value in the submicromolar range. It is not yet clear
whether the latter limitation represents a fundamental difficulty in in-
hibiting viral fusion proteins that function at low pH.

In addition to the small molecule approaches described above, anti-
bodies that prevent fusion-inducing changes in viral glycoproteins have
been described. The first example was an antibody that prevents low-
pH-induced fusion of West Nile virus with model liposomes (Gollins
and Porterfield 1986). Recently, a Fab fragment that binds to two HA1
monomers was shown to prevent an early conformational change in in-
fluenza HA (Barbey-Martin et al. 2002), separation of the globular head
domains (Fig. 2B). As described above, antibodies have been developed
that likely block six-helix bundle formation in the case of HIV Env
(Golding et al. 2002).

9
Perspectives

The goal of this review was to give the reader an appreciation for the di-
versity of viral fusion mechanisms while recognizing their common un-
derlying principles. We also summarized what is known about the lipid
dynamics and lipid structures involved in fusion, and we also briefly
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overviewed recent developments in targeting viral fusion as an antiviral
strategy. There is clearly much more we need to know about viral fusion
proteins, viral fusion reactions, and the design of antifusion agents.

We end this review by enumerating some pressing issues and ques-
tions that remain about viral fusion. A major goal is to determine high-
resolution structures for the complete ectodomains of the metastable
trimers of class I viral fusion proteins in addition to the influenza HA.
Structures of a complete paramyxovirus F and a complete retroviral Env
ectodomain will be highly informative because we currently lack a de-
tailed molecular description of how a receptor activates any viral fusion
protein at neutral pH. A second goal will be to further delineate the
mechanisms of class II viral fusion proteins. Do the transitions to their
recently described low pH forms (Bressanelli et al. 2004; Gibbons et al.
2004; Modis et al. 2004) mediate hemifusion or fusion pore opening?
What about the mechanisms of the as yet unclassified viral fusion pro-
teins? These include viruses such as rhabdoviruses (e.g., VSV) that need
only one protein to promote fusion, as well as more complicated viruses
such as herpesviruses and poxviruses that require multiple viral glyco-
proteins.

The ensuing years should also bring a more complete understanding
of how viral fusion proteins interact with target membrane bilayers.
Class II fusion proteins insert their internal fusion peptides into target
membranes as loops (Bressanelli et al. 2004; Gibbons et al. 2004; Modis
et al. 2004). It has been predicted that the internal fusion proteins of the
class I fusion proteins from Ebola and avian retroviruses form disulfide-
bonded loop structures (Weisenhorn et al. 1998), and mutagenesis work
has supported this prediction (Delos et al. 2000; Delos and White 2000;
Jeffers et al. 2002). It remains to be seen, from high resolution structural
studies, whether all internal fusion peptides, be they from class I, class
II, or other classes of fusion proteins, interact with target bilayers as
(disulfide bond) stabilized loops. Finally, we expect that there will be
major developments in furthering the concept of targeting fusion as a
weapon against pathogenic enveloped viruses. Particular emphasis will
likely be on the development of small molecule inhibitors through the
use of combinatorial chemistry in conjunction with high-throughput
screens. It will be interesting to learn whether small molecule fusion in-
hibitors can be identified that block the entry of viruses that fuse in en-
dosomes in response to low pH. This is a challenge for low-pH-activated
class I fusion proteins such as influenza HA as well as for all known class
II fusion proteins. Stay tuned. There are likely to be exciting develop-

52 L.J. Earp et al.



ments in our understanding of viral fusion mechanisms as well as in the
development of antifusion antivirals in the years ahead.
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