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Abstract— An analytical framework is presented to study
the self-adaptive behavior of probabilistic routing protocols for
computer networks. Such soft routing protocols have attracted
attention for delivering packets more reliably, robustly, and
efficiently than conventional deterministic approaches. Efficient
global operating parameters can be estimated without resorting
to expensive Monte-Carlo simulation of the whole system. Key
model parameters are routing sensitivity and routing thresh-
old/noise, which control the “randomness” of packet routes
between source and destination, and a metric estimator. Global
network characteristics are estimated, including steady state
routing probabilities, average path length, and path robustness.

The framework is based on a Markov chain analysis. Individ-
ual network nodes are represented as states. Standard techniques
are used to find primary statistics of the steady state global
routing pattern, given a set of link costs. The use of packets
to collect information about, or “sample,” the network for new
path information is also reviewed. How the network sample rate
influences performance is investigated.

I. INTRODUCTION

A. Overview

Adaptive behavior is one of the fundamental requirements
of modern network routing protocols [1]. Deterministic ap-
proaches are able to perform well in relatively static networks
by relying on traditional link state or distance vector shortest
path algorithms. Difficulty arises under dynamic conditions
when route costs are highly variable or the topology itself
is unstable. Multipath routing is often cited as a solution,
however its implementation is complicated by the need to
explicitly manage additional routes; multipath routing does
not fit elegantly into a traditional routing framework. Such
a scenario is especially relevant in wireless mesh and ad-
hoc networks, where the communications characteristics of
wireless links are subject to large and frequent variations.
Probabilistic routing (here also referred to as soft routing or
p.routing) is able to maintain route utility estimates on all
routes simultaneously in one unified framework. Good paths
are used proportionally more than bad ones, and all paths
are successively refined based on simple local interactions
between hosts. Adaptive end-to-end routing is an emergent
behavior based on the interactions of each node in the network.
Soft routing is ultimately able to outperform deterministic
routing (see Section I-B for details).

Probabilistic routing algorithms contain many parameters
that influence their performance. Though there are several
possible formulations of p.routing, each approach generally
has three primary parameters. These are a sensitivity pa-
rameter, which controls the bias towards well performing
paths, a noise parameter, which sets a lower bound on the
“randomness” of paths, and an estimation parameter, which

determines how different measurements of the network are
combined to determine a single estimate of its state. Related
parameters include how often metric estimates are updated and
how fast the network itself changes.

These parameters define interactions at a local level, at each
network node, but it is unclear how they affect global behavior
such as routing performance. System properties of interest
might include the expected per-packet path cost between a
source and destination, or a measure of the robustness of
the equilibrium routing solution. Extensive simulation can be
used to evaluate these characteristics, but a model which can
directly determine (possibly optimal) local parameter values is
missing. The framework presented here is the first step towards
such a model.

The current work finds only the equilibrium routing dis-
tribution to a network with static costs, though the network
correlation time is taken into account. Nothing is said of the
convergence properties of the modeled p.routing algorithms.

B. Previous Work

Little work has been done to directly model the performance
of soft routing algorithms. The vast majority of the effort in
the area has been simulation based. A variety of protocols has
been proposed including Q-Routing [2], Ant-Based Control
(ABC) [3], AntNet [4], Cooperative Asymmetric Forwarding
(CAF) [5], Probabilistic Emergent Routing Algorithm (PERA)
[6], Ant-based Routing Algorithm (ARA) [7], Mobile Ant-
Based Routing (MABR) [8], Multiple Ant Colony Optimiza-
tion (MACO) [9], Termite [10], Ad-hoc Networking with
Swarm Intelligence (ANSI) [11], AntHocNet [12], BeeAdHoc
[13], and SAMPLE [14]. These protocols span the application
space between wired and wireless mesh or ad-hoc networks,
usually being compared to a well known deterministic protocol
such as Open Shortest Path First routing (OSPF) [15] for
wired networks or Ad-hoc On-demand Distance Vector routing
(AODV) [16] for ad-hoc networks.

Strictly analytical work is scant, and focuses on charac-
terizing global behavior. [17] considers two different packet
forwarding equations and shows that one type will end up
using only the better of two links, regardless of their relative
difference. The other method will split traffic across the two
links proportionally to their utility. [18] develops a model for
a node’s estimate of the path utility to a destination given
a metric update equation and its parameters. The model is
used to explain differences in global routing performance
when different metric updates are used, including a normal-
ized exponential filter (also known as the pheromone update
rule), an exponential filter, and a Dijkstra-inspired update.
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An independent parameter is discovered which determines the
maximum link estimate. [10] develops a heuristic for a good
selection of the estimation parameter in the Termite p.routing
algorithm based on the network rate-of-change; the correlation
time. The results in this paper continue the analytical charac-
terization effort by accounting for all fundamental aspects of
soft routing algorithms. This paper is a direct extension of
[19] with updated mathematics, figures, additional results and
discussion, and an appendix of mathematical derivations.

The framework presented in this paper is the first effort of
its kind to model the performance of an entire probabilistic
routing algorithm, rather than just specific aspects. For this
reason, no direct comparison to other frameworks is possible.

C. Structure of Paper

Section II gives an overview of how a generic probabilistic
routing protocol works and introduces the p.routing framework
in this light. The Termite protocol and an ACO based approach
are used as examples. Section III develops a Markov chain
analysis of the framework, which is used to reveal various
aspects of the performance of soft routing algorithms. Section
IV gives numerical results based on the model, followed by
analysis and discussion. Section V concludes the paper, in
addition to providing avenues for future work. An appendix
gives a more thorough mathematical treatment to some aspects
of the framework.

II. PROBABILISTIC ROUTING FRAMEWORK

A. Framework Overview

A framework for probabilistic routing is presented. The Ter-
mite p.routing algorithm and a generic ACO based approach
(hereafter referred to simply as ACO) are used as illustrative
examples. Several proposed soft routing algorithms are based
on ACO, including AntHocNet, ANSI, and ARA. The soft
routing protocols proposed to date are essentially probabilistic
distance vector protocols. There are two key components to
any p.routing algorithm, the packet forwarding equation and
the metric estimator. Each node estimates the average path
cost (or inversely, the utility) to each destination through each
neighbor based on routing data collected from received or
overheard traffic. This information can be piggybacked on data
packets, or found in control packets such as forward/backward
ants [4]. The network is continuously sampled for changes by
each node in order to maintain up-to-date information. The
estimated route utilities are used to generate a probability
distribution from which a next hop to a specific neighbor can
be selected. Multipath routing is easily implemented since
the utility of each neighbor to arrive at each destination is
maintained by the metric estimator, and each neighbor is
considered as a viable next hop by the forwarding equation.
Soft routing is an application of dynamic optimization.

B. Packet Forwarding

1) Forwarding Equation: The forwarding equation deter-
mines the next hop probability distribution for each packet,
given its destination. The next hop is selected according to

this distribution; this is per-packet probabilistic routing. The
pmf, p, is a normalization of the current route utility estimate,
P , for each neighbor to deliver a message to the destination.
Normalization is an intuitive mechanism used to send more
packets over better neighbors and fewer over worse ones. Two
parameters influence the forwarding equation, including the
sensitivity, F ≥ 0, and threshold, K ≥ 0. The sensitivity
modulates the differences between link utilities, making the
resulting probabilities more or less dependant on them. It
controls how much better paths are used more than worse ones.
The threshold parameter determines how good a path through
a neighbor must be before it has a substantial impact on the
routing distribution. This parameter balances the sensitivity
by pushing the routing distribution closer towards uniform
for large K . The threshold is alternatively known as noise,
0 ≤ q ≤ 1, which takes a different form in the forwarding
equation but serves the same purpose. The balance between
sensitivity and threshold/noise determines the tradeoff between
network exploitation and exploration. The forwarding equation
will be denoted as the function p = W (P, K, F ) or p =
W (P, q, F ), whichever is appropriate. The matrix variables, p
and P, correspond to routing probabilities and route utilities,
respectively, and are detailed in Section III-A.

2) Estimate Uncertainty: Routing metric estimates become
stale as the network changes, requiring them to be constantly
updated. The next hop distribution should reflect the uncer-
tainty of the underlying routing metric estimates at the current
time. If an estimate is stale, then the corresponding link should
be less probable. This intuition is included in the forwarding
equation by multiplying the correlation between successive
metric estimates, R, against the current estimate. Longer
times between estimate updates yield a lower correlation and
ultimately a smaller routing probability for that link. The
correlation function depends on the type of metric estimator
used. Section II-D reviews estimate correlation in more detail.

This method of accounting for estimate uncertainty for-
malizes efforts in previous work to account for continuous-
time pheromone decay. Based on the biological inspiration of
these algorithms, pheromone is used to represent average path
quality. Pheromone continuously evaporates, establishing the
need to replenish it with new deposits (and thus requiring new
trials of the system). Algorithmically, this was accomplished
by multiplying the current estimate by an exponential decay
term based on the elapsed time since the last estimate was
generated. This approach emulated exponential pheromone
decay. Sample correlation is able to formalize this intuition
and produce more general results for any type of estimation
filter.

3) Termite: Equation 1 shows the Termite forwarding equa-
tion. P n

i,d is node n’s estimate of the utility of using a path
through neighbor i to deliver a packet to destination d. The
normalization is with respect to all neighbors of n, N n ⊆ V ,
where V is the set of all nodes in the network. The threshold
must be set according to the expected range of the metric.
R(t− tni,d) is the correlation between the current time, t, and
the current estimate (the last sample of which was generated
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at tni,d).

pn
i,d =

[
Pn

i,dR
(
t− tni,d

)
+ K

]F
∑

j∈Nn

[
Pn

j,dR
(
t− tnj,d

)
+ K

]F (1)

4) ACO: A typical ACO type forwarding equation is shown
in Equation 2. The noise parameter balances the routing
distribution between a normalization of the link utilities and
a uniform distribution across all outgoing links. If an instance
of a random variable v ∼ U(0, 1) is greater than the noise
parameter q ∈ [0, 1], then the routing distribution is determined
by a normalization of the link metrics. If the instance is less
than the noise parameter, then a uniform routing distribution
is chosen over all outgoing links.

pn
i,d =




[P n
i,dR(t−tn

i,d)]
F∑

j∈Nn [P n
j,d

R(t−tn
j,d)]

F , v > q

|Nn|−1 , v ≤ q
(2)

Equation 3 simplifies this two part distribution into one. This
equation will be used to represent ACO.

pn
i,d = (1− q) ·

[
Pn

i,dR
(
t− tni,d

)]F
∑

j∈Nn

[
Pn

j,dR
(
t− tnj,d

)]F + q · 1
|Nn| (3)

C. Metric Update

The metric update equation generates an estimate of the
path utility from each node to each destination through each
neighbor. Routing information is gathered either by proactively
probing the network with control packets, or by passively
collecting data from received and overheard packets. For
the purposes of this analysis of the framework, how the
information is collected is irrelevant, only that it is, and that the
probe packets follow a routing rule defined by the forwarding
equation. The returning information is treated as samples of
a non-stationary stochastic process describing the change in
path utilities. The samples are filtered to track the mean of the
process, which is used as the estimate. Relevant parameters
include the rate at which packets (those carrying routing
information) are received, λ, and the network correlation time,
T , which is the period of time over which the network statistics
are assumed to remain stationary.

There are two commonly used methods for estimating path
utility based on samples of the network, both of which are
basically low pass filters. Equation 4 shows the traditional ex-
ponential filter (also known as a pheromone filter). It requires
little state but does not make an optimal estimate of the link
utility. It includes information from all received samples in the
current estimate (ie., it has an infinite impulse response). The
time constant of the filter, τ , is parameterized by the network
correlation time, T . Here, γn

r,s is the arrived path utility update
at node n from source node s over previous hop r. P n

r,s is the
estimate at node n to get to the destination s, which is the
source of the arriving packet, through the previous hop, r.

Pn
r,s ← Pn

r,s · e−(t−tn
r,s)τ + γn

r,s ·
[
1− e−(t−tn

r,s)τ
]

(4)

Equation 5 shows the optimal path utility estimator in the form
of a sliding window, or box, filter, with length equivalent to
the network correlation time, T . Received utility updates are
indexed as γn

r,s[m], and corresponding arrival times as tn
r,s[m].

The optimality of this filter is discussed in more detail in
[10], however it is so because incoming network samples are
assumed to be iid over a time period T , in which case an
average is the best estimate of the mean of the process.

Pn
r,s ← |{m : t−T ≤ tnr,s[m] ≤ t}|−1

∑
m:t−T≤tn

r,s[m]≤t

γn
r,s[m]

(5)

D. Sample Correlation

The value of the correlation function, R, depends on the sort
of filter that is used to estimate the path utility. Because differ-
ent filters weight received path utilities differently in order to
generate their estimates, the correlations between successive
estimates also differ. Equation 6 shows the correlation of the
exponential filter. It is calculated according to the standard
methods of stationary random process and LTI filters. A more
detailed derivation is available in the appendix. ∆t is the
elapsed time between any two estimates.

Rexp (∆t) = e−|∆t|τ (6)

Outputs of the exponential filter are exponentially correlated
by an amount depending on the inter-estimate time. But
because the nonstationary input process has a finite correlation
time of T , the correlation of the estimation filter should be also
limited to this time. The decay constant, τ , is chosen such that
the correlation is less than a chosen threshold, z, by time T .
The threshold is chosen to be small, perhaps z ≈ 0.1.

τ = − ln(z)
T

(7)

Equation 8 shows the output correlations of the box filter.
The correlation of the box filter naturally drops to zero after
time T .

R� (∆t) =
{

1− |∆t|
T , |∆t| ≤ T

0 , |∆t| > T
(8)

III. MARKOVIAN ANALYSIS

A. Steady State Routing Probabilities

With a general framework for probabilistic routing defined,
it is now necessary to describe how to find the steady state
routing solution in a network, based on a given forwarding
equation and metric update scheme. The equilibrium solution
can then be used to show how the local parameters affect the
global routing pattern and how they may be adjusted in order
to achieve a given performance level. Each node is represented
as a state in a Markov chain, and standard methods are used
to find the statistics of paths from a source to a destination
(represented as an absorbing state in the Markov chain) [21].

First the average path cost to a specific destination is
calculated from every other node. This determines the path
utility based on the current routing probabilities. The per-link
packet arrival rate is then determined, which allows the average
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sample correlation to be set. Routing probabilities are then
recalculated, and at the equilibrium routing solution is found
in an iterative manner.

1) Average Cost to Destination: The average number of
state transitions from a source to the destination state is
calculated. This is then used to determine the average end-to-
end path cost, and establishes the path utility estimate for given
routing probabilities. Suppose that the transition (or routing)
probabilities for a network are given in a matrix p, shown in
Equation 9.

p =
[

S T
0 I

]
(9)

In this matrix, S is a square (x−y)×(x−y) matrix representing
the transition probabilities between the nonabsorbing states, T
is a (x−y)×y matrix representing the transition probabilities
between the nonabsorbing states and the absorbing states, 0 is
a y× (x− y) matrix of zeros, and I is a y× y identity matrix
representing the self-transition probabilities of the absorbing
states. In this analysis, x = |V| and y = 1, since there are |V|
total nodes and only one destination node. The fundamental
matrix of the system is Q, calculated in Equation 10. Here,
Qi,j describes the expected number of visits to state j, starting
in state i, before arriving at an absorbing state. The exponent
is the matrix inverse operator.

Q = (I(x−y)×(x−y) − S)−1 (10)

The expected number of states visited when starting at state i
before being absorbed (at the destination state) is the sum of
each row of Q, and is calculated in Equation 11.

ci =
∑

j

Qi,j (11)

If the cost of each link is unity, such as with hop count, then
ci is also the expected path cost from node i to the destination.
In general, if the link costs are given in the matrix C such that
Ci,j is the cost of the link from node i to j, then the cost from
source to destination is calculated as in Equation 12.

ci =
∑

j

Qi,j · E[Cj ]

=
∑

j

[
Qi,j ·

( ∑
k∈N j

Cj,k · pj,k

)]
(12)

Equations 10 and 12 will be referred to as the function c =
avgCostT oDestination(C, p).

With the average cost from each node to the destina-
tion calculated, it is then possible to recalculate the routing
probabilities based on the forwarding equation. By repeating
this process of calculating the steady state path costs based
on current routing probabilities, and then recalculating the
probabilities based on the steady state costs, it is possible to
arrive at an equilibrium solution of routing probabilities based
on the given link costs. As long as certain parameter settings
are avoided, such as K = 0, q = 0, or F =∞, trivial routing
solutions (i.e., using only one path) will not be generated. The
general algorithm is shown in Algorithm 1. A discussion of
computational performance is moved to Section III-B.

Algorithm 1 Steady State Routing Probabilities

intialize p {random, nonzero, unity row sum}
while p not converged do

c = avgCostT oDestination(C, p)
for all i, j ∈ (V − d) do

Pi,j ← (Ci,j + cj)
−1 {link utilities}

end for
p←W (P, K, F ) {forwarding equation}

end while

2) Per Link Packet Arrival Rates: The next step in cal-
culating the equilibrium routing probabilities is to include
the decay factor, R, since there is a finite packet arrival
rate on each link. It is assumed that packets with routing
information are sent between a single source and destination
pair with independently and identically distributed exponential
interarrival times, with mean λ−1 seconds per packet. It is
further assumed that their arrival rate at any given node is also
independently distributed exponential with a link dependant
mean sample rate, λi,j packets per second from node i to
j. These assumptions are a first-order approximation to the
true arrival distribution. The packet arrival rate at node j from
neighbor i when source s is sending a rate of λ packets per
second to the destination, λs

i,j , is shown in Equation 13.

λs
i,j = Qs,i · pi,j · λ (13)

3) Expected Per Link Sample Correlation: The expected
correlation between the current time and the previous estimate
can then be calculated according to the metric estimation filter.
Equation 14 shows the expected correlation for the exponential
filter, assuming exponential inter-arrival time between packets,
the previously developed decay rate heuristic, and the τ
heuristic of Equation 7.

E[Rexp] =
∫ ∞

0

exp∆t(λ−1) · Rexp(∆t)d∆t

=
∫ ∞

0

λe−λ(∆t) · e−(∆t)τd∆t

=
λT

λT − ln z
(14)

A similar analysis results in Equation 15 for the expected
correlation of box filter.

E[R�] =
λT − 1 + e−λT

λT
(15)

The critical parameter influencing the change in expected
correlation from one sample of the network to the next is
the product λT . The units of this term may be thought of as
packets per network correlation time unit, or network samples
per network correlation time unit. Such language makes it
clear that the framework relies on samples of the network in
order to make decisions, and that performance is improved
(this term is used qualitatively at the moment) with higher
sampling rates.

4) Steady State Algorithm: The original Algorithm 1 can
be updated in order to reflect a limited network sampling rate.
This is shown in Algorithm 2, where a specific source s is
assumed.

216

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)



Algorithm 2 Steady State Routing Probabilities with R

intialize p {random, nonzero, unity row sum}
while p not converged do

c ← avgCostT oDestination(C, p) {Equations 10 and
12}
for all i, j ∈ (V − d) do

Pi,j ← (Ci,j + cj)
−1 {link utilities}

Pi,j ← Pi,j · E[R]
(
λs

i,jT
)

{E[R] from Eqn. 14 or 15 depending on estimator}
{λs

i,j from Equation 13}
end for
p←W (P, K, F ) {forwarding equation}

end while

a) An Optimal Network Sampling Rate: It has now been
established that the information available about a network
is dependent on only one parameter, namely λT , and that
there is a useful lower bound to this value. It is unclear if
there exists an optimal rate. If the rate tends towards infinity,
then perfect information will be available about the network.
But only a limited rate can be supported by the network,
especially considering that data traffic must also be supported.
There must exist a tradeoff between the quality of routing
information, the cost to achieve a given quality, and the routing
that can be accomplished with that information. [22] suggests
a cross entropy approach which can adapt the sample rate to
the current network conditions.

B. Algorithmic Performance

Two critical issues of algorithmic performance are con-
vergence and computational complexity. No formal proof of
convergence is given and is left to future work. However,
experience shows that the algorithm converges under any
circumstances, usually within a dozen iterations. This includes
the avoidance of oscillations. The routing probabilities, p, are
initialized nonzero and randomly. Convergence is determined
based the sum squared difference of expected costs, c, between
iterations. Once this difference falls below a given threshold,
the algorithm halts.

Regarding computational issues, By far the slowest
step is the matrix inversion required by Equation 10 in
avgCostT oDestination, which is executed in every iteration
of the algorithm. Matrix inversion is O(|V|3); the algorithm
slows significantly as the network size grows. Execution time
for a network of 50 nodes on an average machine is only 0.05
seconds.

IV. NUMERICAL ANALYSIS

A. Analysis Overview

Using the previously described framework, this section
examines the relationships between the sensitivity, thresh-
old/noise, sampling rate, and the equilibrium expected path
cost between a source and destination.

B. On Sensitivity and Noise

Figure 1 shows how the expected path cost between a
source and destination vary with sensitivity and noise, using
the Termite and ACO forwarding equations, as calculated
by Algorithm 1. A network is randomly generated with 50
nodes, where node connectivity is determined by a uniform
circular transceiver distance and link cost is inter-node distance
squared, which is similar to an energy conservation metric.
Transceiver range is set such that the average number of
neighbors per node is eight; the network is connected. All
results are the average of twenty such networks. The expected
path cost approaches the minimum path cost, which is nor-
malized in all cases, as the routing sensitivity is increased.
Because the threshold is under the influence of the sensitivity,
the Termite forwarding equation will send all packets on the
shortest path if the sensitivity is large enough. This is not the
case for the ACO equation, where the noise and sensitivity
are independent. For nonzero noise, there is a lower bound on
the expected path cost which is greater than the minimum
path cost. The routing solution is also dependent on the
network topology, associated link costs, and source-destination
distance. In the interest of space, no figures are shown how
the solution varies with network topology. The variance can
be quite substantial, though the general relationship between
F and K is the same for any given topology.

C. Effect of Network Sample Rate

The network sample rate has a substantial effect on the
performance of the routing algorithm. The samples are respon-
sible for updating each node’s estimate of how good each link
is to arrive at each destination. Figure 2 shows the effect of the
network sample rate on the expected path cost between source
and destination, as calculated by Algorithm 2. For clarity, the
results are shown varied with F and λT , where K = 0.01 and
q = .01 are held constant, using the box filter. “λT = Inf” is a
comparison with Algorithm 1, as it removes the effect of the
sample correlation function.

A lower sample rate causes the algorithm to converge faster
towards the shortest path than with a higher sample rate,
assuming constant F . As good paths are found and their
associated probabilities increase, the number of times that less
attractive paths are sampled quickly drops (since only a limited
number of samples can be made). The infrequent arrival of
new metric information on poor paths makes the currently
stored information unreliable. The estimates then have an even
smaller effect on the routing probabilities, according to the
correlation equation, R. A reasonable estimate for the optimal
network sampling rate may be on the order of one to ten
packets.

The results presented here are only valid for the sampling
taking place for a single source-destination pair. This actually
represents a pessimistic view of a functional network. Since
routing information from several sources can be piggybacked
on a single packet, and nodes can eavesdrop on broadcasted
packets, the effective network sampling rate is higher than a
simple superposition of multiple source-destination pairs may
suggest.
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Fig. 1. Normalized Expected Path Cost vs. Routing Sensitivity
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Fig. 2. Normalized Expected Path Cost vs. Routing Sensitivity

D. Towards An Optimal Sensitivity

There exists a sensitivity tradeoff. F > F ∗, the optimal
sensitivity, does not allow for enough network exploration and
will not be able to track cost changes of many links over time.
Packets are too sensitive to current metric estimates and will
not take advantage of all paths to the destination. F < F ∗

is able to track changes, but allows packets to wander the
network. Too many packets follow grossly suboptimal paths.
A simple metric is devised in order to measure this tradeoff.
This metric consists of the fraction of links in the network
that have an average packet rate of λT ≥ 1, divided by the
stretch factor of that parameter setting. The stretch factor is the
ratio of the expected path cost to the minimum path cost. The
intuition behind this metric is that as many links as possible
should be sampled with more than one packet per network
correlation time, while minimizing the expected path cost. This
metric is not perfect, as it is not comparable between networks

of different sizes, or networks with pathological topologies,
however it is suitable for current purposes. Figure 3 shows
this metric for λT = 10 and λT = 1000, using only a single
network as an example. In both subfigures, ACO is used with
the exponential filter. In the low rate case, a low noise has
superior performance than a high noise setting, reaching its
peak at a relatively low sensitivity of F ∗ ≈ 1.2. The high rate
case allows more links to be sampled more often. As shown in
Section IV-C, a higher sample rate increases the expected path
cost. A higher sensitivity is needed to decrease this measure,
resulting in a larger routing sensitivity necessary to reach the
best coverage metric. In this case, F ∗ ≈ 4.

These results can be generalized. The lower the packet rate,
fewer links can be tested less often. The larger the topology,
the more links are likely to exist between a given pair of nodes.
It is expected that performance according to this metric will
drop with larger topologies and constant λT . This is a similar
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Fig. 3. Coverage Metric vs. Routing Sensitivity (ACO, box filter)

effect to the low rate instability condition introduced in Section
IV-C. This effect is partly unavoidable. The number of links
in the network is simply a property of the graph, and if not
enough packets are sent then the links cannot be tested. On
the other hand, the stretch factor can generally be pushed as
close to unity as desired with F approaching infinity (and
q → 0). Therefore, the sample rate between a single source
destination pair must be adjusted to the hop distance between
them, depending on how much information about how many
paths should be maintained.

V. CONCLUSION

A framework for the analysis of soft routing algorithms has
been presented. Global routing behaviors can be determined
based on local parameters without the need for Monte-Carlo
simulation. Termite and ACO are used as examples to illustrate
a two part framework including a forwarding equation and a
metric updating equation. The continuous time metric update
is reviewed, including the use of the filter correlation function
to properly model the loss of metric information over time.
An analysis of the filter correlation shows that the critical
parameter for updating the network with new information is
the network sampling rate, or the number of route metric
updates sent per network correlation time.

A Markov chain approach is used to find the steady state
routing probabilities given the routing parameters and network
costs. The expected path cost from source to destination can
then be calculated. The cost is examined to reveal the tradeoffs
between sensitivity, threshold/noise, and network sample rate
in the context of average behavior and robustness against cost
dynamics. A good parameter choice is a small threshold, a
sensitivity proportional to the minimum path utility, and a
sample rate proportional to the number of good paths between
source and destination, which is dependent on network size.

Future work should compare the results of the model
analysis to Monte-Carlo simulation experiments. Steady state
convergence time should also be considered, since dynamic

networks may not offer enough time for the soft routing
protocol to converge. The existence of an optimal sampling
rate will also be explored, as the physical effects of a large
sampling rate are detrimental to the network at large.

APPENDIX

A. LTI Filtering of Stationary Random Processes

1) Autocorrelation of LTI Filter Output: The derivation of
the filter correlation functions is shown. From the theory of
random processes, the autocovariance function, RY (∆), of
the output of a linear time-invariant (LTI) filter, h(t), with
input from a random process with autocovariance function,
RX(∆), is calculated for the continuous time case in Equation
16. This function is then normalized in order to produce
the autocorrelation function, which is used in the forwarding
equation.

RY (∆) =
∫ ∞

−∞

∫ ∞

−∞
h(w)h(v)RX(∆ + (w− v))dwdv (16)

The discrete time case is developed in parallel starting with
Equation 17. The former is easier to analyze while the latter
is more relevant because network samples arrive in discrete
packets. The analysis of the discrete case does not take into
account the irregular arrival of samples. This is left for future
work. In a slight abuse of notation, the use of index n ∈ I,
will denote the discrete time version, while ∆ ∈ R denotes
the continuous time version. There is also no visual distinction
between the autocovariance and autocorrelation functions. Not
all derivations and definitions are included for both versions
when they are very similar. In discrete time, the floor of λT
is taken in order to ensure that it is an integer.

RY (n) =
∞∑

w=−∞

∞∑
v=−∞

h(w)h(v)RX (n + (w − v)) (17)

In this application, it is assumed that inputs to the metric
estimator (the averaging filter) are iid, at least over some
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correlation time T . RX may thus be formalized as,

RX(∆) =
{

1 , ∆ = 0
0 , ∆ 
= 0 (18)

Because RX only exists with input zero, a substitution of v =
∆ + w allows Equation 16 to be simplified to,

RY (∆) =
∫ ∞

−∞
h(w)h(∆ + w)dw (19)

RY (n) =
∞∑

w=−∞
h(w)h(n + w) (20)

2) Box Filter: For the case of the box filter presented
previously,

h�(t) =
1
T

u(t)u(T − t) (21)

h�(n) =
1
�λT �u(n)u(�λT � − 1− n) (22)

where u(t) is the step function. The length of the discrete
time box filter is �λT � because that is the expected number
of arrived samples within the network correlation time. By
substituting h� into Equations 19 and 20,

R�(∆) =
∫ min(T−∆,T )

max(0,−∆)

1
T 2

dw

=
T − |∆|

T 2
u(∆ + T )u(T −∆) (23)

R�(n) =
min(�λT�−1−n,�λT�−1)∑

w=max(0,−n)

1
(�λT �)2

=
�λT � − |n|
(�λT �)2 u(n + �λT �)u(�λT � − n) (24)

By normalizing this result to produce the required autocor-
relation function, the result reported earlier in Equation 8 is
recovered.

R�(∆) =
(

1− |∆|
T

)
u(∆ + T )u(T −∆) (25)

3) Exponential Filter: For the case of the exponential filter,

hexp(t) = τe−tτu(t) (26)

hexp(n) = (1− e−τ )e−nτu(n) (27)

By substituting hexp into Equation 19,

Rexp(∆) =
∫ ∞

min(0,∆)

τ2e(−wτ)e−(w+∆)τdw

=
τ

2
e−|∆|τ (28)

Rexp(n) =
∞∑

w=min(0,n)

(1− e−τ )2e−wτe−(w+n)τ

=
(1 − e−τ )2

1− e−2τ
e−|n|τ (29)

The normalized autocorrelation function is clearly the result
reported in Equation 6.

Rexp(∆) = e−|∆|τ (30)

By substituting for τ a simplified version is derived,

Rexp(∆) = z
|∆|
T (31)
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