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The shape of a weightless spinning liquid droplet is governed by the balance between the surface

tension and centrifugal forces. The axisymmetric shape for slow rotation becomes unstable to a non-

axisymmetric distortion above a critical angular velocity, beyond which the droplet progresses through a

series of 2-lobed shapes. Theory predicts the existence of a family of 3- and 4-lobed equilibrium shapes at

higher angular velocity. We investigate the formation of a triangular-shaped magnetically levitated water

droplet, driven to rotate by the Lorentz force on an ionic current within the droplet. We also study

equatorial traveling waves which give the droplet threefold, fourfold, and fivefold symmetry.
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In experiments published in 1863, Plateau devised a way

to study the behavior of liquids in the absence of gravity by

suspending olive oil in a density-matched water-alcohol

mixture [1]. The shape of a spinning oil droplet, driven by a

rotating shaft, became flattened at the poles as the droplet

gained speed, while the equatorial diameter increased.

Beyond a critical angular velocity, the droplet evolved

into a spinning nonaxisymmetric shape resembling a tri-

axial ellipsoid, which developed into a two-lobed shape

with increasing speed. Plateau was inspired by the idea that

the droplet’s surface tension could model the influence of

self-gravitation on spinning astronomical bodies [2]. It was

later realized that the droplet model could provide insights

into the behavior of atomic nuclei [2,3].

Although the simplicity of Plateau’s technique for study-

ing weightless fluids on Earth is attractive, comparison of

the results with theory is complicated by shape deforma-

tions due to the viscous drag of the surrounding fluid. Here

we avoid the problem of drag by using a 16.5 T vertical-

bore, superconducting magnet to diamagnetically levitate

droplets of water [4–8], with volumes up to 6 ml, in air. The

droplet is spherical at rest; the measured polar (vertical

axis) to equatorial diameter ratio is 1:00� 0:02. Beaugnon
et al. have already demonstrated the usefulness of mag-

netic levitation for studying the dynamics of weightless

droplets [6]. We have combined magnetic levitation with a

‘‘liquid electric motor’’ spinning technique, to observe the

following new features in the dynamics of a spinning

droplet: (i) a triangular rotating shape closely related to

3-lobed equilibrium shapes considered theoretically,

(ii) large-amplitude waves with up to 5 nodes, traveling

around the droplet’s equator. We pass an ionic current I
through the droplet by means of two thin, parallel, gold

wire electrodes spaced d ¼ 4:0 mm apart [9]. One wire is

aligned with the bore axis and the droplet center, so that the

current flows perpendicular to the magnetic field (B) vec-
tor. The resulting Lorentz force generates a torque � ¼
BId2=2 on the droplet, causing it to rotate around the

vertical axis through the droplet’s center (Fig. 1 and

Fig. S1 [9]).

Brown and Scriven investigated the equilibrium shapes

of a rigidly rotating droplet theoretically using finite ele-

ment analysis, grouping the shapes into ‘‘families’’ accord-

ing to their symmetry [10]. The 2-lobed shape family,

which includes the ellipsoidlike shapes observed in

Plateau’s experiments and 2-lobed ‘‘peanut’’ shapes ob-

served in orbiting spacecraft [11,12] and in rolling ‘‘liquid

marbles’’ [13], branches from the axisymmetric family

when the dimensionless angular velocity �? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��2R3=8�
p

reaches �?
II ¼ 0:56. Here �, �, and � are

the angular velocity, density, and surface tension of the

droplet, respectively, and R is the radius of the spherical

droplet at rest [10,14]. A 3-lobed and a 4-lobed family

branches from the axisymmetric shapes at�?
III ¼ 0:71 and

�?
IV ¼ 0:75, respectively, but Brown and Scriven con-

cluded that these shapes should be unstable to small shape

perturbations and thus be unobservable. However, experi-

ments on acoustically levitated liquids showed that a

�1 mm-diameter droplet with a 3-lobed shape could be
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FIG. 1. Schematic of a spinning, levitating droplet inside the

magnet bore viewed from (a) side and (b) below magnet (camera

view). The electrode positions, electric current, and Lorentz

force are indicated.
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stabilized if forced into large periodic oscillation [15], but

the droplet dynamics were far from equilibrium.

Our technique generates a surface wave that travels

around the droplet’s equator in the opposite direction to

the spin. By exciting a small-amplitude traveling wave

with 3 nodes, we are able to suppress the degeneration of

the triangular equilibrium shape (a member of the 3-lobed

shape family) into the 2-lobed shape. This is similar to the

stabilization technique used in Ref. [15], but in our method

the amplitude of the surface wave is small compared with

the droplet size, so that the equilibrium shape is observed

clearly.

We first describe observations of a three-lobed equilib-

rium shape in a droplet with volume V ¼ 1:5 ml (2R ¼
14 mm) to which a small quantity of surfactant is added,

reducing � from 74 to 34� 2 mJm�2. We increase �
gradually by increasing I at a constant rate from I ¼ 0 to

I ¼ 600 �A in 1 min and then hold I steady to maintain a

constant �. The spinning droplet is axisymmetric, bulging

at the equator and flattened at the poles. As it picks up

speed, the equatorial radius r increases. Figure S2 [9]

shows the variation of r and � with time t and IðtÞ.
When � exceeds �2 revolutions per second (rps), the

equatorial outline becomes slightly elliptical [Fig. 2(b)].

This shape does not rotate with the flow of the liquid but

remains fixed relative to the position of the off-axis elec-

trode. Then, 20 s later, a 2-node oscillation develops,

traveling azimuthally around the elliptical outline at 2:5�

0:1 rps (movie 1 [9]). However, less than 10 s after the

current reaches 600 �A the equatorial outline of the drop-

let develops the threefold symmetry of an equilateral tri-

angle. This outline remains fixed relative to the position of

the off-axis electrode [Fig. 2(c) and movie 2 [9] ].

Approximately 10 s later, a 3-node oscillation develops,

moving around the equator, over the surface of the static

shape, in the same direction as the flow of the liquid

(movie 3 [9]). The oscillation amplitude increases during

the next few seconds, while the amplitude of the lobes of

the static shape on which it is superposed dies away. Once

the static shape has decayed, approximately 5 s after the

onset of the oscillation, the droplet has a regular triangular

outline which rotates at �=2� ¼ 3:33� 0:05 rps [see

Fig. 2 (1)–(6) and movie 4 [9] ]. Close to the axial electrode

the fluid is rotating faster, at�5 rps, as is evident from the

vortex of small bubbles liberated by hydrolysis, and there

is additional vorticity generated at the off-axis electrode.

Away from the electrodes, however, the frequency with

which tracer particles orbiting at a radius �0:3R from the

axis perform a complete revolution around the droplet

agrees well with the angular velocity of the droplet outline

(Fig. S2 [9]). Thus we can describe the rotation of the

droplet as rigid body–like, in the sense that the fluid has a

constant ‘‘background’’ vorticity � ¼ 2� (like that of rigid

rotation) plus some localized vorticity generated by the

electrodes.

Immediately after the onset of the rotating triangular

shape we observe a decrease in the rotation rate of the fluid

in the axial vortex, indicating a transfer of angular mo-

mentum from the vortex to the rest of the fluid (Fig. S2 [9]).

Similar behavior is observed at the onset of the 2-node

oscillation during spin-up. The rotating triangular shape

remains stable for �100 revolutions before the rotation

becomes eccentric (camlike).

The equatorial shape of the droplet following the onset

of the triangular shapes is well approximated by

rð�; tÞ ¼ R½1þ aþ bW cosðm�Þ þ bR cosðmð���tÞÞ�;

(1)

representing two superposed oscillations with the same

wave number (m ¼ 3), similar maximum amplitudes,

bWðmaxÞ � 0:3 and bRðmaxÞ � 0:3, but differing frequen-
cies. Here � is the azimuthal angle, increasing clockwise

in Fig. 2. The bW term represents the static triangular shape

and the bR term represents the clockwise-rotating triangu-

lar rigid-body-rotation (RBR) shape. [Equation (1) also

describes the static elliptical shape with superposed 2-

node oscillation, observed during spin-up, if we set m ¼
2.] In the frame of the rotating droplet, the static shapes are

revealed to be azimuthally traveling waves, with frequency

! ¼ m�, excited by the action of the off-axis electrode

moving relative to the fluid. The droplet outline in the

rotating frame is given by
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FIG. 2 (color online). A levitating 1.5 ml droplet. (a) Not

rotating. (b) Liquid rotating at �=2�� 2:0 rps: the droplet’s

equator has an elliptical outline. (c) 2.5 rps: the equator has the

symmetry of an equilateral triangle. In (b),(c) the outline is not

rotating with the fluid. Crosses show the electrode positions. (1)–

(6) Consecutive movie frames, 40 ms apart; here, the triangular

outline is rotating with the fluid in the arrow’s direction at

�=2� ¼ 3:33 rps. White circles follow one corner.

PRL 101, 234501 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

5 DECEMBER 2008

234501-2



rð�0; tÞ ¼ R½1þ aþ bW cosðmð�0 þ�tÞÞ

þ bR cosðm�0Þ�; (2)

where �0 ¼ ���t. Comparison of the bW term in

Eqs. (1) and (2) demonstrates that the static shapes ob-

served in the laboratory reference frame are observed as

traveling waves in the rotating frame. We shall always use

the phrase ‘‘static shape’’ to mean a shape that does not

rotate in the laboratory reference frame (i.e., not rotating in

the video images), and similarly for ‘‘rotating shape.’’ We

emphasize that the static shape is generated from a surface

wave moving relative to the fluid.

As the wave amplitude bW ! 0, the kinematics tend to

that of RBR and we can compare our results with theory

developed for equilibrium RBR shapes. Theory predicts a

bifurcation point where 3-lobed equilibrium shapes may

develop from the axisymmetric equilibrium shape at

�?
III ¼ 0:71 [10]. The triangular rotating shape appears at

�? ¼ 0:75� 0:05, in good agreement with theory.

Although bW is small, so that the kinematics are close to

RBR, it does not vanish completely (bW � 0:1bR); the

influence of the traveling wave is just discernible in

Fig. 2 as a small periodic oscillation in the amplitude of

the lobes of the rotating shape. Since the traveling wave is

‘‘attached’’ to the off-axis electrode, a wave mode with m
nodes is excited only at a particular angular velocity � ¼
!=m. In this 1.5 ml droplet, the condition to excite m ¼ 3
waves coincides with the theoretically predicted 3-lobed

bifurcation point �?
III � 0:71. We observe the stable

3-lobed RBR shape only for a limited range of R and �.
This suggests that, while theory shows that the equilibrium

of 3-lobed RBR should be unstable to 2-lobed shapes, the

3-lobed RBR shape is stabilized by interaction with this

small-amplitude m ¼ 3 traveling wave. In acoustic levita-

tion experiments on smaller (10 �l) droplets, Ohsaka and
Trinh [15] obtained stabilization of a 3-lobed shape by

exciting the axisymmetric l ¼ 2, m ¼ 0 spherical har-

monic, but due to the relatively large amplitude of this

oscillation, the kinematics in their experiments are far from

RBR. The 3-lobed and 4-lobed rotating shapes have been

observed in spinning droplets suspended in density-

matched liquids, but in this case the shapes are deformed

considerably by viscous drag [16]. Our measured critical

angular velocity values for 3-lobed bifurcation are summa-

rized in Table I, along with corresponding data for the

2-lobed shape, for comparison.

We now describe the excitation of azimuthally traveling

waves with up to 5 nodes in 1.5–6.0 ml droplets without

surfactant added. We detail the behavior of a 3 ml (2R ¼
18 mm) droplet as a representative example. We increase I
to 600 �A in 1 min, then by increasing I slowly, at

20 �A=min, from this point, we can observe the 2-node

oscillation evolve over approximately 2 min into a (nearly)

rigidly rotating shape resembling a triaxial ellipsoid (mov-

ies (6)–(8) [9]) with major axis perpendicular to the rota-

tion axis and �=2� ¼ 2:6� 0:1 rps (�? ¼ 0:58� 0:03).
When I reaches 660 �A the amplitude of the 2-lobed

rotating shape decays and the droplet takes on the threefold

symmetry of an equilateral triangle [Fig. 3(a) and movie 9

[9] ]. When I is kept constant at this point, the triangular

static shape persists for over 3 min (�500 revolutions)

before an instability to strongly eccentric rotation causes

the drop to break free of the electrodes. However, when we

increase I to 680 �A, the outline spontaneously develops a
fourfold (square-shaped) symmetry; this shape is also fixed

relative to the electrodes [Fig. 3(b) and movie 10 [9] ]. The

square shape persists for approximately 10 s (�30 revo-

lutions), until the outline of the drop gains yet another

corner, taking on the fivefold symmetry of a static regular

pentagon [Fig. 3(c) and movie 11 [9] ]. Approximately 10 s

later, the shape transforms into a 2-lobed spinning ‘‘pea-

nut’’ in under 2 s [Fig. 3(d) and movie 12 [9] ]. For this

droplet, the triangular, square, and pentagonal shapes ap-

pear at �m=2� ¼ 2:7� 0:1, 2:9� 0:1, and 3:1� 0:2 rps,
respectively (Fig. S3 [9]). These shapes are azimuthally

traveling waves in the reference frame of the rotating

TABLE I. Measured and theoretical angular velocities at 2-

and 3-lobed bifurcation point for 1.5 ml droplet.

Shape Measured Theory

Family, n �=2� (rps) �?
n �?

n

2-lobed 2:5� 0:1 0:57� 0:05 0.56

3-lobed 3:33� 0:05 0:75� 0:05 0.71

FIG. 3 (color online). (a)–(c) m ¼ 3, 4, and 5-node waves

traveling around the equator of a levitating 3 ml droplet, rotating

at �=2�� 3 rps. The wave nodes remain fixed in the camera’s

view since the wave’s angular velocity !=m is equal to � but

opposite in direction. Insets: polar plots of the amplitude of the

equatorial bulges �rð�Þ ¼ rð�Þ � R � R½aþ b cosðm�Þ�,
where rð�Þ is the equatorial radius and � is the azimuthal angle.

Each plot’s outer radius represents 2 mm amplitude.

(d) Clockwise rotating 2-lobed ‘‘peanut’’ shape, rotating at

�=2� ¼ 1:70� 0:04 rps; major axis length 3:0� 0:2 cm. The

graph shows measured values of � at the onset of the m ¼ 3
wave as a function of droplet volume V. Solid line: wave angular
velocity !=m of m ¼ 3, l ¼ 3 normal (Rayleigh) mode.
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droplet, with m ¼ 3, 4, 5. The equatorial droplet radius is
well approximated by Eq. (1) with bR ¼ 0; measured

values of a and b ¼ bW are given in Fig. 3.

The graph in Fig. 3 shows the measured angular ve-

locities at the onset of the m ¼ 3 wave, �3, for seven

droplets with volume V ¼ 1:5–6:0 ml. The data are well

represented by �m ¼ !0=m, where !0 ¼ ½lðl� 1Þ�

ðlþ 2Þ�=�R3�1=2 is the frequency of the normal mode

(Rayleigh) oscillation [17] and l ¼ jmj ¼ 3. Theory pre-

dicts!ðm; lÞ ¼ !0ðlÞ þ ðm=lÞ� to first order in� [18,19],

giving �m ¼ !0=ðm� 1Þ for � � ! (since l ¼ jmj), in
contrast to our result. Since� cannot be considered a small

perturbation in our experiments [the equilibrium droplet

shape is far from the spherical shape assumed in the Oð�Þ
theory] it is not surprising that an Oð�Þ approximation

does not fit our data. Nevertheless, it is interesting that the

data suggest ! is unaffected by the droplet’s spin in these

experiments. Experimentally determined�4 and�5 are in

reasonable agreement with !0=m for m ¼ 4 and 5 [9],

although the agreement is not as clear as for m ¼ 3. The
frequencies of the l ¼ 2, m ¼ �2, �1, 0 spherical har-

monics at higher rotation rates have been investigated

using numerical methods [18], but the calculations for

the jmj ¼ 3 modes have yet to be attempted. A nonlinear

theory of large-amplitude traveling waves, on the scale

observed in our experiments, has been developed for non-

rotating droplets [20] but the case of rapid rotation has not

been studied to our knowledge. Previously, traveling waves

withm ¼ 2 and the related tesseral oscillation (l ¼ 2,m ¼
�1) have been observed using acoustic levitation [21,22].

The experiments presented here represent the first obser-

vation of jmj> 2 traveling waves in a weightless liquid

droplet, to our knowledge.

The behavior of a liquid droplet has proven to be an

effective way to gain an intuitive understanding of the

behavior of objects on much larger (astronomical) and

smaller (nuclear) scales. The theoretical stability of the

shapes of spinning, self-gravitating astronomical objects

follows a similar pattern to that of spinning droplets [23]

and recent studies of the light curves of Kuiper-belt objects

have identified several rapidly spinning bodies that are

likely to have a triaxial shape due to their large angular

momentum [24]. The event horizon of the black hole has

been described as a membrane endowed with surface

tension [25]. It has been proposed [26,27] that in a higher

dimensional space-time the horizon may become unstable

to lower-symmetry shapes analogous to the nonaxisym-

metric droplet shapes we observe. The liquid droplet model

of atomic nuclei and the shape instabilities of a spinning

droplet has recently stimulated investigation of the Jacobi

shape transition in rapidly rotating atomic nuclei, for which

there is some experimental evidence ([28] and references

therein). We suggest that the experimental results pre-

sented here could stimulate further insights.
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