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ABSTRACT

A product or system development process is a kind of complex system, arguably even more
complex than the system it produces. Yet, the models and tools used by systems engineers
and program managers to plan and manage technical work—such as process flowcharts, Gantt
charts, work breakdown structures, and text-rendered procedures—are less sophisticated
and capable than the ones used to design the product system. When used, the various process
models are often challenged to incorporate and maintain synchronized program informa-
tion—e.g., they may be created by different subgroups in a program and based on different
assumptions, and they may diverge as a program proceeds. Recently, architecture frameworks
(AFs) have been used to help manage the complexity in engineered systems. An AF provides
a portfolio of views of a complex system, each of which describes it partially and in a format
meaningful to its users and their particular needs. This paper proposes the application of AF
concepts to the management of the work done to develop a complex system product. The
pieces of work and their relationships constitute a complex process. A portfolio of integrated
and synchronized views of a single process model would seem to be preferable to the current
state—a number of disparate and uncoordinated management models. This paper introduces
a new application of AFs to development processes and suggests this area as one for further
research and development in the systems engineering community. © 2008 Wiley Periodicals,
Inc. Syst Eng 12: 69-90, 2009
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1. INTRODUCTION

John Godfrey Saxe’s famous 19th century poem, “The
Blind Men and the Elephant,” retells an ancient Asian
story in which six blind men touch different parts of an
elephant and proceed to argue about what the animal is
like [Linton, 1878: 150—152]. The man who touched
the tail thinks it is like a rope; the one who touched the
tusk thinks it is like a spear; the man who touched a leg
thinks it is like a tree; etc. The story has gained popu-
larity in our contemporary age of complex systems,
which are impossible to describe and understand com-
pletely from a single point of view.

The processes for developing complex systems are
like this elephant. They entail thousands of activities,
done by hundreds or even thousands of people, each
producing results that enable other activities to occur.
Because of their size, complexity, and uniqueness, large
projects (programs) and their processes are difficult to
manage. In attempts to manage complexity, project and
program managers and systems engineers commonly
use a variety of process models to plan and coordinate
work, including process flowcharts, Gantt charts, work
breakdown structures (WBSs), and formal procedures
[e.g., PMI, 2004; Meredith and Mantel, 2006; Pinto,
2007]. However, these models present several difficul-
ties. For one, they often contain overlapping informa-
tion, meaning that a project using more than one of these
models (as most projects do) is challenged to maintain
consistency and synchronization among them. For ex-
ample, a program might have one (evolving) list of
activities in its schedules while its risk management
plans contain somewhat different lists. While these lists
might begin in tandem, without focused care they might
diverge over the course of the program. Second, each
model incorporates only a subset of the information
about a project, omitting other information. For exam-
ple, while the schedule would probably indicate the
duration of activities, it probably would not note their
contributions to reducing specific technical risks, which
might be noted in the risk management plan. Third, in
a large project or program, each model is often created
or maintained by a different person or team, potentially
based on different assumptions. Overall, each model is
an abstraction of reality that provides a perspective on
a project akin to that of a blind man touching an ele-
phant. Hence, some participants may begin to ignore
such models as anachronistic once a project gets under-
way, basing their decisions on hearsay and intuition
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instead, while others may continue to use the models
for decision support, despite their missing information
and lack of integration.

To improve upon this common situation, some have
advocated a single (virtual) repository for project infor-
mation [Basu, Blanning, and Shtub, 1997; Bond, 1999;
Presley et al., 2001], so that everyone “draws from the
same well.” A single source is conjectured to make
projects more flexible, since there would be just one
place to find information quickly and one place to
record changes to plans. Process models provide one
possibility for organizing a single source of project
information [Browning, Fricke, and Negele, 2006]—
perhaps even the best one [Crowston, 2003]. However,
models that attempt to contain everything about a pro-
ject have been cumbersome to build, maintain, under-
stand, and use. Also, it has been noted that managers
prefer simple models (that they understand and trust) to
more realistic ones [Little, 1970]. Therefore, a new
approach would seem to be needed that could simulta-
neously give managers completeness, integration, and
synchronization on one hand and simplicity and focus
on the other.

It is instructive to consider how this tension has been
addressed in a related context, that of engineering a
complex system. Developers of complex products have
long faced a similar quandary with product design data.
Each designer has their own, discipline-centric model-
ing tools for purposes of designing and evaluating par-
ticular aspects of a complex product (e.g., for an
aircraft: aerodynamics, weight, structure, propulsion,
etc.). Each such tool includes certain design parameters
and conditions while ignoring or making assumptions
about others. Hence, in some complex system engineer-
ing projects, a recent trend has been to consolidate many
of the critical aspects of a design into an integrated set
of models guided by an architecture framework (AF),
wherein the various subsets of information useful for
supporting particular design decisions are organized
into assorted representations or views. Each such view
provides a kind of portal through which the designers
from varied disciplines can interact with a relatively
simple portion of an otherwise rich and sophisticated
model. That is, a view captures a subset of a model’s
attributes and provides a guideline for their presenta-
tion. However, to be useful, these views must align with
various users’ needs for decision support. Meanwhile,
an AF serves to integrate and synchronize the views to
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give a more complete and consistent description of the
“elephant.”

This paper begins to explore how the AF approach
to managing complexity might apply in the different but
related context of models of a project’s process. A
project process (hereinafter, simply “process”) is the set
of related activities that accomplish a project (or pro-
gram). That is, all of the work done on a project is part
of its process (whether formalized or not). Since these
various work segments depend on each other, processes
are often modeled as an activity network. Information
about a process may be organized and conveyed to
different users (planners, managers, workers, etc.)
through different models or views thereof. Better rep-
resentations and views have been singled out in pre-
vious research as a key to improving product
development project management [Browning and
Ramasesh, 2007; Krishnan and Ulrich, 2001] and deci-
sion support systems in general [Basu, Blanning, and
Shtub, 1997].

Specifically, this paper proposes the application of
an AF approach to encourage the development of a
process AF (PAF). An approach based on a PAF may
simultaneously provide both simpler and more com-
plete models for managers. After presenting a back-
ground on AFs and process models and views in the
next two sections, the paper briefly reviews process
model views and attributes based on literature reviews
and case studies. The concluding discussion points
towards how a PAF might be developed.

2. ARCHITECTURE FRAMEWORKS

2.1. Background

The structure and behavior of a complex system are
impossible to understand fully from a single point of
view. Using an example developed by Zachman [1987],
even a relatively simple system like a house is not fully
defined or determined by its blueprints. Additional
views, such as elevations and a bill of materials, are also
needed. The work of designing and building a house is
split up among architects, contractors, draftsmen, sur-
veyors, framers, electricians, plumbers, roofers, ma-
sons, carpenters, etc. There are very few “jacks of all
trades,” and it is often impractical to pursue such a skill
set. When dealing with much more complex systems,
certainly no individual is able to grasp all of the impor-
tant details, nor would such an individual have the time
to do all the work. Therefore, complex system develop-
ment is parsed into tasks undertaken by different groups
who must make harmonious decisions [von Hippel,
1990]. Coordination among such groups becomes more
challenging as their number and interdependencies

grow. Attempting to provide all of the detailed informa-
tion about the system to each of these groups causes
information overload and is often worse than not pro-
viding the information at all (because of the faulty
assumption that communication occurred). Meanwhile,
an alternative approach is to provide each group with
an appropriate subset of information, in a format that
facilitates the accomplishment of their tasks and sup-
ports their decision-making. This approach meshes
with natural intelligence theory, where Minsky [2006]
postulated that the human mind naturally maintains
multiple models of a given system (e.g., physical, so-
cial, emotional, mnemonic, strategic, visual, and tac-
tile) and rapidly switches between them depending on
the current purpose. However, this approach requires
identifying which subsets of information best support
the purposes of each group.

To determine the information needed by various
project participants, an inductive approach involves
examining the models they use. Continuing the exam-
ple of a house, electricians prefer wiring diagrams, with
particular symbols representing outlets, switches, etc.
and a labeling convention for wiring gauges, etc.
Plumbers use pipe routing diagrams with a different set
of symbols and labeling conventions. Contractors keep
a bill of materials and a list of subcontractors. Collect-
ing all such models yields a superset of information that
collectively describes the system. If building a house
requires multiple models, how many models are neces-
sary to aid the perhaps thousands of workers involved
in a much more complex process? An AF serves to
integrate the various models of a complex system into
a single, more complete model with multiple views. The
views collectively represent and integrate the important
attributes of a complex system model, as it is currently
understood. In contrast, a deductive approach would
entail prescribing certain attributes and views as impor-
tant to a system, whether these were currently used and
understood by the various workers or not. Both the
inductive and deductive approaches have advantages,
and both could contribute to the development of an AF.

2.2. Architecture Frameworks

The first so-called AF was the Zachman framework
[Zachman, 1987; Sowa and Zachman, 1992]. While
initially billed as an information system AF, it applies
more broadly to any kind of complex product. Zachman
based his framework on two key ideas:

1. A set of product architectural views is produced
over the course of a project; these views represent
the different perspectives of the different partici-
pants.
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Table I. Example Distinctions among Architectural Views (Adapted from Zachman [1987])

View of a

Building Nature/Purpose (for a Building)

View of an

View of an Aircraft Information System

Generic View

Bubble charts * Basic concepts for building
e Gross sizing, shape, spatial
relationships
s Architect/owner mutual understanding
* Initiate project

Concepts

Scope/objectives

General view

Architect’s drawings e  Final building as seen by the owner Work Breakdown Business model or Owner’s view
« Floor plans, cutaways, pictures Structure (WBS) description
¢ Architect/owner agreement on building
s Establish contract
Architect’s plans e Final building as seen by the designer Engineering design, Iniformation system Designer’s view
o Translation of owner’s view into a drawings, bill of model or deSCTip‘[iOﬂ
product materials (BOM)
¢ Detailed drawings- --16 categorics
* Basis for negotiation with general
contractor
Contractor’s plans e Final building as seen by the builder Manufacturing Technology- Builder’s view

¢ Architect’s plans constrained by laws of
nature and available technology

«  “How to build it” description

+ Directs construction activities

engineering design,
BOM

constrained model or
description

Shop plans s Subcontractor’s design of a part/section
¢ Detailed stand-alone model
®  Specification of what is to be

Assembly and
fabrication drawings

Detailed description

Qut-of-context
view

constructed
s Pattern
(n/a) (n/a) Numerical code Machine language (or Machine
programs object code) language view
Building e Physical building Alreraft Information system Product

2. The same product can be described in different
ways for different purposes, resulting in different
views.

That is, the various participants in a project—plan-
ners, managers, various designers, builders, subcon-
tractors, etc.—each have a different perspective and
require different pieces of information to perform their
tasks. Zachman identified six different descriptions of
a system—e.g., data (what), functional (how), spatial

Table II. Different Architectural Views from Different
Information Systems Functions (Adapted from
Zachman [1987))

if you are; Then you probably think an information
systems architecture is:

A structure chart

Data design

A data flow diagram

A programmer

The database administrator

An analyst
A planner

Some combination of entity relationship
diagrams and/or functional flow diagrams

The communications manager The business logistics infrasiructure and/or the

distributed systems architectire

An operations manager The system architecture

A network administrator The network architecrure

A program support representative Detailed data and program descriptions

(where), personal (who), temporal (when), and pur-
poseful (why). Some of these views are listed in Table
I, starting with the views of a building (along with their
nature and purpose) and proceeding to the analogous
views of an aircraft and an information system. The last
column provides generic names for each of these views.
Since Zachman was most interested in information
systems, he also provided the insightful list in Table II,
which demonstrates the different points of view of
project participants.

As developers of ultra-complex systems, defense
industries became early adopters of Zachman’s ideas.
In the 1990s, his ideas became manifest in the Com-
mand, Control, Communications, Computers, Intelli-
gence, Surveillance, and Reconnaissance (C4ISR)
Architecture Framework [DoD, 1997], which looked at
a broader swath of system types. As its scope expanded
to cover systems of hardware, software, people, and
other systems, the C4ISR AF evolved into the current
U.S. Department of Defense AF (DoDAF) [DoD,
2007].! The DoDAF is used for a variety of system
architectures, where the system is a developed product,
such as an information system, satellite, aircraft, ship,

A computer designer
The president

Machine language

Entity classes, process classes and/or a map
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A similar framework, the Ministry of Defence Architectural Frame-
work (MoDAF), has been developed in the UK [MoD, 2005].
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information describing a complex product—a different
blind man’s view of the elephant. The information in
each view is not mutually exclusive; there is redun-

or combination thereof (“system of systems”). The
DoDAF has grown to include the 29 views shown in
Table III. Each of these views presents a subset of the

Table III. 29 Views of a Product Architecture, According to the DoDAF, Version 1.5 (adapted from DoD [2007])

Refere
View Type nce View General Description
AV-1 Overview and Summary Scope, purpose, intended users, environment depicted, and analytical findings
Owverall Information
AV-2 Integrated Dictionary Architecture data repository with definitions of all terms used in all products
OvV-1 High-Level Operational High-level graphical/textual description of operational concept (high-level
Concept Graphic organizations, missions, geographic configurations, connectivity, ete.)
ov2 Operational Node Operational nodes, connectivity, and information flow
Conneetivity Description
. Operational Information Information exchanged between nodes and the relevant attributes of that exchange
Ov-3 i ; : : £ et .
Exchange Matrix (such as media, quality, quantity, and the level of interoperability required)
OV-4 Organizational Organizational, role, or other relationships among organizations
Relationships Charts
. Operational Activity Capabilities, operational activities, relationships among activities, inputs, and outputs;
Operational OV-3 ) i " e :
Model overlays can show cost. performing nodes, or other pertinent information
OV-6a Operational Rules Model _Onc ?1: the 1hr_cc products used to de;cnbc o;:_cranonal activity (sequence and timing);
identifies business rules that constrain operations
OV-6b Operational State One of the three products used to describe operational activity (sequence and timing);
Transition Description identifies business process responses to events
OV-6¢ Operational Event-Trace One of three products used to describe operational activity (sequence and timing);
Description traces actions in a scenario or sequence of events
OV-7 Logical Data Model Documenratiqn of th_e system data requirements and structural business process rules
of the Operational View
SV-1 S5&S Interface Descriptions | ldentification of systems nodes, services, and their interconnections
Sv.2 S&S Communications Systems nodes, services, and their related communications protocols
Deseriptions
Relationships among and between systems and services; can be designed to show
SV-3 S&S Matrices relationships of interest, e.g., system-type interfaces, planned vs. existing interfaces,
etc.; three matrices: systems-to-systems, services-to-services, and systems-to-services
SV-4 S&S Functionality Functions performed by (a) systems and (b) services and the information flow among
a&hb Descriptions {a) system and (b) service functions
Operational Activity to Mapping of svstem functions back to operational activities
SV-5a Systems Function
Traceability Matrix
Operational Activity to Mapping of svstems back to capabilities or operational activities
SV-3b Systems Traceability
Matrix
Operational Activity to Mapping of services back to capabilities or operational activities
SV-5¢ Services Traceability
Systems and Matrix
Services o ; ) - T =
(S&S) V-6 S&S Data Exchange Provides details of system or service data elements being exchanged between systems
’ Matrices or services and the attributes of that exchange
Sv.7 S&S Performance Performance characteristics of 8&S View elements for the appropriate time frame(s)
? Parameters Matrices
SV-R S&S Evolution Planned incremental steps toward migrating a suite of systems or services to a more
TR Descriptions efficient suite, or toward evolving a current system to a future implementation
Emerging technologies and software/hardware products that are expected to be
SV-9 S&S Technology Forecasts | available in a given set of time frames and that will affect future development of the
architecture
SV-10a S&S Rules Models Descrlbgs bé“zb [‘uncuulnalﬂ?f: identifies constraints that are lmpqsud on .
systems/services functionality due to some aspect of system design or implementation
SV-10b S&S State Transition Describes S&S functionality; identifies responses of a system/service to events
Descriptions
5 S&S Event-Trace Describes S&S functionality; identifies system/service-specific refinements of critical
SV-10¢ e : Jetyies % e
Descriptions sequences of events described in the Operational View
SV-11 Physical Schema Tjhysmal 1mplement_atlon of the Logical Data Model entities, e.g., message formats,
4 file structures, physical schema
TVl Technical Standards Listing of standards that apply to S&8 View elements in a given architecture
Technical Profile
Standards V.2 Technical Standards Description of emerging standards and potential impact on current S&S5 View
Forecast elements, within a set of time frames
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dancy. Parsimony is a secondary goal; the main goal is
to provide views that are useful to various project
participants and stakeholders while maintaining their
consistency and synchronization. Any given project
will probably not use all 29 views; it will select an
appropriate subset of views based on its needs. The
framework is also extendable, allowing researchers and
practitioners to develop additional views to highlight
important product characteristics and support addi-
tional design decisions. Thus, completeness is not a
prerequisite to an AF’s usefulness. On the contrary, an
AF is likely to evolve to higher levels of usefulness over
time.

2.3. Views and Their Organization

A view captures a subset of a system model’s attributes
and provides a guideline for their presentation.? Each
view has its own techniques for describing attributes.
For example, the DoDAF’s System Technology Fore-
cast view, SV-9, shows the relevant emerging technolo-
gies and organizes them according to which part(s) of
the system they will influence. By distilling a subset of
attributes, a view enables designers to focus on certain
relationships. The structure of certain views may also
facilitate particular analyses. For example, in the Do-
DAF’s SV-3, the square matrix mapping the interfaces
between system components lends itself to matrix
analysis techniques, such as clustering product compo-
nents for modularity [Browning, 2001]. However, when
views are created “as needed” by product designers in
the absence of an integrating framework, this may chal-
lenge the consistency of the information they contain in
relation to pre-existing views [Peukert and Walter,
2007]. An AF therefore has the potential to serve as a
kind of periodic table of views, organizing them in
relation to each other based on the information they
contain.

2.4. Status

An AF provides a valuable tool for structuring and
integrating the various views of a system model. Before
a complex product is actually built, its desired architec-
ture can be modeled in terms of a collection of views.
As the product’s details are specified, the views can be
updated to reflect this latest knowledge, potentially
even automatically. These benefits have made AFs
prominent in systems engineering [e.g., Richards et al.,
2007a], and various AFs have been developed and are
in use in contexts such as software development [the

2IEEE further describes a viewpoint as “a specification of the conven-
tions for constructing and using a view” [IEEE, 2000]. This reference
also allows for a many-to-one mapping of models to views.
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“4+1 views” framework—XKruchten, 1995], enterprise
information systems [TOG, 2006; Tang, Han, and
Chen, 2004; Noran, 2003], enterprise architecting [lyer
and Gottlieb, 2004], and space system design [Richards
et al., 2007b]. The emergence and popularity of AFs in
a variety of contexts attests to their utility.

3. THE PROJECT PROCESS AND ITS VIEWS

So far, AFs have focused on two types of systems,
products (especially information-technology-intensive
systems) and enterprises. However, an AF approach
may also benefit program managers and systems engi-
neers who must deal with another kind of complex
system, the process whereby a large, complex project
(or program) is accomplished. A process is “an organ-
ized group of related activities that work together to
create a result of value” [Hammer, 2001]. A system is
“an integrated set of elements that accomplish a defined
objective” [INCOSE, 2007]. A process is a kind of
system, where the elements are typically activities
(work to be done, decisions to be made, etc.) and the
integrating relationships are the activities’ interdepend-
encies [Browning, Fricke, and Negele, 2006; Crowston,
2003]. Elements and relationships give rise to the emer-
gent behaviors in complex systems [e.g., Axelrod and
Cohen, 1999; Holland, 1998]. In attempts to better
understand processes, researchers have developed nu-
merous system-oriented models that treat the process as
a network of interrelated activities [Browning and
Ramasesh, 2007].

While the complexity of a system is challenging to
measure, the NK model [Kauffman and Levin, 1987]
has been widely used as a simple approach, where N is
the number of system elements and K is the number of
relationships between them. From this perspective, a
process system can be at least as complex as the output
it seeks to produce (e.g., a design for a product system),
for at least three reasons: (1) for each detailed specifi-
cation of a component or desired function in a product,
at least one action or decision is required in the process
(a one-to-many relationship); (2) anticipating and ame-
liorating the undesired, emergent behaviors of a com-
plex product requires many additional activities (such
as simulation and testing) in the process (another one-
to-many relationship); and (3) this greater number of
process activities than product components (due to both
kinds of one-to-many relationships) is typically accom-
panied by a greater number of inter-activity connec-
tions. Despite this great complexity in processes,
however, the decision support tools (e.g., models and
simulations) aiding project managers in understanding,
planning, and controlling such processes are often less
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capable and mature than those used to design the out-
puts themselves. Project managers and participants are
often left to rely on greatly simplified and disparate
models, or even “mental models” [Senge, 1990], as they
attempt to describe and control the “elephant.”

A model is an abstract representation of reality that
is built, verified, analyzed, and manipulated to increase
understanding. “All models are wrong, but some are
useful” [Box, 1979]. A useful model is simple, robust,
easy to control, adaptive, complete, and easy to com-
municate with [Little, 1970]. A process model includes
the attributes of and the underlying assumptions about
a process which are deemed sufficient to describe it for
a particular purpose. If it aligns with the way its users
think about a problem, even a model with subjective
inputs can be extremely beneficial [Little, 1970]. That
is, what determines a “good” or useful process model
depends on the user and the decision to be supported,
and thus a model fit for one use may not be appropriate
for another [Browning, Fricke, and Negele, 2006;
Crowston, 2003]. For example, a generic process
model, for general use on all of a firm’s projects, will
probably not contain sufficient details for managing
each unique project. Including all such details would be
inappropriate for the general model, even though details
are needed to manage each project. Thus, the fitness of
a process model depends on the alignment of its content
and structure with what is appropriate to support a
particular decision, purpose, or use case.

In contrast to a model, a view is a representation (an
arrangement of symbols, a table, or other depiction)
chosen to display a selected subset of a model’s attrib-
utes and assumptions [Browning and Ramasesh, 2007].
It is important to distinguish a model from a view. A
process model, for example, contains information about
a process, whereas a view presents some or all of that
information in a chart, diagram, table, or other depic-
tion. While many traditional models and views have a
one-to-one correspondence, AFs may stipulate a one-
to-many relationship between a model and its views, as
the attributes captured in a rich model are accessed
through multiple views. Views leverage the principles
of information hiding [e.g., Parnas, 1972] to reduce
complexity for decision makers.> By reducing com-
plexity and focusing on the specific needs of different
constituencies, views can be a significant driver of
innovation in system design [Alexander, 1964; Simon,
1981; Zachman, 1987; Schitz et al., 2002; Keller et al.,

3However, unlike in applications of information hiding to product
modularity [e.g., Baldwin and Clark, 2000], a parsimony of views is
nota primary goal. While a product component must physically reside
in either one module or another, it is common and desirable for the
information attributes in one view to co-exist in other views, as long
as they are synchronized.

2006] and product development decisions [Krishnan
and Ulrich, 2001].

A Gantt chart (e.g., Fig. 1), which depicts activities
and their temporal relationships, provides an example
of a view of a process model. A basic Gantt chart shows
the activity attributes of duration, start time, and finish
time. Gantt charts may be augmented with additional
information, such as the organizational unit responsible
for an activity, activity resource requirements, prece-
dence relationships (dependencies), activity percent
complete, activity parent (or “roll up”) activity, etc.
However, including too much information crowds the
view, so all of the information in a richer model of the
process is deliberately not included.

It is important to emphasize that, at a minimum, a
process consists of both activities (work packages) and
deliverables (work products). The deliverables flow in
the input-output relationships between the activities. (A
deliverable is a very general object representing any
activity relationship, such as a transfer of information,
data, knowledge, documents, estimates, prototypes,
materials, etc.—even seemingly abstract items like the
results of decisions.) Just as a system consists of both
elements and relationships, a process, as a kind of
system, consists of both activities and deliverables,
although the deliverables tend to be deemphasized in
many of the common views. (For example, Fig. 1 does
not show the deliverables.) Also, as with any system,
any process is part of (i.e., can be thought of as an
activity within) a larger process, and each activity in a
process may itself be viewed as a process (and further
decomposed into lower-level activities). Thus, the
terms “process” and “‘activity” are observer-dependent
and often interchangeable. This paper will refer to the
component work packages in a process as activities,
only for the purpose of having distinct terms for the
“parent” and “child” work packages. (Deliverables can
also be decomposed and organized hierarchically, but
this paper will not use different terms for parent and
child deliverables.)

In terms of a physical product, architecture has been
defined as “the fundamental organization of a system
embodied in its components, their relationships to each
other, and to the environment, and the principles guid-
ing its design and evolution” [IEEE, 2000]. Thus, the
activities in a process and their relationships help deter-
mine the architecture of that process [Browning and
Eppinger, 2002]. Process architecture refers to the
structure of activities, their relationships, and the prin-
ciples and guidelines governing their design and evolu-
tion.

In summary, then, a process consists of related ac-
tivities. Most process models are therefore activity-
based and (more or less) account for the activities’
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interrelationships. In contemporary practice, all of the
information useful for planning and controlling the
large numbers of varied activities and relationships in a
complex process has not been captured in a single
model. Instead, various models may capture certain
subsets of the information, as guided by each model’s
purpose (e.g., a particular decision to support, etc.). AFs
provide a potential avenue for synthesizing the infor-
mation in multiple models into a single, rich, integrated,
synchronized, and more complete model while main-
taining the distinctiveness, simplicity, and usefulness of
each view. Whereas Little [1970] noted a conflict be-
tween simplicity and completeness in managerial mod-
els, an AF offers the potential to achieve both
simultaneously.

Finally, itis important not to confuse an AF approach
applied to processes with prior approaches such as
traditional process repositories or an organizational
process handbook [Malone, Crowston, and Herman,
2003; Malone et al., 1999], even though all of these seek
to organize process information. However, these ap-
proaches do so at different levels and to different de-
grees. Process handbooks and repositories seek to
organize the various types of business processes across an
enterprise, whereas the AF approach seeks to organize
various subsets of the information (attributes and assump-
tions) pertaining to an individual project process into a
catalog of multiple, useful views. The two approaches
address different issues and are complementary.

4. LITERATURE REVIEW AND DATA
ANALYSIS

4.1. Common Views of Process Information

Based on a literature review [Browning, 2007], Table
IV presents many of the common ways to view a
process as an activity network. Table V lists these views
and a few others, along with the attributes they include
(in their basic form) and example references (to which
the reader is directed for further information on each
view). These lists are representative rather than compre-
hensive and, in some cases, group closely related views
into a single category.* This review reveals that certain
views display particular attributes of the activities

“In contrast to these views, researchers have also provided ways to
view alternative process architectures or modes. For example, Malone
et al. [1999; Malone, Crowston, and Herman, 2003] organize proc-
esses at various levels of abstraction to facilitate navigation of a
process repository. Pentland [1995] provides a grammatical charac-
terization of processes. Chung, Kwon, and Pentland [2002] empha-
size the importance of visualizing a project’s potential process
space—the range of process scenarios that could unfold. However,
Tables IV and V focus specifically on views of a single process as an
activity network.

and/or deliverables in a process. Usually it would be
possible to augment this basic set of attributes with
additional attributes (such as choosing to show resource
assignments in a Gantt chart), although the lists in Table
V seek to present only the basic sets of attributes rather
than all possible extensions.

4.2, Process Model Attributes

As discussed in Section 3, when conceived as a system,
aprocess typically consists of two fundamental objects,
activities (work packages) and their relationships,
which can be defined in terms of input and output
deliverables (work products). Activities and deliver-
ables each have properties or attributes, some of which
are listed in Table V. Based on the results from literature
reviews [Browning, 2007; Browning, Fricke, and
Negele, 2006] and data from several case studies,> Table
Vllists a collected superset of process attributes (which
are defined in Tables VIII and IX in the Appendix). This
list of attributes is not comprehensive; others could be
added. However, this list more than spans the attributes
of the views in Table V.6

4.3. The Attributes Shown in Particular
Views

To provide further specifics regarding the process infor-
mation contained in each view, Table VII maps the
views (Table V) to the process attributes (Table VI) they
include.” Table VII uses a four-level relationship scale
[0, 1, 1.5, 2], depending on whether the attribute is
never, potentially, sometimes/partially, or always
shown in a particular view. The assignment of these
ratings is approximate, since many variations of par-

3Several case studies were conducted at a U.S. Fortune 100 company
that develops complex, high-tech system products. The company is
generally organized into functional organizations (e.g., engineering,
manufacturing, program management office, marketing, etc.) and
large projects (programs), each developing a particular complex
system product and organized into a number of cross-functional
teams. Primary data collection occurred in July—September 2006. To
gain a diversity of perspectives within the company, the author
interviewed 12 people from varied program and functional organiza-
tions. Through additional meetings and conversations, other individu-
als from assorted organizations in the company and with varied
backgrounds also provided inputs.

SNote that a process model could contain additional objects besides
activities and deliverables—such as organizational units, project
states, and project events, each with their own attributes—although
at some point such a model would cease to be merely a process model
and become characteristic of an enterprise model (which represents
a natural path for further research in this area but also adds many
layers of complexity).

TThree views from Table V—Hi gh-Level “Life Cycle” Models, Ac-
tivity-on-Arc Diagrams, and Stock-and-Flow Diagrams—were not
carried forward in the analysis because they do not include many of
the attributes. These three views are therefore excluded in Table VIL.
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Table IV. Brief Descriptions and Examples of Some Common Process Model Views (Adapted from

Browning [2007])

Flowchart (Network Diagram)

The classical process representation; activities in boxes and
relationships on arrows (i.e., activity-on-node [AON] or PERT®
diagram); sometimes shows branching nodes using diamonds;
often augmented according to local preferences and conventions

Activity B

— Activity A Activity D —

Gantt Chart
The classical project management representation; depicts
activities and their temporal relationships; may also indicate
precedence relationships and activity status; sometimes
augmented with additional activity attributes

Activity A

Activity B

Activity C

Activity C

Activity D

Design Structure Matrix (DSM)

diagonal cells indicate an input/output relationship between

Square matrix of NV activities on the diagonal, where marks in off-{Similar to a Gantt chart with the addition of symbols representing,

activities; in the convention shown, feedback is shown below the

Milestone Chart

major events (above or within the chart)

Extension to PERT that allows probabilistic branching between
activities (nodes); arcs are lettered and have associated
probabilities

Intermediate Node
with deterministic .
inputs & outputs Activity B

Activity A

Intermediate Node with
deterministic inputs &
probabilistic outputs

Activity D

Start
Node

Activity C

diagonal
Event1 Event2 Event 3 Event|
A BCD v v v -
Activity AZA|e]e® E I IR T
ACti\“ty B: B [ ] Activity A
ACtWIty C: Cle r\cl?v:rl}'l-l
Activity D: ® D AStViyC
Activity D
GERT' Diagram Textual Narrative

Process documentation that explains in words what is to be done

and how

Process Name: Do Stuff

* Process Owner: John Smith
Narrative: After collecting inputs from the preceding process, Activity A
does x, y, and z. In so doing, it typically requires one designer and one
mock-up person and takes one week. This activity must be done in
accordance with the MST-3K standard and follow the design requirements
provided. Additional work instructions are available at UR% Once
complete, the results of Activity A are verified by a peer inspection. If no
problems are found, then Activities B and C can each begin to work in
parallel to do B-thing and C-thing. Activity B usually takes about a week,
while Acnvitg C usually takes two weeks. ' Each requires two designers.
When both B and C are ready, their results enable the start of Activity D,
which takes another week to synthesize B and C into D. Activity D requires
three test engineers. If problems are found, then the process must return to
Activity A to make adjustments, in which case Activities B and C will
probably also have to be reworked, at least partially. 7

ticular views exist, some of which include additional
attributes. In assigning a value to each cell, care was
taken to assume a standard, basic version of each view.
The “1” values were especially difficult to assign, be-
cause just how easy it would be to include an attribute
(or not) depends on assumptions about a view’s practi-
cal capabilities and limitations. While the values in
some individual cells could be argued, Table VII never-
theless provides a helpful overview and enables several
observations.

First, the textual narrative has the capability to in-
clude almost any desired attribute, although it is up to
its authors to do so. However, the textual process docu-
mentation at the case study company was inconsistently
detailed. Moreover, when many attributes are included,

Systems Engineering DOI 10.1002/sys

it becomes difficult to organize the narrative in a way
that facilitates users finding a particular piece of infor-
mation. Filtering subsets of information is difficult. A
good search engine can get users to information
quickly, but only if they know exactly what to look for.
Therefore, simply determining whether or not a view
can represent an attribute does not tell the whole story
(but it is a start).

Second, most views emphasize the activities but not
the deliverables [Browning, Fricke, and Negele, 2006;
Browning and Ramasesh, 2007]. At best, some views
name the deliverables without elaborating on them,
while many views only treat the deliverables implicitly.
The eEPC diagram provides the capability to emphasize
deliverables, but, when it does so, the diagram becomes
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IDEF0° Diagram
Emphasizes the input-output deliverables flowing among
activities; activity boxes arranged diagonally on a single page:

data inputs enter on the left of each box, control inputs enter from

the top, mechanism inputs enter from the bottom; data outputs
exit on the right of each box, while call outputs exit from the
bottom; activity and deliverable hierarchies are also apparent

“As I process B, Heoummments
lnlorrnataon Giep names
Activity 4
L3
s —I ﬁ/ﬂn'fm
P Resdved
L Activity Dt rarrien i
# 8 Activity B
o K w23 s .
e | S s
Eal € i X, —om— Activity A . Adctivity D
. — 1 L‘ .
Crange Puss .
Activiey |
Lamens o Activity C
:ID-BH Charges

IDEF3 Diagram

Similar to flowchart, but with emphasis on flow junctions (And,
Or, Xor; synchronous or asynchronous); activity identification
numbers also shown

State Diagram
Most state diagrams merely show the possible states (nodes),
connected by transition paths (“edges,” using the terminology of
directed graphs); in process modeling, they may also show the
intervening activities as a different type of node

B Finished

A Finished

Start Finish

Activity-on-Arc Diagram
Circles represent events, such as start or end of a given activity;
arrows (ares) represent activities and are proportional in length to
activity duration, which is given in parentheses after the activity
name; dotted lines (dummy activities) connect dependent events
where not implied by actual activities

Activity C (2)

Activity D (4)
Activity A (5)

:. (Actinty B must also

Finished Activity B (4) ::ﬁ‘m";;::;i;“
Process Needs
Rework
CRUD' Table

Shows activities” effects on deliverables; an activity can create,
read only (use), update (modify), and/or delete a deliverable

- ™~ L] = ['5] w P~ =]
2 @ & 2 @8 o o @
£ a = K=1 2 = =} =
g @ g g ©& §& [( ]
2 2 2 2 £ 2 2 &
T T © 3 B B B ®
[=] a [=1 (=] (=] (=] [=] (=]

ActivityA| R | € | € u

Activity B R c

Activity C R|R cl|c

Activity D R/U|R|c|c

Value Stream Map
Emphasizes activity cycle times (CT) and in-process times (IPT)
and inter-activity wait times (WT); review activities shown as
ovals instead of rectangles; intervening inventories shown as
triangles; additional symbols also common

I

R Activity A Activity B
DA €T 5 ey
BT 3 T 5
Activity ©
ety
Gig]
(2]
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Table IV (continued)

Stock-and-Flow Diagram

Rather than treating a process as a network of identified activities
it is modeled as a stock (rectangle) of generic work to be done,
which at some rate of flow (arrow with flow regulator symbol),

governed by productivity rate (circle), results in (seemingly)
completed work; higher rates of the three flow governor variables
imply faster process completion time; does not account for
precedence relationships among activities

SIPOC* Diagram
For each activity, a table of its input deliverables and the source
(supplier) of each, constituent activities (processes), and output
deliverables and their destinations (customers); the first two
columns have a one-to-one correspondence among the rows, as
do the last two columns; the middle column does not relate to the
other columns

The main “super view” provided by the ARIS' method; includes
functions (activities), events, information items and products
(deliverables), and organizational units

| | [inputs ] | | | |Outputs| |Customers|
f Activity A |- Extemal - Deliverable 1 | + Activity A1 * Deliv. 2 + Activity B
- Activity D - Deliv. 7 + Activity A2 Delv.2 -+ Actvity
‘Deliv.3 -« Actvity C
Work Suppliers Inputs [er ]| [outputs] [c |
ok W o v Really Activity B | - Activity A Deliv. 2 Activity B1 Deliv. 4 Activity D
ctivi * Aoty * Deliv. . : .
Be Done| /\ /\ y it
[ | [Cnputs | | [# | | [outouts] [c ]
Activity C | * Activity A Deliv. 2 * Activity C1 - Deliv. 5 - Activity D
+ Activity A + Deliv, 3 + Activity C2 “Delv.&  * Activity D
[Supotiers Inputs [ || [outputs] [& |
Activity D | - Aciiy B + Deliv. 4 + Activity D1 JDelv.7 - Actity A
« Activity C « Deliv. 5 + Activity D2 « Deliv. 8 + External
+ Activity C + Daliv. 8 * Activity D3
. R . [
Extended Event-driven Process Chain (eEPC) Diagram ETVX" Diagram

Perhaps more of a convention to ensure the inclusion of important
activity attributes than a type of diagram, ETVX emphasizes the
entry criteria, the sub-tasks to be done, the work validation
methods (e.g., tests), and the exit criteria

Activity A o Activity B
=] m,_ =

=
al aml

Activity D o

Tt

= I

Irnw Criteria: l_. =

Activity C

Tpt

Project Evaluation and Review Technique

PGraphical Evaluation and Review Technique

“IDEFO stands for “Integrated Definition, Version 0.” There are also versi
description capture.”

dCreate-Read-Update-Delete
Supplier-Input-Process-Output-Customer.

ons up to 14 for various niche applications, including IDEF3 for “process

The acronym is based on the German term for “Architecture of Integrated Information Systems.”

2Entry-Task-Validation-Exit.

cluttered. Therefore, additional, separate views might
be needed to emphasize the characteristics of deliver-
ables.

Third, the “WPS database record” view provides a
means of potentially accessing a wide variety of infor-
mation about the attributes of deliverables. This type of
view—direct access to database objects (records) and
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their attributes (fields)—seemed attractive to expert
users such as process owners at the case study company.
However, effective use of this type of view requires a
higher level of prior knowledge about an object and its
context.

Fourth, a number of attributes are not shown by any
view, although some views could be expanded to show
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Table V. References for and Attributes of Some Common Views of Process Models (Adapted from Browning

[2007])
Example Primary Attributes
View References Process Activity Deliverable Comments
Process flowchart Name, Name, Suppliers, Often enhanced to include
— Network [IBM 1969} Children Customers additional attributes, such as
diagram Responsible Organization (via
~ PERT chart [Moder et al. 1983] “swim lanes”), etc.
- Activity-on- [Elmaghraby 1995]
node (AON)
diagram
Gantt chart [Gantt 1919] Name, Name, Duration, Start Often enhanced to include
— Milestone chart Children, Time. Finish Time additional attributes, such as
Milestone Percent Complete,
Events Process/Activity hierarchy
(Parent-Children), etc.
Design Structure [Browning 2001] Name, Name, Suppliers, Supplier, Often enhanced to include
Matrix (DSM) Children Customers, Activity Customer(s) additional attributes such as:
Sequence Vector Duration, Responsible
Organization, Rework Probability,
Rework Impact, Process/Activity
hierarchy (Parent-Children), etc.
GERT diagram [Pritsker and Tlapp Naine, Name, Suppliers, TFlow
1966] Children Customers Probability
Textual narrative [SPC 1996, pp. 50f; | Name, Various activity and dcliverable
Otlson 2006] Narrative attributes may be embedded
Description depending on the guidelines
followed
High-level “life |Unger and Name, Name, Suppliers, Typically used only at a high
cycle” models Eppinger 2002 Children, Customers level, to show the major phases of
~ Stage-gate/ [NASA 1995; Planned a large project
waterfall model | Cooper 1994] Tterations,
— Spiral model [Boehm 2000] “Toll Mode
— “Vee” model |Mooz and Forsberg | Gates”
2006]
IDEF0 diagram [NIST 1993; Name, Name, Suppliers, Name, Distinguishes three types of
Feldmann 1998} Children Customers, Inputs, Supplier, inputs---data, controls, and
Outputs, Identification Customer(s), mechanisms—and two types of
Number Parent, outputs—data and calls
Children
IDEF3 diagram [Mayer er al. 1995] Name, Name, Suppliers, TFlow Emphasizes the synchronous or
Children Customers Conditions asynchronous AND, OR, or XOR
flows among activities
State diagram [Harel 1987] Name, Name, Suppliers, Name, Activities are states; used by Petri
— Event graph Children, Customers Transition Net and Unified Modeling
— Markov chain States® Conditions, Language (UML) models; project
—~ Data flow Transition process applications require
diagram Probability possibility of being in more than
— Directed graph one state at a time
Activity-on-arc [Elmaghraby 1995] Name, Name, Suppliers, Activities are the transitions
(AOA) diagram Children, Customers, Duration between states; includes dummy
States arcs and events
CRUD Table Name, Type of Use (for | Name Often used to model database and
each deliverable) information system architcctures
Value Stream Map [McManus 2005] Name, Name, Suppliers, Wait Time Recently adapted for modeling
Children, Customers, Cycle Time, project processes; can also show
Cycle In-Process Time additional features of process;
Time emphasizes identitying sources of
waste in processes
Stock-and-flow [Sterman 2000; Ford | Stocks and Does not identify discrete
diagram and Sterman 2003] flows of activities, deliverables, or
work; precedence relationships; models
metrics completion of generic work
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Table V (continued)

Example Primary Attributes
View References Process Activity Deliverable Comments
SIPOC diagram [Browning et al. Name, Name, Suppliers, Supplier, More like a table than a diagram;
— IPO diagram 2006} Children Inputs, Outputs, Customer(s) TPO omits the Suppliers and
Customers, Children Customers
Extended Event- [Scheer 1999; 1998] | Name, Name, Inputs, Qutputs, Name, Most comprehensive view out of
driven Process Chain Children, Suppliers, Customers, Supplier, the ones listed in this table, but
(eEPC) Events, Responsible Customer(s), can become unwieldy when all
Organiza- Organizational Unit Flow objects are included at once; can
tional Conditions, be used to filter out subscts of
Units, Parents, objects and show only those
Deliver- Children
ables
ETVX |Radice et af. 1985} Entry Criteria, Children,
Validations, Exit
Criteria
Responsibility [PMI 2004] Name Name, Roles A table mapping activities to
Assignment Matrix organizational units who fill roles
(RAM) on or have a responsibility for
each activity
Work Product Practitioner- Muny (see Shows a database record (or a
Standard (WPS) developed at case Table 7) report thereof on a spreadsheet) of
database record study company many deliverable atiributes

4Could also be events or conditions.

them. However, doing so causes the views to become
cluttered. Additional views might be needed to repre-
sent these attributes in a useful way.

5. TOWARDS A PROCESS ARCHITECTURE
FRAMEWORK

This paper proposes the development of a process ar-
chitecture framework (PAF) and presents some prelimi-
nary explorations and reviews that illuminate a path in
this direction. Using a catalog of views, a PAF provides
a seemingly simple while more complete, integrated,

and synchronized model of a complex process. The
important decisions facing managers and systems engi-
neers in large, complex projects require appropriate
support from model views that filter, organize, and
synchronize the relevant information. In contemporary
projects, many of the views are based on disparate
models, which omit (or make assumptions about) some
information and include extraneous information
[Browning, 2007]. A set of appropriate views would
include only the right information (for making a certain
decision, or conducting a certain analysis or evaluation)
and exclude (or hide) other information—yet, this

Table VI. Attributes of Two Fundamental Objects in a Process Model (Adapted from Browning [2007])

Process/Activity (Work Package) Object Attributes

Deliverable (Work Product) Object Attributes

o Exit Criteria ¢ Master Owner

¢ Verifications s Standard Owner

s Standard Process Metrics o Deployed Owner

* Deployed Process Metrics e Change History

» Tools * Change Notifications

.

» Name * Standard Roles * Name » Standard Process Metrics
» Parent ¢ Deployed Roles * Parent e Deployed Process Metrics
¢ Constituents (“Children™) o Basis for Requirement » Constituents (“Children™) e Format

* Mode * Rules * Mode ¢ Medium

s Shadowing * References o Shadowing e Artifact

s Deployment o Standard Risks * Deployment s Rules

* Version Number * Deployed Risks e Version Number e Relerences

* Brief Description * Narrative Description » Briet Description » Narrative Description

* Inputs ¢ Tailoring Guidance s Suppliers o Tailoring Guidance

*  Outputs ¢ System Identification Number | e Customers ¢ System ldentification Number
* Entry Criteria ¢ WBS Element Association ¢ Kcy Criteria and Measures o WBS Element Association

of Elfectiveness
Requirements

.

* Acceptance Criteria .

Change History
Change Notifications
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would occur within the context of the hidden informa-
tion rather than apart from it. That is, a PAF may serve
as the organizing structure for a database of project and
process information. Instead of the situation where each
group participating in a project supports its preferred
models and views by keeping its own, disparate data-
bases, a PAF can provide a structure for collecting the
various bits of system information into a central reposi-
tory, thus ensuring that each group works with common
information. Changes to the system could be immedi-
ately represented in all of its views. In the house-build-
ing example, moving a wall on the blueprint would
immediately show up as a needed change on the wiring
and plumbing diagrams. Hence, a PAF could also lay a
foundation for artificial intelligence to detect project
planning (scheduling, budgeting, technical risk, etc.)
problems automatically. By having a framework to keep
track of project changes and their implications, manag-
ers would have a better tool for avoiding nonharmoni-
ous decisions. Changes to the hidden information
would have the potential to automatically trigger ques-
tions about the revealed information (because of the
behind-the-scenes integration) rather than later in the
process at important integration events.

An appropriate PAF would need to account for the
attributes listed in Table VI and perhaps others as well.
Various subsets of these attributes would be available
to users through various views. The list of views in
Table V is a start, but Table VII indicates a lack of
attention to certain attributes by this set of views. It
seems that additional views would need to be devel-
oped, perhaps by targeting specific users and their use
cases. It is also important to mention that a “good” view
does more than just include and exclude the right attrib-
utes: it also arranges those attributes in an elegant and
intuitive way to accelerate good decision making. For
example, the design structure matrix (DSM) view
(shown in Part 1 of Table IV), highlights potential
iteration and rework loops in a process, thereby focus-
ing attention on the key drivers of cost and schedule risk
in a project. If a particular aspect of a project is known
or predicted to be a challenge, specific views could be
customized to plan, monitor, and control that area.
Future research could propose and verify new views as
well as continue to gather the “home-grown” views
currently used (because they are helpful) in various
projects, companies, and industries.

New, customized views can be added to a PAF. In
fact, a PAF may develop best if allowed to emerge rather
than attempting to specify it completely a priori. How-
ever, such emergence would need to be guided by an
appropriate set of simple rules and standards for storing
and manipulating process attributes. The set of attrib-
utes listed in Table VI seems to provide a rich and
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flexible platform for such development, although these
lists would probably need to be expanded in different
contexts.

While a catalog of views may ultimately populate a
PAF, not all of the views will be equally useful for every
project. Research will be needed not only to develop
and verify new views, but to ascertain the contexts in
which they are likely to be valuable. While experienced
systems engineers and managers will have a firmer
grasp of what they would like to know in order to plan
and control a project, less experienced ones will require
guidance in selecting the views most deserving of their
attention on a particular kind of project.
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APPENDIX: DESCRIPTIONS OF THE ACTIVITY AND DELIVERABLE ATTRIBUTES USED

Table VIII. Process and Activity (Work Package) Object Attributes and Descriptions
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Attribute Description

Name A descriplive and distinetive name for the activity or process; should start with a verb (indicating an action) followed by a
direct object; optionally, a modeler may also give the activity or process a unique identification number as a separate
attribute

Parent A link to the process object (or one of its modes) of which this activity is a part

Constituents If thig activity is not at the lowest level of the activity breakdown structure, then this is a table containing a list of links to

(“Children”) other activity objects that collectively describe the work done by this activity in greater detail; it is suggested to limit the
number of constituent activities to 5-10 per level

Mode A subtitle for the activity or process, for use in cases where more than one variant exists; can be used to represent activity
crashing alternatives; e.i., four modes of software quality assurance are: desk check, peer review, walk-through, and
Fagan inspection

Shadowing A binary attribute; set to “Master” if the mode represents the master source; otherwise, set to “Shadow,” where a shadow
mode inherits all attributes of the master mode except where approved by tailoring

Deployment A binary attribute; set to “Standard™ if the mode represents a standard process; otherwise, set to “Deployed” and

accompanied by the name of its instance—e.g., “ABC Project, XYZ area”; a deploved mode instance inherits all atiributes
of the standard mode except where approved by tailoring

Version Number

A user-specified number, incremented after any change to the mode, according (o its significance; similar to the way
software releases are numbered

Brief Description

An textual abstract of the activity mode, including its applicability (scope), general approach, and any other critical
information

Inputs

A four-column table containing corresponding lists of (1) links to deliverable objects used by the activity mode, (2) the
time when each deliverable is necded {expressed as a percentage of the activity completed—e.g., 0% indicates an input
needed to begin the activity mode, while 50% indicates an input needed to do the second half of the activity mode), (3) the
deliverable’s required level of maturity or effectiveness, and {4) how the deliverable will be used (e.g., read only, update,
delete)

Outputs

A three-column table containing corresponding lists of (1) links to the output deliverable objects produced by the activity
mode, (2) the time when each deliverable is available (expressed as a percentage of the activity mode completed-—¢.g.,
50% indicates an output available after the first half of the activity mode, while 100% indicates an output available only
when the activity mode is complete), and (3) the deliverable’s required level of maturity or effectiveness

Entry Criteria

A list of the events and/or conditions that should exist for the activity mode to begin execution; beginning without meeting
these criteria implies additional risks; includes events that trigger or signal the beginning of the activity mode, such as
authorizations, and the requisite conditions for beginning; note that the required maturity levels of inputs are also entry
criteria, but these are associated with each input

Exit Criteria

A list of the events and/or conditions that should exist for the activity mode to stop execution; ending without meeting
these criteria implies additional risks for downstream activities; includes events that trigger or signal the end of the activity
mode, such as approvals, and the requisite conditions for ending; note that the required maturity levels of outputs are also
exit criteria, but these are associated with each output

Verifications A checklist of questions, tests, ete. used to confirny achievement of the exit criteria

Tools A list of tools, templates, facilities, and any other non-standard equipment used to accomplish the activity mode; these
items may be links to tool objects, where available

Standard Roles A three-column table containing (1) a list of the roles to be filled to execute the standard activity mode, (2) the non-

standard skills or training needed to fill each role, and (3) a link to the organization unit typically charged with providing
the staff'to fill each role

Deployed Roles

A three-column table containing (1) a list of the roles filled in this particular instance of the activity mode, (2) the non-
standard skills or training possessed by those filling each role, and (3) a link to the organization unit filling each role

Standard
Process Metrics

A set of potential attributes of the standard activity maode:

e Duyration {minimum, typical, and maximum)

o Cost {minimum, typical, and maximum)

e Repetition Discount (i.e., a learning curve effect)

e Capability/Maturity Rating

* Elc (owner-defined)

Rather than being entered by a user, some of these metrics may be determined by other tools and imported.
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Table VIII. (continued)

Attribute

Description

Deployed
Process Metrics

A set of potential attributes of the deployed instance of the activity mode (e.g., as implemented on a project):

e Scheduled Duration (optimistic, planned, pessimistic)—i.e., “in this particular instance (e.g., on this project), we
expect this activity to take this long”

Actual Duration (reported after execution is complete)

Budgeted Cost (optimistic, planned, pessimistic)

Actual Cost (reported after execution is complete)

Repetition Discount (i.e., a learning curve effect)

Schedule Criticality (the amount of slack or float in the activity; zero slack indicates that the activity is on the critical
path)

e FErc. (owner- and/or user-defined)

e & & o @

Rather than being entered by a user, some of these metrics may be determined by other tools and imported.

Basis for

Lists any external standard such as AS9100 or CMMI that requires this activity mode and may provide a link to the section

Requirement of the standard stating the requirement; or provides other rationale for the existence of the activity mode

Rules A list of any non-obvious work policies, business rules, design rules, compliance requirements, sections of external
standards, etc. affecting the planning or execution of this activity mode or instance thercof; may include links to the master
source of information about each

References A list of links to any references important to the accomplishment of the activity mode (e.g., manuals, instructions, guides,
handbooks, etc.)

Standard Risks A list of pitfalls, lessons learned, risks, failure modes (not to be confused with “activity mode™), or other potential
problems encountered in past experiences with this activity mode or anticipated as possibilities; may also include guidance
for avoidance or mitigation and links to further information

Deployed Risks Additional risks foreseen for a deployed instance of the mode; over time, these risks can migrate to a standard risk list;
deployed risks are often more specific and detailed than standard risks, which tend to be more generalized

Narrative A longer, textual description of the activity mode, vet as brief as possible; should provide a consistent level of detail

Description throughout; where more detail is needed, two alternatives are suggested: (1) decompose the activity mode into constituent
activities, whetein the additional detail can be discussed, or {2) provide a link to additional instructions (e.g., 2 manual);
should avoid repeating information that is already addressed in () other attributes, (b) constituent activities, or (c) linked
instructions; should not be cumbersome Lo read, wrile, or change

Tailering Brief instructions regarding tailoring, scaling, and sizing—e.g., restrictions, suggestions, etc.; where activity tailoring is

Guidance likely, however, activities can be pre-tailored into modes

System A unique number, generated by and for use in the process dalabase, to distinguish this version, mode, and instance {rom all

Identification other entries; not to be confused with any modeler-assigned number(s)

Number

WBS Element A list of all WBS elements for which this activity mode is used; assigned at the lowest-possible WBS level

Association

Master Owner A link to the lowest-level organizational unit(s) authorized to approve changes to the master mode and its instances

Standard Owner

A link to the lowest-level organizational unit(s) authorized to jointly approve changes to the standard and deployed
instance(s) of the mode; if a master has no shadows, then this aftribute is the same as Master Owner

Deployed Owner A link to the lowest-level organizational unit(s) authorized to execute this instance of the mode and jointly approve any
changes to it

Change History A change log, mostly auto-generated by the process database system, containing user-entered reasons for any changes,
dates of validity for each version, and links to old versions

Change A list of links to organizational units who want to be informed of any changes to this mode

Notifications
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Table IX. Deliverable (Work Product) Object Attributes and Descriptions

Attribute Description

Name A descriptive and distinctive name for the deliverable; should include a noun and any necessary qualifiers (adjectives and
adverbs); optionally, a modeler may also give the deliverable a number as a separate attribute

Parent A link to the deliverable object (or one of its modes) of which this deliverable is a part

Constituents If this deliverable is not at the lowest level of the deliverable breakdown structure, then this is a table containing a list of

(“Children™) links to other deliverable objects that comprise this deliverable; it is suggested to limit the number of constituent
deliverables to 5-10 per level

Mode A subtitle for the deliverable, for use in cases where more than one variant exists; e.g., three modes of a deliverable could
be: initial estimates, preliminary results, and final results

Shadowing A binary attribute; set to “Master” if the mode represents the master source; otherwise, sct to “Shadow™; a shadow mode
instance inherits all attributes of the master mode except where approved by tailoring

Deployment A binary attribute; set to “Standard” if the mode represents a generic deliverable in a standard process; otherwise, set to

“Deployed” and accompanied by the name of its instance—e.g., “ABC Project, XYZ area”; a deployed mode instance
inherits all attributes of the standard mode except where approved by tailoring

Version Number

A user-specified number, incremented after any change to the mode, according 1o its significance; similar to the way
software releases are numbered

Brief Description

A textual abstract of the deliverable mode, including its general content and any other critical information

Suppliers A table containing a list of links to supplier activity modes that produce the deliverable mode; generally, a deliverable
mode should be provided by only one supplier, although in some cases there are options as to which source to use; such
options would usually be eliminated in deployed instances, once selections have occurred

Customers A two-columa table containing (1) a list of links to the customer activity modes that receive the deliverable mode and (2)

the deliverable mode’s required level of maturity or effectivencss in the eyes of cach customer

Key Criteria and
Measures of

A two-column table containing (1) a list of the criteria by which the customers judge the effectiveness, quality, and
usability of the deliverable mode and (2) for each criterion, one or more measures of effectivencss or performance level

Effectiveness

Requirements For deployed instances only; a list of customer- and supplier-agreed performance levels for each measure of effectiveness,
as well as any other stipulations on the quality and specifications of the deliverable; i.e., targets or goals

Acceptance A checklist of questions, tests, etc. that will be used to confirm achievement of the requirements

Criteria

Standard A set of potential attributes of the standard deliverable mode:

Process Metrics

o (Criticality (to risk reduction, etc.)

e Volatility (propensity of deliverable to be modified after its initial creation)
e Complexity

e Ftc. (owner-defined)

Rather than being entered by a user, some of these metrics may be determined by other tools and imported.

Deployed
Process Metrics

A set of potential attributes of the deployed instance of the deliverable mode (e.g.. as implemented on a project):

¢ Commitment Status (e.g., “requested,” “being negotiated,” “commitment in place”); listed separately for each supplier
and customer

Scheduled Time of Availability (due date)

Actual Time of Availability (reported after deliverable is provided)

Actual Quality (reported in terms of each of the requirements after deliverable is provided)

Customer Satisfaction (reported after deliverable is provided)

Ete. (owner- and/or user-defined)

Rather than being entered by a user, some of thesc metrics may be determined by other tools and imported.

Format The format in which the deliverable mode will be provided, stored, etc.—e.g., file format, spreadsheet, word document,
etc.

Medium The medium of transter of the deliverable mode—e.g., deposit in database or document management system, e-mail,
phone, hand delivery, ctc.

Artifact A link to the actual deliverable artifact, if it exists in a computerized repository such as a product data management system

Rules A list of work policies, business rules, design rules, compliance requirements, sections of external standards, etc, atfecting
the planning or execution of this deliverable mode or instance thereof; may inchude links to the master source of
information about each

References A list of links to any references pertaining to this deliverable mode—e.g., manuals, instructions, guides, etc.
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Table IX. (continued)

Attribute Description

Narrative A longer, textual description of the deliverable mode, if necessary; should nevertheless be as brief as possible; should

Description provide a consistent level of detail throughout; where more detail is needed, it is suggested to decompose the deliverable
mode into constituent deliverables, whercin the additional detail can be discussed; should avoid repeating information that
is already addressed in other attributes or constituent deliverables; should not be cumbersome to read, write, or change

Tailoring Brief instructions regarding tailoring, scaling, and sizing—e.g., restrictions, suggestions, etc.

Guidance

System A unique number, generated by and for use in the process database, to distinguish this version, mode, and instance from all

Identification other entries; not to be confused with any modeler-assigned number(s)

Number

WBS Element A list of all WBS elements for which this deliverable is used; assigned at the lowest-possible WBS level

Association

Change History A change log, mostly auto-generated by the process database system, containing user-entered reasons for any changes,
dates of validity for each version, and links to old versions

Change A list of links to organizational units who want to be informed of any changes to this deliverable mode

Notifications
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