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Gifford and others proposed an effect typing discipline to delimit the scope of computational ef-
fects within a program, while Moggi and others proposed monads for much the same purpose.
Here we marry effects to monads, uniting two previously separate lines of research. In partic-
ular, we show that the type, region, and effect system of Talpin and Jouvelot carries over di-
rectly to an analogous system for monads, including a type and effect reconstruction algorithm.
The same technique should allow one to transpose any effect system into a corresponding monad
system.
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1. INTRODUCTION

Computational effects, such as state or continuations, are powerful medicine.
If taken as directed they may cure a nasty bug, but one must be wary of the
side effects.

For this reason, many researchers in computing seek to exploit the benefits
of computational effects while delimiting their scope. Two such lines of research
are the effect typing discipline, proposed by Gifford and Lucassen [Gifford and
Lucassen 1986; Lucassen 1987], and pursued by Talpin and Jouvelot [Talpin
and Jouvelot 1992, 1994; Talpin 1993] among others, and the use of monads,
proposed by Moggi [1989, 1990], and pursued by Wadler [1990, 1992, 1993,
1995] among others. Effect systems are typically found in strict languages,
such as FX [Gifford et al. 1987] (a variant of Lisp), while monads are typically
found in lazy languages, such as Haskell [Peyton Jones and Hughes 1999].
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In his pursuit of monads, Wadler [1992, page 12] wrote the following:

. . . the use of monads is similar to the use of effect systems . . . . An intriguing
question is whether a similar form of type inference could apply to a language
based on monads.

Half a decade later, we can answer that question in the affirmative. Goodness
knows why it took so long, because the correspondence between effects and
monads turns out to be surprisingly close.

The Marriage of Effects and Monads. Recall that a monad language intro-
duces a type T τ to represent a computation that yields a value of type τ and
may have side effects. If the call-by-value translation of τ is τ †, then we have
that (τ → τ ′†), where → represents a function that may have side effects, is
equal to τ †→ T τ ′†, where→ represents a pure function with no side effects.

Recall also that an effect system labels each function with its possible effects,
so a function type is now written τ σ→ τ ′, indicating a function that may have
effects delimited by σ .

The innovation of this paper is to marry effects to monads, writing Tσ τ for a
computation that yields a value in τ and may have effects delimited by σ . Now
we have that (τ σ→ τ ′)† is τ †→ Tσ τ ′†.

The monad translation offers insight into the structure of the original effect
system. In the original system, variables and lambda abstractions are labeled
with the empty effect, and applications are labeled with the union of three
effects (the effects of evaluating the function, the argument, and the function
body). In the monad system, effects appear in just two places: the “unit” of the
monad, which is labeled with the empty effect, and the “bind” of the monad,
which is labeled with the union of two effects. The translation of variables and
lambda abstractions introduces “unit,” hence they are labeled with an empty
effect; and the translation of application introduces two occurrences of “bind”;
hence it is labeled with a union of three effects (each ∪ symbol in σ ∪ σ ′ ∪ σ ′′
coming from one “bind”).

Transposing Effects to Monads. Numerous effect systems have been pro-
posed, carrying more or less type information, and dealing with differing com-
putational effects such as state, continuations, or communication [Gifford and
Lucassen 1986; Lucassen 1987; Jouvelot and Gifford 1989; Talpin and Jouvelot
1992, 1994; Talpin 1993; Nielson et al. 1997]. Tofte and others have proposed
a system for analyzing memory allocation based on effects [Tofte and Talpin
1994; Tofte and Birkedal 1998]. Java contains a simple effect system, without
effect variables, where each method is labeled with the exceptions it might raise
[Gosling et al. 1996].

For concreteness, this paper works with a type, region, and effect system
based on proposals by Talpin and Jouvelot [Talpin and Jouvelot 1992, 1994;
Talpin 1993], where effects indicate which regions of store are initialized, read,
or written. Talpin and Jouvelot’s results transpose in a straightforward way to
a monad formulation. It seems clear that other effect systems can be transposed
to monads in a similar way.
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Applications. In Glasgow Haskell, the monad ST is used to represent com-
putational effects on state [Peyton Jones and Wadler 1993; Launchbury and
Peyton Jones 1994]. All effects on state are lumped into a single monad. There
is no way to distinguish an operation that reads the store from one that writes
the store, or to distinguish operations that write two distinct regions of the
store (and hence cannot interfere with each other). The type, region, and ef-
fect system of Talpin and Jouvelot addresses precisely this problem, and the
monad-based system described here could be applied directly to augment any
particular instance of the ST monad with effects.

In fact, the letregion construct [Tofte and Talpin 1994; Tofte and Birkedal
1998] (which was originally named private [Gifford and Lucassen 1986]) cor-
responds closely to the runST operator in Glasgow Haskell, where the index
type plays the role of a region. For the one-region case, this connection has
been formalized and proved correct for a simple call-by-value language with
runST [Semmelroth and Sabry 1999]. An alternative approach to monadic en-
capsulation uses a constant run with an interesting higher-order type [Moggi
and Palumbo 1999]. In that approach, the monadic code is abstracted over the
monadic operations, which are provided through the run constant.

Similarly, in Haskell the monad IO is used to represent all computational
effects that perform input/output [Peyton Jones and Wadler 1993; Peyton Jones
and Hughes 1999]. Dialects of Haskell extend this to call procedures written in
other languages [Peyton Jones and Wadler 1993; Finne et al. 1999], deal with
concurrency [Peyton Jones et al. 1996], or handle exceptions [Peyton Jones et al.
1999]. Again, all effects are lumped into a single monad, and again a variant of
the system described here could be used to augment the IO monad with effects.

Monads labeled with effects can also be applied to optimizing strict lan-
guages such as Standard ML. Whereas Haskell requires the user to explicitly
introduce monads, Standard ML can be regarded as implicitly introducing a
monad everywhere, via Moggi’s translation from call-by-value lambda calcu-
lus into a monadic metalanguage. The implicit monad of Standard ML incor-
porates all side effects, including operations on references and input-output,
much like a combination of Haskell’s ST and IO monads. As before, labeling the
monad with effects can be used to delimit the scope of effects. In particular,
where the monad is labeled with the empty effect, the corresponding expres-
sion is pure and additional optimizations may be applied. Or when the monad
reads but does not write the store, certain operations may be commuted. This
technique has been applied to intermediate languages for Standard ML com-
pilers by Tolmach [1998] and by Benton et al. [1998]. Our work can be re-
garded as complementary to theirs: we provide the theory and they provide the
practice.

Summary of Results. Talpin and Jouvelot presented (i) a type system with
effects, (ii) a semantics, with a proof that types and effects are consistent with
the semantics, and (iii) a type and effect reconstruction algorithm, with a proof
that it is sound and complete. We review each of these results, following it
by the corresponding result for the monad system. We also recall the call-by-
value translation from lambda calculus into a monad language, and show that
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this translation preserves (i) types, (ii) semantics, and (iii) the principal types
derived by the reconstruction algorithms.

By and large, we stick to the notation and formulation of Talpin and Jouvelot
[Talpin and Jouvelot 1992, 1994; Talpin 1993]. However, we differ in a few
particulars.

Talpin and Jouvelot [1992] used a simplified treatment of the polymorphic
binding let x = v in e. While their type inference algorithm makes use of type
schemes, their correctness proof elides them by assuming that let x = v in e
is expanded to e[x := v]. In contrast, here we use standard type schemes
throughout.

In subsequent work, Talpin and Jouvelot [Talpin and Jouvelot 1994; Talpin
1993] also adopted type schemes throughout. However, they went beyond the
present framework in admitting nonvalues to have polymorphic types. To
achieve this goal, they refined effects to also include the type of the effected
reference and have the generalization step only abstract those variables that
are neither mentioned in the type environment nor in the current effect. In ad-
dition, their calculus includes implicit effect masking in the style of letregion.

Also, Talpin and Jouvelot followed the classic work of Tofte [1987], using
an evaluation-style operational semantics (“big step”). In contrast, we follow
the approach of Wright and Felleisen [1994] and use an operational semantics
based on reduction (“small step”). As noted by Wright and Felleisen, this leads
to a simpler proof: instead of a complex relation between values and types
(specified as a greatest fixpoint), we can use the existing type relation (specified
by structural induction).

The monad translation we use is standard. It was introduced by Moggi [1989,
1991], and has been further studied by Hatcliff and Danvy [1994] and Sabry and
Wadler [1997]. Our reduction semantics for the monad is new. It most closely
resembles the work of Hatcliff and Danvy, but they did not deal with state and
therefore did not have to distinguish between pure reductions and those with
computational effects, as we do here.

This paper is a revised version of Wadler’s [1998] work. Changes include the
use of type schemes (as in Talpin and Jouvelot [1994] and Talpin [1993]); the use
of an optimized monad translation (which greatly simplifies the proof that the
translation preserves the semantics); the introduction of evaluation contexts
in the operational semantics (which follows more closely the development of
Wright and Felleisen [1994]); and the correction of some errors in the original
(for instance, rule (get0) should not have been included in Monad).

The results are all obtained by the straightforward application of well-known
techniques. We do give some proofs to illustrate minor unexpected technical
subtleties. However, in general, results for effect systems transpose to monads
without much effort.

Value Polymorphism. Some care is required when mixing computational
effects with polymorphic types, lest soundness be forfeited. One approach, due
to Tofte [1987] and used in the original SML [Milner et al. 1990], introduces
“imperative” type variables in the presence of computational effects. Numerous
other approaches have been suggested, including some based on effects [Wright
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1992; Talpin and Jouvelot 1994]. However, by far the simplest is value polymor-
phism. This approach was noted by Tofte [1987], promoted by Leroy [1993] and
Wright [1995], and used in the revised SML [Milner et al. 1997]. It restricts
polymorphism to values, a subclass of expressions that can have no computa-
tional effects. Talpin and Jouvelot [1992] used value polymorphism, and we do
so here.

There is a potential problem. Moggi’s original monad translation was
monomorphic. How should it be extended to polymorphism? Several years ago
Eugenio Moggi, John Hughes, and Philip Wadler held a discussion where they
attempted to add polymorphism to the translation and failed. However, they
did not consider value polymorphism, which was less popular back then.

In this paper, we extend the monad translation to include value polymor-
phism. The extension is presented for the monad system with effects, but ap-
plies equally well when effects are absent. In retrospect, the extension seems
obvious, since the monad translation handles values specially. Indeed, simi-
lar uses of value polymorphism have been proposed by Harper and Lillibridge
[1993] (for CPS with call/cc) and by Barthe et al. [1998] (for a configurable
monadic metalanguage in the style of Pure Type Systems).

One might say that value polymorphism fits monads to a “T.”

Outline. The remainder of this paper is organized as follows. Section 2 in-
troduces the effect type system and the corresponding type system for monads,
introduces the monad translation, and shows that the latter preserves types.
Section 3 presents an operational semantics for effects and a corresponding
semantics for monads, shows each semantics sound with respect to types, and
shows that the monad translation preserves semantics. Section 4 presents a
type, region, and effect reconstruction algorithm for effects and a corresponding
algorithm for monad, shows each algorithm is sound and complete, and shows
that the monad translation relates the two algorithms. Section 5 concludes the
paper. The Appendix contains the proofs of several propositions used in the
discussion.

2. TYPES

This section introduces two languages and their type systems, and the transla-
tion between them. The first language, Effect, is a call-by-value lambda calcu-
lus with operations on a store. Its type system includes regions and effects. The
second language, Monad, is based on Moggi’s monadic metalanguage extended
with the same store operations, and with a type system augmented by the same
regions and effects. We extend the usual monad translation to include effects,
and show that it preserves typings.

2.1 Types for Effect

The language Effect and its type system is shown in Figure 1. There are three
syntactic classes: values, nonvalues, and expressions. A value is either an iden-
tifier, a lambda abstraction, or a recursive function binding. A nonvalue is ei-
ther an application, a polymorphic let binding for values, a monomorphic ilet
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Fig. 1. The effect calculus, Effect.
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binding for expressions with imperative effects, or one of three primitive oper-
ations on the store, which allocate a new reference, get the value of a reference,
or set a reference to a new value. An expression is either a value or a nonvalue.

A region is either a region variable or a region constant. An effect is either an
effect variable, the empty effect, the union of two effects, or one of three effects
corresponding to the three operations on the store, each of which is labeled with
the region of store affected. Equality on effects is modulo the assumption that
∪ is associative, commutative, idempotent, and has ∅ as a unit. We write σ w σ ′
when σ = σ ∪ σ ′.

A type is either a type variable, a function type (labeled with the effect that
occurs when the function is applied), or a reference type (labeled with the region
in which the reference is located). A type scheme τ̂ has the form ∀ᾱ, γ̄ , ς̄ .τ where
ᾱ, γ̄ , ς̄ are (possibly empty) sequences of type, region, and effect variables.

A type environment E maps identifiers to type schemes. We write Ex for the
environment with x removed from its domain, {x 7→ τ̂ } for the environment
that maps identifier x to type scheme τ̂ , E ∪ E ′ for the union of two maps with
disjoint domains, and E ⊇ E ′ when the first map contains the second. Similar
notation will be used later for substitutions and stores.

We write free(τ ), free(τ̂ ), and free(E) for the set of free type, region, and effect
variables in a type, type scheme, or type environment. We write e[x := v] for
the capture-avoiding substitution of value v for variable x in expression e, and
we write free(e) for the free identifiers of an expression.

We define generic instances and generalization in the usual way. A substi-
tution θ maps type variables to types, region variables to regions, and effect
variables to effects. We say that type scheme τ̂ ′ is a generic instance of the type
scheme τ̂ , written τ̂ º τ̂ ′, if τ̂ = ∀ᾱ, γ̄ , ς̄ .τ and τ̂ ′ = ∀ᾱ′, γ̄ ′, ς̄ ′.τ ′ and there is
a substitution θ such that τ ′ = θτ , where the domain of θ is restricted to the
free variables of τ (that is, dom(θ ) = {ᾱ, γ̄ , ς̄}) and the bound variables of τ̂ ′ are
not free in τ̂ (that is, {ᾱ′, γ̄ ′, ς̄ ′} ∩ free(τ̂ ) = ∅). We say that type scheme τ̂ is the
generalization of type τ with respect to environment E , written τ̂ = gen(E , τ ),
if τ̂ = ∀ᾱ, γ̄ , ς̄ .τ where {ᾱ, γ̄ , ς̄} = free(τ ) \ free(E).

A typing E `eff e : τ ! σ indicates that expression e yields a value of type
τ and has effect delimited by σ , where the type environment E maps the free
identifiers of e to types.

In the rule for abstraction, (abs), the effect is empty because evaluation im-
mediately returns the function, with no side effects. The effect on the function
arrow is the same as the effect for the function body, because applying the
function will have the same side effects as evaluating the body. In the rule
for application, (app), the effect is the union of the effects for evaluating the
function, evaluating the argument, and applying the function.

Each let binding construct comes with its own typing rule. Rule (let) handles
polymorphic let binding of values, and rule (ilet) handles monomorphic ilet
binding of expressions with imperative effects. Rules (let) and (var) use type
schemes in the usual way.

Rule (does) permits a form of subeffecting. Effects indicate an upper bound
on the side effects an expression may have, and so may always be made larger.
The rules for the three primitive operations, (new), (get), and (set), add the
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corresponding effect to the effects for their arguments. The region in the effect
matches the region in the reference type.

The following lemmas are standard results for type and effect systems. They
state that syntactic values have no effects and that substitution of values pre-
serves typing. Their proofs are straightforward.

LEMMA 2.1 (VALUES ARE PURE). If E `eff v : τ ! σ then E `eff v : τ ! ∅.
LEMMA 2.2 (VALUE SUBSTITUTION). Let E = Ex ∪ {x 7→ τ }. If E `eff e : τ ′ ! σ and

E `eff v : τ ! ∅ then E `eff e[x := v] : τ ′ ! σ .

2.2 Types for Monad

Whereas Effect is a call-by-value language, with side effects occuring when any
expression is evaluated, Monad is a call-by-name language, with side effects
occuring only at top-level. All computations with side effects are represented
by the new monad type.

We use call-by-name for monads to stress the relation to Haskell. Like
Plotkin’s CPS translation, the image of Moggi’s monad translation is indiffer-
ent: it delivers identical results regardless whether the monad language uses
call-by-value or call-by-name [Plotkin 1975; Hatcliff and Danvy 1994; Sabry
and Wadler 1997].

The language Monad and its type system is shown in Figure 2. The distinc-
tion between values and expressions is no longer relevant for polymorphism,
since evaluation has no side effects. However, there are monad values which
serve as results of a computation in Monad. Expressions are extended with
two new forms for manipulating monads (we describe these shortly). Regions
and effects are as before. The function type τ σ→ τ ′ of before is here broken
into the pure function type τ → τ ′, and the monad type Tσ τ , representing a
computation that yields a value of type τ and has effects delimited by σ .

The monad unit <e> denotes the computation that immediately returns the
value of e, with no effects. Hence in (unit) the effect is empty. The monad
bind let x ⇐ e in e′ denotes the computation that first performs computation
e, binds x to the result, and then performs computation e′. Hence in (bind) the
effect is the union of the effects of its two subcomputations. (The forms <e> and
let x ⇐ e in e′ are written in Haskell as return e and e >>=λx. e′, respectively.)

Polymorphic binding let x = e in e′ is distinct from monad bind. Since ex-
pressions have no side effects, there is no need to restrict polymorphism to
values. The remaining rules are straightforward adjustments of the previous
forms. The three primitive operations, since they involve computational effects,
have monad types.

2.3 The Translation

Figure 3 shows the translation from Effect to Monad. It is a typed call-by-value
monad translation, similar to the standard translation given by Sabry and
Wadler [1997]. The translation given here is optimized so as not to introduce
certain “administrative” redexes. Although this makes the translation more
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Fig. 2. The monad language, Monad.

complex, it simplifies the proof (to be given in Section 3) that the translation
preserves the semantics.

We write τ † for the translation of a type, v† for the translation of a value,
e∗ for the translation of an expression, and E† for the translation of a type
environment.

As is well known, the monad translation preserves typing, a property that
continues hold for our systems with effects.

PROPOSITION 2.3 (TRANSLATION PRESERVES TYPES).

— If E `eff v : τ ! ∅ then E† `mon v† : τ †.
— If E `eff e : τ ! σ then E† `mon e∗ : Tσ τ †.

The proof is by induction on the structure of type derivations.
The translation of let works out neatly thanks to value polymorphism.

Whereas the translation of an expression is in a monad, and so must be bound
with the nonpolymorphic monad bind, the translation of a value is not in a
monad, and can safely be bound with the polymorphic let.
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Fig. 3. Translation from Effect to Monad.

The figure also shows the grammar of expressions and types in Monad that
are in the image of the translation from values, expressions (after closure un-
der reduction), and types in Effect. In the image, application always has some
translated value for function and argument, ordinary let always binds to a
translated value, and monad unit always contains a translated value.

3. SEMANTICS

This section presents operational semantics of the two languages. The reduction
system for Effect is standard, save for instrumentation to trace operations on
the store, which is used to demonstrate consistency between semantics and
effects. The reduction system for Monad appears to be new, even without the
instrumentation. It resembles that of Hatcliff and Danvy [1994], but differs
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Fig. 4. Semantics for Effect.

in distinguishing two sorts of reductions, those that may have side effects and
those that do not. For both effects and monads, we show that the type and effect
system is sound, modifying the results of Wright and Felleisen [1994] to take
effects and monads into account. We also show that the translation preserves
semantics, in that it preserves instrumented reduction.

3.1 Semantics for Effect

The operational semantics for Effect is shown in Figure 4. Locations l are a
designated subset of the variables. By convention, a location is never used as
the bound variable in a lambda or let expression. A store s maps locations to
values. A trace f is the semantic equivalent of an effect, where regions are
replaced by locations. If l 6∈ dom(s), we write s ∪ {l 7→ v} for the store that
maps location l to value v and otherwise behaves like s. We let sl range over
stores that do not bind l , that is, l 6∈ dom(sl ).

An evaluation state is a pair s, e where all free variables of e are locations
in s (free(e) ⊆ dom(s)) and the same holds for all stored values (∀l ∈ dom(s),
free(s(l )) ⊆ dom(s)). A single reduction step is written s, e

f−→eff s′, e′, where
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s, e is the state before the step, f is a trace of the effect of the step, and s′, e′ is
the state after the step.

Rule beta specifies function application; the language Effect is call-by-value
as the argument must be a value for the rule to apply. The rule leaves the store
unchanged and is labeled with an empty effect. Rules (rec) and (let) are similar.
Rules (new), (get), and (set) perform actions on the store and have corresponding
effects. Rule (context) forms the contextual closure of reduction with respect to
evaluation contexts. An evaluation context E is an expression with a hole in
place of the next subexpression to be evaluated. Defining E ::= [ ] | E e | v E | . . .
specifies the order of evaluation, since the function in an application must be
reduced to a value before the argument is elegible for reduction. The handling
of the operations on the store is similar. Finally, rules step, refl, and tran specify

f−→−→eff as the reflexive and transitive closure of
f−→eff .

There are additional judgments to relate stores to type environments, and
traces to effects. Write E `eff s if dom(s) = dom(E) and, for each l ∈ dom(s), if
E(l ) = refρ τ then E `eff s(l ) : τ ! ∅. Write E |=eff f ! σ if

for each init(l ) in f we have E(l ) = refρ τ and init(ρ) v σ ,
for each read(l ) in f we have E(l ) = refρ τ and read(ρ) v σ ,
for each write(l ) in f we have E(l ) = refρ τ and write(ρ) v σ .

Write E `eff s, e : τ !σ if s, e is an evaluation state and E `eff s and E `eff e : τ !σ .
Reduction preserves types and is consistent with effects.

PROPOSITION 3.1 (SUBJECT REDUCTION). If E `eff s, e : τ ! σ and s, e
f−→eff s′, e′

then there exists some E ′ ⊇ E such that E ′ `eff s′, e′ : τ ! σ and E ′ |=eff f ! σ .

The proof is by case analysis on the definition of s, e
f−→eff s′, e′.

The form of a value is determined by its type.

LEMMA 3.2 (CANONICAL FORMS). Let s, v be an evaluation state and E `eff
s, v : τ ! ∅.
(1) If τ = τ ′ σ→ τ ′′ then v is either λx. e or rec x. λx ′. e.
(2) If τ = refρ τ then v is a location l ∈ dom(s).

The proof is by case analysis on τ .
A well-typed evaluation state is never stuck.

PROPOSITION 3.3 (PROGRESS). Suppose E `eff s, e : τ ! σ . Either e is a value or
there exists s′, e′ and f such that s, e

f−→eff s′, e′.

The proof is by induction on the derivation of E `eff s, e : τ ! σ . The complete
proof is given in Appendix A.1.

Write s, e ⇑ f
eff if there is an infinite reduction

s, e
f0−→eff s1, e1

f1−→eff s2, e2
f2−→eff · · ·

with f = ⋃ fi. Then we have the following.

ACM Transactions on Computational Logic, Vol. 4, No. 1, January 2003.
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PROPOSITION 3.4 (TYPE SOUNDNESS). If E `eff s, e : τ !σ then there exists E ′ ⊇ E
so that either

— s, e ⇑ f
eff and E ′ |=eff f ! σ , or

— s, e
f−→−→eff s′, v and E ′ `eff s′, v : τ ! ∅ and E ′ |=eff f ! σ .

Type soundness is an immediate corrollary of progress.
It is interesting to consider which expressions would give problems during

evaluation. An evaluation state s, e is stuck if e is not a value and there is no
f , s′, e′ such that s, e

f−→eff s′, e′. A simple case analysis shows that a state is
stuck if and only if it has one of the following forms:

e = E[v v′], where v is a location,
e = E[ get v], where v is not a location or v /∈ dom(s), or
e = E[set v v′], where v is not a location or v /∈ dom(s).

Stuck expressions are not typable.

3.2 Semantics for Monad

Figure 5 shows the operational semantics for Monad. Locations and traces are
as before, but a store now maps locations to expressions. There are two notions
of reduction:

Pure reductions do not access the store and have no effect. They are written
e −→mon e′. Rule (beta) specifies function application; the language Monad is
call-by-name as the argument need not be a value for the rule to apply. The rule
is pure and makes no reference to the store. Rules (rec) and (let) are similar.

Monadic reductions perform sequencing and execute the operations on the
store. They may have an effect and are written s, e

f−→mon s, e′. Rule (bind)
simplifies a monadic bind of a monadic unit; it leaves the store unchanged and
is labeled with an empty effect. (But it is not a pure operation: this prevents
reduction of ill-typed expressions such as (let x ⇐ <(λy . y)> in x)z, where the
monadic expression is not at top-level.) Rules (new), (get), and (set) perform
actions on the store and have corresponding effects.

There are three sorts of contexts, monad contexts M , operator contexts O,
and pure contexts P , and three corresponding context rules. Rule (monad) forms
the contextual closure of monadic reductions over monadic reductions through
a monad context M ; rule (operator) forms the contextual closure of monadic
reductions over pure reductions through an operator context O; and rule (pure)
forms the contextual closure of pure reductions over pure reductions through
a pure context P . (These rules permit reduction of sensible expressions such
as (λy . let x ⇐ < y> in x)z, where an application yields a monadic expression
at top-level.) Since the monad language is call-by-name, pure contexts do not
reduce the argument of a function. Since expressions, not values, are placed in
the store, operator contexts neither reduce the argument of new nor the second
argument of set.
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Fig. 5. Semantics for Monad.

As before, rules (step), (refl), and (tran) specify
f−→−→mon as the reflexive and

transitive closure of
f−→mon . The relations E `mon s, E `mon s, e : τ , and E |=mon

f ! σ are defined, mutatis mutandis, as for Effect.
As before, reduction preserves types and is consistent with effects.

PROPOSITION 3.5 (SUBJECT REDUCTION).

— If E `mon e : τ and e −→mon e′ then E `mon e′ : τ .

— If E `mon s, e : Tσ τ and s, e
f−→mon s′, e′ then there exists some E ′ ⊇ E such

that E ′ `mon s′, e′ : Tσ τ and E ′ |=mon f ! σ .

The proof is by induction on the definitions of e −→mon e′ and s, e
f−→mon s′, e′.
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We define values for the calculus Monad as follows:

v ∈MonVal v ::= l | λx. e | <e>.

As before, the form of a value is determined by its type.

LEMMA 3.6 (CANONICAL FORMS). Let s, v be an evaluation state and E `mon
s, v : τ .

(1) If τ = τ ′ → τ ′′ then v = λx. e.
(2) If τ = Tσ τ ′ then v = <e>.
(3) If τ = refρ τ then v = l ∈ Location and l ∈ dom(s).

The proof is by case analysis on τ .
As before, a well-typed evaluation is never stuck.

PROPOSITION 3.7 (PROGRESS). Suppose that E `mon s, e : τ . Then either e ∈
MonVal or there exist f , s′, e′ such that s, e

f−→mon s′, e′.

The proof is by induction on the derivation of E `eff s, e : τ ! σ .

As before, type soundness is an immediate corrollary of progress.

PROPOSITION 3.8 (TYPE SOUNDNESS). If E `mon s, e : τ then there exists E ′ ⊇ E
so that either

— s, e ⇑ f
mon and E ′ |=mon f ! σ , or

— s, e
f−→−→mon s′, v and E ′ `mon s′, v : τ and E ′ |=mon f ! σ .

In both cases, if τ = Tσ
′
τ ′ then σ = σ ′; otherwise σ = ∅.

As before, it is interesting to consider which expressions would give problems
during evaluation. Now an evaluation state s, e is stuck if one of the following
conditions holds:

e = M [O[P [v e]]], where v is not a lambda,
e = M [let x ⇐ v in e], where v is not a monad unit,
e = M [ get v], where v is not a location or v /∈ dom(s),
e = M [set v e], where v is not a location or v /∈ dom(s).

Again, stuck expressions are not typable.

3.3 Translation

It is well known that the monad translation preserves semantics, and this
property continues to hold for the instrumented semantics. A key to the corre-
spondence is that if a term in Effect is translated to Monad then the resulting
term has subterms of the form e′ e or ilet x = e in e′ or <e> only when e is the
image of an Effect-value, that is, only when e has the form v̇.

If s is a store in Effect, then we write s† for the corresponding store in Monad,
where s†(l ) = (s(l ))† for each l ∈ dom(s).
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Translation commutes with substitution of Effect-values.

LEMMA 3.9. For all e ∈ Exp and v ∈ Val, e∗[x := v†] = (e[x := v])∗.

Formally, preservation of semantics corresponds to a simulation result be-
tween Effect and Monad. The reduction of a term in Effect runs almost in lock-
step with the reduction of its image in Monad. Sometimes an additional admin-
istrative reduction is required. For instance, consider a reduction in Effect,

n v′
f−→eff v v′,

where n∗
f−→mon v† (disregarding the store component for simplicity). The im-

age of this reduction in Monad is given by

(n v′)∗ = let x ⇐ n∗ in x v′†
f−→mon

let x ⇐ <v†> in x v′† −→mon v† v′† = (v v′)∗

which requires one extra administrative reduction. Hence, each reduction in
Effect gives rise to one or two corresponding reductions in Monad.

Another peculiarity arises in the translation of stuck terms. Given a stuck
term in Effect, its image in Monad can sometimes perform one reduction step
before it gets stuck, too. This is a consequence of translating the call-by-value
recursion operator in Effect to a call-by-name recursion operator in Monad. If
the original term is stuck because of some rec x. λx ′. e, then the translated term
must unwind the recursion once before it becomes stuck, too.

PROPOSITION 3.10 (TRANSLATION PRESERVES SEMANTICS).

(1) If s, e
f−→eff s′, e′ then either s†, e∗

f−→mon s′†, e′∗, or s†, e∗
f−→mon s′†, e0 and

e0 −→mon e′∗.

(2) If s, e
f−→−→eff s′, e′ then s†, e∗

f−→−→mon s′†, e′∗.
(3) If s, e ⇑ f

eff then s†, e∗ ⇑ f
mon .

(4) If s, e is stuck then either s†, e∗ is stuck or e∗ −→mon e0 where s†, e0 is stuck.

The proofs of (1) and (4) are by induction on the definitions of
f−→eff , and the

proofs of (2) and (3) are by induction on
f−→−→eff . The complete proofs are given

in Appendix A.2.
As mentioned in the previous section, the proof is considerably simplified by

the use of an optimizing translation. The nonoptimized translation introduces
many additional administrative redexes, which obscure the correspondence be-
tween the effect and monad systems.

Another choice which simplifies the proof is the use of two syntactically dis-
tinct forms for let, a polymorphic let binding of values and a monomorphic
let binding of expressions with imperative effects. Without this distinction, it
is still possible to obtain a simulation result, but at the price of a contrived
monad translation.

Note that the image of the translation does not include all possible stuck
expressions in Monad. In particular, the P context is always trivial because
the monad translation moves computations out of the argument positions.
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Fig. 6. Unification of Effect Types.

The monad translation also guarantees that the reduction (bind) never gets
stuck.

4. TYPE RECONSTRUCTION

This section presents type, region, and effect reconstruction algorithms for
the two languages. The reconstruction algorithm for Effect, due to Talpin and
Jouvelot, closely resembles Milner’s original type reconstruction algorithm
[Milner 1978]. Effects are handled by accumulating a set of constraints, sim-
ilar to the handling of subtypes in Mitchell’s [1991] inference algorithm. It
is straightforward to transpose the reconstruction algorithm from Effect to
Monad. Both algorithms are sound and complete, and typings yielded by the
two algorithms are related by the translation between the two languages.

4.1 Unification

A substitution maps type variables to types, region variables to regions, and
effect variables to effects. The substitution id is the identity substitution. Sub-
stitutions and the unification algorithms for Effect are shown in Figure 6, and
the modifications for Monad are shown in Figure 7.

A key trick in the reconstruction algorithm is to ensure that all effects and re-
gions are represented by variables, to simplify unification. A type, type scheme,
type environment, or substitution is normalized if the only regions and effects
it contains are variables. (This notion is also present in the work of Talpin and
Jouvelot, but only implicitly.)

The unification algorithms Ueff (τ, τ ′) and Umon (τ, τ ′) take two normalized
types and return a normalized substitution θ .
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Fig. 7. Changes to the unification algorithm for Monad.

Fig. 8. Constraints.

PROPOSITION 4.1 (UNIFICATION). Let U be one of Ueff or Umon .

— (Sound) If θ = U(τ, τ ′) then θτ = θτ ′ (with θ , τ, τ ′ normalized).
— (Complete) If θτ = θτ ′ then there exist θ ′ and θ ′′ such that θ ′ = U(τ, τ ′) and
θ = θ ′′θ ′ (with τ, τ ′, θ ′ normalized).

The proof is standard, as normalization eliminates any potentially tricky
cases.

4.2 Constraints

Constraints and the constraint solution algorithm are shown in Figure 8. A
set of constraints κ is a set of inequations of the form ς w σ , asserting that ς
encompasses at least the effect σ .

A substitution µ is a solution of κ, written µ |= κ, if µς w µσ for each
inequation ς w σ in κ. Such a solution always exists.

The constraint solution algorithm K(κ) takes a constraint set and returns
a substitution µ which solves κ. It assumes that effect variables on the left-
hand side of constraints in κ are distinct, which can be achieved by repeatedly
merging two constraints ς w σ and ς w σ ′ into one constraint ς w σ ∪ σ ′.
ACM Transactions on Computational Logic, Vol. 4, No. 1, January 2003.
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PROPOSITION 4.2 (CONSTRAINT SOLUTION).

— (Sound) K(κ) |= κ.
— (Complete) If µ |= κ then µ = µ ◦K(κ).

The proof is given in Appendix A.3.
The algorithm is identical to the one in Talpin’s thesis [Talpin and Jouvelot

1994; Talpin 1993]. It computes a principal solution of the constraint set κ,
independently of the order in which the constraints are visited. (The algorithm
is subtly different from their earlier algorithm Min [Talpin and Jouvelot 1992].
Algorithm Min yields a solution, which is minimal with respect to the ordering
w defined by µ w µ′ iff, for all ς ∈ dom(µ′), µ(s) w µ′(s). Unfortunately, this
ordering is not defined in their paper.)

4.3 Reconstruction for Effect

Type schemes and the reconstruction algorithm for Effect are shown in Figure 9.
A different flavor of type schemes is introduced which fits better with the type
inference. Following Talpin and Jouvelot [1994] and Talpin [1993] such a recon-
struction scheme has the form ∀ω̄. (τ, κ) where ω̄ is a sequence of type, region,
or effect variables; the scheme is normalized if τ is normalized. Such a scheme
represents all types of the form θτ where θ |= κ and the domain of θ is con-
tained in ω̄. Reconstruction environments are taken to map identifiers to type
schemes; the environment is normalized if all types in it are normalized. We
write {ω̄ 7→ ω̄′} for a substitution, when ω̄ and ω̄′ have the same length, and
each has type, region, and effect variables in the same positions as the other.

The reconstruction algorithm Ieff (E , κ, e) takes a normalized reconstruction
environment E , an initial constraint set κ, and an expression e, and returns
a quadruple 〈θ , τ, σ, κ ′〉, with θ and τ normalized. It fails if some unification
within it fails. The substitution θ is idempotent, and τ , σ , and κ ′ are invariant
under θ . The algorithm is essentially drawn from Talpin and Jouvelot’s later
work [Talpin and Jouvelot 1994].

To relate a reconstruction scheme to an equivalent type scheme, we exploit
the algorithm for solving constraints in Figure 8. If τ̂ is a type reconstruction
scheme, we define τ̂ = τ̂ ′ where τ̂ = ∀ᾱ, γ̄ , ς̄ . (τ, κ) and τ̂ ′ = ∀ᾱ, γ̄ , ς̄ .K(κ)(τ ). We
define E by pointwise extension: E(x) = E(x) for each x ∈ dom(E).

To state completeness, we use the generic instance relation τ̂ º τ̂ ′ defined in
Section 2. We define E º E ′ by pointwise extension: it holds if E(x) º E ′(x) for
each x ∈ dom(E).

The reconstruction algorithm is sound and complete.

PROPOSITION 4.3 (TYPE RECONSTRUCTION).

— (Sound) If Ieff (E , κ, e) = 〈θ , τ, σ, κ ′〉 and µ = K(κ ′) then µθE `eff e : µτ ! µσ ,
with E , θ , and τ normalized.

— (Complete) Let E be a normalized reconstruction environment, let E ′ be a
type environment such that E º E ′, and let θ |= κ. If θE ′ `eff e : τ ! σ
then Ieff (E , κ, e) = 〈θ ′, τ ′, σ ′, κ ′〉 and there exists a substitution θ ′′ such that
θ ′′θ ′E º θE ′ and τ = θ ′′τ ′ and σ ⊇ θ ′′σ ′ and θ ′′ |= κ ′, with θ ′ and τ ′ normalized.
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Fig. 9. Type reconstruction for Effect.
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The proof for the first part is by induction on the structure of expressions, and for
the second by induction on the structure of type derivations. (A similar proof is
given by Talpin and Jouvelot [1994]. In their earlier work [Talpin and Jouvelot
1992], the proof skipped the case of polymorphic “let” binding, assuming such
bindings have been expanded out.)

Another way to obtain a reconstruction result would be to introduce arrow
effects as proposed by Tofte and others [Tofte and Talpin 1994]. In fact, type
schemes with arrow effects are equivalent to the reconstruction type schemes
introduced in the present section: simply replace each arrow effect ς.σ by the
effect variable ς and add the constraint ς w σ .

4.4 Reconstruction for Monad

The reconstruction algorithm for Monad is shown in Figure 10. The unification
algorithm, type schemes, and type environments are as before, with types for
Monad replacing types for Effect, mutatis mutandis. Constraints carry over
without change.

The reconstruction algorithm Imon (E , κ, e) takes a type environment E , an
initial constraint set κ, and an expression e, and returns a triple 〈θ , τ, κ ′〉, or
fails if some unification within it fails. The reconstruction algorithm is easily
transposed to the new setting. It has much the same structure as before, the
largest difference being that effects are mentioned only in monad types, and
effects in types are always represented by variables, so a few extra constraints
are required.

It is also easy to transpose the results regarding the algorithm.

PROPOSITION 4.4 (TYPE RECONSTRUCTION).

— (Sound) If Imon (E , κ, e) = 〈θ , τ, κ ′〉 and µ = K(κ ′) then µθE `mon e : µτ , with
E , θ , and τ normalized.

— (Complete) Let E be a normalized reconstruction environment, E ′ a type envi-
ronment such that E º E ′, and let θ |= κ. If θE ′ `mon e : τ then Imon (E , κ, e) =
〈θ ′, τ ′, κ ′〉 and there exists a substitution θ ′′ such that θ ′′θ ′E º θE and τ = θ ′′τ ′
and θ ′′ |= κ ′, with θ ′ and τ ′ normalized.

4.5 Translation

The two reconstruction algorithms yield results that are related by the trans-
lation. Write κ ' κ ′ if for all µ we have µ |= κ if and only if µ |= κ ′.
The translation is extended to apply to reconstruction schemes by taking
(∀ω̄. (τ, κ))† = ∀ω̄. (τ †, κ).

PROPOSITION 4.5 (TRANSLATION PRESERVES TYPE RECONSTRUCTION). If
Ieff (E , κ, e) = 〈θ ′, τ ′, σ ′, κ ′〉 and Imon (E†, κ, e∗) = 〈θ ′′, τ ′′, κ ′′〉 then there exist
ς and µ such that Tς τ † = τ ′ and θ ′ = µθ ′′ and σ ′ = µς and κ ′ ' µκ ′′.

The proof is by induction on the structure of expressions.
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Fig. 10. Type reconstruction for Monad.
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5. CONCLUSIONS

We have verified the conjecture, first broached half a decade past, that effect
systems can be adapted to monads. We have demonstrated this for the specific
case of the type, region, and effect system of Talpin and Jouvelot, but it seems
clear that any effect system can be adapted to monads in a similar way.

Here are points for future work:

Denotational semantics. It is straightforward to provide semantics for ef-
fects and monads in a denotational style. In this semantics, the instrumentation
can be factored out as a separate monad transformer. The factoring uses the
well-known result that if TX is a monad, then so is TA X =T (X × A), where A
is a monoid. In this case, A is taken to be the monoid of traces, with identity ∅
and operator ∪.

Coherent semantics. An alternative approach to denotational semantics
might be to eliminate the instrumentation, and associate with each effect σ
a different monad T σ . For state, one traditionally defines TX= S→ X × S
where the store S is a mapping from locations to values. Here one might define
T σ τ = Sσ → X × Sσ where Sσ is a store restricted to contain only locations in
regions ρ such that read(ρ) or init(ρ) is in σ , and Sσ is a store restricted to
contain only locations in regions ρ such that init(ρ) or write(ρ) is in σ . Cor-
responding to each effect inclusion σ ⊆ σ ′ there should be a monad morphism
T σ → T σ ′ . In order to ensure coherence in the style of Breazu-Tannen et al.
[1991], we should expect transitivity of inclusions to correspond to composition
of the corresponding morphisms.

A general theory of effects and monads. As hypothesized by Moggi and as
born out by practice, most computational effects can be viewed as a monad.
Does this provide the possibility to formulate a general theory of effects and
monads, avoiding the need to create a new effect system for each new effect?

APPENDIX PROOFS

A.1 Progress

PROPOSITION 3.3 (PROGRESS). Suppose E `eff s, e : τ ! σ . Either e is a value or

there exists s′, e′ and f such that s, e
f−→eff s′, e′.

PROOF. By induction on the derivation of E `eff s, e : τ ! σ . In each case, we
have that E `eff s and E `eff e : τ ! σ .

Case (var)
τ̂ º τ

Ex ∪ {x 7→ τ̂ } `eff x : τ ! ∅ . A value.

Case (does)
E `eff e : τ ! σ σ ′ w σ

E `eff e : τ ! σ ′
. The claim is immediate by the induc-

tive hypothesis.

ACM Transactions on Computational Logic, Vol. 4, No. 1, January 2003.



24 • Wadler and Thiemann

Case (abs)
Ex ∪ {x 7→ τ } `eff e : τ ′ ! σ

E `eff λx. e : τ σ→ τ ′ ! ∅
. A value.

Case (app)
E `eff e1 : τ σ ′′→ τ ′ ! σ E `eff e2 : τ ! σ ′

E `eff e1 e2 : τ ′ ! σ ∪ σ ′ ∪ σ ′′ . By induction, either

s, e1
f−→eff s′, e′1 or e1 is a value v1.

In the first case, rule context yields that s, e1 e2
f−→eff s′, e′1 e2.

If e1 = v1, a value, then, by induction, either s, e2
f−→eff s′, e′2 or e2 is a value.

In the first case, rule context yields that s, v1 e2
f−→eff s′, v1 e′2.

If e2 = v2, a value, then the canonical forms Lemma 3.2 applied to v1 yields
that v1 is either λx. e or rec x. λx ′. e. In both cases, the expression is a redex
using either (beta) or (rec).

Case (let)

E `eff v : τ ! ∅
Ex ∪ {x 7→ gen(E , τ ) `eff e : τ ′ ! σ }
E `eff let x = v in e : τ ′ ! σ

. This expression is a redex.

Case (ilet)

E `eff e1 : τ ! σ
Ex ∪ {x 7→ τ } `eff e2 : τ ′ ! σ ′

E `eff ilet x = e1 in e2 : τ ′ ! σ ∪ σ ′ . By induction, either e1 is a

value, in which case the whole expression is a redex, or s, e1
f−→eff s′, e′1. In

the latter case, the whole expression reduces due to context.

Case (rec)
Ex,x ′ ∪ {x 7→ τ

σ→ τ ′, x ′ 7→ τ } `eff e : τ ′ ! σ

E `eff rec x. λx ′. e : τ σ→ τ ′ ! ∅
. A value.

Case (new)
E `eff e : τ ! σ

E `eff new e : refρ τ ! σ ∪ init(ρ)
. By induction, either e is a

value, in which case the whole expression is a redex, or s, e
f−→eff s′, e′. In

the latter case, the whole expression reduces, too, by rule context.

Case (get)
E `eff e : refρ τ ! σ

E `eff get e : τ ! σ ∪ read(ρ)
. By induction, either e is a value,

in which case the canonical forms Lemma 3.2 shows that e = l ∈ Location,
l ∈ dom(s), and hence the whole expression is a redex, or s, e

f−→eff s′, e′. In
the latter case, the whole expression reduces by rules (context).

Case (set)
E `eff e1 : refρ τ ! σ E `eff e2 : τ ! σ ′

E `eff set e1 e2 : τ ! σ ∪ σ ′ ∪ write(ρ)
. By induction, either e1 is

a value, in which case the canonical forms Lemma 3.2 shows that e1 = l ∈
Location and l ∈ dom(s), or s, e1

f−→eff s′, e′1. In the latter case, the whole
expression reduces by rules context.

If e1 = l then, by induction, either e2 is a value, in which case the whole
expression is a redex, or s, e2

s−→′eff , e′2. In the latter case, the whole expression
reduces by context.
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A.2 Translation Preserves Semantics

PROPOSITION 3.10 (TRANSLATION PRESERVES SEMANTICS).

(1) If s, e
f−→eff s′, e′ then either s†, e∗

f−→mon s′†, e′∗, or s†, e∗
f−→mon s′†, e0 and

e0 −→mon e′∗.

(2) If s, e
f−→−→eff s′, e′ then s†, e∗

f−→−→mon s′†, e′∗.
(3) If s, e ⇑ f

eff then s†, e∗ ⇑ f
mon .

(4) If s, e is stuck then either s†, e∗ is stuck or e∗ −→mon e0 where s†, e0 is stuck.

PROOF. Item 1 by induction on the definition of
f−→eff .

Case (beta): s, (λx. e)v ∅−→eff s, e[x := v].

s†, ((λx. e)v)∗

= s†, (λx. e)† v†

= s†, (λx. e∗) v†
∅−→mon s†, e∗[x := v†]
= s†, (e[x := v])∗.

Case (rec): s, ( rec x. λx ′. e)v ∅−→eff s, (λx ′. e[x := rec x. λx ′. e])v.

s†, ( rec x. λx ′. e)† v†

= s†, (rec x. λx ′. e∗) v†
∅−→mon s†, (λx ′. e∗[x := rec x. λx ′. e∗]) v†

= s†, (λx ′. e∗[x := ( rec x. λx ′. e)†]) v†

= s†, ((λx ′. e[x := rec x. λx ′. e])v)∗.

Case (letv): s, let x = v in e
∅−→eff s, e[x := v].

s†, (let x = v in e)∗

= s†, let x = v† in e∗
∅−→mon s†, e∗[x := v†]
= s†, (e[x := v])∗.

Case (let): s, ilet x = v in e
∅−→eff s, e[x := v].

s†, (ilet x = v in e)∗

= s†, let x ⇐ v∗ in e∗

= s†, let x ⇐<v†> in e∗
∅−→mon s†, e∗[x := v†]
= s†, (e[x := v])∗.

Case (new): s, new v
init(l )−→ eff s ∪ {l 7→ v}, l where l 6∈ dom(s).

s†, (new v)∗

= s†, new v†
init(l )−→ mon s† ∪ {l 7→ v†}, <l>
= s ∪ {l 7→ v}†, l ∗.
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Case (get): sl ∪ {l 7→ v}, get l
read(l )−→ eff sl ∪ {l 7→ v}, v.

sl ∪ {l 7→ v}†, (get l )∗

= s†l ∪ {l 7→ v†}, get l
read(l )−→ mon s†l ∪ {l 7→ v†}, <v†>
= sl ∪ {l 7→ v}†, v∗.

Case (set): sl ∪ {l 7→ v}, set l v′ write(l )−→ eff sl ∪ {l 7→ v′}, v′.

(sl ∪ {l 7→ v})†, (set l v′)∗

= s†l ∪ {l 7→ v†}, set l v′†
write(l )−→ mon s†l ∪ {l 7→ v′†}, <v′†>
= (sl ∪ {l 7→ v′})†, v′∗.

Case (context)
s, n

f−→eff s′, e′

s, E[n]
f−→eff s′, E[e′]

. The expression, n, must be a nonvalue

because otherwise the reduction would be impossible.

Subcase E = [ ] e.

s†, (n e)∗

= s†, let x ⇐ n∗ in (x e)∗
f−→mon by induction, and context M

s†, let x ⇐ e′∗ in (x e)∗.

If e′ ∈ NonVal then

= s†, (e′ e)∗.

If e′ = v′ ∈ Val then

= s†, let x ⇐ v′∗ in (x e)∗

= s†, let x ⇐ <v′†> in (x e)∗
∅−→mon s†, (x e)∗[x := v′†]
= s†, (v′ e)∗.

Subcase E = v [ ].

s†, (v n)∗

= s†, let x ⇐ n∗ in (v x)∗
f−→mon by induction, and context M

s†, let x ⇐ e′∗ in (v x)∗.

If e′ ∈ Non Val then

= s†, (v e′)∗.
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If e′ = v′ ∈ Val then

= s†, let x ⇐ v′∗ in (v x)∗

= s†, let x ⇐ <v′†> in (v x)∗
∅−→mon s†, (v x)∗[x := v′†]
= s†, (v v′)∗.

Subcase E = ilet x = [ ] in e.

s†, (ilet x = n in e)∗

= s†, let x ⇐ n∗ in e∗
f−→mon by induction, and context M

s†, let x ⇐ e′∗ in e∗

= s†, (ilet x = e′ in e)∗.

Subcase E = new [ ].

s†, (newn)∗

= s†, let x ⇐ n∗ in ( new x)∗
f−→mon by induction, and context M

s†, let x ⇐ e′∗ in ( new x)∗.

If e′ ∈ Non Val then

= s†, (new e′)∗.

If e′ = v′ ∈ Val then

= s†, let x ⇐ v′∗ in (new x)∗

= s†, let x ⇐ <v′†> in (new x)∗
∅−→mon s†, (new x)∗[x := v′†]
= s†, (new v′)∗.

Subcase E = get [ ].

s†, (getn)∗

= s†, let x ⇐ n∗ in ( get x)∗
f−→mon by induction, and context M

s†, let x ⇐ e′∗ in ( get x)∗.

If e′ ∈ Non Val then

= s†, (get e′)∗.

If e′ = v′ ∈ Val then

= s†, let x ⇐ v′∗ in ( get x)∗

= s†, let x ⇐ <v′†> in ( get x)∗
∅−→mon s†, (get x)∗[x := v′†]
= s†, (get v′)∗.

Subcase E = set [ ] e. Analogous to E = [ ] e.
Subcase E = set v [ ]. Analogous to E = v [ ].
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Item 2 by induction on the definition of
f−→−→eff .

Item 3 is immediate from item 2.
Item 4 requires an inductive proof, again:

Case l v′, where l ∈ Location. (l v′)∗ = l † v′† = l v′† is stuck because l is not a
lambda.

Case get v, where v is not a location or v /∈ dom(s). (get v)∗ = get v†. There
are three cases for v.

Subcase v = l ∈ Location and l 6∈ dom(s). Then get l †= get l is stuck
because l /∈ dom(s†)= dom(s).

Subcase v = λx. e. Then get (λx. e)† = get λx. e∗ is stuck because v† is not
a location.

Subcase v = rec x. λx ′. e. Then
get (rec x. λx ′. e)†

= get (rec x. λx ′. e∗)
−→mon get (λx ′. e∗[x := rec x. λx ′. e∗]),

which is stuck because λx ′. . . . is not a location.

Case set v v′, where v is not a location or v /∈ dom(s). (set v v′)∗ = set v† v′†.
Analogous to subcase get v.

Case if s, e is stuck, then s, E[e] is stuck. By definition of stuck, e must be a
nonvalue.

Subcase E = [ ] e′. (e e′)∗ = let x ⇐ e∗ in (x e′)∗. By induction, s†, e∗ is stuck
so that e∗ has the form M [e0], where e0 is one of the cases in the definition of
stuck. Hence, for some monad context M ′,

(e e′)∗

= let x ⇐ M [e0] in (x e′)∗

= M ′[e0].

This proves the claim.

Subcase E = v [ ]. (v e)∗ = let x ⇐ e∗ in (v x)∗. Stuck by analogous reason-
ing as in the previous subcase.

Subcase E = ilet x = [ ] in e′. (ilet x = e in e′)∗ = let x ⇐ e∗ in e′∗.
Stuck by analogous reasoning as in the previous subcase.

Subcase E = new [ ]. (new e)∗ = let x ⇐ e∗ in (new x)∗. Stuck by analogous
reasoning as in the previous subcase.

Subcase E = get [ ]. (get e)∗ = let x ⇐ e∗ in (get x)∗. Analogous.

Subcase E = set [ ] e′. (set e e′)∗ = let x ⇐ e∗ in ( set x e′)∗. Analogous to
subcase e e′.

Subcase E = set v [ ]. (set v e)∗ = let x ⇐ e∗ in (set v x)∗. Analogous to
subcase v e.
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A.3 Constraint Solution

PROPOSITION 4.2 (CONSTRAINT SOLUTION).

— (Sound) K(κ) |= κ.
— (Complete) If µ |= κ then µ = µ ◦K(κ).

PROOF. To show soundness, suppose that the constraint set has the form
κ ∪ {ς w σ }. Now,

K(κ ∪ {ς w σ })(ς )
= ({ς 7→ ς ∪K(κ)(σ )} ◦K(κ))(ς )
= {ς 7→ ς ∪K(κ)(σ )}(ς )
= ς ∪K(κ)(σ )
w ({ς 7→ ς ∪K(κ)(σ )} ◦K(κ))(σ )
= K(κ ∪ {ς w σ })(σ ).

Completeness is shown by induction on κ.

Case ∅ is immediate.

Case κ ∪ {ς w σ }. Let µ′ = µ ◦K(κ ∪ {ς w σ }) = µ ◦ {ς 7→ ς ∪K(κ)(σ )} ◦K(κ).
Show that, for each ς ′, µ′(ς ′) = µ(ς ′).

First, observe that µ◦ {ς 7→ ς ∪K(κ)(σ )} = µ by considering this substitution
on ς :

µ({ς 7→ ς ∪K(κ)(σ )}(ς ))
= µ(ς ∪K(κ)(σ ))
= µ(ς ) ∪ µ(K(κ)(σ ))

[by the inductive hypothesis]
= µ(ς ) ∪ µ(σ )

[since µ solution]
= µ(ς ).

There are three subcases to consider:

Subcase ς ′ /∈ dom(K(κ)) and ς ′ 6= ς .
µ′(ς ′) = µ({ς 7→ ς ∪K(κ)(σ )}(K(κ)(ς ′))) = µ(ς ′).

Subcase ς ′ = ς .

µ′(ς )
= µ({ς 7→ ς ∪K(κ)(σ )}(K(κ)(ς )))

[since ς /∈ dom(K(κ))]
= µ({ς 7→ ς ∪K(κ)(σ )}(ς ))

[by the preceding observation]
= µ(ς ).
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Subcase ς ′ ∈ dom(K(κ)).

µ′(ς ′)
= µ({ς 7→ ς ∪K(κ)(σ )}(K(κ)(ς ′)))

[by the preceding observation]
= µ(K(κ)(ς ′))
= µ(ς ′).
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