
The Many Views of a
Process: Toward a Process
Architecture Framework
for Product Development
Processes
Tyson R. Browning*

Neeley School of Business, Texas Christian University, TCU Box 298530, Fort Worth, TX 76129 USA

TOWARD A PROCESS ARCHITECTURE FRAMEWORK FOR PRODUCT DEVELOPMENT PROCESSES

Received 31 October 2007; Revised 16 April 2008; Accepted 16 April 2008, after one or more revisions

Published online 4 September 2008 in Wiley InterScience (www.interscience.wiley.com)

DOI 10.1002/sys.20109

ABSTRACT

A product or system development process is a kind of complex system, arguably even more

complex than the system it produces. Yet, the models and tools used by systems engineers

and program managers to plan and manage technical work—such as process flowcharts, Gantt

charts, work breakdown structures, and text-rendered procedures—are less sophisticated

and capable than the ones used to design the product system. When used, the various process

models are often challenged to incorporate and maintain synchronized program informa-

tion—e.g., they may be created by different subgroups in a program and based on different

assumptions, and they may diverge as a program proceeds. Recently, architecture frameworks

(AFs) have been used to help manage the complexity in engineered systems. An AF provides

a portfolio of views of a complex system, each of which describes it partially and in a format

meaningful to its users and their particular needs. This paper proposes the application of AF

concepts to the management of the work done to develop a complex system product. The

pieces of work and their relationships constitute a complex process. A portfolio of integrated

and synchronized views of a single process model would seem to be preferable to the current

state—a number of disparate and uncoordinated management models. This paper introduces

a new application of AFs to development processes and suggests this area as one for further

research and development in the systems engineering community. © 2008 Wiley Periodicals,

Inc. Syst Eng 12: 69–90, 2009

Regular Paper

* E-mail: t.browning@tcu.edu

Systems Engineering Vol. 12, No. 1, 2009
© 2008 Wiley Periodicals, Inc.

69

Key words: program management; project management; process modeling; architecture

framework; views

1. INTRODUCTION

John Godfrey Saxe’s famous 19th century poem, “The

Blind Men and the Elephant,” retells an ancient Asian

story in which six blind men touch different parts of an

elephant and proceed to argue about what the animal is

like [Linton, 1878: 150–152]. The man who touched

the tail thinks it is like a rope; the one who touched the

tusk thinks it is like a spear; the man who touched a leg

thinks it is like a tree; etc. The story has gained popu-

larity in our contemporary age of complex systems,

which are impossible to describe and understand com-

pletely from a single point of view.

The processes for developing complex systems are

like this elephant. They entail thousands of activities,

done by hundreds or even thousands of people, each

producing results that enable other activities to occur.

Because of their size, complexity, and uniqueness, large

projects (programs) and their processes are difficult to

manage. In attempts to manage complexity, project and

program managers and systems engineers commonly

use a variety of process models to plan and coordinate

work, including process flowcharts, Gantt charts, work

breakdown structures (WBSs), and formal procedures

[e.g., PMI, 2004; Meredith and Mantel, 2006; Pinto,

2007]. However, these models present several difficul-

ties. For one, they often contain overlapping informa-

tion, meaning that a project using more than one of these

models (as most projects do) is challenged to maintain

consistency and synchronization among them. For ex-

ample, a program might have one (evolving) list of

activities in its schedules while its risk management

plans contain somewhat different lists. While these lists

might begin in tandem, without focused care they might

diverge over the course of the program. Second, each

model incorporates only a subset of the information

about a project, omitting other information. For exam-

ple, while the schedule would probably indicate the

duration of activities, it probably would not note their

contributions to reducing specific technical risks, which

might be noted in the risk management plan. Third, in

a large project or program, each model is often created

or maintained by a different person or team, potentially

based on different assumptions. Overall, each model is

an abstraction of reality that provides a perspective on

a project akin to that of a blind man touching an ele-

phant. Hence, some participants may begin to ignore

such models as anachronistic once a project gets under-

way, basing their decisions on hearsay and intuition

instead, while others may continue to use the models

for decision support, despite their missing information

and lack of integration.

To improve upon this common situation, some have

advocated a single (virtual) repository for project infor-

mation [Basu, Blanning, and Shtub, 1997; Bond, 1999;

Presley et al., 2001], so that everyone “draws from the

same well.” A single source is conjectured to make

projects more flexible, since there would be just one

place to find information quickly and one place to

record changes to plans. Process models provide one

possibility for organizing a single source of project

information [Browning, Fricke, and Negele, 2006]—

perhaps even the best one [Crowston, 2003]. However,

models that attempt to contain everything about a pro-

ject have been cumbersome to build, maintain, under-

stand, and use. Also, it has been noted that managers

prefer simple models (that they understand and trust) to

more realistic ones [Little, 1970]. Therefore, a new

approach would seem to be needed that could simulta-

neously give managers completeness, integration, and

synchronization on one hand and simplicity and focus

on the other.

It is instructive to consider how this tension has been

addressed in a related context, that of engineering a

complex system. Developers of complex products have

long faced a similar quandary with product design data.

Each designer has their own, discipline-centric model-

ing tools for purposes of designing and evaluating par-

ticular aspects of a complex product (e.g., for an

aircraft: aerodynamics, weight, structure, propulsion,

etc.). Each such tool includes certain design parameters

and conditions while ignoring or making assumptions

about others. Hence, in some complex system engineer-

ing projects, a recent trend has been to consolidate many

of the critical aspects of a design into an integrated set

of models guided by an architecture framework (AF),

wherein the various subsets of information useful for

supporting particular design decisions are organized

into assorted representations or views. Each such view

provides a kind of portal through which the designers

from varied disciplines can interact with a relatively

simple portion of an otherwise rich and sophisticated

model. That is, a view captures a subset of a model’s

attributes and provides a guideline for their presenta-

tion. However, to be useful, these views must align with

various users’ needs for decision support. Meanwhile,

an AF serves to integrate and synchronize the views to

70 BROWNING

Systems Engineering DOI 10.1002/sys

give a more complete and consistent description of the

“elephant.”

This paper begins to explore how the AF approach

to managing complexity might apply in the different but

related context of models of a project’s process. A

project process (hereinafter, simply “process”) is the set

of related activities that accomplish a project (or pro-

gram). That is, all of the work done on a project is part

of its process (whether formalized or not). Since these

various work segments depend on each other, processes

are often modeled as an activity network. Information

about a process may be organized and conveyed to

different users (planners, managers, workers, etc.)

through different models or views thereof. Better rep-

resentations and views have been singled out in pre-

vious research as a key to improving product

development project management [Browning and

Ramasesh, 2007; Krishnan and Ulrich, 2001] and deci-

sion support systems in general [Basu, Blanning, and

Shtub, 1997].

Specifically, this paper proposes the application of

an AF approach to encourage the development of a

process AF (PAF). An approach based on a PAF may

simultaneously provide both simpler and more com-

plete models for managers. After presenting a back-

ground on AFs and process models and views in the

next two sections, the paper briefly reviews process

model views and attributes based on literature reviews

and case studies. The concluding discussion points

towards how a PAF might be developed.

2. ARCHITECTURE FRAMEWORKS

2.1. Background

The structure and behavior of a complex system are

impossible to understand fully from a single point of

view. Using an example developed by Zachman [1987],

even a relatively simple system like a house is not fully

defined or determined by its blueprints. Additional

views, such as elevations and a bill of materials, are also

needed. The work of designing and building a house is

split up among architects, contractors, draftsmen, sur-

veyors, framers, electricians, plumbers, roofers, ma-

sons, carpenters, etc. There are very few “jacks of all

trades,” and it is often impractical to pursue such a skill

set. When dealing with much more complex systems,

certainly no individual is able to grasp all of the impor-

tant details, nor would such an individual have the time

to do all the work. Therefore, complex system develop-

ment is parsed into tasks undertaken by different groups

who must make harmonious decisions [von Hippel,

1990]. Coordination among such groups becomes more

challenging as their number and interdependencies

grow. Attempting to provide all of the detailed informa-

tion about the system to each of these groups causes

information overload and is often worse than not pro-

viding the information at all (because of the faulty

assumption that communication occurred). Meanwhile,

an alternative approach is to provide each group with

an appropriate subset of information, in a format that

facilitates the accomplishment of their tasks and sup-

ports their decision-making. This approach meshes

with natural intelligence theory, where Minsky [2006]

postulated that the human mind naturally maintains

multiple models of a given system (e.g., physical, so-

cial, emotional, mnemonic, strategic, visual, and tac-

tile) and rapidly switches between them depending on

the current purpose. However, this approach requires

identifying which subsets of information best support

the purposes of each group.

To determine the information needed by various

project participants, an inductive approach involves

examining the models they use. Continuing the exam-

ple of a house, electricians prefer wiring diagrams, with

particular symbols representing outlets, switches, etc.

and a labeling convention for wiring gauges, etc.

Plumbers use pipe routing diagrams with a different set

of symbols and labeling conventions. Contractors keep

a bill of materials and a list of subcontractors. Collect-

ing all such models yields a superset of information that

collectively describes the system. If building a house

requires multiple models, how many models are neces-

sary to aid the perhaps thousands of workers involved

in a much more complex process? An AF serves to

integrate the various models of a complex system into

a single, more complete model with multiple views. The

views collectively represent and integrate the important

attributes of a complex system model, as it is currently

understood. In contrast, a deductive approach would

entail prescribing certain attributes and views as impor-

tant to a system, whether these were currently used and

understood by the various workers or not. Both the

inductive and deductive approaches have advantages,

and both could contribute to the development of an AF.

2.2. Architecture Frameworks

The first so-called AF was the Zachman framework

[Zachman, 1987; Sowa and Zachman, 1992]. While

initially billed as an information system AF, it applies

more broadly to any kind of complex product. Zachman

based his framework on two key ideas:

1. A set of product architectural views is produced

over the course of a project; these views represent

the different perspectives of the different partici-

pants.

 TOWARD A PROCESS ARCHITECTURE FRAMEWORK FOR PRODUCT DEVELOPMENT PROCESSES 71

Systems Engineering DOI 10.1002/sys

2. The same product can be described in different

ways for different purposes, resulting in different

views.

That is, the various participants in a project—plan-

ners, managers, various designers, builders, subcon-

tractors, etc.—each have a different perspective and

require different pieces of information to perform their

tasks. Zachman identified six different descriptions of

a system—e.g., data (what), functional (how), spatial

(where), personal (who), temporal (when), and pur-

poseful (why). Some of these views are listed in Table

I, starting with the views of a building (along with their

nature and purpose) and proceeding to the analogous

views of an aircraft and an information system. The last

column provides generic names for each of these views.

Since Zachman was most interested in information

systems, he also provided the insightful list in Table II,

which demonstrates the different points of view of

project participants.

As developers of ultra-complex systems, defense

industries became early adopters of Zachman’s ideas.

In the 1990s, his ideas became manifest in the Com-

mand, Control, Communications, Computers, Intelli-

gence, Surveillance, and Reconnaissance (C4ISR)

Architecture Framework [DoD, 1997], which looked at

a broader swath of system types. As its scope expanded

to cover systems of hardware, software, people, and

other systems, the C4ISR AF evolved into the current

U.S. Department of Defense AF (DoDAF) [DoD,

2007].1 The DoDAF is used for a variety of system

architectures, where the system is a developed product,

such as an information system, satellite, aircraft, ship,

 Table I. Example Distinctions among Architectural Views (Adapted from Zachman [1987])

Table II. Different Architectural Views from Different
Information Systems Functions (Adapted from
Zachman [1987])

1A similar framework, the Ministry of Defence Architectural Frame-
work (MoDAF), has been developed in the UK [MoD, 2005].

72 BROWNING

Systems Engineering DOI 10.1002/sys

or combination thereof (“system of systems”). The

DoDAF has grown to include the 29 views shown in

Table III. Each of these views presents a subset of the

information describing a complex product—a different

blind man’s view of the elephant. The information in

each view is not mutually exclusive; there is redun-

Table III. 29 Views of a Product Architecture, According to the DoDAF, Version 1.5 (adapted from DoD [2007])

 TOWARD A PROCESS ARCHITECTURE FRAMEWORK FOR PRODUCT DEVELOPMENT PROCESSES 73

Systems Engineering DOI 10.1002/sys

dancy. Parsimony is a secondary goal; the main goal is

to provide views that are useful to various project

participants and stakeholders while maintaining their

consistency and synchronization. Any given project

will probably not use all 29 views; it will select an

appropriate subset of views based on its needs. The

framework is also extendable, allowing researchers and

practitioners to develop additional views to highlight

important product characteristics and support addi-

tional design decisions. Thus, completeness is not a

prerequisite to an AF’s usefulness. On the contrary, an

AF is likely to evolve to higher levels of usefulness over

time.

2.3. Views and Their Organization

A view captures a subset of a system model’s attributes

and provides a guideline for their presentation.2 Each

view has its own techniques for describing attributes.

For example, the DoDAF’s System Technology Fore-

cast view, SV-9, shows the relevant emerging technolo-

gies and organizes them according to which part(s) of

the system they will influence. By distilling a subset of

attributes, a view enables designers to focus on certain

relationships. The structure of certain views may also

facilitate particular analyses. For example, in the Do-

DAF’s SV-3, the square matrix mapping the interfaces

between system components lends itself to matrix

analysis techniques, such as clustering product compo-

nents for modularity [Browning, 2001]. However, when

views are created “as needed” by product designers in

the absence of an integrating framework, this may chal-

lenge the consistency of the information they contain in

relation to pre-existing views [Peukert and Walter,

2007]. An AF therefore has the potential to serve as a

kind of periodic table of views, organizing them in

relation to each other based on the information they

contain.

2.4. Status

An AF provides a valuable tool for structuring and

integrating the various views of a system model. Before

a complex product is actually built, its desired architec-

ture can be modeled in terms of a collection of views.

As the product’s details are specified, the views can be

updated to reflect this latest knowledge, potentially

even automatically. These benefits have made AFs

prominent in systems engineering [e.g., Richards et al.,

2007a], and various AFs have been developed and are

in use in contexts such as software development [the

“4+1 views” framework—Kruchten, 1995], enterprise

information systems [TOG, 2006; Tang, Han, and

Chen, 2004; Noran, 2003], enterprise architecting [Iyer

and Gottlieb, 2004], and space system design [Richards

et al., 2007b]. The emergence and popularity of AFs in

a variety of contexts attests to their utility.

3. THE PROJECT PROCESS AND ITS VIEWS

So far, AFs have focused on two types of systems,

products (especially information-technology-intensive

systems) and enterprises. However, an AF approach

may also benefit program managers and systems engi-

neers who must deal with another kind of complex

system, the process whereby a large, complex project

(or program) is accomplished. A process is “an organ-

ized group of related activities that work together to

create a result of value” [Hammer, 2001]. A system is

“an integrated set of elements that accomplish a defined

objective” [INCOSE, 2007]. A process is a kind of

system, where the elements are typically activities

(work to be done, decisions to be made, etc.) and the

integrating relationships are the activities’ interdepend-

encies [Browning, Fricke, and Negele, 2006; Crowston,

2003]. Elements and relationships give rise to the emer-

gent behaviors in complex systems [e.g., Axelrod and

Cohen, 1999; Holland, 1998]. In attempts to better

understand processes, researchers have developed nu-

merous system-oriented models that treat the process as

a network of interrelated activities [Browning and

Ramasesh, 2007].

While the complexity of a system is challenging to

measure, the NK model [Kauffman and Levin, 1987]

has been widely used as a simple approach, where N is

the number of system elements and K is the number of

relationships between them. From this perspective, a

process system can be at least as complex as the output

it seeks to produce (e.g., a design for a product system),

for at least three reasons: (1) for each detailed specifi-

cation of a component or desired function in a product,

at least one action or decision is required in the process

(a one-to-many relationship); (2) anticipating and ame-

liorating the undesired, emergent behaviors of a com-

plex product requires many additional activities (such

as simulation and testing) in the process (another one-

to-many relationship); and (3) this greater number of

process activities than product components (due to both

kinds of one-to-many relationships) is typically accom-

panied by a greater number of inter-activity connec-

tions. Despite this great complexity in processes,

however, the decision support tools (e.g., models and

simulations) aiding project managers in understanding,

planning, and controlling such processes are often less

2IEEE further describes a viewpoint as “a specification of the conven-

tions for constructing and using a view” [IEEE, 2000]. This reference

also allows for a many-to-one mapping of models to views.

74 BROWNING

Systems Engineering DOI 10.1002/sys

capable and mature than those used to design the out-

puts themselves. Project managers and participants are

often left to rely on greatly simplified and disparate

models, or even “mental models” [Senge, 1990], as they

attempt to describe and control the “elephant.”

A model is an abstract representation of reality that

is built, verified, analyzed, and manipulated to increase

understanding. “All models are wrong, but some are

useful” [Box, 1979]. A useful model is simple, robust,

easy to control, adaptive, complete, and easy to com-

municate with [Little, 1970]. A process model includes

the attributes of and the underlying assumptions about

a process which are deemed sufficient to describe it for

a particular purpose. If it aligns with the way its users

think about a problem, even a model with subjective

inputs can be extremely beneficial [Little, 1970]. That

is, what determines a “good” or useful process model

depends on the user and the decision to be supported,

and thus a model fit for one use may not be appropriate

for another [Browning, Fricke, and Negele, 2006;

Crowston, 2003]. For example, a generic process

model, for general use on all of a firm’s projects, will

probably not contain sufficient details for managing

each unique project. Including all such details would be

inappropriate for the general model, even though details

are needed to manage each project. Thus, the fitness of

a process model depends on the alignment of its content

and structure with what is appropriate to support a

particular decision, purpose, or use case.

In contrast to a model, a view is a representation (an

arrangement of symbols, a table, or other depiction)

chosen to display a selected subset of a model’s attrib-

utes and assumptions [Browning and Ramasesh, 2007].

It is important to distinguish a model from a view. A

process model, for example, contains information about

a process, whereas a view presents some or all of that

information in a chart, diagram, table, or other depic-

tion. While many traditional models and views have a

one-to-one correspondence, AFs may stipulate a one-

to-many relationship between a model and its views, as

the attributes captured in a rich model are accessed

through multiple views. Views leverage the principles

of information hiding [e.g., Parnas, 1972] to reduce

complexity for decision makers.3 By reducing com-

plexity and focusing on the specific needs of different

constituencies, views can be a significant driver of

innovation in system design [Alexander, 1964; Simon,

1981; Zachman, 1987; Schätz et al., 2002; Keller et al.,

2006] and product development decisions [Krishnan

and Ulrich, 2001].

A Gantt chart (e.g., Fig. 1), which depicts activities

and their temporal relationships, provides an example

of a view of a process model. A basic Gantt chart shows

the activity attributes of duration, start time, and finish

time. Gantt charts may be augmented with additional

information, such as the organizational unit responsible

for an activity, activity resource requirements, prece-

dence relationships (dependencies), activity percent

complete, activity parent (or “roll up”) activity, etc.

However, including too much information crowds the

view, so all of the information in a richer model of the

process is deliberately not included.

It is important to emphasize that, at a minimum, a

process consists of both activities (work packages) and

deliverables (work products). The deliverables flow in

the input-output relationships between the activities. (A

deliverable is a very general object representing any

activity relationship, such as a transfer of information,

data, knowledge, documents, estimates, prototypes,

materials, etc.—even seemingly abstract items like the

results of decisions.) Just as a system consists of both

elements and relationships, a process, as a kind of

system, consists of both activities and deliverables,

although the deliverables tend to be deemphasized in

many of the common views. (For example, Fig. 1 does

not show the deliverables.) Also, as with any system,

any process is part of (i.e., can be thought of as an

activity within) a larger process, and each activity in a

process may itself be viewed as a process (and further

decomposed into lower-level activities). Thus, the

terms “process” and “activity” are observer-dependent

and often interchangeable. This paper will refer to the

component work packages in a process as activities,

only for the purpose of having distinct terms for the

“parent” and “child” work packages. (Deliverables can

also be decomposed and organized hierarchically, but

this paper will not use different terms for parent and

child deliverables.)

In terms of a physical product, architecture has been

defined as “the fundamental organization of a system

embodied in its components, their relationships to each

other, and to the environment, and the principles guid-

ing its design and evolution” [IEEE, 2000]. Thus, the

activities in a process and their relationships help deter-

mine the architecture of that process [Browning and

Eppinger, 2002]. Process architecture refers to the

structure of activities, their relationships, and the prin-

ciples and guidelines governing their design and evolu-

tion.

In summary, then, a process consists of related ac-

tivities. Most process models are therefore activity-

based and (more or less) account for the activities’

3However, unlike in applications of information hiding to product

modularity [e.g., Baldwin and Clark, 2000], a parsimony of views is

not a primary goal. While a product component must physically reside

in either one module or another, it is common and desirable for the

information attributes in one view to co-exist in other views, as long

as they are synchronized.

 TOWARD A PROCESS ARCHITECTURE FRAMEWORK FOR PRODUCT DEVELOPMENT PROCESSES 75

Systems Engineering DOI 10.1002/sys

F
ig

u
re

 1
.
A

n
 e

x
am

p
le

 o
f

a
b
as

ic
 G

an
tt

 c
h

ar
t

sh
o
w

in
g

 a
ct

iv
it

y
 s

ta
rt

,
en

d
,
d
u

ra
ti

o
n
,
an

d
 p

ar
en

t-
ch

il
d
 a

tt
ri

b
u
te

s
[C

o
lo

r
fi

g
u

re
 c

an

b
e

v
ie

w
ed

 i
n

 t
h

e
o
n
li

n
e

is
su

e,
 w

h
ic

h
 i

s
av

ai
la

b
le

 a
t

w
w

w
.i

n
te

rs
ci

en
ce

.w
il

ey
.c

o
m

.]

76 BROWNING

interrelationships. In contemporary practice, all of the

information useful for planning and controlling the

large numbers of varied activities and relationships in a

complex process has not been captured in a single

model. Instead, various models may capture certain

subsets of the information, as guided by each model’s

purpose (e.g., a particular decision to support, etc.). AFs

provide a potential avenue for synthesizing the infor-

mation in multiple models into a single, rich, integrated,

synchronized, and more complete model while main-

taining the distinctiveness, simplicity, and usefulness of

each view. Whereas Little [1970] noted a conflict be-

tween simplicity and completeness in managerial mod-

els, an AF offers the potential to achieve both

simultaneously.

Finally, it is important not to confuse an AF approach

applied to processes with prior approaches such as

traditional process repositories or an organizational

process handbook [Malone, Crowston, and Herman,

2003; Malone et al., 1999], even though all of these seek

to organize process information. However, these ap-

proaches do so at different levels and to different de-

grees. Process handbooks and repositories seek to

organize the various types of business processes across an

enterprise, whereas the AF approach seeks to organize

various subsets of the information (attributes and assump-

tions) pertaining to an individual project process into a

catalog of multiple, useful views. The two approaches

address different issues and are complementary.

4. LITERATURE REVIEW AND DATA
ANALYSIS

4.1. Common Views of Process Information

Based on a literature review [Browning, 2007], Table

IV presents many of the common ways to view a

process as an activity network. Table V lists these views

and a few others, along with the attributes they include

(in their basic form) and example references (to which

the reader is directed for further information on each

view). These lists are representative rather than compre-

hensive and, in some cases, group closely related views

into a single category.4 This review reveals that certain

views display particular attributes of the activities

and/or deliverables in a process. Usually it would be

possible to augment this basic set of attributes with

additional attributes (such as choosing to show resource

assignments in a Gantt chart), although the lists in Table

V seek to present only the basic sets of attributes rather

than all possible extensions.

4.2. Process Model Attributes

As discussed in Section 3, when conceived as a system,

a process typically consists of two fundamental objects,

activities (work packages) and their relationships,

which can be defined in terms of input and output

deliverables (work products). Activities and deliver-

ables each have properties or attributes, some of which

are listed in Table V. Based on the results from literature

reviews [Browning, 2007; Browning, Fricke, and

Negele, 2006] and data from several case studies,5 Table

VI lists a collected superset of process attributes (which

are defined in Tables VIII and IX in the Appendix). This

list of attributes is not comprehensive; others could be

added. However, this list more than spans the attributes

of the views in Table V.6

4.3. The Attributes Shown in Particular
Views

To provide further specifics regarding the process infor-

mation contained in each view, Table VII maps the

views (Table V) to the process attributes (Table VI) they

include.7 Table VII uses a four-level relationship scale

[0, 1, 1.5, 2], depending on whether the attribute is

never, potentially, sometimes/partially, or always

shown in a particular view. The assignment of these

ratings is approximate, since many variations of par-

4In contrast to these views, researchers have also provided ways to

view alternative process architectures or modes. For example, Malone

et al. [1999; Malone, Crowston, and Herman, 2003] organize proc-

esses at various levels of abstraction to facilitate navigation of a

process repository. Pentland [1995] provides a grammatical charac-

terization of processes. Chung, Kwon, and Pentland [2002] empha-

size the importance of visualizing a project’s potential process

space—the range of process scenarios that could unfold. However,

Tables IV and V focus specifically on views of a single process as an

activity network.

5Several case studies were conducted at a U.S. Fortune 100 company

that develops complex, high-tech system products. The company is

generally organized into functional organizations (e.g., engineering,

manufacturing, program management office, marketing, etc.) and

large projects (programs), each developing a particular complex

system product and organized into a number of cross-functional

teams. Primary data collection occurred in July–September 2006. To

gain a diversity of perspectives within the company, the author

interviewed 12 people from varied program and functional organiza-

tions. Through additional meetings and conversations, other individu-

als from assorted organizations in the company and with varied

backgrounds also provided inputs.
6Note that a process model could contain additional objects besides

activities and deliverables—such as organizational units, project

states, and project events, each with their own attributes—although

at some point such a model would cease to be merely a process model

and become characteristic of an enterprise model (which represents

a natural path for further research in this area but also adds many

layers of complexity).
7Three views from Table V—High-Level “Life Cycle” Models, Ac-

tivity-on-Arc Diagrams, and Stock-and-Flow Diagrams—were not

carried forward in the analysis because they do not include many of

the attributes. These three views are therefore excluded in Table VII.

 TOWARD A PROCESS ARCHITECTURE FRAMEWORK FOR PRODUCT DEVELOPMENT PROCESSES 77

Systems Engineering DOI 10.1002/sys

ticular views exist, some of which include additional

attributes. In assigning a value to each cell, care was

taken to assume a standard, basic version of each view.

The “1” values were especially difficult to assign, be-

cause just how easy it would be to include an attribute

(or not) depends on assumptions about a view’s practi-

cal capabilities and limitations. While the values in

some individual cells could be argued, Table VII never-

theless provides a helpful overview and enables several

observations.

First, the textual narrative has the capability to in-

clude almost any desired attribute, although it is up to

its authors to do so. However, the textual process docu-

mentation at the case study company was inconsistently

detailed. Moreover, when many attributes are included,

it becomes difficult to organize the narrative in a way

that facilitates users finding a particular piece of infor-

mation. Filtering subsets of information is difficult. A

good search engine can get users to information

quickly, but only if they know exactly what to look for.

Therefore, simply determining whether or not a view

can represent an attribute does not tell the whole story

(but it is a start).

Second, most views emphasize the activities but not

the deliverables [Browning, Fricke, and Negele, 2006;

Browning and Ramasesh, 2007]. At best, some views

name the deliverables without elaborating on them,

while many views only treat the deliverables implicitly.

The eEPC diagram provides the capability to emphasize

deliverables, but, when it does so, the diagram becomes

 Table IV. Brief Descriptions and Examples of Some Common Process Model Views (Adapted from
 Browning [2007])

78 BROWNING

Systems Engineering DOI 10.1002/sys

 Table IV (continued)

 TOWARD A PROCESS ARCHITECTURE FRAMEWORK FOR PRODUCT DEVELOPMENT PROCESSES 79

Systems Engineering DOI 10.1002/sys

cluttered. Therefore, additional, separate views might

be needed to emphasize the characteristics of deliver-

ables.

Third, the “WPS database record” view provides a

means of potentially accessing a wide variety of infor-

mation about the attributes of deliverables. This type of

view—direct access to database objects (records) and

their attributes (fields)—seemed attractive to expert

users such as process owners at the case study company.

However, effective use of this type of view requires a

higher level of prior knowledge about an object and its

context.

Fourth, a number of attributes are not shown by any

view, although some views could be expanded to show

 Table IV (continued)

a Project Evaluation and Review Technique
bGraphical Evaluation and Review Technique
cIDEF0 stands for “Integrated Definition, Version 0.” There are also versions up to 14 for various niche applications, including IDEF3 for “process

description capture.”
dCreate-Read-Update-Delete
eSupplier-Input-Process-Output-Customer.
fThe acronym is based on the German term for “Architecture of Integrated Information Systems.”
gEntry-Task-Validation-Exit.

80 BROWNING

Systems Engineering DOI 10.1002/sys

Table V. References for and Attributes of Some Common Views of Process Models (Adapted from Browning
[2007])

 TOWARD A PROCESS ARCHITECTURE FRAMEWORK FOR PRODUCT DEVELOPMENT PROCESSES 81

Systems Engineering DOI 10.1002/sys

them. However, doing so causes the views to become

cluttered. Additional views might be needed to repre-

sent these attributes in a useful way.

5. TOWARDS A PROCESS ARCHITECTURE
FRAMEWORK

This paper proposes the development of a process ar-

chitecture framework (PAF) and presents some prelimi-

nary explorations and reviews that illuminate a path in

this direction. Using a catalog of views, a PAF provides

a seemingly simple while more complete, integrated,

and synchronized model of a complex process. The

important decisions facing managers and systems engi-

neers in large, complex projects require appropriate

support from model views that filter, organize, and

synchronize the relevant information. In contemporary

projects, many of the views are based on disparate

models, which omit (or make assumptions about) some

information and include extraneous information

[Browning, 2007]. A set of appropriate views would

include only the right information (for making a certain

decision, or conducting a certain analysis or evaluation)

and exclude (or hide) other information—yet, this

Table V (continued)

aCould also be events or conditions.

 Table VI. Attributes of Two Fundamental Objects in a Process Model (Adapted from Browning [2007])

82 BROWNING

Systems Engineering DOI 10.1002/sys

T
a
b

le
 V

II
.
M

a
p

p
in

g
 o

f
P

ro
ce

ss
 M

o
d

el
 V

ie
w

s
to

 A
tt

ri
b

u
te

s
(A

d
a
p

te
d

 f
ro

m
 B

ro
w

n
in

g
 [

2
0
0

7
])

 TOWARD A PROCESS ARCHITECTURE FRAMEWORK FOR PRODUCT DEVELOPMENT PROCESSES 83

Systems Engineering DOI 10.1002/sys

would occur within the context of the hidden informa-

tion rather than apart from it. That is, a PAF may serve

as the organizing structure for a database of project and

process information. Instead of the situation where each

group participating in a project supports its preferred

models and views by keeping its own, disparate data-

bases, a PAF can provide a structure for collecting the

various bits of system information into a central reposi-

tory, thus ensuring that each group works with common

information. Changes to the system could be immedi-

ately represented in all of its views. In the house-build-

ing example, moving a wall on the blueprint would

immediately show up as a needed change on the wiring

and plumbing diagrams. Hence, a PAF could also lay a

foundation for artificial intelligence to detect project

planning (scheduling, budgeting, technical risk, etc.)

problems automatically. By having a framework to keep

track of project changes and their implications, manag-

ers would have a better tool for avoiding nonharmoni-

ous decisions. Changes to the hidden information

would have the potential to automatically trigger ques-

tions about the revealed information (because of the

behind-the-scenes integration) rather than later in the

process at important integration events.

An appropriate PAF would need to account for the

attributes listed in Table VI and perhaps others as well.

Various subsets of these attributes would be available

to users through various views. The list of views in

Table V is a start, but Table VII indicates a lack of

attention to certain attributes by this set of views. It

seems that additional views would need to be devel-

oped, perhaps by targeting specific users and their use

cases. It is also important to mention that a “good” view

does more than just include and exclude the right attrib-

utes: it also arranges those attributes in an elegant and

intuitive way to accelerate good decision making. For

example, the design structure matrix (DSM) view

(shown in Part 1 of Table IV), highlights potential

iteration and rework loops in a process, thereby focus-

ing attention on the key drivers of cost and schedule risk

in a project. If a particular aspect of a project is known

or predicted to be a challenge, specific views could be

customized to plan, monitor, and control that area.

Future research could propose and verify new views as

well as continue to gather the “home-grown” views

currently used (because they are helpful) in various

projects, companies, and industries.

New, customized views can be added to a PAF. In

fact, a PAF may develop best if allowed to emerge rather

than attempting to specify it completely a priori. How-

ever, such emergence would need to be guided by an

appropriate set of simple rules and standards for storing

and manipulating process attributes. The set of attrib-

utes listed in Table VI seems to provide a rich and

flexible platform for such development, although these

lists would probably need to be expanded in different

contexts.

While a catalog of views may ultimately populate a

PAF, not all of the views will be equally useful for every

project. Research will be needed not only to develop

and verify new views, but to ascertain the contexts in

which they are likely to be valuable. While experienced

systems engineers and managers will have a firmer

grasp of what they would like to know in order to plan

and control a project, less experienced ones will require

guidance in selecting the views most deserving of their

attention on a particular kind of project.

ACKNOWLEDGMENTS

Nitin Joglekar, James Martin, four anonymous review-

ers, and several individuals at company where the case

studies occurred provided helpful comments on earlier

versions of the paper. Marc Ortiz provided careful

research assistance.

REFERENCES

C. Alexander, Notes on the synthesis of form, Harvard Uni-

versity Press, Cambridge, MA, 1964.

R. Axelrod and M. Cohen, Harnessing complexity, The Free

Press/Simon & Schuster, New York, 1999.

C.Y. Baldwin and K.B. Clark, Design rules: The power of

modularity, Vol. 1, MIT Press, Cambridge, MA, 2000.

A. Basu, R.W. Blanning and A. Shtub, Metagraphs in hierar-

chical modeling, Management Sci 43(5) (1997), 623–639.

B. Boehm, Spiral development: Experience, principles, and

refinements, CMU’s Software Engineering Institute, Pitts-

burgh, PA, 2000.

T.C. Bond, Systems analysis and business process mapping:

A symbiosis, Bus Process Management J 5(2) (1999),

164–177.

G.E.P. Box, “Robustness in scientific model building,” Ro-

bustness in statistics, R.L. Launer and G.N. Wilkinson

(Editors), Academic, New York, 1979, pp. 201–236.

T.R. Browning, Applying the design structure matrix to sys-

tem decomposition and integration problems: A review

and new directions, IEEE Trans Eng Management 48(3)

(2001), 292–306.

T.R. Browning, Aligning the purposes and views of project

activity network models, TCU Neeley School of Business

Working Paper, Fort Worth, TX, 2007.

T.R. Browning and S.D. Eppinger, Modeling impacts of

process architecture on cost and schedule risk in product

development, IEEE Trans Eng Management 49(4) (2002),

428–442.

T.R. Browning and R.V. Ramasesh, A survey of activity

network-based process models for managing product de-

velopment projects, Prod Oper Management 16(2) (2007),

217–240.

84 BROWNING

Systems Engineering DOI 10.1002/sys

T.R. Browning, E. Fricke, and H. Negele, Key concepts in

modeling product development processes, Syst Eng 9(2)

(2006), 104–128.

M.J. Chung, P. Kwon, and B.T. Pentland, Making process

visible: A grammatical approach to managing design proc-

esses, J Mech Des 124(3) (2002), 364–374.

R.G. Cooper, Perspective: Third-generation new product

processes, J Prod Innovation Management 11(1) (1994),

3–14.

K. Crowston, “Process as theory in information systems

research,” Organizing business knowledge, T.W. Malone,

K. Crowston and G.A. Herman (Editors), MIT Press,

Cambridge, MA, 2003, pp. 177–190.

DoD, C4ISR Architecture Framework, Version 2.0, U.S. De-

partment of Defense, C4ISR Architecture Working Group,

Washington, DC, 1997.

DoD, DoD Architecture Framework, Version 1.5, U.S. De-

partment of Defense, DoD Architecture Framework

Working Group, Washington, DC, 2007.

S.E. Elmaghraby, Activity nets: A guided tour through some

recent developments, Eur J Oper Res 82(3) (1995), 383–

408.

C.G. Feldmann, The practical guide to business process reen-

gineering using IDEF0, Dorset House, New York, 1998.

D.N. Ford and J.D. Sterman, Overcoming the 90% syndrome:

Iteration management in concurrent development pro-

jects, Concurrent Eng Res Appl 11(3) (2003), 177–186.

H.L. Gantt, Organizing for work, Harcourt, Brace and Howe,

New York, 1919.

M. Hammer, Seven insights about processes, Proc Conf Stra-

tegic Power of Process: From Ensuring Survival to Creat-

ing Competitive Advantage, Boston, MA, 2001.

D. Harel, Statecharts: A visual formalism for complex sys-

tems, Sci Comput Program 8(1) (1987), 231–274.

J.H. Holland, Emergence, Helix (Addison-Wesley), Reading,

MA, 1998.

IBM, Flowcharting techniques, IBM Data Processing Tech-

niques, International Business Machines, Yorktown

Heights, NY, 1969.

IEEE, IEEE recommended practice for architectural descrip-

tion of software-intensive systems, Institute of Electrical

and Electronics Engineers Standards Association, 2000.

INCOSE, Systems engineering handbook: A guide for system

life cycle processes and activities, International Council

on Systems Engineering, Seattle, WA, 2007.

B. Iyer and R.M. Gottlieb, The four-domain architecture: An

approach to support enterprise architecture design, IBM

Syst J 43(3) (2004), 587–597.

S.A. Kauffman and S. Levin, Towards a general theory of

adaptive walks on rugged landscapes, J Theoret Biol

128(1) (1987), 11–45.

R. Keller, T.L. Flanagan, C.M. Eckert, and P.J. Clarkson, Two

sides of the story: Visualising products and processes in

engineering design, Proc 10th Int Conf Information Visu-

alisation, London, UK, 2006, pp. 362–367.

V. Krishnan and K.T. Ulrich, Product development decisions:

A review of the literature, Management Sci 47(1) (2001),

1–21.

P. Kruchten, Architectural blueprints—the “4+1” view model

of software architecture, IEEE Software 12(6) (1995),

42–50.

W.J. Linton, Poetry of America: Selections from one hundred

American poets from 1776 to 1876, Clowes, London,

1878.

J.D.C. Little, Models and managers: The concept of a decision

calculus, Management Sci 16(8) (1970), B466–B485.

T.W. Malone, K. Crowston, and G.A. Herman (Editors),

Organizing business knowledge, MIT Press, Cambridge,

MA, 2003.

T.W. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas,

G. Wyner, J. Quimby, C.S. Osborn, A. Bernstein, G.

Herman, M. Klein, and E. O’Donnell, Tools for inventing

organizations: Toward a handbook of organizational proc-

esses, Management Sci 45(3) (1999), 425–443.

R.J. Mayer, C.P. Menzel, M.K. Painter, P.S. deWitte, T. Blinn,

and B. Perakath, Information Integration for Concurrent

Engineering (IICE) IDEF3 process description capture

method report, Knowledge Based Systems, College Sta-

tion, TX, 1995.

H.L. McManus, Product Development Value Stream Map-

ping (PDVSM) manual, MIT Lean Aerospace Initiative,

Cambridge, MA, 2005.

J.R. Meredith and S.J. Mantel, Project management, 6th

edition, Wiley, New York, 2006.

M. Minsky, The emotion machine, Simon & Schuster, New

York, 2006.

MoD, Ministry of Defence architectural framework overview,

Version 1.0, UK Ministry of Defence, London, 2005.

J.J. Moder, C.R. Phillips, and E.W. Davis, Project manage-

ment with CPM, PERT and precedence diagramming, Van

Nostrand Reinhold, New York, 1983.

H. Mooz and K. Forsberg, The dual vee—illuminating the

management of complexity, Proc 16th Annu Int Symp

INCOSE, Orlando, FL, 2006.

NASA, NASA systems engineering handbook, NASA Head-

quarters, Code FT, SP-6105, Houston, TX, 1995.

NIST, Integration Definition for Function Modeling (IDEF0),

National Technical Information Service, U.S. Department

of Commerce, Springfield, VA, 1993.

O. Noran, “A mapping of individual architecture frameworks

(GRAI, PERA, C4ISR, CIMOSA, Zachman, ARIS) onto

GERAM,” Handbook on enterprise architecture, P. Ber-

nus, L. Nemes, and G. Schmidt (Editors), Springer, Berlin,

2003, pp. 65–210.

T.G. Olson, Defining short and usable processes, CrossTalk J

Defense Software Eng 19(6) (2006), 24–28.

D.L. Parnas, On the criteria to be used in decomposing

systems into modules, Commun ACM 15(12) (1972),

1053–1058.

B.T. Pentland, Grammatical models of organizational proc-

esses, Org Sci 6(5) (1995), 541–556.

A. Peukert and U. Walter, Integrating system views emerging

from different engineering cultures, INSIGHT 10(1)

(2007), 23–28.

J.K. Pinto, Project management, Pearson Prentice Hall, Upper

Saddle River, NJ, 2007.

 TOWARD A PROCESS ARCHITECTURE FRAMEWORK FOR PRODUCT DEVELOPMENT PROCESSES 85

Systems Engineering DOI 10.1002/sys

PMI, A guide to the project management body of knowledge,

Project Management Institute, Newtown Square, PA,

2004.

A. Presley, J. Sarkis, W. Barnett, and D. Liles, Engineering

the virtual enterprise: An architecture-driven modeling

approach, Int J Flexible Manufacturing Syst 13(2) (2001),

145–162.

A.A.B. Pritsker and W.W. Happ, GERT: Graphical Evaluation

and Review Technique: Part I. Fundamentals, J Indust Eng

17(5) (1966), 267–274.

R.A. Radice, N.K. Roth, J. A.C. O’Hara, and W.A. Ciarfella,

A programming process architecture, IBM Syst J 24(2)

(1985), 79–90.

M.G. Richards, N.B. Shah, D.E. Hastings, and D.H. Rhodes,

Architecture frameworks in system design: Motivation,

theory, and implementation, Proc 17th Annu Int Symp

INCOSE, San Diego, CA, 2007a.

M.G. Richards, N.B. Shah, D.E. Hastings, and D.H. Rhodes,

Managing complexity with the Department of Defense

architecture framework: development of a dynamic sys-

tem architecture model, Massachusetts Institute of Tech-

nology, Engineering Systems Division, Cambridge, MA,

2007b.

B. Schätz, A. Pretschner, F. Huber, and J. Philipps, Model-

based Development, Institut für Informatik, Technische

Universität München, Munich, 2002.

A.-W. Scheer, ARIS—Business process frameworks, Sprin-

ger, New York, 1998.

A.-W. Scheer, ARIS—Business process modeling, Springer,

New York, 1999.

P.M. Senge, The fifth discipline: The art & practice of the

learning organization, Currency Doubleday, New York,

1990.

H.A. Simon, The sciences of the artificial, MIT Press, Cam-

bridge, MA, 1981.

J.F. Sowa and J.A. Zachman, Extending and formalizing the

framework for information systems architecture, IBM

Syst J 31(3) (1992), 590–616.

SPC, Improving the software process through process defini-

tion and modeling, Software Productivity Consortium,

International Thomson Computer Press, Boston, MA,

1996.

J.D. Sterman, Business dynamics: Systems thinking and mod-

eling for a complex world, McGraw-Hill, New York, 2000.

A. Tang, J. Han, and P. Chen, A comparative analysis of

architecture frameworks, School of Information Technol-

ogy, Centre for Component Software and Enterprise Sys-

tems, Swinburne University of Technology, Melbourne,

Australia, 2004.

TOG, The Open Group Architecture Framework (TOGAF)

8.1.1, The Open Group, 2006.

D. Unger and S.D. Eppinger, Product development process

design: Planning design iterations for effective product

development, MIT Center for Innovation in Product De-

velopment, Cambridge, MA, 2002.

E. von Hippel, Task partitioning: An innovation process vari-

able, Res Policy 19(5) (1990), 407–418.

J.A. Zachman, A framework for information systems archi-

tecture, IBM Syst J 26(3) (1987), 276–292.

Tyson R. Browning is Assistant Professor of Enterprise Operations at the Neeley School of Business at

Texas Christian University in Fort Worth, TX. He teaches Operations Management and Program Man-

agement in the MBA program and conducts research on managing complex enterprises, projects, and

processes—the intersection of systems engineering and program management. He has served as a

consultant for several companies including General Motors, Lockheed Martin, Northrop Grumman,

Seagate, and Southern California Edison. He has previous work experience at Lockheed Martin Aeronau-

tics Company, the Lean Aerospace Initiative, Honeywell Space Systems, and Los Alamos National

Laboratory. Browning earned a B.S. in Engineering Physics from Abilene Christian University and two

Master’s degrees and a Ph.D. in Technology Management and Policy from the Massachusetts Institute of

Technology. He has written numerous articles on engineering management, risk management, the design

structure matrix, process modeling, and value measurement for conferences, books, and journals,

including ASME Journal of Mechanical Design, IEEE Transactions on Engineering Management, Journal

of Operations Management, Production & Operations Management, Project Management Journal, and

Systems Engineering. He is a member of INCOSE, Institute for Operations Research and the Management

Sciences (INFORMS), and Production and Operations Management Society (POMS).

86 BROWNING

Systems Engineering DOI 10.1002/sys

Table VIII. Process and Activity (Work Package) Object Attributes and Descriptions

APPENDIX: DESCRIPTIONS OF THE ACTIVITY AND DELIVERABLE ATTRIBUTES USED

 TOWARD A PROCESS ARCHITECTURE FRAMEWORK FOR PRODUCT DEVELOPMENT PROCESSES 87

Systems Engineering DOI 10.1002/sys

Table VIII. (continued)

88 BROWNING

Systems Engineering DOI 10.1002/sys

Table IX. Deliverable (Work Product) Object Attributes and Descriptions

 TOWARD A PROCESS ARCHITECTURE FRAMEWORK FOR PRODUCT DEVELOPMENT PROCESSES 89

Systems Engineering DOI 10.1002/sys

Table IX. (continued)

90 BROWNING

Systems Engineering DOI 10.1002/sys

