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The mark of vegetation change on Earth’s surface
energy balance
Gregory Duveiller 1, Josh Hooker1 & Alessandro Cescatti1

Changing vegetation cover alters the radiative and non-radiative properties of the surface.

The result of competing biophysical processes on Earth’s surface energy balance varies

spatially and seasonally, and can lead to warming or cooling depending on the specific

vegetation change and background climate. Here we provide the first data-driven assessment

of the potential effect on the full surface energy balance of multiple vegetation transitions at

global scale. For this purpose we developed a novel methodology that is optimized to dis-

entangle the effect of mixed vegetation cover on the surface climate. We show that per-

turbations in the surface energy balance generated by vegetation change from 2000 to 2015

have led to an average increase of 0.23± 0.03 °C in local surface temperature where those

vegetation changes occurred. Vegetation transitions behind this warming effect mainly relate

to agricultural expansion in the tropics, where surface brightening and consequent reduction

of net radiation does not counter-balance the increase in temperature associated with

reduction in transpiration. This assessment will help the evaluation of land-based climate

change mitigation plans.
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T
errestrial biomes are a large yet variable sink of CO2

1 that
play an important role in climate change mitigation2.
Changes in vegetation cover alter the strength of this sink

and may even turn it into a source of greenhouse gases, as a result
of land processes such as deforestation3. In addition, changes in
vegetation cover also imply changes in both radiative and non-
radiative biophysical properties that may in turn affect the local
climate and the surface energy balance4–8. As an example of the
complexity of such biophysical land-climate interactions, the
conversion of forests into grasslands typically entails a rapid
increase in albedo9 and a concomitant decrease in evapo-
transpiration that may ultimately lead to cooling or warming,
depending on which of these two processes dominates10,11.

To date the accounting of biophysical perturbations of the
surface energy budget in major climate assessments has been
mostly limited to changes in albedo2. However, there is an
increasing body of literature that demonstrates how all the terms
of the energy balance significantly impact the surface climate and
should be accounted for in land-based mitigation plans12–18. The
complex issue of land-climate biophysical interactions has been
intensively explored with model-based studies8,12,19,20 but the
capacity of Earth system models (ESM) to represent accurately
these biophysical properties and, in particular, the partitioning of
available energy into latent and sensible heat fluxes, is still
uncertain19,21. As a result, the assessment of extensive land cover
changes performed with ESMs at continental to global
scales8,12,22 has led to contrasting predictions15,19 and the
impacts of smaller-scale changes in vegetation cover have only
recently been evaluated23. What’s more, assessments based on
ground observations, such as those from flux sites and meteor-
ological stations7,24–26 typically have insufficient spatial coverage
to derive conclusions at the global scale.

To cope with the uncertainty of model simulations and the
limitations of surface data, satellite observations are increasingly
used to produce data-driven diagnostics at large scales9–11,27,28

because they combine global coverage with the high resolution
required to assess local changes in vegetation cover. Until now,
the terrestrial biophysical effect on climate has been derived from
space observations with two alternative approaches. The first
identifies the signal of the actual change in the local climate
following an observed land cover transition10,28,29, and is there-
fore limited both by the accuracy of land cover change detection
from the satellite imagery, and by the frequency and extent of
those changes during the observation period. The second, and
more common, approach is based on a space-for-time approx-
imation that identifies the potential impact of a land cover
transition from differences in climate amongst neighbouring
areas with similar environmental conditions but contrasting
vegetation9,11,27. Although studies performed using either of these
two approaches present a range of diagnostics of varying com-
plexity and scope, none provide at the same time an assessment of
the full energy balance, at global scale, and for multiple vegetation
transitions, as now required for the comprehensive evaluation of
land-based mitigation plans.

Here we present such an assessment. Our novel approach
adopts the space-for-time logic to multi-scale remote sensing
products to quantify the potential effect that a complete transition
from one vegetation class to another would have on the individual
components of the surface energy balance and on the resultant
change in land surface temperature. This information is spatially
and temporally explicit, enabling us to draw a comprehensive
picture of the geographic and seasonal patterns of these potential
changes. The resulting data set is freely available and fully
described in an accompanying data description publication30. We
use this global data set to quantify the total effect on the surface
energy balance resulting from all vegetation changes that have

occurred during the period 2000–2015, and then translate this
effect into a change of 0.23± 0.03 °C over the concerned land.
Agricultural expansion is most responsible for this increase, due
to a decrease in evapotranspiration that is not compensated by an
increase in albedo. We further show how all potential transitions
towards croplands or grasslands raise local temperatures irre-
spective of the vegetation originally present. Similarly, converting
tropical evergreen forests to any other vegetation cover results in
a warming of the local climate.

Results
Changes in surface energy balance due to deforestation. We
start by analyzing the potential changes in annual radiometric
land surface temperature (LST) following a broad vegetation
transition from forest to crops or grasses. These are based on land
cover information for 2010 and monthly satellite observations
collected during the period 2008 to 2012. Figure 1 shows spatial
patterns that are in line with previous studies focusing strictly on
deforestation10,29. We identify a general increase in clear sky day-
time LST particularly evident in regions where vegetation growth
is typically limited by water availability, but also in regions where
vegetation growth is limited by energy, such as Southeast Asia
(Fig. 1a). In parallel, night-time temperatures consistently
decrease across the mid-latitudes, while the tropics and areas
beyond the polar circle show a mixture of mild decreases and
increases (Fig. 1b). The mean of day-time and night-time LST can
provide a rough estimate for air temperature. Mean LST follows a
clear latitudinal/temperature gradient from a decrease in boreal
zones to an increase in temperate to tropical areas (Fig. 1c), in
line with studies based on in situ observations7. Finally, the
diurnal amplitude in LST increases across the globe with the
exception of some areas in North America and Russia (Fig. 1d).

In contrast to other global studies, here the underlying physical
mechanisms behind temperature changes can be appreciated by
looking at the variations in the components of the surface energy
balance. Figure 2 shows that the forest to crops/grasses transition
induces a general increase of reflected solar shortwave radiation
(SW), as herbaceous canopies are typically brighter than trees4,31.
This effect is particularly large at more northern latitudes, where
trees can partly mask the highly reflective snow cover of the
understory. It is worth noting that compensation of the reduction
in absorbed SW in the energy balance equation depends on the
background climate and therefore varies geographically, and is
dominated by the reduction in sensible (H) and ground heat
fluxes (G) in cold and/or humid climates at northern latitudes
(Fig. 2d), as well as by the decrease in latent heat flux (LE) in
warm and/or arid regions (Fig. 2c). These perturbations in the
surface energy balance ultimately produce an increase in long-
wave (LW) upwelling radiation (and therefore of LST) that is
particularly relevant in water-limited regions like southern
Europe and western USA (Fig. 1a).

Biophysical effects of multiple vegetation cover transitions.
The main novelty of this assessment with respect to previous
work is the possibility to delve into finer levels of land cover
conversion. Figure 3 summarizes the global annual perturbations
of the surface energy balance expected for transitions among the
following vegetation types: evergreen broadleaf forests (EBF),
deciduous broadleaf forests (DBF), evergreen needleleaf forests
(ENF), savannas (SAV), shrublands (SHR), grasslands (GRA),
croplands (CRO) and wetlands (WET). The seasonal patterns for
both the changes in surface energy balance and the resulting
temperature are also provided respectively in Supplementary
Figs. 1 and 2.
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Fig. 1 Potential changes to surface temperatures caused by deforestation. Panels describe the expected average annual change of a day-time and b night-

time clear sky land surface temperature (LST), of c mean LST (defined as the average between a and b) and of d LST diurnal amplitude (defined as the

difference between a and b)
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Fig. 2 Potential changes to the local energy balance caused by deforestation. Expected average annual changes are provided for a shortwave reflected

radiation (SW), b longwave emitted radiation (LW), c latent heat flux (LE) and d the combination of sensible and ground heat fluxes (H+G). Deforestation

is considered here to be a conversion of forests to either crops or grasses
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Figure 3 illustrates how both the type of forest and the region
where they are located influence how deforestation perturbs the
surface energy balance. Loss in evergreen broadleaf forest
(essentially confined to the tropics) resulting in a strong
reduction in latent heat flux, whereas loss in evergreen
needleleaf forest (located mostly in boreal zones) causes sensible
and ground heat fluxes to decrease; deciduous forests have an
intermediate response. While deforestation systematically results
in higher radiative fluxes leaving the surface, the balance

between shortwave reflected and longwave emitted radiation
changes depends on forest type. Deforestation of needleleaf trees
show a stronger increase in reflected radiation, partly because
these ecosystems are predominantly located in the Northern
hemisphere, characterized by extended snow cover periods, but
also because needleleaf trees are typically darker than their
broadleaf counterparts. The vegetation type that replaces the
forest also has an effect: for example, the reduction in latent heat
flux is stronger when tropical forests are converted to grasslands
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Fig. 3 Global summary of the mean annual potential change in surface energy balance and temperature for various transitions in vegetation type as derived

from satellite observations. The transitions shown involve the following vegetation classes: evergreen broadleaf forests (EBF), deciduous broadleaf forests

(DBF), evergreen needleleaf forests (ENF), savannas (SAV), shrublands (SHR), grasslands (GRA), croplands (CRO) and wetlands (WET). Because

transitions are symmetric, reverse transitions can be derived by inverting the sign. The inset shows a more generic transition from forests to either crops or

grasses corresponding to the maps shown in Figs. 1 and 2. For each transitions, the mean change is provided for the shortwave reflected radiative flux

(SW), longwave emitted radiative flux (LW), latent heat flux (LE) and the combination of sensible and ground heat fluxes (H+G). The number above the

bars represents the mean surface temperature change observed for that transition ± two times the standard error around the mean, as do the confidence

intervals represented on the bar charts of the flux values
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than when converted to croplands, suggesting that croplands
have more access to water in the analyzed areas, possibly
because of irrigation.

Beyond deforestation, other vegetation cover transitions that
can also be explored include changes in species compositions,
such as that from deciduous to needleleaf trees (DBF to ENF)
which shows a strong increase in H+G, or changes from
grasslands to croplands. Analyzing changes from forests to
savannas, and from forests to shrublands, can provide informa-
tion on the effect of tree density and tree height respectively.
Finally, a striking pattern that emerges from Fig. 3 is that both the
column covering tropical evergreen forests (EBF) and the rows
representing agricultural expansion (CRO and GRA) consistently
show warming, irrespective of which transition is considered. The
driving forces behind this warming is a reduction in evapotran-
spiration in the former and increase in albedo in the latter.

The biophysical effect of past vegetation cover changes. The
potential changes summarized in Figs. 1, 2 and 3 are used to
estimate the global effects that recent changes in actual vegetation
have had on the surface energy balance. For this purpose, the
observed vegetation fraction change from 2000 to 2015 (based on
respective maps from the ESA CCI project32) are multiplied by
the corresponding changes in surface energy fluxes retrieved for
each transition. The global perturbation resulting from all

transitions leads to a reduction in the surface energy budget of
121 exoJoules (121 × 1018 J). To put this number in perspective,
this is almost one quarter of the total world supply of primary
energy in 201533. Exploring these cumulated changes across cli-
matic gradients (Fig. 4) reveals a general brightening of the sur-
face in the warm humid climates that is compensated by a strong
reduction in latent heat, while mildly colder and drier climates
show the opposite response (the changed area in each bin is
shown in Supplementary Fig. 3). Very-cold climates show
brightening (probably due to stronger snow albedo following
forest cover reduction) counter-balanced by an increase in sen-
sible heat flux. These perturbations of the surface energy balance
are all summarized together at the global scale in Fig. 5, along
with a subdivision according to specific vegetation transitions (for
a similar plot with transitions ordered by magnitude of change,
see Supplementary Fig. 4). Agricultural expansion into evergreen
broadleaf forests has had an overwhelming effect on this per-
turbation, but conversion of deciduous broadleaf forests and
shrublands into cropland also rank high in Fig. 5, consistently
reducing the amount of energy available for evapotranspiration
whilst brightening the surface. Changes from cropland back to
forest also rank in the more important transitions, but they do
not compensate the effects of deforestation.

Through a decomposition of the energy balance terms (see
methods section), we can estimate how the changes reported in
Fig. 5 translate into a change of surface temperature over the area
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Fig. 4 Effect of actual changes in vegetation cover from 2000 to 2015 on the surface energy balance. Each panel illustrates how this energy change in
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that underwent vegetation change from 2000 to 2015 (Fig. 6).
Furthermore, we can highlight the role of each component in
causing this change in temperature. At the global level, vegetation
change has caused an average increase of 0.23± 0.03 °C where
that vegetation change has occurred, driven by a warming effect
from turbulent fluxes that is not compensated by the cooling
effect caused by higher albedo. This increase in temperature
follows a latitudinal gradient with the larger effect in the tropics,
where the role of evapotranspiration is dominant, while at higher
latitudes the warming is negligible and the brightening effect of
vegetation change is counter-balanced only by sensible heat. The
selected transitions in Fig. 6 confirm that conversions to
croplands unambiguously increase the land surface temperature.
However, it also shows how afforestation in the tropical belt has
had a considerable cooling effect, though one that is not
compensatory to that of deforestation because these changes
have not occurred in the same regions. In boreal regions, the
conversion of dense evergreen needleleaf forest to savannas or
shrublands leads to a substantial increase in sensible heat instead
of latent heat, counteracting the brightening effect that a
reduction in canopy cover has on masking the snow.

Discussion
This study makes the first global scale data-driven assessment of
how different vegetation changes can influence the surface energy
balance. Altogether, our results quantify these influences across
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different geographic regions and biomes, confirming the need to
jointly assess both radiative and non-radiative processes in order
to estimate the changes in surface climate induced by land cover
change. In particular, this assessment shows that in ecosystems
where vegetation growth is limited by water availability the cli-
mate impacts of a vegetation cover transition are dominated by
changes in evapotranspiration, whereas in ecosystems where
vegetation growth is limited by energy, such as boreal shrublands,
the perturbation of the surface temperature is dominated by
changes in the radiative and aerodynamic properties of those
ecosystems. The origin of actual vegetation cover change in the
recent past is divided along the same lines, with direct anthro-
pogenic changes (such as agricultural intensification) occurring
mostly where evaporation dominates, while changes within nat-
ural ecosystems have generally been confined to higher latitudes
where radiative and aerodynamic effects prevail.

Our results show that vegetation cover change over the period
2000–2015 has produced on average a brighter but warmer land
surface. This apparently contradictory signal is controlled by the
three dominant transitions driven by agricultural expansion in
mostly tropical regions (from evergreen broadleaf forests,
shrublands or deciduous broadleaf forests to cropland, Fig. 5),
which each lead to similar increases in albedo, and consequent
reductions in absorbed radiation and turbulent energy fluxes.
This perturbation of the surface energy balance ultimately pro-
duces a counter-intuitive warming of areas with higher albedo
because of stronger plant-mediated constraints on evaporative
cooling, in accordance with recent findings that prove the central
role of non-radiative biophysical effects mediated by
evapotranspiration18.

In a world that will need to feed more people whilst allocating
more land for forestry to serve as a negative emission technology,
our results provide the supporting information to assess the
overall climate efficiency of alternative land-based mitigation
strategies. First, evergreen broadleaf forest is the vegetation type
that is most worth preserving in terms of local biophysical effects,
as it is associated with the highest potential increases in tem-
perature on transition to all other vegetation types. This provides
strong additional support for the United Nations collaborative
programme on Reducing Emissions from Deforestation and
Forest Degradation in Developing Countries (REDD+), as avoi-
ded tropical deforestation is then beneficial for climate mitigation
for both biogeochemical and biophysical reasons. Second, con-
version to croplands and grasslands consistently leads to local
warming irrespective of the original vegetation cover type. This
biophysical cost serves as an additional argument against further
cropland expansion, as cropland is not only associated with the
lowest carbon stocks, but is also a considerable emitter of other
greenhouse gases such as nitrous oxide and methane. From both
biophysical and biogeochemical points of view, the conversion of
evergreen broadleaf forest to cropland appears to be one of the
worst land cover transitions for the climate, and yet is the main
transition that has occurred in the recent past.

Beyond global level estimates, our results also illustrate that
biophysical effects of vegetation cover change vary considerably
in geographic and climate space. In fact, the detailed spatial
information provided by this study could provide avenues for
guiding the development of regional land-based mitigation plans
using the natural biophysical properties of the different vegetation
types. Regional efforts to combat climate change effects such as
desertification, including the Great Green Wall for the Sahara and
Sahel initiative, could benefit from the spatially and temporally
resolved information that result from our analysis. Ultimately, we
expect that our observation-driven methodology could further
serve as a baseline to develop monitoring, reporting and ver-
ification guidelines for the implementation of land-based climate

mitigation and adaptation options for land biophysics, mirroring
what is currently done for biogeochemical land processes.

We anticipate that the global assessment presented here, along
with the methodology and the freely available data set30, will
generally support the development of land-based plans that target
climate mitigation through several applications. First, these
observation-based evidences of the role of vegetation on the
surface energy balance are an important asset for benchmarking
and improving land surface schemes and Earth system models21.
Being able to tackle directly this local effect is an advantage that
observation-driven assessments have over model-based ones,
which either have problems disentangling the low land cover
change signal from climate noise in their large pixels19,34, and so
have to resort to large-scale idealized simulations in which local
and non-local effects are intermingled12,35, or have to develop
extra methodologies to isolate local effects23,36. Beyond the eva-
luation of land surface models, the data set could also help to
assess the climate impacts of future scenarios of vegetation cover
change within the framework of integrated assessment models,
which could harness the spatially and temporally resolved
changes in temperature associated with changes in vegetation
cover.

The novel methodology developed in this study opens oppor-
tunities for further developments. Unlike previous studies9,11, we
describe vegetation using a recent land cover product specifically
created for climate studies (ESA CCI land cover maps32) and,
more importantly, we adopt a methodology that does not require
fixing any thresholds in cover fractions to define categorical
vegetation classes. Instead, we use the actual cover fraction values
for different vegetation types within a grid cell pixel as predictors,
thereby separating the different effects of each vegetation type
(see Methods section for details). These properties make the
method scalable, capable of ingesting layers describing vegetation
cover and biophysical properties at any spatial resolution. It could
be applied to dedicated studies at regional scales, where more
accurate biophysical variables and detailed thematic maps (e.g.,
describing areas with different land management practices) are
available. Despite the increased availability of satellite information
at finer spatial resolution, the method can also help to disentangle
the signal of vegetation cover change from coarse spatial resolu-
tion time series, a prerequisite to exploit the long term data
archive of satellite observations available since the 1980s.

It is worth noting that our approach addresses exclusively the
direct biophysical impact of land cover change at local scales,
since climate feedbacks and large-scale teleconnections cannot be
assessed with this method of local space-for-time substitution.
However, local effects dominate the overall biophysical impacts
when land cover transitions are limited in space23. The pre-
dominantly local nature of these phenomena has important
implications for the implementation of land-based mitigation
plans, since it connects the climate impacts to the areas where
land policies are implemented. This aspect is of particular rele-
vance for the approval of land-based policies by local commu-
nities, that might find in land biophysics additional motivations
for protecting and preserving their forests.

Methods
Maps of vegetation cover fractions. The analysis is based on establishing a
statistical relationship over a local moving window between vegetation cover
fraction maps and variables describing surface properties retrieved from satellite
observations (Fig. 7). The vegetation cover fractions are based on the 300 m global
land cover map for the year 2010 provided by the European Space Agency’s (ESA)
Climate Change Initiative (CCI)32. The map uses the UNLCCS classification
scheme37, but an open conversion tool is then used both to aggregate and to
translate these classes based on user-dependent criteria38. This tool was designed to
produce maps of the plant functional types typically used in global climate and
vegetation modelling. To reach out beyond the modelling community, here we
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instead used the tool to produce fractions of vegetation classes as defined by the
widely used global vegetation classification scheme of the International Geosphere
Biosphere Programme (IGBP), based on the conversion matrix presented in
Supplementary Table 1.

Data preparation. The input surface property variables need to have a common
spatial resolution (0.05°), temporal coverage and monthly temporal resolution.
These variables are all derived from post-processing of remote sensing products
based on measurements from the NASA Moderate Resolution Imaging Spectro-
radiometer (MODIS) instrument on-board of the Aqua and Terra satellites. For all
variables, the median value for each month is calculated from the years 2008 to
2012 to generate the 5-year climatology while retaining the seasonal cycle. The
source and pre-processing of each individual variable is as follows.

Day-time and night-time LST are the radiant temperature of a surface measured
in the day or at night, respectively. The MODIS instrument on board the Aqua
platform makes such measurements twice over its cycle at ~13:30 and 1:30 local
time at the Equator. These times are close to those at which the minimum and
maximum temperatures are expected. The MODIS land surface temperature
algorithm provides such estimates at a monthly time step at 0.05° spatial
resolution39,40 under the product MYD11C3 (we use collection 5 available from the
NASA LPDAAC website https://lpdaac.usgs.gov/).

Surface upwelling longwave radiation is the outgoing infrared radiation emitted
by the surface. A large part of this energy is absorbed by the atmosphere and later
re-emitted towards the Earth (by clouds and greenhouse gases) or outwards to
space. The upward longwave radiation (LW↑) can be calculated from the surface

temperature (T) and broadband emissivity ϵBð Þ using the Stefan-Boltzmann law:

LW" ¼ εBσT
4 ð1Þ

where σ is the Stefan-Boltzmann’s constant (5.67 × 10−8Wm−2K−4). We use day-
time and night-time LST from the MYD11C3 product to estimate the mean surface
temperature (T) over the entire day span using a simple average. The MYD11C3
product also provides emissivity estimates for various specific narrow bands in the
middle and thermal infrared spectrum that can be used to obtain εB using the
empirical equation suggested by a dedicated study41:

ϵB ¼ 0:2122ϵ29 þ 0:3859ϵ31 þ 0:4029ϵ32 ð2Þ

where ϵ29 , ϵ31 and ϵ32 are the estimated emissivities in MODIS bands 29
(8400–8700 nm), 31 (10,780–11,280 nm) and 32 (11,770–12,270 nm). Because the
satellite can only measure during cloud-free observations, it must be specified that
the resulting monthly upwelling longwave radiation only refers to clear sky
conditions, which we will denote using an asterisk as LW�

" .
Albedo is defined as the proportion of the incident light or radiation that is

reflected by a surface. In this case, we are interested in the monthly average of the
proportion of total radiation across the broadband shortwave spectrum reflected by
the Earth’s surface every 0.05°. The NASA MCD43C3 albedo product provides 8-
daily estimates of both directional hemispherical albedo (black-sky albedo) and
bihemispherical albedo (white-sky albedo) based on multidate multispectral
MODIS cloud-free observations collected over a 16-day moving window and a
semi-empirical kernel-driven bidirectional reflectance model42. These white-sky
and black-sky albedos correspond to theoretical situations in which incident
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radiation is either completely diffuse or completely direct. To obtain an estimate of
real conditions without information on the fraction of diffuse radiation, we took
the mean of both values. To have estimates at monthly temporal resolution, we
selected only those in which the 16-day periods correspond best with the 15th of
each month. The data are available from the NASA LPDAAC website (https://
lpdaac.usgs.gov/).

Latent heat flux is the flux of heat from the Earth’s surface to the atmosphere
that is associated with evaporation of water at the surface. In this case, we are
interested in the terrestrial component associated with plant transpiration. The
MOD16A2 product43 provides latent heat obtained by integrating several MODIS
products (land cover, albedo, leaf area index, and fAPAR) with meteorological data,
delivered at 0.05° spatial resolution with monthly temporal resolution covering the
regions from 60°S until 80°N. The product is not entirely observation-driven as it
requires some specific parametrization per biome, but which is not spatially
explicit. The data are available from the NTSG website (http://www.ntsg.umt.edu/
project/mod16).

Retrieving the local biophysical signal of vegetation change. To identify the
biophysical signal due to changes in vegetation cover we establish a relationship
between vegetation cover fractions and the surface variables over a local
moving window. As a result of this, the direct biophysical effects of vegetation
change considered here are local. This is valid both for the spatial extent of the
cover change, which assumes at most a change of a complete fine resolution
pixel (0.05° × 0.05°), and for the origin of the change, i.e., we ignore indirect
effects due to regional change from neighbouring areas. The moving window
size is 5 by 5 pixels at 0.05° resolution, covering an area of ~25 km by 25 km
over which the local climate is assumed to be uniform. To unmix the signal
generated from the compositional land cover, for each window we apply a
linear regression using a matrix X containing the vegetation fractions of each of
the 25 pixels as explanatory variables and a vector y containing the 25 values of
a given biophysical variable as response variable to obtain a vector of β coef-
ficients:

y¼Xβ ð3Þ

This is equivalent to solving the following system of equations:

y1 ¼ β1x11 þ β2x12 þ :::þ βmx1m

y2 ¼ β1x21 þ β2x22 þ :::þ βmx2m

.

.

.

yn ¼ β1xn1 þ β2xn2 þ :::þ βmxnm

8

>

>

>

>

<

>

>

>

>

:

ð4Þ

in which xij represents the cover fraction of vegetation j in pixel i, for the n pixels in
the moving window and the m classes that are considered. Once identified, we can
use the β coefficients to predict the local y value corresponding to a given
composition x, including that composed of a single vegetation cover j by setting xj
= 1 and all other x values to zero.

There is a problem, however, if the compositional predictor data set X is used
directly in the analysis. Compositional data can behave somewhat differently to
‘ordinary’, open or normal data, because compositions necessarily sum to one (for
this reason they are also sometimes described as ‘closed’ data). Statistically, this can
lead to spurious correlations between compositional components, and/or between
compositional components and the response variable. Analysis of any given subset
of compositional components can lead to very different patterns, results and
conclusions44. Geometrically, all points defined by the compositions must fall in a
simplex because their compositions sum to one. For a three part composition, this
simplex is a triangular plane (i.e., it exists on a 2-dimensional surface, such as panel
e in Fig. 7). While the matrix has 3 columns, there are only (at most) 2 dimensions.
A transformation of X is needed to reduce appropriately the dimensionality of this
matrix for subsequent use in the regression.

The transformation we apply to reduce the dimensionality of X involves a
singular value decomposition (SVD). This procedure is very close to a principal
component analysis (PCA). The first step consists of centring all the columns of the
predictor matrix X of vegetation fractions by removing the column means. We
then apply the SVD:

ðX �MÞ ¼ UDVt ð5Þ

where M is the appropriate matrix of column means, U and V are the matrices
containing respectively the left hand and right hand singular vectors, and D is a
diagonal matrix containing the singular values (the standard deviations of the
ensuing dimensions). Squared values of D indicate how much variance is explained
by each (orthogonal) dimension. We implement a rule where as many dimensions
from this SVD are retained as to conserve 100% of the original matrix’s variation.
In doing so, we reduce the dimensionality appropriately as described above, as well
as remove what may be additionally redundant dimensions that can occur locally if,
for instance, the only points in which 2 classes are represented have exactly the
same values. To avoid having problems when there is too little or no information
(e.g., if all pixels have exactly the same compositions), we added a pre-condition

that there must be at least 10 pixels with different compositions. The final
appropriately transformed predictor matrix of reduced dimension Z is then
obtained by:

Z ¼ ðX �MÞVz ð6Þ

where the subscript z in Vz indicates that the latter is composed of a subset of right
hand singular vectors in V as selected from D as described above. The resulting
predictor matrix Z can now be regressed onto the local biophysical variable y.

y ¼ Zβ þ ε ð7Þ

where Z has been augmented with a leading column of ones to accommodate an
intercept term in the regression. The standard manner to obtain an estimate of β is:

β ¼ ZtZð Þ
�1
Zty ð8Þ

Because the compositional predictor matrix X has been transformed to matrix
Z, regression coefficients identified in the regression of Z onto y do not
immediately provide information about the association between the various
vegetation cover fractions and the surface property variables. In order to identify
the z values associated with a particular vegetation (in that local analysis) we
instead define a ‘dummy pixel’ whose composition contains only that vegetation
class, with all other classes in the dummy pixel’s composition set to zero. This
pixel’s composition is then transformed, and its y value predicted. This is the y
associated with that vegetation type. Since we wish to do this for all compositional
components of interest, we actually define a matrix P with as many rows as these
compositional components that we wish to predict. P is centred on the same
column means as above (M, specific to each local analysis), and then multiplied by
the correct number of transposed right hand singular vectors (Vz, again, specific to
each local analysis).

Zp ¼ ðP�MÞVz ð9Þ

Predicted yp values for each vegetation type (identified by predicting the
appropriately transformed ‘dummy pixels’) are then calculated as:

yp ¼ Zpβ ð10Þ

The expected change in variable y associated with a transition from one vegetation
type to another at the central pixel of the local window is then the difference
between the yp predicted for each pure vegetation type:

ΔyA!B ¼ yB � yA ð11Þ

Beyond our primary interest in the change Δy for a given vegetation transition, we
also assess the uncertainty associated with each of these differences. We consider
uncertainty in terms of standard deviations, and thus, according to error
propagation, the uncertainty for the difference due to the transition from A to B
can be determined from:

σA!B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2A þ σ2B � 2σAB

q

ð12Þ

where σ2A and σ2B are the variances in the estimates of y for each vegetation type,
and σAB is their covariance. This covariance term is important as the uncertainties
of the individually predicted z values are not independent given that they derive
from the same regression model. The variances and covariances of all vegetation
types can be obtained from the covariance matrix, which in turn is calculated as:

Σ ¼ ZpVar½β�Z
t
p ð13Þ

The diagonal terms in ∑ are the variances of individual predictions of
(individual) vegetation classes. The off-diagonal parts of ∑ hold the covariances
between these predictions.

The whole procedure described above (variable transformation, regression and
uncertainty estimation) is applied globally over 5 by 5 moving windows for the 3
biophysical variables for each of the 12 months of the year at 0.05° spatial
resolution for each vegetation transition considered. Symmetric transitions yield
identical results (e.g., ΔyA!B ¼ �ΔyB!A). The resulting maps only provide
information for the pixels in which all 25 pixels in the moving window had
information.

Masking out sub-optimal conditions. The method relies on there existing co-
occurrences of vegetation classes within the local window. Furthermore, the sta-
tistical methods that are applied to these sets of points are more likely to provide
reliable results when there are large and balanced presences of both vegetation
classes of interest. An index quantifying mutual presence (Ic) is thus applied for
each pair of vegetation classes (see our accompanying data paper for more
details30), and a threshold of Ic< 0.5 is used to mask out from the results those
pixels whose local windows do not provide enough co-occurrences.
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Another masking operation is required to remove areas where high
topographical variability exists within the local window. Topographical relief
generally translates into climatic gradients, which would compromise the space-
for-time approach. Pixels are masked according to three criteria: (1) standard
deviation of elevation within the local window must remain below 50 m; (2) the
difference between the mean elevation of the central pixel and the mean elevation
of the entire local window should be less than 100 m; and (3) the difference in the
standard deviation of elevation within the central pixel and that over the entire
local window should remain below 100 m. For more information on this masking
step, readers are again directed to the data descriptor paper30.

Spatial aggregation. The maps resulting from the local space for time analysis
need to be spatially aggregated from 0.05° to 1° grid cells to be used alongside
data from the CERES instrument, which provides the information necessary to
close the energy balance. Aggregating to 1° also has other advantages, namely: (1)
a mean difference of a variable associated with change from one vegetation type
to another may be assumed to be more accurate than any individual estimate at
finer scale; (2) this scale is simpler to map and visualize at global level; and (3) it
is more comparable to results from land surface models. Because each 0.05°
estimate of Δy includes an associated estimate of its uncertainty, this uncertainty
can be used to down-weight less reliable values during the aggregation procedure.
The typical approach to do so is weighting based on the inverse of the uncer-
tainty:

Δy ¼

P

i

Δyi=σ
2
i

P

i

1=σ2i
ð14Þ

where Δy is the mean aggregated value, whose uncertainty is calculated as:

σ2
Δy

¼
1

P

i

1=σ2i
ð15Þ

However, these formulations do not account for the spatial auto-correlation
generated by the moving window (1 to 20 pixels may be common between two
nearby estimates depending on the possible overlap of their respective 5 by 5
windows). This auto-correlation problem may be compounded further when
only a clustered set of 0.05° samples are available within the 1° by 1° area. This
can occur due to the topographical masking, or because two vegetation types only
co-occur over a small part of the 1° grid cell.

To tackle this auto-correlation, we employ a more generic weighting approach.
The weights depend not only on the uncertainties estimated from the regressions as
above, but also on how each window is correlated with every other window within
the area of 1°. This information is summarized in a 400 by 400 matrix Ra

containing the fraction of overlap between every pair of windows. The information
in Ra is combined with that of the pixel-wise uncertainties that are embedded in
Da, a diagonal matrix containing the uncertainties in its diagonal, to build a
covariance matrix ∑a (the subscript a is used to differentiate these matrices
involved in this aggregation step from those used before):

X

a

¼ DaRaD
t
a ð16Þ

The vector of weights is then obtained as:

w ¼
1

1tΣ�1
a 1

Σ�1
a 1 ð17Þ

which can then be used to calculate the aggregated Δy as:

Δy ¼
X

i

wiΔyi ð18Þ

while the aggregated uncertainty σ2
Δy

is given by:

σ2
Δy

¼ wtΣaw ¼
1

1tΣ�1
a 1

ð19Þ

When the windows have no auto-correlations, both Eqs. (18) and (19) fall back to
the simpler weighting formulas of Eqs. (14) and (15). The aggregation procedure is
applied to all data layers.

Detection and treatment of outliers. Despite all efforts to characterize uncer-
tainty and reach representative values, the results can still contain unrealistic
values. A reason for this might be that uncertainties in the input data (the remote
sensing biophysical variables and the vegetation cover fraction maps) are not
explicitly taken into account. As a final step to remove possible outliers, we remove
all values for grid cells in which there are not at least 20 samples at 0.05° spatial
resolution. Lastly, we also remove values that are statistical outliers based on the
distribution of the entire data set. All data layers are available with their associated
uncertainty. Supplementary Fig. 5 illustrates the pixels for each vegetation transi-
tion where data is available.

Closing the surface energy balance. The local unmixing step can only be applied
to those variables available at the 0.05° spatial resolution (namely α, LE, LW�

" ,
LSTday and LSTnight), meaning some components of the surface energy balance are
missing. The full surface energy balance is expressed as:

SW# � SW" þ LW# � LW" ¼ H þ LEþ G ð20Þ

SW↓, SW↑, LW↓ and LW↑ are respectively the downwelling and upwelling
radiative fluxes in the shortwave or longwave parts of the spectrum, LE is the latent
heat flux, H is the sensible heat flux and G is the ground heat flux. We derive the
terms of the energy balance combining MODIS-based data sets with the EBAF-
Surface Product derived from the NASA Clouds and the Earth’s Radiant Energy
System (CERES) instrument. This data set (CERES EBAF-Surface Ed2.8) provides
a closed and gap-filled surface energy balance at 1° spatial resolution that is
consistent with CERES top-of-atmosphere irradiance measurements45. For the
specific goals of this analysis we are interested in how the terms of this equation
change according to a change in vegetation cover, i.e.,:

ΔSW# � ΔSW" þ ΔLW# � ΔLW" ¼ ΔH þ ΔLEþ ΔG ð21Þ

We make the assumption that the changes in vegetation cover that are
considered here are too small (i.e., maximum 0.05°) to generate strong feedbacks in
the cloud regime, and as a consequence we assume ΔSW↓ = 0 and ΔLW↓ = 0. The
change in reflected shortwave radiation can be expressed in terms of albedo (α) and
incoming shortwave radiation (ΔSW↑ =Δα × SW↓), the latter being available from
CERES data at 1° resolution. Although we derived estimates of changes in
upwelling longwave flux satellite measurements at 0.05°, these refer to clear sky
conditions only (i.e., when the satellite instrument can measure the ground
unobstructed by clouds) while other fluxes are representative of all cloud
conditions. As a proxy for the effect of cloudiness, we used a correction factor

based on the ratio of all sky (LWC↑) to clear sky LW�
C"

� �

longwave upwelling

estimated by CERES (ΔLW" ¼ ΔLWC"=LW
�
C"

� �

´ΔLW�
" , where the asterisk

indicates values for clear sky conditions). By re-writing and simplifying the
equation above, the expression describing the change in the residual flux,
composed of both sensible and ground heat fluxes, becomes:

ΔðH þ GÞ ¼ �ðΔαÞSW# � ΔLWC"=LW
�
C"

� �

´ΔLW�
" � ΔLE ð22Þ

We apply this expression to every 1° pixel for every month of the time series
and every vegetation transition based on the previously calculated data sets of Δα,
ΔLW�

" and ΔLE. To have all terms of the energy balance on equal footing and with
the same sign convention, we also explicitly produced data sets of shortwave
reflected radiation (ΔSW↑) and full-sky longwave emitted radiation (ΔLW↑), all of
which are freely available in the data repository30.

Controlling for consistency in latent heat flux. Although a validation of the
methodology against ground-based measurements of surface energy balance fluxes
would be desirable, no adequate network of measurements currently exists. Flux-
towers would constitute the right measurements, but we would need a large and
well distributed number of paired flux-tower sites with contrasting vegetation types
yet similar climate, which currently do not exist. A comparison over a handful of
sites30 indicate that the results are in the right direction, even if the low number of
pair-sites does not allow a robust and comprehensive verification of our data set.

In the absence of validation, we propose a diagnostic to evaluate the robustness
of latent heat flux (MOD16A2), arguably the most questionable input product,
against an alternate data-driven product GLEAM v3.146,47. We cannot directly use
GLEAM in a space-for-time approach because its spatial resolution (0.25°) is too
coarse to ensure homogeneous climate conditions within the moving window.
However, by aggregating both MOD16A2 and GLEAM to a common 1° spatial
resolution and comparing the latent heat flux for all pixels with high forest cover
(>75%) against those with low forest cover (<25%), we come to the conclusion that
the capacity of MODIS MOD16A2 product to discriminate differences due to
forest cover are adequate for our methodology and scope (Supplementary Fig. 6).

Calculating the effects of past vegetation changes. The changes in land cover
from 2000 to 2015 are obtained from their respective maps from the ESA CCI
products. Both 300 m land cover maps are converted to vegetation fraction maps
using the same methodology38 and table (Supplementary Table 1) as before, but
setting the output spatial resolution to 1° instead of 0.05°. We then subtracted the
resulting vegetation fractions of 2000 from those of 2015, yielding net changes at 1°
per vegetation type. To obtain changes from one vegetation type to another, for
each 1° grid cell we match the net changes in vegetation cover experiencing a loss
to those other vegetation covers experiencing gains. We assume here that gains
originate equally from all vegetation types suffering a loss. With the gridded values
of actual vegetation change, it is then possible to multiply them with the corre-
sponding potential changes, Δy, in order to obtain actual changes for each flux in
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the energy balance. The assumption here is that the biophysical effects of vegeta-
tion cover change estimated from the 2008–2012 period remain valid for the
2000–2015 period. The resulting values are integrated in time to provide an esti-
mate in exaJoules (1018 Joules) of the energy change caused by the given vegetation
cover transitions.

Decomposition of the surface energy balance. The surface energy balance can be
decomposed to isolate the respective contribution of each component to the surface
temperature resulting from the vegetation cover transition24. Such a method has
been used to separate direct contributions (e.g., surface reflection and evapo-
transpiration) from indirect contributions due to atmospheric feedbacks (e.g.,
cloud-radiative feedbacks) from global climate simulations48,49. While only the
direct effects can be separated in our data, it provides an easier way to interpret the
energy effects caused by vegetation cover change from 2000 to 2015. To do so, we
use Eqs. (1) and (20) and rearrange the terms as:

εBσT
4 ¼ SW# þ LW# � SW" � LE� ðH þ GÞ ð23Þ

Calculating the derivative of Eq. (23) to represent the change in vegetation cover,
neglecting changes in emissivity and isolating for temperature, we obtain:

ΔT ¼
1

4σT3
SW# þ ΔLW# � ΔSW" � ΔLE� ΔðHþ GÞ
� �

ð24Þ

The changes in downwelling radiation are neglected as before, leaving the
changes in surface reflection, in latent heat and in the residual fluxes. To connect
with the global actual energy changes from 2000 to 2015 calculated before, the
latter are transformed back into fluxes that can be used in Eq. (24). To do so, the
energy values in Joules are divided by the total changed area for each transition,
and divided again by the number of seconds in a year, to obtain estimates of the
annual radiative forcing at the surface that these changes have caused.

Assumptions and limitations of the study. A number of assumptions were
necessary to make our assessment which need to be taken into account when
interpreting the results. To close the surface energy balance locally, we assume that
the local cover change at 0.05° does not generate systematic changes in cloud cover
between the grid cell of the moving window of 0.25° and therefore affect indirectly
the local surface energy balance. The robustness of this assumption relies on the
fine scale of the analysis and on the typical lateral movement of air masses due to
wind that ultimately advect air masses and clouds to different grid cells. Note that
the final upscaling to 1° spatial resolution still represents an average effect of land
cover change at 0.05° resolution, but now smoothed over that 1°. We also assume
vegetation cover is the only driver of changes in surface biophysics within the local
moving window of 0.25°. For this purpose areas with strong elevation gradients are
masked out to filter topographic effects, whereas any spatial gradient in general soil
properties within the moving window is not considered. In our analysis of past
changes, we consider that the biophysical signal of land cover change derived from
observations acquired in 2008–2012 are representative for the entire 2000–2015
period. This assumption holds if the background climate does not change sub-
stantially50, and could further be used to explore biophysical impacts in the near-
future, but would require special attention to projecting them in a changing climate
(e.g., places with current snow cover in spring would lose the strong seasonal
albedo feedback if temperatures rise substantially). This assumption relies on the
dominant role that climate variability has on climate trends on the decadal time
scale. Finally, the biophysical effects considered here result from analyzing average
conditions over 5 years (2008–2012), while changes in more extreme years might
be amplified.

Data availability. The numbers presented in this assessment are averaged both
temporally and spatially, hiding part of the wealth of information generated in the
underlying data. The original data set reports for each vegetation transition, all
changes in the surface energy balance at a monthly scale over a 1° × 1° spatial grid
for all places where two vegetation classes co-exist. Every record in space and time
is also accompanied by an estimate of the uncertainty associated with the meth-
odology that can serve to assess the relative quality of each value. To fully
appreciate the depth of the information generated, readers are redirected to the
accompanying data descriptor30, and to the actual data set, which is freely available
in the Figshare repository, https://doi.org/10.6084/m9.figshare.c.3829333.
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