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The Mario AI Benchmark and Competitions

Sergey Karakovskiy and Julian Togelius

Abstract—This paper describes the Mario AI benchmark,
a game-based benchmark for reinforcement learning algo-
rithms and game AI techniques developed by the authors. The
benchmark is based on a public domain clone of Nintendo’s
classic platform game Super Mario Bros, and completely open
source. During the last two years, the benchmark has been
used in a number of competitions associated with international
conferences, and researchers and students from around the
world have contributed diverse solutions to try to beat the
benchmark. The paper summarises these contributions, gives an
overview of the state-of-art in Mario-playing AIs, and chronicles
the development of the benchmark. This paper is intended as
the definitive point of reference for those using the benchmark
for research or teaching.

Keywords: game AI, reinforcement learning, benchmark-

ing, competitions

I. INTRODUCTION

When doing research in computational and/or artificial

intelligence applied to games, it is important to have suitable

games to apply the AI algorithms to. This applies regardless

of whether one is doing research on using games to test and

improve artificial intelligence (games provide challenging yet

scalable problems which engage many central aspects of

human cognitive capacity), or whether one is doing research

on using CI/AI methods to improve games (for example with

player satisfaction modelling, procedural content generation

and creation of believable and interesting bots). No single

game will ever satisfy all projects and directions within

this steadily growing research field, as different games pose

different challenges. However, the community has much to

gain from standardising on a relatively small set of games,

which are freely available and on which competing CI/AI

methods can be easily and fairly compared.

A “perfect benchmark game” would have to satisfy numer-

ous criteria. It should test a number of interesting cognitive

abilities, preferably such that are not effectively tested by

other benchmark games already out there. It should be “easy

to learn but hard to master”, in other words either have a

tunable challenge level or have a naturally deep learning

curve, so that it differentiates between players and algorithms

of different skill at all levels. It should be visually appealing,

easy to understand and generally something that spectators

know and care about. People should like to play it. The policy

representation (or input/output space) should be sufficiently

general that a number of different CI/AI methods can be

applied to it without too much work.
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The technical platform is also important. The benchmark

game implementation should run on major computing plat-

forms available now and in the foreseeable future, and should

run identically on all systems. The software needs to be

simple to install, the API easy to understand and it should be

possible for anyone with adequate programming knowledge

to have a simple solution up and running within five minutes,

otherwise many researchers will choose to use their own

benchmarks which they know better. The implementation

needs to be computationally lightweight, and able to be sped

up to many times (hundreds or thousands of times) real-time

performance. This last criterion is particularly important for

applying learning algorithms to the game.

In this paper we present the Mario AI Benchmark, a

benchmark software based on Infinite Mario Bros which in

turn is a public domain clone of Nintendo’s classic platform

game Super Mario Bros. We argue that this benchmark

satisfies all of the criteria laid out above to at least some

extent, and therefore is highly suitable for several kinds

of CI/AI research. We also describe the competitions that

have been held during 2009 and 2010 based on successive

versions of the Mario AI Benchmark. These competitions

have attracted a reasonably large number of submissions and

considerable media attention, and as a result the benchmark

is now used in a number of university courses worldwide.

The structure of the paper is as follows. First, we discuss

other competitions and benchmarks, and the characteristics

of the game this particular benchmark is based on. We then

describe the benchmark, including the API and the AmiCo

and Punctual Judge libraries which permits the benchmark

to be used efficiently and fairly from diverse programming

languages. This is followed by a description of how the com-

petitions based on the benchmarks were organised and the

results of the individual competitions. In connection with this

we discuss how the evolution of both the benchmark and the

competition entries was informed by the advances in playing

capability displayed by the best entries in each competition.

A final section discusses other research that has used the

Mario AI Benchmark, how you can use the benchmark in

your own research and teaching and what we can learn from

the competitions. The concluding acknowledgements make

clear how this paper differs from other papers that have

been published previously about this benchmark and these

competitions.

A. Previous game-based competitions and benchmarks

Chess is probably the oldest known artificial intelligence

benchmark, and has played an important role in CI/AI

research since Turing first suggested that the game could be

automatically played using the MiniMax algorithm [1]. In the



famous Kasparov vs. Deep Blue match in 1997, a computer

program for the first time beat the human grandmaster

and became the world’s best chess player [2]. The exact

significance of this event is debated, but what was proven

beyond doubt was that an AI implementation can excel

at a particular game without necessarily having a broad

behavioural repertoire or being able to adapt to a variety

of real-world challenges. The related board game Checkers

(draughts), which was used for influential early machine

learning experiments [3] has recently been completely solved

using tree-search methods and can now be played perfectly

(perfect play by both players leads to a draw) [4]. Another

game where it is no longer interesting to try to beat humans

is Scrabble; the best Scrabble-playing programs (such as

Maven) can win over all humans without searching more

than one turn ahead, because of the advantage of quick and

complete dictionary access [5].

Other board games have delivered harder challenges for CI

and AI; international competitions have been set up where

competitors can submit their best game-playing programs

and play against each other for a number of board games.

In recent years, much work has focused on the ancient

oriental game of Go. The high branching factor of this game

makes traditional tree-search techniques ineffective, and the

winners of recent Go competitions have been based on Monte

Carlo techniques [6]. Other turn-based, originally non-digital

games games such as the board game Backgammon and

the card game Poker feature non-determinism or incomplete

information, which seems to necessitate statistical models to

play well. In such games, the current best computer programs

are typically not yet competitive with human grandmasters,

as evidenced by competitions where humans and programs

can play each other.

While board games and card games certainly pose many

hard and interesting challenges and, in humans, require

cognitive abilities such as reasoning and planning to play

well, there are many relevant challenges that are not posed

by such games. Digital games, in particular video games,

might require planning and reasoning to play well; but they

may also require such capacities as visual pattern recog-

nition, spatial navigation and reasoning, prediction of en-

vironmental dynamics, short-term memory, quick reactions,

very limited information and ability to handle continuous

multi-dimensional state and action descriptions. Additionally,

video games are visually and culturally more appealing than

board games for many people – especially young people, a

fact which can help draw students into CI/AI research and

advertise the field to the general public.

With this in mind, during the last decade a number

of competitions have been organized in conjunctions with

international conferences, several of them sponsored by the

IEEE Computational Intelligence Society. Some of these

competitions are based on arcade-style games such as Ms.

Pac-Man [7], Cellz [8], X-pilot [9] and a simple 2D racing

game [10]. But there are also competitions based on the first-

person shooter Unreal Tournament [11], [12], the modern

racing game TORCS [13] and the real-time strategy game

StarCraft [14]. The organization, results and summaries of

entries of many of these competitions have been written

up as journal articles or conference papers, providing an

archival reference point for other researchers wishing to

use the benchmarks developed for their own experiments;

for other competitions, at least the benchmark software and

initial experiments have been published.

B. Platform games as an AI challenge

Platform games can be defined as games where the player

controls a character/avatar, usually with humanoid form, in

an environment characterised by differences in altitude be-

tween surfaces (“platforms”) interspersed by holes/gaps. The

character can typically move horizontally (walk) and jump,

and sometimes perform other actions as well; the game world

features gravity, meaning that it is seldom straightforward to

negotiate large gaps or altitude differences.

To our best knowledge, there have not been any previ-

ous competitions focusing on platform game AI. The only

published papers on AI for platform games we know of is

a recent paper of our own where we described experiments

in evolving neural network controllers for the same game as

was used in the competition using an earlier version of the

API [15], and our earlier conference paper on the first iter-

ation of this competition. Some other papers have described

uses of AI techniques for automatic generation of levels for

platform games [16], [17], [18]; some of this research was

done using versions of the Mario AI Benchmark [19], [20],

[21].

Most commercial platform games incorporate little or no

AI. The main reason for this is probably that most platform

games are not adversarial; a single player controls a single

character who makes its way through a sequence of levels,

with his success dependent only on the player’s skill. The

obstacles that have to be overcome typically revolve around

the environment (gaps to be jumped over, items to be found

etc) and NPC enemies; however, in most platform games

these enemies move according to preset patterns or simple

homing behaviours. (This can be contrasted to other popular

genres such as first-person shooters and real-time strategy

games, where the single-player modes require relatively

complex AI to provide an entertaining adversary for the

player.)

Though apparently an under-studied topic, artificial in-

telligence for controlling the player character in platform

games is interesting from several perspectives. From a game

development perspective, it would be valuable to be able

to automatically create controllers that play in the style

of particular human players. This could be used both to

guide players when they get stuck (cf. Nintendo’s recent

“Demo Play” feature, introduced to cope with the increas-

ingly diverse demographic distribution of players) and to

automatically test new game levels and features as part of

an algorithm to automatically tune or create content for a

platform game.



From an AI and reinforcement learning perspective, plat-

form games represent interesting challenges as they have

high-dimensional state and observation spaces and relatively

high-dimensional action spaces, and require the execution of

different skills in sequence. Further, they can be made into

good testbeds as they can typically be executed much faster

than real time and tuned to different difficulty levels. We

will go into more detail on this in the next section, where we

describe the specific platform game used in this competition.

C. Infinite Mario Bros

The Mario AI benchmark is based on Markus Persson’s

Infinite Mario Bros, which is a public domain clone of

Nintendo’s classic platform game Super Mario Bros. The

original Infinite Mario Bros is playable on the web, where

Java source code is also available1.

The gameplay in Super Mario Bros consists in moving the

player-controlled character, Mario, through two-dimensional

levels, which are viewed sideways. Mario can walk and run to

the right and left, jump, and (depending on which state he is

in) shoot fireballs. Gravity acts on Mario, making it necessary

to jump over holes to get past them. Mario can be in one of

three states: Small, Big (can crush some objects by jumping

into them from below), and Fire (can shoot fireballs). Getting

hurt by an enemy means changing to previous mode or dying.

While the main goal is to get to the end of the level, auxiliary

goals include gaining a high score by collecting items and

killing enemies, and clearing the level as fast as possible.

1) Automatic level generation: While implementing most

features of Super Mario Bros, the standout feature of Infinite

Mario Bros is the automatic generation of levels. Every

time a new game is started, levels are randomly generated

by traversing a fixed width and adding features (such as

blocks, gaps and opponents) according to certain heuristics.

The level generation can be parameterised, including the

desired difficulty of the level, which affects the number

and placement of holes, enemies and obstacles. The original

Infinite Mario Bros level generator is somewhat limited; for

example, it cannot produce levels that include dead ends,

which would require back-tracking to get out of, and does not

allow for specifying random seeds that allow the recreation

of particular levels. For the Mario AI Benchmark we have

enhanced the level generator considerably, as will be detailed

below.

2) The challenges of playing Infinite Mario Bros: Several

features make Super/Infinite Mario Bros particularly inter-

esting from an AI or reinforcement learning perspective.

The most important of these is the potentially very rich

and high-dimensional environment representation. When a

human player plays the game, he views a small part of

the current level from the side, with the screen centred

on Mario. Still, this view often includes dozens of objects

such as brick blocks, enemies and collectable items. The

static environment (grass, pipes, brick blocks etc.) and the

coins are laid out in a grid (of which the standard screen

1http://www.mojang.com/notch/mario/

covers approximately 19 ∗ 19 cells), whereas moving items

(most enemies, as well as the mushroom power-ups) move

continuously at pixel resolution.

The action space, while discrete, is also rather large. In

the original Nintendo game, the player controls Mario with

a D-pad (up, down, right, left) and two buttons (A, B). The A

button initiates a jump (the height of the jump is determined

partly by how long it is pressed); the B button initiates

running mode and, if Mario is in the Fire state, shoots a

fireball. Disregarding the unused up direction, this means that

the information to be supplied by the controller at each time

step is five bits, yielding 25 = 32 possible actions, though

some of these are nonsensical (e.g. left together with right).

Another interesting feature is that there is a smooth learn-

ing curve between levels, both in terms of which behaviours

are necessary and their required degree of refinement. For

example, to complete a very simple Mario level (with no

enemies and only small and few holes and obstacles) it might

be enough to keep walking right and jumping whenever

there is something (hole or obstacle) immediately in front

of Mario. A controller that does this should be easy to

learn. To complete the same level while collecting as many

as possible of the coins present on the same level likely

demands some planning skills, such as smashing a power-

up block to retrieve a mushroom that makes Mario Big so

that he can retrieve the coins hidden behind a brick block,

and jumping up on a platform to collect the coins there and

then going back to collect the coins hidden under it. More

advanced levels, including most of those in the original Super

Mario Bros game, require a varied behaviour repertoire just

to complete. These levels might include concentrations of

enemies of different kinds which can only be passed by

timing Mario’s passage precisely; arrangements of holes and

platforms that require complicated sequences of jumps to

pass; dead ends that require backtracking; and so on. How to

complete Super Mario Bros in minimal time while collecting

the highest score is still the subject of intense competition

among human players2.

II. THE BENCHMARK

In order to build a benchmark out of Infinite Mario Bros,

we modified the game rather heavily and constructed an

API that would enable it to be easily interfaced to learning

algorithms and competitors’ controllers. The modifications

included removing the dependency on the system clock so

that it can be “stepped” forward by the learning algorithm,

removing the dependency on graphical output, and substan-

tial refactoring (Markus Persson did not anticipate that the

game would be turned into an RL benchmark). Each time

step, which corresponds to 40 milliseconds of simulated time

(an update frequency of 25 fps), the controller receives a

description of the environment, and outputs an action. The

resulting software is a single-threaded Java application that

can easily be run on any major hardware architecture and

2Search for “super mario speedrun” on YouTube to gauge the interest in
this subject.



operating system, with the key methods that a controller

needs to implement specified in a single Java interface file.

On a MacBook from 2009, 10−40 full levels can be played

per second (several thousand times faster than real-time); for

anything but trivial agents, most of the computation time is

spent in the agent rather than in the benchmark.

A. API

The application programming interface (API) of the Mario

AI benchmark can be broken down into the following Java

interfaces:

1) The Environment interface: Describes the game state

to the agent at each time step. The main types of information

presented are:

• One or several receptive field observations. These are

two-dimensional arrays that describe the world around

Mario with block resolution, and with Mario himself in

the center. In the first version of the benchmark, one re-

ceptive field contained binary information about the en-

vironment (where 0=passable terrain and 1=impassable,

such as blocks and platforms) and another receptive

field contained binary information about the enemies on

screen (1 for enemies, otherwise). In later versions, the

ability for agents to change Z-level, the level of detail for

objects in the receptive field informations, was added.

Initially, all receptive fields had the dimensions 22×22,

but in later versions this became a property of the level.

Figure 1 illustrates a small receptive field around Mario,

used in early neural network experiments.

• Exact positions of enemies. As the receptive field ob-

servations have block resolution, they might not provide

enough detail for some agents. Therefore, a list of x

and y positions relative to Mario with pixel resolution

is provided in later versions of the benchmark.

• Mario state. Information about what state Mario is in

(Small, Big, Fire), whether Mario is currently on the

ground, can currently jump and is currently carrying

the shell of a Koopa (turtle-like enemy) is provided as

separate binary/discrete variables.

Additionally, the possibility of receiving the raw bitmap

of the rendered game screen was implemented, but has not

been used in competitions so far.

2) The Agent interface: This is the only interface that

needs to be implemented in order to create a functional

Mario-playing agent. The key method here is getAction,

which takes an Environment as input and returns a five-bit

array specifying the action to take. The original Super Mario

Bros game is controlled by the Nintendo controller featuring

a four-dimensional directional pad (d-pad) and two buttons,

A and B; when played by a human, a similar arrangements

of keys on the keyboard is used for Infinite Mario Bros. The

five bits correspond to pressing or not pressing each of the

two buttons A and B, and three of the four directions (left,

right and down) - the up direction has no meaning with the

feature set we are implementing. Left and right moves Mario

left right, down makes Mario duck, A initiates a jump and

Fig. 1. A small receptive field around Mario. Each grid cell is the size of
one block.

B makes Mario run if pressed together with left or right and

additionally makes Mario shoot a fireball if in Fire mode.

All of these buttons can be pressed simultaneously. This

yields a total of 25 = 32 actions, though several of these

are pointless and not commonly used (e.g. pressing left and

right simultaneously).

3) The Task interface: The Task defines certain aspects of

the gameplay, including the presence or absence of sensory

noise, whether there should be intermediate rewards and

exactly which evaluation function is used.

B. Tunable level generator

The initial versions of the benchmark used the standard

level generator that comes with Infinite Mario Bros, though

slightly changed to allow for the specification of random

seeds. As competition entries became more sophisticated, it

became evident that the existing level generator could not

provide levels of sufficient diversity and challenge. A new

level generator was therefore constructed, which can con-

struct harder, more diverse and (in the opinion of the authors)

more interesting levels. Figure 2 illustrates the workflow of

the level generator. The basic idea is to add “zones” from

left to right until the required length has been reached, where

both the content of the zones and their placement can be

modified in multiple ways depending on the parameters given

to the generator. In contrast to the original level generator,

the new generator has more than 20 tunable parameters. The

following parameters are among the most important:

• Seed: any level can be recreated by specifying the exact

same parameters, including random number seed.

• Difficulty: affects the complexity of levels generated,

size of gaps etc.

• Type: overground, underground, castle (indoor environ-

ment used for boss fights).

• Length: the length of the level. The time limit can also

be controlled.



• Creatures: bit mask specifying the presence/absence of

particular creatures.

• Dead ends: the frequency of level constructs that may

force the player to backtrack and try another route.

• Gravity: affects how high and far Mario can jump.

Several other physical properties (e.g. friction, wind)

can also be controlled.

Fig. 2. Workflow for the tunable level generator.

Figure 3 depicts part of a level generated by the tunable

level generator.

C. The AmiCo library

In the first versions of the benchmark, a TCP interface

for controllers was provided so that controllers written

in other languages than Java could be interfaced to the

code. However, this TCP interface introduced a considerable

communication overhead making non-Java agents orders of

magnitude slower, and had occasional stability issues. For

later releases, a new library called AmiCo was developed

for communication between the benchmark and agents de-

veloped in other language.

The AmiCo library is applicable for inter-language pro-

cess communication beyond the Mario AI Benchmark. The

purpose of the library is to provide an easy-to-use and as

seamless as possible bridge between foreign programming

languages preserving high performance, comparable to the

native languages’ runtime speeds. The idea behind it is

to make use of the native language bindings of various

languages, such as JNI for Java, ctypes for Python and

HSFFIG for Haskell. Currently it has bindings for the above

mentioned three languages, but can easily be extended to

others. This native bridge is possible due to native C++

bindings for both Java and Python. The library allows the

programmer to invoke both static and non-static methods of

a target Java class and provides complete access to JNI3

methods from Python.

D. Punctual Judge

Punctual Judge is the part of the benchmark software that

is responsible for fair timing of controllers across computers

and changing computer load. Like AmiCo, this part of

the software can readily be used outside the Mario AI

benchmark, for example in other time-critical benchmarking

applications.

When Punctual Judge is activated, a custom classloader

loads the user-provided Mario controller, instruments it on

the fly through injecting additional byte code and returns an

instrumented class, which can be called by the benchmark.

During evaluation, Punctual Judge counts the number of byte

codes executed. Exceptions are disregarded, as any exception

will terminate the benchmarking software.

Experimental runs show that Punctual Judge gives an

additional overhead of only about 32% for Java, a factor

which could conceivably be optimised further if necessary.

Using Punctual Judge, a competitor can get accurate

information about the number of byte code instructions his

controller performs before submission. As this number is

machine-independent, this information allows the competi-

tors to match the competition time bounds tightly without

running the risk of the controller being disqualified because

of differing performance profile of the computer on which

the scoring is done.

For more information about the level generator, Punctual

Judge and AmiCo, please refer to [22].

III. COMPETITION ORGANIZATION

The organization and rules of the competition sought to

fulfil the following objectives:

1) Ease of participation. We wanted researchers of dif-

ferent kinds and of different levels of experience to

be able to participate, students as well as withered

professors who haven’t written much code in a decade.

3Java Native Interface



Fig. 3. Part of a level generated by the tunable level generator. Mario can be seen standing standing on a question mark near the left end of the picture.
Note that this elongated screenshot contains the same information as approximately four standard screens. Under normal conditions, it would not be possible
to judge from the place Mario is standing whether it would be possible to proceed by walking under or on top of the the overhanging platform adjacent
to the right.

2) Transparency. We wanted as much as possible to

be publicly known about the competing entries, the

benchmark software, the organization of the competi-

tion etc. This can be seen as an end in itself, but a

more transparent competition also makes it easier to

detect cheaters, to exploit the scientific results of the

competition and to reuse the software developed for it.

3) Ease of finding a winner. We wanted it to be unam-

biguously clear how to rank all submitted entries and

who won the competition.

4) Depth of challenge. We wanted there to be a clear score

difference between controllers of different quality, both

at the top and the bottom of the high-score table.

After each iteration of the competition, these four objec-

tives were evaluated, and changes were introduced to the

benchmark and competition organization if any objective was

not fulfilled. While the two first objectives have generally

been well met throughout the competition, several changes

have been introduced in order to better meet the two latter

objectives, as we will see below.

The competition web page hosts the rules, the download-

able software and the final results of the competition4. (For

the 2009 edition of the competition, a different webpage was

used5). Additionally, a Google Group was set up to which

all technical and rules questions were to be posted, so that

they came to the attention of and could be answered by both

organisers and other competitors6, and where the organisers

posted news about the competition. The searchable archive

of the discussion group functions as a repository of technical

information about the competition.

Competitors were free to submit controllers written in any

programming language and using any development method-

ology, as long as they could interface to an unmodified

version of the competition software and control Mario in

real time on a standard desktop PC running Mac OS X or

Windows XP. For competitors using only Java, there was a

standardised submission format. Any submission that didn’t

follow this format needed to be accompanied by detailed

instructions for how to run it. Additionally, the submission

4http://www.marioai.org
5http://julian.togelius.com/mariocompetition2009
6http://groups.google.com/group/marioai

needed to be accompanied by the score the competitors

had recorded themselves using the benchmark software, so

that the organisers could verify that the submission ran as

intended on their systems. We also urged each competitor to

submit a description of how the controller works as a text

file.

Competitors were urged to submit their controllers early,

and then re-submit improved versions. This was so that any

problems that would have disqualified the controllers could

be detected and rectified and the controllers resubmitted. No

submissions or resubmissions at all were accepted after the

deadline (about a week before each competition event).

IV. THE 2009 COMPETITIONS

In 2009, two phases of the competition were run. The first

was associated with the IEEE Games Innovation Conference

(ICE-GIC) conference in London in August, and the second

was associated with the IEEE Conference on Computational

Intelligence and Games (CIG) in Milan, Italy, in September.

The results of each phase were presented as an event during

the conference it was associated with.

A. Media campaign

A media campaign was initiated through stories on social

media websites Digg and Slashdot. At about the same time

one of the competitors (Robin Baumgarten) posting a video

of his controller online. This video quickly went viral, and

gathered six hundred thousand views in a few days. This

attracted the attention of mainstream and popular science

media, resulting in several articles about the competition

and research associated with it [23], [24], [25]. We believe

that these articles contributed substantially to the number of

qualified entrants to the competition, while at the same time

dissuading some less advanced and/or ambitious potential

competitors from entering.

B. Summary of competition entries

The 15 different entries submitted to the two phases of

the 2009 Mario AI competition can be classified into three

broad categories.



1) Hand-coded heuristic: This was the largest category.

Seven different controllers were submitted which were hand-

constructed, non-adaptive and did not use search-based meth-

ods for action selection. All of these were very quick to return

an action when prompted, implying that a low amount of

computation was performed. Trond Ellingsen, Sergio Lopez,

Rafael Oliveira and Glenn Hartmann submitted rule-based

controllers, that determined the action to return based on

verifying a number of relatively simply conditions. Spencer

Schumann augmented one of the sample rule-based con-

trollers with a bit of internal simulation to determine the

end position of possible jumps. Mario Perez submitted a

controller based on the subsumption architecture, common

in robotics, and Michal Tulacek built his controller around a

finite state machine.

2) Learning-based: Five controllers were based on offline

training. Three of these used artificial evolution: Matthew

Erickson evolved expression trees of the type commonly used

in genetic programming; Douglas Hawkins evolved code for

a stack-based virtual machine; and Erek Speed evolved a

rule-based controller. Sergey Polikarpov trained a controller

based on the “cyberneuron” neural network architecture

using a form of ontogenetic reinforcement learning, and

Alexandru Paler trained a neural network to play using

supervised learning on human playing data.

3) A*-based: The stars of the 2009 competition were the

A*-based controllers. These agents reduce the problem of

how to safely navigate the levels to the problem of how at

any point to get to the rightmost edge of the screen, and

cast this problem as a pathfinding problem. The A* search

algorithm is a widely used best-first graph search algorithm

that finds a path with the lowest cost between a pre-defined

start node and one out of possibly several goal-nodes [26].

This algorithm is used to search for the best path in game

state space, which is different from simply searching in the

space of Mario’s positions and requires that a fairly complete

simulation of the game’s dynamics is available to the search

algorithm. Fortunately, given that the game is open-source

and computationally lightweight, it is reasonably simple to

copy and adapt the game engine to provide such a simulation.

The first of these controllers was submitted by Robin

Baumgarten, who also posted a video showing his agent’s

progress on a level of intermediate difficulty on YouTube.

This video quickly garnered over six hundred thousand

views, and gave a considerable boost to the publicity cam-

paign for the competition. (A screenshot of Robin’s agent

in action, similar to what was depicted in the viral video,

is shown in figure 4.) The proficiency of the controller as

evident from the video inspired some competitors, while

dissuading others from participating in the competition. Be-

fore the deadline, two other controllers based on A* had

been submitted to the competition, one by Peter Lawford

and another by a team consisting of Andy Sloane, Caleb

Anderson and Peter Burns. These controllers differed subtly

from Robin’s controller in both design and performance,

but were all among the top entries. More information about

Fig. 4. Visualization of the future paths considered by the Robin
Baumgarten’s A* controller. Each red line shows a possible future trajectory
for Mario, taking the dynamic nature of the world into account.

Robin Baumgarten’s controller can be found in [27].

C. Scoring

All entries were scored before the conference through

running them on 10 levels of increasing difficulty, and

using the total distance travelled on these levels as the

score. The scoring procedure was deterministic, as the same

random seed was used for all controllers, except in the few

cases where the controller was nondeterministic. The scoring

method uses a supplied random number seed to generate the

levels. Competitors were asked to score their own submis-

sions with seed 0 so that this score could be verified by

the organizers, but the seed used for the competition scoring

was not generated until after the submission deadline, so that

competitors could not optimise their controllers for beating

a particular sequence of levels.

For the second phase of the competition (the CIG phase)

we discovered some time before the submission deadline that

two of the submitted controllers were able to clear all levels

for some random seeds. We therefore modified the scoring

method so as to make it possible to differentiate better

between high-scoring controllers. First of all, we increased

the number of levels to 40, and varied the length of the levels

stochastically, so that controllers could not be optimised for a

fixed level length. In case two controllers still cleared all 40

levels, we defined three tie-breakers: game-time (not clock-

time) left at the end of all 40 levels, number of total kills,

and mode sum (the sum of all Mario modes at the end of

levels, where 0=small, 1=big and 2=fire; a high mode sum

indicates that the player has taken little damage). So if two

controllers both cleared all levels, that one that took the least

time to do so would win, and if both took the same time the

most efficient killer would win etc.

D. Results

The results of the ICE-GIC phase are presented in ta-

ble IV-D, and show that Robin Baumgarten’s controller



performed best, very closely followed by Peter Lawford’s

controller and closely followed by Andy Sloane et al.’s

controller. We also include a simple evolved neural network

controller and a very simple hard-coded heuristic controller

(the ForwardJumpingAgent which was included with the

competition software and served as inspiration for some of

the competitors) for comparison; only the four top controllers

outperformed the ForwardJumpingAgent.

Competitor progress ms/step

Robin Baumgarten 17264 5.62

Peter Lawford 17261 6.99

Andy Sloane et al. 16219 15.19

Sergio Lopez 12439 0.04

Mario Perez 8952 0.03

Rafael Oliveira 8251 ?

Michael Tulacek 6668 0.03

Erek Speed 2896 0.03

Glenn Hartmann 1170 0.06

Evolved neural net 7805 0.04

ForwardJumpingAgent 9361 0.0007

TABLE I
RESULTS OF THE ICE-GIC PHASE OF THE 2009 MARIO AI

COMPETITION. THE NUMBERS IN THE “PROGRESS” COLUMN REFER TO

HOW FAR THE AGENT GOT TOWARDS THE END OF THE LEVEL, SUMMED

OVER ALL LEVELS; “MS/STEP” REFERS TO HOW MANY MILLISECONDS

EACH AGENT ON AVERAGE TAKES TO RETURN AN ACTION AFTER

PRESENTED WITH AN OBSERVATION.

For the CIG phase, we had changed the scoring procedure

as detailed in section IV-C. This turned out to be a wise

move, as both Robin Baumgarten’s and Peter Lawford’s

agents managed to finish all of the levels, and Andy Sloane

et al.’s came very close. In compliance with our own rules,

Robin rather than Peter was declared the winner because of

his controller being faster (having more in-game time left at

the end of all levels). Peter’s controller, however, was better

at killing enemies.

The best controller that was not based on A*, that of Trond

Ellingsen, scored less than half of the A* agents. The best

agent developed using some form of learning or optimisation,

that of Matthew Erickson, was even further down the list.

This suggests a massive victory of classic AI approaches

over CI techniques. (At least as long as one does not care

much about computation time; if score is divided by average

time taken per time step, ForwardJumpingAgent wins the

competition...)

E. Result evaluation and benchmark improvements

The most obvious message of the 2009 competition was

the superiority of the A*-based agents over everything else

that was submitted. Search in state-space for the fastest

way to move right using simulation of the game engine

was clearly superior to all reactive approaches. Looking a

bit closer at the results, it is clear that the top two A*

agents had very similar scores and in the CIG phase of

the competition they could only be distinguished based on

auxiliary criteria such as the amount of time left at the end of

levels or the number or creatures killed. This is because those

controllers cleared every level in the competition. Either the

A* algorithm was the final answer to how to play platform

games, or the levels that were part of the competition did

not accurately represent the challenges posed by levels in

the original Super Mario Bros and other platform games.

We analysed the functioning of the A* algorithm for level

features which were present in real Super Mario Bros levels

but not in the competition levels, and which would pose

problems for the A* algorithm. One feature in particular

stood out: dead ends. A dead end is a situation where the

player can choose to take at least two different paths forward,

but at least one of these paths is blocked, requiring the player

to backtrack and choose another path. It is important that

it is not possible to see which path is blocked at the time

of choosing; this means that the blocked path must be at

least half a standard screen long. For the 2010 Mario AI

Championship, the level generator was extended to include

the possibility of generating dead ends. (Figure 3 shows

a dead end generated by the augmented level generator.)

Additionally, a number of other changes were introduced to

the level generator to make it possible to create harder levels,

such as greater control over numbers of particular items and

possibility of hidden blocks and longer gaps. It was decided

to increase the difficulty of the hardest levels in future

competitions and including some levels which were literally

impossible to finish to test the behaviour of controllers on

such levels.

None of the winning controllers incorporated any kind

of learning. This is not a problem in itself, as the rules

stipulated that any kind of controller was welcome and

the objective was to find the best AI for platform games

regardless of underlying principles. However, a variation

the same benchmark could conceivably also be used to test

the capabilities of learning algorithms to be integrated into

platform game controllers. We therefore decided to broaden

the competition by introducing a new track of the competition

dedicated to this.

The playing style of the A*-based controllers is very

far from human-like. A video of e.g. Robin Baumgarten’s

controller playing looks very different from a video of a

human playing the same level; the controller is constantly

running and jumping rightwards, and has a spooky exactness

in that it tends to jump off platforms at the very last pixel.

Indeed, this machine-like quality of the gameplay is probably

a major reason for why the YouTube video of Baumgarten’s

agent became so popular. While the gameplay not being

human-like is not a problem for the competition, the same

benchmark could conceivably be used to compete in human-

like gameplay as well, and therefore a new competition track

was introduced dedicated to this.

Finally, the recent interest in procedural content generation

within the game AI community [28], [29] suggested to us

that the benchmark could be used as the basis for a content

generation competition as well. A new track was therefore

devised for 2010, focusing on programs that generate levels.



Competitor approach progress levels time left kills mode

Robin Baumgarten A* 46564.8 40 4878 373 76

Peter Lawford A* 46564.8 40 4841 421 69

Andy Sloane A* 44735.5 38 4822 294 67

Trond Ellingsen RB 20599.2 11 5510 201 22

Sergio Lopez RB 18240.3 11 5119 83 17

Spencer Schumann RB 17010.5 8 6493 99 24

Matthew Erickson GP 12676.3 7 6017 80 37

Douglas Hawkins GP 12407.0 8 6190 90 32

Sergey Polikarpov NN 12203.3 3 6303 67 38

Mario Perez SM, Lrs 12060.2 4 4497 170 23

Alexandru Paler NN, A* 7358.9 3 4401 69 43

Michael Tulacek SM 6571.8 3 5965 52 14

Rafael Oliveira RB 6314.2 1 6692 36 9

Glenn Hartmann RB 1060.0 0 1134 8 71

Erek Speed GA out of memory

TABLE II
RESULTS OF THE CIG PHASE OF THE 2009 MARIO AI COMPETITION. EXPLANATION OF THE ACRONYMS IN THE “APPROACH” COLUMN: RB:

RULE-BASED, GP: GENETIC PROGRAMMING, NN: NEURAL NETWORK, SM: STATE MACHINE, LRS: LAYERED CONTROLLER, GA: GENETIC

ALGORITHM. EXPLANATION OF COLUMN LABELS: PROGRESS, AS IN THE PREVIOUS TABLE; LEVELS: NUMBER OF LEVELS CLEARED (OUT TO 40);
TIME LEFT: SUM OF IN-GAME SECONDS LEFT AT THE END OF EACH LEVEL (A HIGHER NUMBER MEANS THAT THE AGENT FINISHED THE LEVEL

FASTER); KILLS: NUMBER OF ENEMIES KILLED; MODE: NUMBER OF MODE SWITCHES, MEANING THE NUMBER OF TIMES THE AGENT LOST A MODE

(THROUGH GETTING HURT) OR GAINED A MODE (THROUGH COLLECTING A MUSHROOM OR FLOWER).

V. THE 2010 CHAMPIONSHIP

The 2010 Mario AI Championship consisted of four sep-

arate tracks:

• The Gameplay track was the direct continuation of the

2009 Mario AI Competition. Like in that competition,

the goal for submitted controllers was to clear as many

levels as possible, and the rules were the same. The

main difference to the year before was the incremental

addition of new features to the benchmark API, and

the more diverse and harder levels used to test the

controllers on.

• The Learning track was created to test learning agents,

or in other words to disadvantage agents that do not

incorporate any learning (online of offline). Agents

are tested on levels that are unseen during (human)

development of the agent, but the agent is allowed to

train on the track before being scored. More precisely,

each agent was allowed to play each testing track 10000

times, but only the score from 10001st playthrough

contributed to the final score. This way, agents that

incorporated mechanisms for learning how to play a

particular track could do better than those that were

overall good players but lack the ability to specialize.

• The Turing Test track responds to the perceived ma-

chinelike quality of the best controllers from the 2009

track, by asking competitors to submit controllers that

behave in a human-like fashion. The controllers were

assessed by letting an audience of non-expert humans

view a number of videos of humans and agents playing

the same level, and for each video voting on whether

the player was human or machine.

• The Level Generation track used the Mario AI bench-

mark software for a procedural content generation com-

petition. Competitors submitted personalized level gen-

erators, that could produce new, playable Infinite Mario

Bros levels given information about the playing style

and capabilities of a human player. The level generators

were assessed by letting humans play first a test track,

and then levels generated on-line specifically for them

by two different generators, and choosing which one of

the generated levels was most engaging.

Both the Gameplay, Learning and Turing Test track used

variations on the same interface, meaning that the same

agents could be submitted to all three tracks with minor

changes. The Level Generation track, on the other hand, used

a radically different interface as the submitted software was

asked to do something quite different from playing the game.

The championship was run in association with four inter-

national conferences on AI/CI and games. Not every track

was run at every competition event:

• EvoGames, part of EvoStar; Istanbul, Turkey, 7 April:

Gameplay and Learning tracks.

• IEEE World Congress on Computational Intelligence;

Barcelona, Spain, July: Gameplay track and a dry run

for the level generation track.

• IEEE Conference on Computational Intelligence and

Games; Copenhagen, Denmark, August: Gameplay,

Learning and Level generation tracks.

• IEEE Games Innovation Conference; Hong Kong,

China, 24 December: Turing test track.

In this paper, the organization, competitors and results of

the Gameplay and Learning tracks are discussed. As there is

simply not room to discuss all four tracks to a satisfactory

level of detail within a single journal article, the other two

tracks have been described elsewhere. For more about the

Level generation track, see [30]; the Turing test track is

discussed further in [31].

A. The gameplay track

The 2010 championship saw both new (5) and old (3)

competitors entering, and the best controllers were signifi-



cantly better players than previous years. We kept improving

the benchmark as described above between the three com-

petition events, and therefore the scores attained in different

events are not directly comparable. In particular, the EvoStar

competition event did not yet include levels with dead-ends

(which were part of the two later competition events) though

it did include levels that were overall harder than those in

the 2009 competition.

Because of the gradual evolution of the interface, and

the fact that most interface changes were additions of new

modes of experiencing the environment, almost complete

backwards compatibility has been maintained for controllers.

This means that participants in the 2009 competition could

enter the 2010 gameplay track with none or only minor

changes to their controllers. Therefore, a relatively high

number of participants has been maintained throughout the

2010 competition events, and new ideas could easily be com-

pared with the best of the previous controllers. In particular,

Robin Baumgarten entered all three gameplay events with

incrementally refined versions of the controller that won the

2009 competition. Still, there were fewer competitors in 2010

than there were in 2009, which can be explained partly

by that we could not get the same media attention as we

got for the 2009 competition, and partly by that the levels

were harder and several of the competitors more mature,

suggesting that newcomers with weaker entries that would

have submitted their entries if they thought they had a chance

of winning chose not to do so as they thought the competition

too stiff.

One strong new contender in the 2010 championship was

the REALM agent, due to Slawomir Bojarski and Clare Bates

Congdon. This agent is built on sets of rules, which are

evolved offline to maximize the distance travelled by the

agent. An agent is built up of a set of 20 rules, where each

rule has a handful of preconditions that test for relatively

primitive aspects of the game state, such as whether Mario

may jump or there is an enemy above to the left. The

consequences of the rules, on the other hand, are relatively

high level plans (such as move to the right of the screen or

kill the nearest enemy or bypass the dead-end) which are

executed with the help of A* planning. More information on

this entry can be found in [32].

Another interesting newcomer was the bot by Diego Perez

and Miguel Nicolau, which uses grammatical evolution (a

form of genetic programming) to evolve behaviour trees.

Descriptions of different versions of that agent can be found

in [33], [34].

As can be seen from table V-A, Bojarski and Congdon’s

REALM agent won the CIG event of the 2010 championship,

which was the final of that year. The superiority of the

REALM approach was evident in that it not only reached

the highest overall distance score, but also cleared the most

levels, killed the most enemies and was not disqualified even

once. The runner up was Sergey Polikarpov’s CyberNeuron

agent, which won the previous competition event at IEEE

WCCI (see table V-A) and also came second in the EvoStar

event V-A. Robin Baumgarten’s revised controller finished

third with a very high number of disqualified levels, meaning

that it often timed out when faced with a situation where

it could not find a path to the left end of the screen. As

the most difficult levels became more difficult between each

competition, Robin’s agent dropped from first to second to

third place.

However, not even the REALM agent managed to clear all

levels. In some cases, it got stuck in a particularly vicious

dead end, or failed to clear a very long jump. These two types

of situations are responsible for the vast majority of deaths

and disqualifications for all of the top controllers - it was rare

to see any of these controllers lose a life to enemy collisions.

Some of the levels in the test contain gaps that cannot be

bypassed in a single jump, but only through stomping on

a bullet or flying koopa mid-air, an operation that requires

good timing and is usually quite hard for a human to execute.

All of the top controllers were occasionally able to display

such feats, which would seem like the outcome of careful

planning to a casual human spectator.

B. The learning track

As described above, the submission format for the learning

track was intentionally very similar to that of the gameplay

track, and the same agent could with minimal modifications

be submitted to both tracks. In terms of evaluation, the

difference is that while in the gameplay track each agent is

tested once on a number of levels, in the learning track the

agent is tested 10001 times on the same level and only the

score from the last attempt counts. The challenge is to use

the first ten thousand attempts to learn to play this particular

level as well as possible.

Three of the four participants in the learning track were

variations of controllers submitted to the gameplay track.

Slawomir Bojarski and Clare Bates Congdon participated in

the learning track with the “full version” of the REALM

controllers, having the evolutionary rule learning mechanism

turned on and using the ten thousand trials for fitness

evaluations [32]. The evolutionary run is seeded with the

same set of rules that won the gameplay track.

The FEETSIES Team: (Erek Speed, Stephie Wu and Tom

Lieber) submitted an entry where the policy (represented

as direct mappings from screen observations to actions)

was optimised between trials by “Cuckoo Search via Lévy

Flights”, a recent biologically inspired stochastic search

algorithm [36]. The search was seeded with the policy of the

simplistic heuristic ForwardJumpingAgent, in other words

to continuously run rightwards and jump. Starting from this

policy, the search process identifies the situations where the

agent should do something else, via mutations that randomly

select another action for a given state. On top of the state-

action mapping, hardcoded heuristics deal with searching for

hidden blocks and retreating from dead ends. The agent is

described in more detail in [35].

Laura Villalobos was the only participant in the learning

track that did not submit to the gameplay track. Her solution

was based on genetic programming, dividing the 10000 trials



Competitor score disqualifications technique

Robin Baumgarten 634468 3 A*

Sergey Polikarpov 301775 9 CyberNeuron (RL)

Alexander Buck 290204 0 ?

Eamon Wong 253867 0 Q-learning

Mathew Erickson 167862 0 Genetic Programming

TABLE III
RESULTS OF THE EVOSTAR EVENT OF THE 2010 MARIO AI CHAMPIONSHIP, IN DESCENDING RANK ORDER. EXPLANATION OF COLUMN LABELS:

SCORE: SUMMED SCORE FOR THE AGENT BASED ON PROGRESS, KILLS AND TIME TAKEN, AND USED TO CALCULATE THE WINNER;
DISQUALIFICATIONS: NUMBER OF TIMES THE AGENT WAS DISQUALIFIED FOR TAKING TOO LONG TIME TO RETURN AN ACTION AFTER BEING

PRESENTED WITH AN OBSERVATION; TECHNIQUE: WHAT THE CONTROLLER WAS BASED ON.

Competitor score disqualifications technique

Sergey Polikarpov 1637935 1 CyberNeuron (RL)

Robin Baumgarten 1537834 312 A*

Robert Reynolds, Leonard Elman network /
Kinnaird-Heether & Tracy Lai 1113437 0 cultural algorithm

Alexander Buck 991372 0 ?

Eamon Wong 972341 0 Q-learning

Mathew Erickson 634239 0 Genetic Programming

TABLE IV
RESULTS OF THE WCCI EVENT OF THE 2010 MARIO AI CHAMPIONSHIP, IN DESCENDING RANK ORDER.

Competitor score disqualifications levels cleared kills reference

Slawomir Bojarski and Clare Bates Congdon 1789109.1 0 94 246 [32]

Sergey Polikarpov 1348465.6 4 82 156

Robin Baumgarten 1253462.6 271 63 137 [27]

Diego Perez and Miguel Nicolau 1181452.4 0 62 173 [33], [34]

Robert Reynolds and Erek Speed 804635.7 0 16 86 [35]

Alexander Buck 442337.8 0 4 65

Matthew Erickson 12676.3 7 60 80

Eamon Wong 438857.6 0 0 27

TABLE V
RESULTS OF THE CIG EVENT OF THE 2010 MARIO AI CHAMPIONSHIP, IN DESCENDING RANK ORDER. EXPLANATION OF COLUMN LABELS: LEVELS

CLEARED: NUMBER OF LEVELS CLEARED; KILLS: NUMBER OF ENEMIES KILLED.

into 25 generations with a population of 400 individuals,

using tree-based program representation and a standard set of

GP instructions. The terminals (inputs) corresponded to the

presence of objects and enemies in the standard grid obser-

vation. Meanwhile, Robin Baumgarten submitted the same

A* agent as to the gameplay track without any significant

changes.

The results of the competition are presented in table VI.

The most striking result is that all three agents that incorpo-

rate learning between trials perform vastly better than the

non-learning agent, even though that agent is one of the

better entries for the gameplay track. While the winner of the

learning track (Bojarski and Congdon) outperformed the non-

learning controller (Baumgarten) in the gameplay track as

well, the difference is much larger in the learning track. This

shows that the learning controllers were indeed able to benefit

from the time given to adapt to particular levels. (In turn, this

shows that the design of the learning track was successful

in advantaging learning controllers.) Upon visual inspection

of the 10001st attempt of any of the learning controllers on

any particular level, a number of behaviours are found which

indicate having learnt how to play a particular level rather

than levels in general. These include jumping in the air to

reveal known hidden blocks, and always choosing the right

path when presented with two paths, one of which is a dead

end.

It is also interesting to note that the two best-performing

submissions, despite both relying on stochastic global search

in some form, are quite different. Whereas one uses an

evolutionary algorithm, the other uses Cuckoo search; one

uses a compact rule-based policy representation that maps

particular features of the state to actions, whereas the other

uses a sparse and direct mapping of complete states to

actions; finally, only the second uses hard-coded rules for

dead ends.

VI. DISCUSSION

A. Evaluating the competition

In section III we laid out four objectives that we sought

to fulfill in the design and running of the competition. These

were ease of participation, transparency, ease of finding a

winner and depth of challenge.

Ease of participation was mainly achieved through hav-

ing a simple web page, simple interfaces, simple sample

controllers available and letting all competition software be

open source. Participation was greatly increased through



Participant Affiliation Score

Slawomir Bojarski and Clare Bates Congdon University of Southern Maine 45017
FEETSIES Team (Erek Speed, Stephie Wu, Tom Lieber) 44801
Laura Villalobos 41024
Robin Baumgarten Imperial College, London 19054

TABLE VI
LEARNING TRACK RESULTS, CIG 2010 EVENT, COPENHAGEN

the very successful media campaign, built on social media.

Transparency was achieved through forcing all submissions

to be open source and publishing them on the web site

after the end of the competition. However, the short de-

scriptions submitted by competitors have in general not

been enough to replicate the agents, or perhaps even to

understand them given the source code, and therefore it has

been very welcome that several of the competitors (including

two competition winners) have published their agent designs

as academic conference papers.

The two latter objectives proved to be somewhat more

tricky. In the second competition event of 2009, the top two

controllers managed to clear all levels and therefore had the

same progress score; auxiliary performance measures had to

be used in order to find a winner. The addition of harder

levels including longer gaps, hidden blocks and dead ends

changed this situation, and during the last competition event,

no agent was able to clear all levels, and there was significant

difference in progress score between the best controller and

the runner-up. Therefore, all objectives can currently be seen

as fulfilled.

B. AI for platform games

It was a bit disappointing for the organisers (and no doubt

some of the competitors) to see the levels in the 2009

competition events yield so easily to the A*-based agents.

Would the whole problem of playing platform games be

solvable by a four decades old (and rather simple) search

algorithm? This seemed improbable, given the grip classic

platform games such as Super Mario Bros has held over

generations of players, and the skill differentiation among

even very experienced players of such games.

The addition of more complex features to the levels for

the 2010 competition events showed that this was indeed not

the case. In order to handle dead ends, the agent needs to

identify when it is stuck, decide to retrace its steps, decide for

how long to do this before attempting a new path, and finally

remember which path was the wrong one so as not to take it

again. It could be argued that this is algorithmically trivial,

but the challenge is for the agent to perform these relatively

high-level actions integrated with the low-level actions of

avoiding enemies, navigating gaps and platforms etc. From

a robotics perspective, the challenge could be formulated as

that of carrying out plans in a complex environment using an

embodied agent, even if the embodiment is within a virtual

world. This AI problem seems to call for a hierarchical

solution, so it is not surprising that the winner of the 2010

championship (due to Bojarski and Congdon) employs a two-

level solution, where rules specify higher-level plans that are

executed by a lower-level mechanism.

While there are still advances to be made given the

current set of game elements and level generator features

and settings, there is scope for increasing and diversifying

the challenge further by integrating more level elements from

existing platform games (including Super Mario Bros). Some

examples are moving platforms, which would require the

player to model the system of platforms and await the right

moment to start a sequence of jumps, and sequences of

switches and doors (or keys and locks), which would require

the player to plan in which order to press various buttons (or

pick up keys) in order to proceed.

C. Using the Mario AI benchmark for your own research

and teaching

The Mario AI Competition web page, complete with the

competition software, rules and all submitted controllers,

will remain in place for the foreseeable future. We actively

encourage use of the rules and software for your own events

and courses. The Mario AI benchmark software is used

for class projects in a number of AI courses around the

world;either for a well-defined exercises or as an environ-

ments that students can use for implementing a term project.

It is unrealistic to demand that a student produce a controller

that competes with the current best approaches during a

simple course project — creating a world-class Mario AI

player using some interesting technique would rather be

suitable as a half-year advanced project, such as a masters

thesis.

When organising courses or local competitions using the

Mario AI Benchmark, it is worth remembering that the

existing Google Group and its archive can serve as a useful

technical resource, that the result tables in this paper pro-

vide a useful point of reference, and that existing sample

controllers help students get started quickly. We appreciate

if students are encouraged to submit their agents to the next

iteration of the Mario AI Championship.

The benchmark software can also be used as a tool for

your own research. In addition to the several papers cited

referenced above, which describe various submitted entries

to the competition, a number of papers have been published

by various authors where the main goal was not to win the

Mario AI Championship — the following is a sample:

Handa [37] investigated techniques for reduction of the

dimensionality of the input space, so as to make the problem

tractable for standard reinforcement learning algorithms. It



was shown that such algorithms could perform well on the

problem when the right sort of dimensionality reduction was

used. In a similar vein, Ross and Bagnell try to reduce

the dimensionality of the input space, but for the purpose

of imitation learning [38]. Karakovskiy [22] applied mul-

tidimensional recurrent neural networks the problem, and

was able to train controllers that played particular levels

very well using this novel neural network architecture, and

which generalised better to unseen levels than other neural

network architectures. Shaker et al. [39] recorded video of

players’ faces while playing the Mario AI benchmark (con-

trolling the character manually) and used machine learning

techniques to predict player behaviour and experience from

facial expressions. In addition, a number of authors have

attempted to predict player experience from playing style and

to generate entertaining/interesting levels automatically, but

these publications relate more to the level generation track

of the championship [30].

VII. CONCLUSIONS

This paper has described the Mario AI Benchmark, and

the various competitions that have been held based on it

in 2009 and 2010 (except the level generation and Turing

test competitions, which are described elsewhere). As the

paper does not include competition participants as authors,

the individual entries have not been described in detail

(though we have referenced publications describing them

where available). Instead, we have focused on describing

the technology behind the benchmark, the organisation of

the competitions, and the rationale behind both. We have

also sought to draw general conclusions about competition

organisation and about the AI problem of playing platform

games.
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