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Abstract. Successful project activities in the IT industry are determined by the 

extent of difficulty in the team formation and implementation of projects 

themselves. IT projects provide for fulfillment of a number of tasks that are 

interrelated. In formation of such a project, account should be taken of certain 

factors necessary for its successful implementation, determination of the 

technology for fulfilling intermediate tasks: consecutive or parallel, and for 

setting the priorities. This approach requires detailed calculation and 

scientifically grounded decisions. The authors have proposed an original 

approach to solving discrete optimization problems related to fundamental 

calculation difficulties in the process of an IT project formation. The known 

methods of exact or approximate solution of such problems are studied with 

account taken of their belonging to so-called P- and NP-class problems (the 

polynomial and the exponential solution algorithms). The modern combinatory 

and heuristic methods for solving practical discrete optimization problems 

require development of algorithms that allow obtaining approximate solution 

with guaranteed estimate of deviation from the optimum. Simplification 

algorithms provide an efficient method of searching for an optimization 

problem solution. Should a multidimensional process be projected onto the two-

dimensional surface, this will enable graphical visualization of sets of the 

problem solutions. This research provides a way for simplifying the 

combinatory solution of a discrete optimization problem. It is based on 

decomposition of the system that represents the system constraining a 

multidimensional output problem to the two-dimensional coordinate plane. 

Such method allows obtaining a simple system of graphical solutions of a 

complicated linear discrete optimization problem. From the practical point of 

view, the proposed method allows reducing the calculation complicacy of 

optimization problems belonging to this class when the IT project solutions are 

complicated. The approach proposed can be applied in using the obtained 

research result for assuring the possibility to improve the class of problems 

presented by linear equation systems. The automation of calculations in the 

Maple® environment provides the basis for further development and 
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improvement of such algorithms, and for using in teaching a number of 

disciplines in education programs on IT project management aimed at Master’s 
degree. 

Keywords: IT project management, education programs aimed at Master’s 
degree, linear optimization, discrete optimization, system of constraints, 

combinatory method, the gauss-jordan method, decomposition, reduction, 

graphical solution, Maple®. 

1 Introduction 

Discrete optimization problems appear in many areas where models of current 

processes were formed and use mathematic methods[19,20,21,22] of their solution 

under the following additional conditions: the unknowns have to be integer in full or 

in part, or they have to be binary (0 or 1). The traveling salesman problem, the 

knapsack problem and the assignment problem are the most known problems of linear 

optimization. Nowadays, discrete optimization has been formed as an independent 

part of the theory of optimization. It uses modern combinatory methods and 

algorithms for solving practical problems. Their application results in primary bases 

of a problem, further assessment of their optimality, improvement of bases in case of 

their nonoptimality and bounds of the target function [1,2,3,4]. 

As the most discrete optimization problems belong to the NP class, it is reasonable 

to use problem simplification algorithms without losing the controlled accuracy of 

solution [5,6,7]. The procedure of simplification uses the known interrelation of linear 

algebraic equation systems with the system of linear algebraic inequalities and the 

classic linear algebra apparatus [8,9,10]. 

The principle of the method proposed consists in using the feature of convex 

polyhedral area I


 provided by a system of linear algebraic inequalities or 

equations in the form of a direct sum of subspace and kernel.[11] Provided that the 

polyhedral kernel is two-dimensional, an optimization problem can be reduced to a 

two-dimensional one. Projections obtained enable easy finding of the optimum 

solution and evaluation of availability of an integer solution, and then of a binary 

solution as well. A direct calculation means of simplifying such class of discrete 

optimization problems is implemented by the Gauss-Jordan method in the Maple® 
computer mathematics environment [7,10,12,13]. 

2 Literature Data Analysis and Problem Statement 

Mathematic models of active systems are interpreted in many cases as discrete 

optimization problems [1,2,14,15]. Development of discrete optimization problems is 

associated with fundamental difficulties [2]. The known modern methods and 

algorithms of exact and approximate solution of such problems are studied with 



account taken of their belonging to so-called P- and NP-class problems (the 

polynomial and the exponential solution algorithms). [5]. 

Combinatory and heuristic methods for exact and approximate solving practical 

discrete optimization problems take an essential place in obtaining optimum values of 

such problems [1]. Realization of such algorithms requires availability of the 

acceptable primary basis of a problem, an optimality assessment procedure and the 

basis improvement if nonoptimality is the case [5,6]. 

The methods of discrete optimization problems solution that have been developed 

by now require development of algorithms which allow obtaining an approximate 

solution with guaranteed estimate of deviation from the optimum. 

Simplification algorithms in discrete optimization problems provide an efficient 

method of searching for an optimization problem solution. [16,17,18]. Should a 

multidimensional process be projected onto the two-dimensional surface, this will 

enable visualization of the acceptable set (array) of the problem parameters. We can 

make a lower- and an upper-bound estimate of the problem target function values and 

dynamically evaluate the possibility to diversify basis optimum variables with 

guaranteed accuracy. 

Solving contradictions between requirements to completeness of modeling views 

in active systems and methods of obtaining solutions of their mathematic models is 

possible due to reasonable reduction of the algorithms of complicated equation 

systems solution [17]. Lack of problem solution as regards searching for solutions in 

discrete optimization problems consists in the need for developing and implementing 

the procedure of simplifying the combinatory solution of a discrete optimization 

problem. 

3 The Research Objectives and Task 

The following objectives are determined for the research: involving and using linear 

algebra standard calculation procedures and certain linear optimization methods to 

simplify the solution of multidimensional discrete optimization problems with further 

visualizing of geometric interpretation of a linear discrete optimization problem 

solution. 

The following tasks were set to achieve the objectives determined: 

 to remove the class of problems that have to be simplified; 

 to provide calculations of a modeling example. 

4 Development of Simplification of the Solution in Discrete 

Optimization Problems 

Successful project activities in the IT industry are determined by the extent of 

difficulty in the team formation and implementation of projects themselves. IT 

projects provide for fulfillment of a number of tasks that are interrelated. In formation 

of such a project, account should be taken of certain factors necessary for its 



successful implementation, determination of the technology for fulfilling intermediate 

tasks: consecutive or parallel, and for setting the priorities. To fulfill the task of a 

project content optimization, works are analyzed that have to be performed for 

creating a software. In this process, the project is analyzed for its content, period for 

each stage implementation, costs, risks and value. The value determining approach is 

based on comprehensive characteristic of the project results. This characteristic, in its 

turn, can be defined by quality of the software created as a result of the project 

implementation, as well as by economic, social and politic, environmental, technical 

and other effects. For efficient calculations and avoiding fundamental calculation 

difficulties in the process of an IT project formation, evaluation of project actions in 

all phases of the project lifecycle – from issuance of requirements specifications to 

software installation to the customer, the authors have developed a method reducing 

the calculation complicacy of optimization problems. 

This research proposed the system decomposition through projection of a 

multidimensional output problem onto two-dimensional coordinate planes. This 

method transforms the output problem into a group of subsystems, which enables 

obtaining the system of graphical solutions of a complicated linear discrete 

optimization problem. The Maple® software environment has been involved from the 

methodological and scientific points of view. Each of the problem stages has been 

associated with a subprogram for automation of calculations and visualization of 

solution results (Fig. 1). 

 
Fig. 1. Enlarged UML diagram of information system 

For the method use visualization, we formulate a problem on optimum placement of 

n  - sets jA , nj  ..., ,1  on the universal set U . Let each set jA , nj  ..., ,1  be 
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characterized by two scalar values: jc  - value and ja  - power or weight jA . At the 

same time, the condition is fulfilled that the cardinality of universal set BU   is 

smaller than the total cardinality of all jA . Such an optimization problem consists in 

the need to select a certain number of jA  from the total aggregate of jA , for 

immersion into U , the total value of which is maximum. 

The total power 



n

j

j Ba
1

 is bigger than the cardinality of universal set, i.e. it is 

impossible to place the complete number of sets. U  can only accommodate a part (a 

number) of sets jA . Let us enter n  Boolean (dichotomic or binary) variables: 








,in  placed is     ,1

,in  placednot  is     ,0

UA

UA
x

j

j
j           (1) 

where nj  ..., ,1 . 

Entering binary unknowns (1) - 10jx , nj  ..., ,1  allows formulating the 

target function IW  and constraint I  of the following optimization problem: 
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According to the problem statement, 0jc , Ba j 0 , .,  ,2 ,1 nj   

Such problem (2) is called in the discrete optimization theory a one-dimensional 

knapsack problem. Solution of this problem means finding among n2  n – 

dimensional vectors such vector ] , , , [ 21 nxxxX  , which meets the constraints I  

and provides the maximum value to the target function IW . (Fig. 2) 

 

Fig. 2. The problem on jA  immersion into U . (one-dimensional knapsack) 
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Let us consider the generalized one-dimensional knapsack problem statement. We 

divide the universal set into its own subsets mUUUU  21  with the 

condition ii bU  , mi ,  ,2 ,1  , and 



m

i
ibB

1

 The problem of immersion of sets 

jA , nj  ..., ,1  into mUUUU  21  is interpreting jA  as a set not just with 

one feature ja , but with a whole range of jia
 

, mi ,  ,2 ,1  . The features are 

provided by set nmjiaA  ][
 

. The mathematic form of such optimization problem on 

placement of jA  into mUUUU  21  looks as follows: 
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Account is to be taken of the fact that 0jc , Ba ji 
 

0 , mi ,  ,2 ,1  , 

.,  ,2 ,1 nj   For ],1 [ mi  the following is to fulfill: iinii baaa  21 . It 

means that it is not possible to place all sets jA , nj  ..., ,1  in any of the subsets 

mUUUU  21 . The number of n – measurable vectors ] , , , [ 21 nxxxX  is 

the solution of the problem. 

Such type of problem is used to be called one-dimensional knapsack problem. The 

formulated problem is interpreted as a problem on optimum selection in project 

management. 

For implementation of n projects ( jA , nj  ..., ,1 ), certain resources are provided 

that are represented in the form of a vector of resources 
T

mbbbb ] , , , [ 21   The set 

nmjiaA  ][
 

 determines the rates of consuming resource jb  for implementation of 

project jA . The profit from implementation of project jA  is 0jc . We need to 

choose the number of projects jA  that allows gaining the maximum profit. Let us 

enter Boolean vector ] , , , [ 21 nxxxX  , where  
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We obtain the problem: 
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           (4) 

The project management model (4) completely agrees with the multidimensional 

knapsack problem (3). 

At this time, we know that the given problems (3), (4) cannot be exactly resolved. 

We have performed exhaustive research of features of acceptable and optimum 

solutions of knapsack problems and proposed several algorithms [2,5] of gradual 

approximating to the optimum solution. Thus, the Danzig algorithm and so-called 

“greedy” procedures form the basis of heuristic algorithms.[18] 
The research has proposed and exactly grounded an approach to finding the 

optimum solution of a broad class of multidimensional knapsack problems. The 

principle of the method proposed consists in using the feature of convex polyhedral 

area I  provided by a system of linear algebraic inequalities or equations in the form 

of a direct sum of subspace and kernel. [10, 17] Provided that the polyhedral kernel is 

two-dimensional, an optimization problem can be reduced to a two-dimensional one. 

Projections obtained enable easy finding of the optimum solution and evaluation of 

availability of an integer solution, and then of a binary solution as well. 

In other words, the research proposed projecting polyhedron I  onto subsets of 

the set of basis vectors of a linear optimization problem system of constraints. For 

special case 2 nm , where m  - number of constraints I , n  - rank nmjiaA  ][
 

 

projections are elementary because the are two-dimensional. It is not difficult to 

analyze the projection integer values array and to solve the problem. 

The first step in this algorithm is to prepare the system of constraints for reduction. 

Thus, let us have a general optimization problem in the following form: 
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We know that such a problem can be reduced to the canonical form: 
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The reduction is possible due to standard methods of transformation. Thus, the 

equation of system of constraints is equivalent to the system of two inequalities: 
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Values with arbitrary sign can be represented in the form of a difference of 2 

nonnegative variables: 

.0   ,0       ,  jjjjj vuvux  

Transition from inequality constraints to equation constraints is made by adding the 

nonnegative (balancing) variable: 

. , ,1     ,0       ,  
11
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Transition from maximization to minimization of the target function and transition the 

other way round is used for simpler transformation: 

minWmaxW
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In view of this, without loss of considerations generality, let us have a linear 

optimization problem provided in canonical form: 
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where the matrix rank of factors of the system of constraints is equal to rank A = m. 

Solving the system with the Gauss-Jordan method under an arbitrary basis 

combination of variables, we obtain projection n  - of measurable output problem 

onto )( nm  - measurable space. As we take into consideration a class of problems 

with condition 2 nm , we have projecting of n
R  onto two-dimensional plane 2

R . 

Let us consider a modeling example of solution based on projecting a 

multidimensional process in 6
R  onto two-dimensional space 2

R . 

5 Modeling Example 

Tasks: solving the optimization problem with condition . , ,1 ,0 njx j  . Also 

obtaining a completely integer solution and the solution under condition 

.,  ,2 ,1   ,10 njxj   
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We make a transition to canonical form of a linear optimization problem 
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The system of constraints consists of four independent equations rank(A) = 4. We 

move from the canonical form of problem representation to the standard form. Such 

move (projecting) is made with solving the system by the Gauss-Jordan method. 

(Table 1) For the given problem of projection 26
RR   we can perform 154

6 C  

ways. We choose randomized basis combination 43xOx . 

5.1 Projection onto 43xOx . 

As basis variables, we choose the following quadruple: x1, x2, x5, x6.  



Table 1 Projection onto 43xOx . 

 

From the last transformation of Table 1, we have the solved system 
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Truncating the basis variables, we assure transition 26
RR   to two-dimensional 

inequalities. The projection of six-dimensional output problem onto coordinate plane 

43xOx  has the following analytical form: 
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The graphical solution is given on Fig. 3. 

 

Fig. 3 Projection onto Ox3x4 

The solution of the system is provided in the extremal vertex coordinates 
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Other coordinates are to obtain from the solved system (5)  Therefore, the optimum 

solution of the output problem is equal to: 
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The represented 43xOx
I  projection I  onto Ox3x4 (Fig. 2) lets us state that point 

(0,0) is the only integer solution point of the problem. In view of this, we have the 

first integer optimum solution estimate  0, 0, , , 21max xxX  . 

5.2 Projection onto 21xOx . 

For calculation of 21  , xx  values, we project I  onto Ox1x2. 
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As basis variables, we choose the following quadruple: x3, x4, x5, x6. We make 

calculations with the Gauss-Jordan method. (Table 2). 

Table 2 Projection onto 21xOx . 

 

From the last transformation of Table 2, we have the solved system 
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It should be mentioned that it is already enough just to have this only system for 

finding an integer solution. Indeed, we ascertained from the previous projecting that 

03 x  and 04 x . In view of this, the second system equation gives 12 x , and the 

x 1 x 2 x 3 x 4 x 5 x 6 b ∑
2 3 4 3 1 0 7 20

3 5 2 4 0 0 8 22

3 3 5 4 0 0 6 21

3 5 3 2 0 1 8 22

WI 1 8 4 1 0 0 0

- 4 - 7 0 - 5 1 0 - 9 - 24

1,5 2,5 1 2 0 0 4 11

- 4,5 - 9,5 0 - 6 0 0 - 14 - 34

- 1,5 - 2,5 0 - 4 0 1 - 4 - 11

WI - 5 - 2 0 - 7 0 0 - 16

-   1/4  11/12 0 0 1 0   8/3  13/3 

0 -   2/3 1 0 0 0 -   2/3 -   1/3 

  3/4  19/12 0 1 0 0   7/3  17/3 

  3/2  23/6 0 0 0 1  16/3  35/3 

WI   1/4 109/12 0 0 0 0   1/3 



third equation gives 11 x . Therefore,  0, 0, ,1 ,1 Z
max X  is the integer solution of the 

problem. We confirm these values through the graphical solution of the problem. 

Truncating the basis variables, we assure transition 26
RR   to two-dimensional 

inequalities. The projection of six-dimensional output problem onto coordinate plane 

21xOx  has the following analytical form: 
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Fig. 4. Projection onto Ox1x2 

The solution of the system is the optimum vertex 
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We obtain the other coordinates from the solved system (6)  The problem solution is 

equal to: 





  0 ,

23
32 ,

23
3 ,

23
6 ,

23
32 0, opt

maxX . The solution obtained completely agrees with the 

one obtained previously, with projecting onto plane Ox3x4. 
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The biggest target function value is 
23

289Wmax I . 

The graphic representation shows that (1,1) is the only integer point. With account 

taken of the previous and the current projecting, we obtain the integer problem 

solution  0, 0, ,1 ,1 Z
max X . In this problem, the binary solution agrees with the 

integer solution  0, 0, ,1 ,1 10
max 

X . 

5.3 Projection onto 61xOx . 

We project I  onto 61xOx . In view of this, we take the following quadruple as 

basis variables: x2, x3, x4, x5. We make calculations with the Gauss-Jordan method. 

(Table 3). 

Table 3 Projection onto 61xOx  

 

From the last step of Table 3, we have the solved system 

x 1 x 2 x 3 x 4 x 5 x 6 b ∑
2 3 4 3 1 0 7 20

3 5 2 4 0 0 8 22

3 3 5 4 0 0 6 21

3 5 3 2 0 1 8 22

WI 1 8 4 1 0 0 0

- 4 - 7 0 - 5 1 0 - 9 - 24

1,5 2,5 1 2 0 0 4 11

- 4,5 - 9,5 0 - 6 0 0 - 14 - 34

- 1,5 - 2,5 0 - 4 0 1 - 4 - 11

WI - 5 - 2 0 - 7 0 0 - 16

-   1/4  11/12 0 0 1 0   8/3  13/3 

0 -   2/3 1 0 0 0 -   2/3 -   1/3 

  3/4  19/12 0 1 0 0   7/3  17/3 

  3/2  23/6 0 0 0 1  16/3  35/3 

WI   1/4 109/12 0 0 0 0   1/3 

-  14/23 0 0 0 1 -  11/46  32/23  71/46

  6/23 0 1 0 0   4/23   6/23  39/23

  3/23 0 0 1 0 -  19/46   3/23  39/46

  9/23 1 0 0 0   6/23  32/23  70/23

WI -  76/23 0 0 0 0 -  109/46 -  283/23
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Truncating the basis variables, we assure the transition 26
RR   to two-dimensional 

inequalities. The projection of six-dimensional problem onto coordinate plane 61xOx  

has the following form: 
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The graphical solution is given on Fig. 5. 



 

Fig. 5. Projection onto Ox1x6 

The optimum solution is in the point of origin of coordinates  

].0,0[max opt
X  

The other coordinates can be obtained from the solved system (7). We have: 





  0 ,

23
32 ,

23
3 ,

23
6 ,

23
32 0, opt

maxX . The solution obtained is equal to the ones obtained 

previously, projections onto plane Ox3x4 and Ox1x2. 

The biggest value of the target function is 
23

289Wmax I . 

The software implementation of a linear optimization problem reduction is an 

important component of the algorithm of such reduction proposed. This step has been 

realized in the environment of the Maple® symbolic mathematics software package. 
A program has been developed that provides automation of calculations using the 

procedure proposed. The program includes two units: 

selection of a basis variables combination and solution of the system of constraints 

with the Gauss-Jordan method; 

three-level optimization calculation ( 0 jx  and integers, njxj ,  ,2 ,1   ,10 

) with using the standard subprogram library. 

A program code fragment is given below. 

# 

eq1:=2*x[1]+3*x[2]+4*x[3]+3*x[4]+x[5]=7: 

eq2:=3*x[1]+5*x[2]+2*x[3]+4*x[4]=8: 

eq3:=3*x[1]+3*x[2]+5*x[3]+4*x[4]=6: 

eq4:=3*x[1]+5*x[2]+3*x[3]+2*x[4]+x[6]=8: 


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######################################### 

 

####### 

W[I]=zf-max; 

eq1;eq2;eq3;eq4; 

x[j]>=0; 

 

ww1:=solve({eq1,eq2,eq3,eq4},{x[3],x[4],x[5],x[6]}); 

 

om1:=-coeff(rhs(ww1[1]),x[1])*x[1]-

coeff(rhs(ww1[1]),x[2])*x[2]<= 

rhs(ww1[1])+(-coeff(rhs(ww1[1]),x[1])*x[1]-

coeff(rhs(ww1[1]),x[2])*x[2]): 

 

om2:=-coeff(rhs(ww1[2]),x[1])*x[1]-

coeff(rhs(ww1[2]),x[2])*x[2]<= 

rhs(ww1[2])+(-coeff(rhs(ww1[2]),x[1])*x[1]-

coeff(rhs(ww1[2]),x[2])*x[2]): 

 

om3:=-coeff(rhs(ww1[3]),x[1])*x[1]-

coeff(rhs(ww1[3]),x[2])*x[2]<= 

rhs(ww1[3])+(-coeff(rhs(ww1[3]),x[1])*x[1]-

coeff(rhs(ww1[3]),x[2])*x[2]): 

 

om4:=-coeff(rhs(ww1[4]),x[1])*x[1]-

coeff(rhs(ww1[4]),x[2])*x[2]<= 

rhs(ww1[4])+(-coeff(rhs(ww1[4]),x[1])*x[1]-

coeff(rhs(ww1[4]),x[2])*x[2]): 

 

zf:=subs({x[3]=rhs(ww1[1]),x[4]=rhs(ww1[2])},zf): 

 

W[I]=zf-max; 

om1;om2;om3;om4; 

sort(x[1]>=0),sort(x[2]>=0); 

 

p1:=inequal( [om1,om2,om3,om4,x[1]>=0,x[2]>=0], x[1]=-

1..7, x[2]=-1..7,optionsexcluded=(colour=white), op-

tionsfeasible=(colour=green,thickness=1)): 

display( p1); 

The results obtained within the research have allowed widening the educational 

content of disciplines taught within the boundaries of the educational program 

“Project Management”. For instance, the content of discipline “Mathematic Models 
and Methods in Project Management” includes materials from such basic areas: linear 

models and linear optimization, discrete optimization, elements of the game theory. 



All the areas require computer modeling and IT projecting. In view of this, the 

proposed approach of automating optimization problems calculations is used in the 

educational process of training students aimed at Master’s degree. 

6 Conclusions 

The proposed approach to simplification of combinatory solution of a discrete 

optimization problem has significant advantages over the known methods of the 

optimum solution determining – the simplex method or the artificial basis method. 

The actually performed decomposition of the system reduces the dimension of the 

equation system to be solved. Projection of multidimensional system of the output 

problem onto the two-dimensional coordinate plane allows obtaining a simple system 

of graphical solutions for a complicated linear discrete optimization problem. From 

the practical point of view, the approach proposed enables reduction of complicacy 

when calculating optimization problems of such class, and the software 

implementation allows including this class of problems into educational projects. 

The scientific result obtained makes researchers arriving at the conclusion that in 

the general case, it is not necessary to search for solution in all the projections. It is 

enough to find the solution just in one projection. The applied significance of the 

approach proposed consists in using the obtained result to assure the possibility of 

improving complicated systems described by linear equation systems with linear 

constraint systems included. Multivalued combinatory projections cause the 

possibility of changing the range of problem parameters. The research has proposed 

projecting a multidimensional optimization process onto the two-dimensional plane. 

Such method of simplification can only be applied to adapted classes of problems. 

The m rank of the matrix of factors of the system of constraints for a linear discrete 

optimization problem has to meet the condition n–m=2, where n – the problem 

dimension. It is reasonable to generalize such projecting onto three-dimensional 

space. 

1. It has been shown that solving a linear optimization problem is possible due to 

simplifying through decomposition of the system by means of building projections of 

multidimensional system of the output problem onto two-dimensional coordinate 

planes. 

2. It has been confirmed on the example of solving a standard model problem that 

the approach proposed enables obtaining a simple system of graphical solutions of a 

complicated linear discrete optimization problem. The result obtained allows the 

researchers to arrive at the conclusion that in the general case, it is not necessary to 

search for solution in all the projections. It is enough to find the solution just in one 

projection. 
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