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Abstract

We introduce a new class of models called the Marshall-Olkin extended Weibull family

of distributions based on the work by Marshall and Olkin (Biometrika 84:641–652, 1997).

The proposed family includes as special cases several models studied in the literature

such as the Marshall-Olkin Weibull, Marshall-Olkin Lomax, Marshal-Olkin Fréchet and

Marshall-Olkin Burr XII distributions, among others. It defines at least twenty-one special

models and thirteen of them are new ones. We study some of its structural properties

including moments, generating function, mean deviations and entropy. We obtain the

density function of the order statistics and their moments. Special distributions are

investigated in some details. We derive two classes of entropy and one class of

divergence measures which can be interpreted as new goodness-of-fit quantities. The

method of maximum likelihood for estimating the model parameters is discussed for

uncensored and multi-censored data. We perform a simulation study using Markov

Chain Monte Carlo method in order to establish the accuracy of these estimators. The

usefulness of the new family is illustrated by means of two real data sets.
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Keywords: Extended Weibull distribution; Hazard rate function; Marshall-Olkin

distribution; Maximum likelihood estimation; Survival function

1 Introduction

The Weibull distribution has assumed a prominent position as statistical model for data

from reliability, engineering and biological studies (McCool 2012). This model has been

exaustively used for describing hazard rates – an important quantity of survival analysis.

In the context of monotone hazard rates, some results from the literature suggest that

the Weibull law is a reasonable choice due to its negatively and positively skewed density

shapes. However, this distribution is not a good model for describing phenomenon with

non-monotone failure rates, which can be found on data from applications in reliability

and biological studies. Thus, extended forms of the Weibull model have been sought in

many applied areas. As a solution for this issue, the inclusion of additional parameters to

a well-defined distribution has been indicated as a good methodology for providing more

flexible new classes of distributions.

Marshall and Olkin (1997) derived an important method of including an extra shape

parameter to a given baseline model thus defining an extended distribution. TheMarshall

and Olkin (“MO” for short) transformation furnishes a wide range of behaviors with
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respect to the baseline distribution. The geometrical and inferential properties associated

with the generated distribution depend on the values of the extra parameter. These char-

acteristics provide more flexibility to the MO generated distributions. Considering the

proportional odds model, Sankaran and Jayakumar (2008) presented a detailed discussion

about the physical interpretation of theMO family.

This family has a relationship with the odds ratio associated with the baseline distribu-

tion. Let X be a distributedMO random variable which describes the lifetime relative to

each individual in the population with a vector of p-covariates z = (z1, . . . , zp)
⊤, where

(·)⊤ denotes the transposition operator. Then, the cumulative distribution function (cdf)

of X is given by

F(x ; z) =
k(z)G(x)

1−[ 1 − k(z)] G(x)
, (1)

where k(z) = λG(x)/λF(x ; z) is a non-negative function such that z is independent of the

time x, λF(x ; z) is the proportional oddsmodel [for a discussion about suchmodeling, see

Sankaran and Jayakumar (2008)] and λG(x) = G(x)/G(x) represents an arbitrary odds

for the baseline distribution.

In this paper, we consider k(z) = δ. Before, however, it is important to highlight

two important properties of the MO transformation: (i) the stability and (ii) geomet-

ric extreme stability (Marshall and Olkin 1997). In other words, the MO distribution

possesses a stability property in the sense that if the method is applied twice, it returns

to the same distribution. In addition, the following stochastic behavior can also be veri-

fied: let {X1, . . . ,XN } be a random sample from the population random variable equipped

with the survival function (1) at k(z) = δ. Suppose that N has the geometric distribu-

tion with probability p and that this quantity is independent of Xi, for i = 1, . . . ,N . Then,

U = min(X1, . . . ,XN ) and V = max(X1, . . . ,XN ) are random variables having survival

functions (1) such that k(z) can be equal to p and p−1, respectively, i.e., theMO transform

satisfies the geometric extreme stability property.

Due to these advantages, many papers have employed the MO transformation. In

Marshall and Olkin work, the exponential and Weibull distributions were general-

ized. Subsequently, the MO extension was applied to several well-known distributions:

Weibull (Ghitany et al. 2005, Zhang and Xie 2007), Pareto (Ghitany 2005), gamma

(Ristić et al. 2007), Lomax (Ghitany et al. 2007) and linear failure-rate (Ghitany and Kotz

2007) distributions. More recently, general results have been addressed by Barreto-Souza

et al. (2013) and Cordeiro and Lemonte (2013). In this paper, we aim to apply the MO

generator to the extended Weibull (EW) class of distributions to obtain a new more flex-

ible family to describe reliability data. The proposed family can also be applied to other

fields including business, environment, informatics and medicine in the same way as it

was originally done with the Birnbaum-Saunders and other lifetime distributions.

LetG(x) = 1−G(x) and g(x) = dG(x)/dx be the survival and density functions of a con-

tinuous random variable Y with baseline cdf G(x). Then, the MO extended distribution

has survival function given by

F(x; δ) =
δG(x)

1 − δG(x)
=

δG(x)

G(x) + δG(x)
, x ∈ X ⊆ R, δ > 0, (2)

where δ = 1 − δ.



Santos-Neto et al. Journal of Statistical Distributions and Applications 2014, 1:9 Page 3 of 24

http://www.jsdajournal.com/content/1/1/9

Clearly, δ = 1 implies F(x) = G(x). The family (2) has probability density function (pdf)

given by

f (x; δ) =
δg(x)

[ 1 − δG(x)]2
, x ∈ X ⊆ R, δ > 0.

Its hazard rate function (hrf ) becomes

τ(x; δ) =
g(x)

G(x)[ 1 − δG(x)]
, x ∈ X ⊆ R, δ > 0.

Further, the class of extended Weibull (EW) distributions pioneered by Gurvich et al.

(1997) has achieved a prominent position in lifetime models. Its cdf is given by

G(x;α, ξ) = 1 − exp[−αH(x; ξ)] , x ∈ D ⊆ R+, α > 0, (3)

where H(x; ξ) is a non-negative monotonically increasing function which depends on the

parameter vector ξ . The corresponding pdf is given by

g(x;α, ξ) = α exp[−αH(x; ξ)] h(x; ξ), (4)

where h(x; ξ) is the derivative of H(x; ξ).

Different expressions for H(x; ξ) in Equation (3) define important models such as:

(i) H(x; ξ) = x gives the exponential distribution;

(ii) H(x; ξ) = x2 leads to the Rayleigh (Burr type-X) distribution;

(iii) H(x; ξ) = log(x/k) leads to the Pareto distribution;

(iv) H(x; ξ) = β−1[ exp(βx) − 1] gives the Gompertz distribution.

In this paper, we derive a new family of distributions by compounding theMO and EW

classes. We define a new generated family in order to provide a “better fit” in certain prac-

tical situations. The compounding procedure follows by taking the EW class (3) as the

baseline model in Equation (2). The Marshall-Olkin extended Weibull (MOEW) fam-

ily of distributions contains some special models as those listed in Table 1 with the

corresponding H(·; ·) and h(·; ·) functions and the parameter vectors.

The paper unfolds as follows. Section 2 presents the cdf and pdf of the proposed distri-

bution and some expansions for the density function. The main statistical properties of

the new family are derived in Section 3 including the moments, moment generating func-

tion (mgf) and incomplete moments, quantile function (qf ), random number generator,

skewness and kurtosis measures, order statistics, mean deviations and average lifetime

functions. In Section 4, we derive four measures of information theory: Shannon and

Rényi entropies, cross entropy and Kullback-Leibler divergence. Themaximum likelihood

method to estimate the model parameters is adopted in Section 5. Two special models

are studied in some details in Section 6. We perform a simulation study using Monte

Carlo’s experiments in order to assess the accuracy of the maximum likelihood estimators

(MLEs) in Section 7.1 and two applications to real data in Section 7.2. Conclusions and

some future lines of research are addressed in Section 8.

2 TheMOEW family

The cdf of the new family of distributions is given by

F(x; δ,α, ξ ) =
1 − exp[−αH(x; ξ)]

1 − δ exp[−αH(x; ξ)]
, x ∈ D, (5)
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Table 1 Special models and the corresponding functions H(x; ξ) and h(x; ξ)

Distribution H(x; ξ) h(x; ξ) α ξ References

Exponential (x ≥ 0) x 1 α ∅ Johnson et al. (1994)

Pareto (x ≥ k) log(x/k) 1/x α k Johnson et al. (1994)

Burr XII (x ≥ 0) log(1 + xc) c xc−1/(1 + xc) α c Rodriguez (1977)

Lomax (x ≥ 0) log(1 + x) 1/(1 + x) α ∅ Lomax (1954)

Log-logistic (x ≥ 0) log(1 + xc) c xc−1/(1 + xc) 1 c Fisk (1961)

Rayleigh (x ≥ 0) x2 2x α ∅ Rayleigh (1880)

Weibull (x ≥ 0) xγ γ xγ−1 α γ Johnson et al. (1994)

Fréchet (x ≥ 0) x−γ −γ x−(γ+1) α γ Fréchet (1927)

Linear failure rate(x ≥ 0) a x + b x2/2 a + b x 1 [ a, b] Bain (1974)

Modified Weibull (x ≥ 0) xγ exp(λx) xγ−1 exp(λx)(γ + λx) α [ γ , λ] Lai et al. (2003)

Weibull extension (x ≥ 0) λ[ exp(x/λ)β − 1] β exp(x/λ)β (x/λ)β−1 α [ γ , λ, β] Xie et al. (2002)

Phani (0 < μ < x < σ < ∞) [ (x − μ)/(σ − x)]β β[ (x − μ)/(σ − x)]β−1 [ (σ − μ)/(σ − t)2] α [μ, σ , β] Phani (1987)

Weibull Kies (0 < μ < x < σ < ∞) (x − μ)β1/(σ − x)β2 (x − μ)β1−1(σ − x)−β2−1[β1(σ − x) + β2(x − μ)] α [μ, σ , β1 , β2] Kies (1958)

Additive Weibull (x ≥ 0) (x/β1)
α1 + (x/β2)

α2 (α1/β1)(x/β1)
α1−1 + (α2/β2)(x/β2)

α2−1 1 [α1 , α2 , β1 , β2] Xie and Lai (1995)

Traditional Weibull (x ≥ 0) xb[ exp(cxd − 1)] bxb−1[ exp(cxd) − 1]+cdxb+d−1 exp(cxd) α [ b, c, d] Nadarajah and Kotz (2005)

Gen. power Weibull (x ≥ 0) [ 1 + (x/β)α1 ]θ −1 (θα1/β)[ 1 + (x/β)α1 ]θ−1 (x/β)α1 1 [α1 , β , θ ] Nikulin and Haghighi (2006)

Flexible Weibull extension(x ≥ 0) exp(γ x − β/x) exp(γ x − β/x)(γ + β/x2) 1 [ γ , β] Bebbington et al. (2007)

Gompertz (x ≥ 0) β−1[ exp(βx) − 1] exp(βx) α β Gompertz (1825)

Exponential power (x ≥ 0) exp[ (λx)β ]−1 βλ exp[ (λx)β ] (λx)β−1 1 [ λ, β] Smith and Bain (1975)

Chen (x ≥ 0) exp(xb) − 1 bxb−1 exp(xb) α b Chen (2000)

Pham (x ≥ 0) (ax)β − 1 β(ax)β log(a) 1 [ a, β] Pham (2002)
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where α > 0 and δ > 0. Using (5), we can express its survival function as

F(x; δ,α, ξ) =
δ exp[−αH(x; ξ)]

1 − δ exp[−αH(x; ξ)]
, x ∈ D (6)

and the associated hrf reduces to

τ(x; δ,α, ξ ) =
α h(x; ξ)

1 − δ exp[−αH(x; ξ)]
, x ∈ D. (7)

The corresponding pdf is given by

f (x; δ,α, ξ) =
δ α h(x; ξ) exp[−αH(x; ξ)]

{1 − δ exp[−αH(x; ξ)] }2
, (8)

where H(x; ξ) can be any special distribution listed in Table 1.

Hereafter, let X be a random variable having the MOEW pdf (8) with parameters δ,α

and ξ , say X ∼ MOEW(δ,α, ξ). Equation (8) extends several distributions which have

been studied in the literature.

The MO Pareto (Ghitany 2005) is obtained by taking H(x; ξ) = log(x/k) (x ≥ k).

Further, for H(x; ξ) = xγ we obtain the MO Weibull (Ghitany et al. 2005, Zhang and

Xie 2007). The MO Lomax (Ghitany et al. 2007) and MO log-logistic are derived from

(8) by taking H(x; ξ) = log(1 + xc) with c = 1 and H(x; ξ) = log(1 + xc) with α = 1,

respectively. ForH(x; ξ) = a x+b x2/2 and α = 1, Equation (8) reduces to theMO linear

failure rate (Ghitany and Kotz 2007). In the same way, for H(x; ξ) = log(1 + xc), we have

the MO Burr XII (Jayakumar and Mathew 2008). Finally, we obtain the MO Fréchet

(Krishna et al. 2013) from Equation (8) by setting H(x; ξ) = x−γ . Table 1 displays some

useful quantities and corresponding parameter vectors for special distributions.

A general approximate goodness-of-fit test for the null hypothesis H0 : X1, . . . ,Xn

with Xi following F(x; θ), where the form of F is known but the p-vector θ = (δ,α, ξ)⊤

is unknown, was proposed by Chen and Balakrishnan (1995). This method is based on

the Cramér-von Mises (CM) and Anderson-Darling (AD) statistics and, in general, the

smaller the values of these statistics, the better the fit. In this paper, such methodology is

applied to provide goodness-of-fit tests for the distributions under study.

Some results in the following sections can be obtained numerically in any software

such as MAPLE (Garvan 2002), MATLAB (Sigmon and Davis 2002), MATHEMATICA

(Wolfram 2003), Ox (Doornik 2007) and R (R Development Core Team 2009). The Ox

(for academic purposes) and R are freely available at http://www.doornik.com and

http://www.r-project.org, respectively. The results can be computed by taking

in the sums a large positive integer value in place of ∞.

2.1 Expansions for the density function

For any positive real number a, and for |z| < 1, we have the generalized binomial

expansion

(1 − z)−a =
∞∑

k=0

(a)k

k!
zk , (9)

where (a)k = Ŵ(a+ k)/Ŵ(a) = a(a+ 1) . . . (a+ k− 1) is the ascending factorial and Ŵ(·)
is the gamma function. Applying (9) to (8), for 0 < δ < 1, gives

f (x; δ,α, ξ) =
∞∑

j=0

ηj g(x; (j + 1)α, ξ), (10)

http://www.doornik.com
http://www.r-project.org
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where ηj = δδ j and g(x; (j + 1)α, ξ) denotes the EW density function with parameters

(j + 1)α and ξ . Otherwise, for δ > 1, after some algebra, we can express (8) as

f (x; δ,α, ξ) =
g(x;α, ξ)

δ {1 − (1 − 1/δ) [ 1 − exp(−αH(x; ξ))] }2
. (11)

In this case, we can verify that |(1 − 1/δ) [ 1 − exp(−αH(x; ξ))] | < 1. Then, applying

twice the expansion (9) in Equation (11), we obtain

f (x; δ,α, ξ) =
∞∑

j=0

νj g(x; (j + 1)α, ξ), (12)

where

νj = νj(δ) =
(−1)j

δ(j + 1)!

∞∑

k=j

(k + 1)! (1 − 1/δ)k .

We can verify that
∑∞

j=0 ηj =
∑∞

j=0 νj = 1. Then, theMOEW density function can be

expressed as an infinite linear combination of EW densities. Equations (10) and (12) have

the same form except for the coefficients η′
js in (10) and ν′

j s in (12). They depend only on

the generator parameter δ. For simplicity, we can write

f (x; δ,α, ξ) =
∞∑

j=0

wj g(x; (j + 1)α, ξ), (13)

where

wj =

⎧
⎨
⎩

ηj, if 0 < δ < 1,

νj, if δ > 1,

and ηj and νj are given by (10) and (12), respectively. Thus, some mathematical properties

of (13) can be obtained directly from those EW properties. For example, the ordinary,

incomplete, inverse and factorial moments and the mgf of X follow immediately from

those quantities of the EW distribution.

3 General properties

3.1 Moments, generating function and incomplete moments

The nth ordinary moment of X can be obtained from (13) as

E(Xn) =
∞∑

j=0

wj E(Y n
j ),

where from now on Yj ∼ EW((j + 1)α, ξ) denotes a random variable having the EW

density function g(y; (j + 1)α, ξ).

The mgf and the kth incomplete moment of X follow from (13) as

MX(t) = E
(
etX
)

=
∞∑

j=0

wj Mj(t)

and

Tk(z) =
∞∑

j=0

wj T
(j)

k (z), (14)

whereMj(t) is the mgf of Yj and T
(j)

k (z) =
∫ z
−∞ xk g(x; (j + 1)α, ξ)dx comes directly from

the EW model.
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3.2 Quantile function and random number generator

The qf of X follows by inverting (5) and it can be expressed in terms of H−1(·) as

Q(u) = H−1

(
1

α
log

(
1 − δ u

1 − u

)
, ξ

)
. (15)

In Table 2, we provide the function H−1(x; ξ) for some special models.

Hence, the generator for X can be given by the algorithm:

Algorithm 1 Random number generator for theMOEW distribution

1: Generate U ∼ U(0, 1).

2: Specify a function H−1(·; ·) such as anyone in Table 2 and use (15).

3: Obtain an outcome of X by X = Q(U).

The MOEW distributions can be very useful in modeling lifetime data and prac-

titioners may be interested in fitting one of these models. We provide a script using

the R language to generate the density, distribution function, hrf, qf, random numbers,

Anderson-Darling test, Cramer-von Mises test and likelihood ratio (LR) tests. This script

can be be obtained from the authors upon requested.

3.3 Mean deviations

The mean deviations of X about the mean and the median are given by

δ1 =
∫

D

|x − μ| f (x; δ,α, ξ) dx and δ2 =
∫

D

|x − M| f (x; δ,α, ξ ) dx,

respectively, where μ = E(X) denotes the mean and M = Median(X) the median. The

median follows from the nonlinear equation F(M; δ,α, ξ ) = 1/2. So, these quantities

reduce to

δ1 = 2μ F(μ; δ,α, ξ) − 2T1(μ) and δ2 = μ − 2T1(M),

where T1(z) is the first incomplete moment of X obtained from (14) as

T1(z) =
∞∑

j=0

wj T
(j)
1 (z),

and T
(j)
1 (z) =

∫ z
−∞ x g(x; (j + 1)α, ξ) dx is the first incomplete moment of Yj.

An important application of the mean deviations is related to the Bonferroni and

Lorenz curves. These curves are useful in economics, reliability, demography, medicine

Table 2 The H−1(x; ξ) function

Distribution H−1(x; ξ)

Exponential power [log(x+1)]1/β

λ

Chen
[
log (x + 1)

]1/β

Weibull extension λ
[
log
(
x
λ

+ 1
)]1/β

Log-Weibull σ log(x) + μ

Kies x1/βσ+μ

x1/β+1

Gen. Power Weibull β
[
(x + 1)1/θ − 1

]1/α1

Gompertz
log(β x+1)

β

Pham
[
log(x+1)
log(a)

]1/β
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and other fields. For a given probability p, they are defined by B(p) = T1(q)/(pμ) and

L(p) = T1(q)/μ, respectively, where q = Q(p) is the qf of X given by (15) at u = p.

3.4 Average lifetime andmean residual lifetime functions

The average lifetime is given by

tm =
∫ ∞

0
[1 − F(x; δ,α, ξ )] dx =

∞∑

j=0

wj

∫ ∞

0
G(x; (j + 1)α, ξ)dx.

In fields such as actuarial sciences, survival studies and reliability theory, the mean

residual lifetime has been of much interest; see, for a survey, Guess and Proschan (1988).

Given that there was no failure prior to x0, the residual life is the period from time x0 until

the time of failure. The mean residual lifetime is given by

m(x0; δ,α, ξ ) = E (X − x0|X ≥ x0; δ,α, ξ) =
∫

{x:x>x0}

(x − x0)f (x; δ,α, ξ )

Pr(X > x0)
dx

= [Pr(X > x0)]
−1

∫ ∞

0
y f (x0 + y; δ,α, ξ )dy

=
[
F(x0; δ,α, ξ )

]−1
∞∑

j=0

wj

∫ ∞

0
y g(x0 + y; (j + 1)α, ξ)dy.

The last integral can be computed from the baseline EW distribution. Further,

m(x0; δ,α, ξ ) → E(X) as x0 → 0.

4 Information theorymeasures

The seminal idea about information theory was pioneered by Hartley (1928), who defined

a logarithmic measure of information for communication. Subsequently, Shannon (1948)

formalized this idea by defining the entropy and mutual information concepts. The rel-

ative entropy notion (which would later be called divergence) was proposed by Kullback

and Leibler (1951). The Kullback-Leibler’s measure can be understood like a com-

parison criterion between two distributions. In this section, we derive two classes of

entropy measures and one class of divergence measures which can be understood as new

goodness-of-fit quantities such those discussed by Seghouane and Amari (2007). All these

measures are defined for one element or between two elements in theMOEW family.

4.1 Rényi entropy

The Rényi entropy of X with pdf (8) is given by

Hs
R(X) =

1

1 − s
log

(∫

D

f (x; δ,α, ξ )sdx

)
,

where s ∈ (0, 1) ∪ (1,∞).

It is a difficult problem to obtain Hs
R(X) in closed-form for the MOEW family. So, we

derive an expansion for this quantity.

By using (9), f (x; δ,α, ξ )s can be expanded as

f (x; δ,α, ξ)s =
∞∑

j=0

w′
j exp[−(j + s)αH(x; ξ)] h(x; ξ)s , (16)
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where

w′
j =

⎧
⎨
⎩

η′
j(α, δ) = αsδs(2s)j δ

j

j! , for 0 < δ < 1,

ν′
j (α, δ) = αsδ−s

j!

∑∞
k=0

(2s)k(k)j
k! (1 − 1/δ)k , for δ > 1.

The proof of this expansion is given in Appendix 8.

Finally, based on Equation (16), the Rényi entropy can be expressed as

Hs
R(X) =

1

1 − s
log

⎧
⎨
⎩

∞∑

j=0

w′
j

∫

D

exp[−(j + s)αH(x; ξ)] h(x; ξ)sdx

⎫
⎬
⎭ .

An advantage of this expansion is its dependence of an integral which has closed-form

for some EW distributions.

4.2 Shannon entropy

The Shannon entropy of X is given by

HS(X) = EX
{
− log[ f (X; δ,α, ξ)]

}
,

where the log-likelihood function corresponding to one observation follows from (8) as

log[ f (x; δ,α, ξ)]= log(δα) + log[ h(x; ξ)]−αH(x; ξ) − 2 log
{
1 − δ exp[−αH(x; ξ)]

}
.

Thus, it can be reduced to

HS(X) = − log(αδ) + 2E
{
log
[
1 − δ̄Ḡ(X; ξ)

]}
− E

{
log [h(X; ξ)]

}
+ αE [H(X; ξ)] .

4.3 Cross entropy and Kullback-Leibler divergence and distance

Let X and Y be two random variables with common support R+ whose densities are

fX(x; θ1) and fY (y; θ2), respectively. Cover and Thomas (1991) defined the cross entropy as

CX(Y ) = EX
{
− log

[
fY (X; θ2)

]}
= −

∫ ∞

0
fX(z; θ1) log

[
fY (z; θ2)

]
dz.

We consider that X ∼ MOEW(δx,αx, ξx) and Y ∼ MOEW(δy,αy, ξ y). After some

algebraic manipulations, we obtain

CX(Y ) = −
∫

D

fX(z; δx,αx, ξx) log
[
fY (z; δy,αy, ξ y)

]
dz

= − log
(
δyαy

)
− EX

{
log
[
h(X; ξ y)

]}
+ αy EX

[
H(X; ξ y)

]

+ 2EX
{
log
[
1 − δ̄Ḡ(X; ξ y)

]}
. (17)

An important measure in information theory is the Kullback-Leibler divergence given

by

D(X||Y ) = CX(Y ) − HS(X) = EX

{
log

[
fX(X; δx,αx, ξx)

fY (X; δy,αy, ξ y)

]}
. (18)

Applying (4.2) and (17) in Equation (18) gives

D(X||Y ) = log

(
δxαx

δyαy

)
+ EX

{
log

[
h(X; ξx)

h(X; ξ y)

]}
+ 2EX

{
log

[
1 − δ̄Ḡ(X; ξ y)

1 − δ̄Ḡ(X; ξx)

]}

+ αyEX[H(X; ξ y)]−αxEX[H(X; ξx)] . (19)

According to Cover and Thomas (1991), the Kullback-Leibler measure D(X||Y ) is the

quantification of the error considering that the Y model is true when the data follow the

X distribution. For example, this measure has been proposed as essential parts of test
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statistics, which has seen strongly applied to contexts of radar synthetic aperture image

processing in both univariate (Nascimento et al. 2010) and polarimetric (or multivariate)

(Nascimento et al. 2014) perspectives.

In order to work with measures that satisfied the non-negativity, symmetry and

definiteness properties, Nascimento et al. (2010) considered the symmetrization of (19)

dKL(X,Y ) =
1

2
[D(X||Y ) + D(Y ||X)]

=
∫

D

(
fX
(
x; δx,αx, ξx

)
− fY

(
x; δy,αy, ξ y

))
log

(
fX(x; δx,αx, ξx)

fY (x; δx,αx, ξx)

)

︸ ︷︷ ︸
≡ IntegrandKL(x,y)

dx,

which is given by

2 dKL(X,Y ) = αy

{
EX
[
H(X; ξ y)

]
− EY

[
H(Y ; ξ y)

]}
+ αx

{
EY
[
H(Y ; ξx)]−EX[H(X; ξx)

]}

+ EX

{
log

[
h
(
X; ξx

)

h
(
X; ξ y

)
]}

+ EY

{
log

[
h
(
Y ; ξ y

)

h
(
Y ; ξx

)
]}

+ 2 EX

{
log

[
1 − δ̄Ḡ

(
X; ξ y

)

1 − δ̄Ḡ
(
X; ξx

)
]}

+ 2 EY

{
log

[
1 − δ̄Ḡ

(
Y ; ξ x

)

1 − δ̄Ḡ
(
Y ; ξ y

)
]}

.

(20)

Although this measure does not satisfy the triangle inequality, it is usually called the

Kullback-Leibler distance (Jensen-Shannon divergence). The new measure can be used to

answer questions like “how could one quantify the difference in selecting the Phani model

with three parameters as the baseline distribution instead of theWeibull Kies distribution

which has four parameters?”.

As an illustration for (20), we initially consider two distinct elements of the generated

special model from the specifications:H(x;β) = β−1[ exp(βx)−1] and h(x;β) = exp(βx)

in (8). This model will be presented withmore details in future sections and its parametric

space is represented by the vector (δ,α,β). Suppose that we are interested in quantifying

the influence of a nuisance degree ǫ in the parameter α over the distance between two

distinct elements, (2, 1, 3) and (2, 1 + ǫ, 3), at such parametric space. Figure 1(a) displays

Figure 1 MSE curves for δ ∈ {0.3, 0.8, 1, 2, 4}, η = 0.5, 1, 2 and n = 200. (a) Behavior of the function

IntegrandKL. (b) Influence of η = α/β under β = δ = 3 and α ∈ {1, 3, 9}. (c) Influence of δ under (α,β)=(3,3).
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the integrand of (20) for ǫ = 0.1, 1, 2 and 4 for which the distances (or areas) associated

with dKL(X,Y ) are 6.50×10−3, 3.56×10−1, 9.46×10−1 and 2.25, respectively. It is notable

that dKL(X,Y ) takes smaller values formore closer points (or, equivalently, formore closer

fits) and, therefore, (20) consists of new goodness-of-fit measures. In Figures 1(b) and 1(c),

we show the influence of η = α/β on dKL([ δ,α,β] , [ δ,α,β + ǫ] ) (for β = δ = 3 and

α ∈ {1, 3, 9}) and of δ on dKL([ δ,α,β] , [ δ + ǫ,α,β] ) (for β = α = 3 and δ ∈ {3, 4, 5}). For
all cases, the contamination ǫ takes values in the interval (−2.9, 2.9).

5 Estimation

Here, we present a general procedure for estimating the MOEW parameters from one

observed sample and from multi-censored data. Additionally, we provide a discussion

about how one can test the significance of additional parameter at the proposed class.

Let x1, . . . , xn be a sample of size n from X. The log-likelihood function for the vector of

parameters θ = (δ,α, ξ⊤)⊤ can be expressed as

ℓ(θ) = n log(δα) +
n∑

i=1

log [h(xi; ξ)] − α

n∑

i=1

H(xi; ξ) − 2

n∑

i=1

log
{
1 − δ exp[−αH(xi; ξ)]

}
.

From the above log-likelihood, the components of the score vector, U(θ) = (Uδ ,Uα ,

U⊤
ξ

)⊤, are given by

Uδ(θ) =
∂ℓ(θ)

∂δ
=
n

δ
− 2

n∑

i=1

exp[−αH(xi; ξ)]

1 − δ exp[−αH(xi; ξ)]
,

Uα(θ) =
∂ℓ(θ)

∂α
=
n

α
−

n∑

i=1

H(xi; ξ) − 2δ

n∑

i=1

H(xi; ξ) exp[−αH(xi; ξ)]

1 − δ exp[−αH(xi; ξ)]
and

Uξk
(θ) =

∂ℓ(θ)

∂ξ k
=

n∑

i=1

1

h(xi; ξ)

∂h(xi; ξ)

∂ξ k
− α

n∑

i=1

∂H(xi; ξ)

∂ξ k

− 2δα

n∑

i=1

∂H(xi; ξ)

∂ξ k

exp[−αH(xi; ξ)]

1 − δ exp[−αH(xi; ξ)]
.

Finally, the partitioned observed information matrix for theMOEW family is

J(θ) = −

⎛
⎜⎜⎜⎜⎝

Uδδ Uδα | U⊤
δξ

Uαδ Uαα | U⊤
αξ

−− −− −− −−
Uδξ Uαξ | Uξξ

⎞
⎟⎟⎟⎟⎠
,

whose elements are

Uδδ(θ) = −nδ−2,Uδα(θ) = 2

n∑

i=1

H(xi; ξ) exp[−αH(xi; ξ)]
{
1 − δ exp[−αH(xi; ξ)]

}2 ,

Uδξk
(θ) = 2α

n∑

i=1

∂H(xi; ξ)

∂ξ k

exp[−αH(xi; ξ)]
{
1 − δ exp[−αH(xi; ξ)]

}2 ,

Uαα(θ) = −
n

α2
+ 2δ

n∑

i=1

H(xi; ξ)2 exp[−αH(xi; ξ)]
{
1 − δ exp[−αH(xi; ξ)]

}2 ,
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Uαξk
(θ) = −2δ

n∑

i=1

∂H(xi; ξ)

∂ξ k

exp[−αH(xi; ξ)]

1 − δ exp[−αH(xi; ξ)]

[
1 −

αH(xi; ξ)

1 − δ exp[−αH(xi; ξ)]

]

+
n∑

i=1

∂H(xi; ξ)

∂ξ k
and

Uξkξ j
(θ) =

n∑

i=1

1

h(xi; ξ)

[
∂2h(xi; ξ)

∂ξ kξ j
−

1

h(xi; ξ)

∂h(xi; ξ)

∂ξ k

∂h(xi; ξ)

∂ξ j

]
− α

n∑

i=1

∂2H(xi; ξ)

∂ξ kξ j

−2αδ

n∑

i=1

exp[−αH(xi; ξ)]

1 − δ exp[−αH(xi; ξ)]

[
∂2H(xi; ξ)

∂ξ kξ j
−

∂H(xi; ξ)

∂ξ k

αH(xi; ξ)

1−δ exp[−αH(xi; ξ)]

]
.

When some standard regularity conditions are satisfied (Cox and Hinkley 1974),

one can verify that
√
n

([
α̂, δ̂, ξ̂

]⊤
− [α, δ, ξ ]⊤

)
converges in distribution to the

multivariate Np+2

(
0,K([α, δ, ξ ] )−1

)
distribution, where p denotes the dimension of

ξ and K([α, δ, ξ ] ) is the expected information matrix for which the limit identity

limn→∞ Jn([α, δ, ξ ] ) = K([α, δ, ξ ] ) is satisfied. Based on this result, one can compute

confidence regions for the MOEW parameters. Such regions can be used as decision

criteria in several practical situations.

For checking if δ is statistically different from one, i.e. for testing the null hypothesis

H0 : δ = 1 against H1 : δ �= 1, we use the LR statistic given by LR = 2
{
ℓ(̂θ) − ℓ(̃θ)

}
,

where θ̂ is the vector of unrestrictedMLEs underH1 and θ̃ is the vector of restrictedMLEs

under H0. Under the null hypothesis, the limiting distribution of LR is a χ2
1 distribution.

If the test statistic exceeds the upper 100(1−α)% quantile of the χ2
1 distribution, then we

reject the null hypothesis.

Censored data occur very frequently in lifetime data analysis. Some mechanisms

of censoring are identified in the literature as, for example, types I and II censoring

(Lawless 2003). Here, we consider the general case of multi-censored data: there are

n = n0 + n1 + n2 subjects of which n0 is known to have failed at the times x1, . . . , xn0 , n1

is known to have failed in the interval [si−1, si], i = 1, . . . , n1, and n2 survived to a time ri

, i = 1, . . . , n2, but not observed any longer. Note that type I censoring and type II cen-

soring are contained as particular cases of multi-censoring. The log-likelihood function

of θ = (δ,α, ξ⊤)⊤ for this multi-censoring data reduces to

ℓ(θ) = n0 log(δα) +
n0∑

i=1

log [h(xi; ξ)] − α

n0∑

i=1

H(xi; ξ) − 2

n0∑

i=1

log
{
1 − δ exp[−αH(xi; ξ)]

}

+
n1∑

i=1

log

{
1 − exp[−αH(si; ξ)]

1 − δ exp[−αH(si; ξ)]
−

1 − exp[−αH(si−1; ξ)]

1 − δ exp[−αH(si−1; ξ)]

}

+ n2 log(δ) − α

n2∑

i=1

H(ri; ξ) − 2

n2∑

i=1

log
{
1 − δ exp[−αH(ri; ξ)]

}
.

(21)

The score functions and the observed information matrix corresponding to (21) is too

complicated to be presented here.

6 Two special models

In this section, we study two special MOEW models, namely the Marshall-Olkin

modified Weibull (MOMW) and Marshall-Olkin Gompertz (MOG) distributions. We
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provide plots of the density and hazard rate functions for some parameters to illustrate

the flexibility of these distributions.

6.1 TheMOMW model

For H(x; λ, γ ) = xγ exp(λx) and h(x; λ, γ ) = xγ−1 exp(λx)(γ + λx), we obtain the

MOMW distribution. Its density function is given by

f (x;α, δ, λ, γ ) = δα(γ + λx)xγ−1 exp[ λx − αxγ exp(λx)]
{
1 − δ exp[−αxγ exp(λx)]

}2 , x > 0,

where λ, γ ≥ 0. If δ = 1, it leads to the special case of the modified Weibull (MW)

distribution (Lai et al. 2003). In addition, when λ = 0, it gives theWeibull distribution. Its

cdf and hrf are given by

F(x;α, δ, λ, γ ) =
1 − exp[−αxγ exp(λx)]

1 − δ exp[−αxγ exp(λx)]

and

τ(x;α, δ, λ, γ ) =
αxγ−1 exp(λx)(γ + λx)

1 − δ exp[−αxγ exp(λx)]
,

respectively. In Figures 2(a), 2(b), 2(c) and 2(d), we note some different shapes of the

MOMW pdf. Further, Figures 3(a), 3(b), 3(c) and 3(d) display plots of theMOMW hrf,

which can have increasing, decreasing, non-monotone and bathtub forms.

The rth raw moment of theMOMW distribution comes from (13) as

E
(
Xr
)

=
∞∑

j=1

wj μr(j), (22)

Figure 2 TheMOMW density functions. (a) For α = 0.5, λ = 2.0, γ = 0.5. (b) For

δ = 2.0, λ = 2.0, γ = 0.5. (c) For δ = 5.0, δ = 2.0, γ = 0.5. (d) For α = 0.5, δ = 2.0, λ = 2.0.
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Figure 3 TheMOWN hrfs. (a) For α = 0.5, λ = 2.0, γ = 0.5. (b) For δ = 2.0, λ = 2.0, γ = 0.5. (c) For

δ = 5.0, δ = 2.0, γ = 0.5. (d) For α = 0.5, δ = 2.0, λ = 2.0.

where μr(j) =
∫∞
0 xrg(x; (j + 1)α, γ , λ))dx denotes the rth raw moment of theMW dis-

tribution with parameters (j + 1)α, γ and λ. Carrasco et al. (2008) determined an infinite

representation for μr(j) given by

μr(j) =
∞∑

i1,...,ir=1

Ai1,...,ir Ŵ(sr/γ + 1)

[ (j + 1)α]sr/γ
, (23)

where

Ai1,...,ir = ai1 , . . . , air and sr = i1, . . . , ir ,

and

ai =
(−1)i+1ii−2

(i − 1)!

(
λ

γ

)i−1

.

Hence, theMOMW moments can be obtained directly from (22) and (23).

Let x1, . . . , xn be a sample of size n from X ∼ MOMW(α, δ, λ, γ ). The log-likelihood

function for the vector of parameters θ = (α, δ, λ, γ )⊤ can be expressed as

ℓ(θ) = n log(δα) +
n∑

i=1

log(γ + λ xi) + (γ − 1)

n∑

i=1

log(xi) + λ

n∑

i=1

xi − α

n∑

i=1

xλ
i exp(λ xi)

−2

n∑

i=1

log
(
1 − δ exp

[
−αx

γ
i exp(λ xi)

])
.
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6.2 TheMOG model

ForH(x;β) = β−1[ exp(βx)−1] and h(x;β) = exp(βx), we obtain theMOG distribution.

Its pdf is given by

f (x;α, δ,β) =
δα exp {βx − α/β[ exp(βx) − 1]}
{
1 − δ exp {−α/β[ exp(βx) − 1] }

}2 , x > 0,

where −∞ < β < ∞. For δ = 1, it follows the Gompertz distribution as a special

case. The MOG model is a special case of the Marshall-Olkin Makeham distribution

(EL-Bassiouny and Abdo 2009). The cdf and hrf of theMOG distribution are given by

F(x;α, δ,β) =
1 − exp {−α/β[ exp(βx) − 1]}
1 − δ exp {−α/β[ exp(βx) − 1]}

and

τ(x;α, δ,β) =
α exp(βx)

1 − δ exp {−α/β[ exp(βx) − 1]}
.

Figures 4(a), 4(b) and 4(c) display some plots of the density functions for some values

of α, δ and β . The hrf of the Gompertz distribution is increasing (β > 0) and decreasing

(β < 0). Besides these two forms, Figures 5(a), 5(b) and 5(c) indicate that the MOG hrf

can be bathtub shaped.

From Equation (15), theMOG qf becomes

Q(u) = β−1 log

[
β

α
log

(
1 − δu

1 − u

)
+ 1

]
.

Let x1, . . . , xn be a sample of size n from theMOG model. The log-likelihood function

for the vector of parameters θ = (δ,α,β)⊤ can be expressed as

ℓ(θ) = n log(δα) + β

n∑

i=1

xi −
α

β

n∑

i=1

[
exp(βxi) − 1

]

− 2

n∑

i=1

log
(
1 − δ exp {−α[ exp(βxi) − 1] /β}

)
.

7 Simulation and applications

This section is divided in two parts. First, we perform a simulation study in order to assess

the performance of theMLEs on some points at the parametric space of one of the special

Figure 4 TheMOG density functions. (a) For α = 0.5,β = 0.7. (b) For δ = 2.0,β = 2.0.

(c) For δ = 5.0,α = 1.5.
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Figure 5 TheMOG hrfs. (a) For α = 25,β = 2.0. (b) For δ = 0.2,β = 0.5. (c) For α = 0.01, δ = 0.5.

models. Second, an application to real data provides evidence in favor of one distribution

in theMOEW class.

7.1 Simulation study

We present a simulation study by means of Monte Carlo’s experiments in order to assess

the performance of theMLEs described in Section 5. To that end, we work with theMOG

distribution. One of advantages of this model is that its cdf has tractable analytical form.

This fact implies in a simple random number generation (RNG) determined by theMOG

qf given in Section 6.2. TheMOG generator is illustrated in Figure 6.

The simulation study is conducted in order to quantify the influence of η = α/β over

the estimation of the extra parameter δ. It is known that η > 1 gives the Gompertz

distribution which presents mode at zero or, for η < 1, having their modes at x∗ =
β−1 [ 1 − log(η)]. An initial discussion using the Kullback-Leibler distance derived in

Section 4.3 points out that increasing the contamination (or the bias of the estimates) can

affect the quality of fit.

In this study, the following scenarios are taken into account. For the sample size n =
50, 100, 150, 200, we adopt as the true parameters the following cases:

(i) Scenario η < 1: (α,β) = (1, 2) and δ ∈ {0.3, 1, 4};
(ii) Scenario η = 1: (α,β) = (2, 2) and δ ∈ {0.3, 1, 4};
(iii) Scenario η > 1: (α,β) = (4, 2) and δ ∈ {0.3, 1, 4}.

Figure 6 Illustration of theMOG generator for two points at the parametric space.
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Also, we use 10,000 Monte Carlo’s replications and, at each one of them, we quantify (i)

the average of the MLEs and (ii) the mean square error (MSEs).

Table 3 gives the results of the simulation study. In general, the MLEs present smaller

values of the biases and MSEs when the sample size increases. It is important to high-

light the following atypical case: for the MLEs of α at the scenarios (α, δ,β) ∈ {(1, 4, 2),
(2, 1, 2), (4, 0.3, 2), (4, 1, 2)} and of δ at (4, 0.3, 2), the associated biases do not have an

inverse monotonic relationship with sample sizes, as expected.However, based on the fact

Table 3 Performance of theMLEs for theMOG distribution

(α, δ,β) n
θ̂i(MSE(θ̂i))

α̂ (MSE (α̂)) δ̂ (MSE (̂δ)) β̂ (MSE (β̂))

For η < 1

(1, 0.3, 2) 50 1.201 (2.837) 0.478 (0.883) 2.502 (1.698)

· 100 1.181 (1.745) 0.406 (0.290) 2.320 (1.238)

· 150 1.156 (1.299) 0.385 (0.195) 2.249 (1.015)

· 200 1.103 (1.008) 0.358 (0.134) 2.244 (0.899)

(1, 1, 2) 50 1.202 (1.965) 1.620 (5.938) 2.425 (1.630)

· 100 1.134 (1.199) 1.361 (2.690) 2.305 (1.145)

· 150 1.079 (0.884) 1.231 (1.638) 2.288 (0.979)

· 200 1.063 (0.735) 1.180 (1.244) 2.250 (0.845)

(1, 4, 2) 50 0.965 (0.810) 4.764 (26.798) 2.544 (1.561)

· 100 0.958 (0.544) 4.398 (14.813) 2.390 (1.025)

· 150 0.959 (0.443) 4.283 (11.454) 2.328 (0.831)

· 200 0.970 (0.369) 4.246 (8.953) 2.262 (0.653)

For η = 1

(2, 0.3, 2) 50 2.246 (7.571) 0.426 (0.473) 2.787 (3.543)

· 100 2.137 (4.502) 0.361 (0.172) 2.561 (2.473)

· 150 2.073 (3.279) 0.341 (0.116) 2.471 (1.981)

· 200 2.011 (2.596) 0.324 (0.083) 2.434 (1.698)

(2, 1, 2) 50 2.161 (5.462) 1.481 (4.886) 2.687 (3.051)

· 100 2.012 (3.115) 1.199 (1.798) 2.543 (2.157)

· 150 1.947 (2.277) 1.100 (1.062) 2.483 (1.763)

· 200 1.923 (1.874) 1.056 (0.787) 2.430 (1.507)

(2, 4, 2) 50 1.805 (2.404) 4.534 (21.279) 2.785 (2.783)

· 100 1.817 (1.681) 4.202 (12.456) 2.572 (1.869)

· 150 1.828 (1.390) 4.097 (9.474) 2.487 (1.527)

· 200 1.861 (1.153) 4.075 (7.495) 2.388 (1.184)

For η > 1

(4, 0.3, 2) 50 3.770 (13.137) 0.336 (0.191) 3.400 (6.701)

· 100 3.737 (8.129) 0.304 (0.072) 2.951 (4.152)

· 150 3.731 (6.119) 0.298 (0.051) 2.764 (3.184)

· 200 3.685 (4.865) 0.289 (0.038) 2.676 (2.613)

(4, 1, 2) 50 3.845 (13.615) 1.272 (3.153) 3.149 (6.239)

· 100 3.735 (7.757) 1.076 (1.043) 2.833 (4.060)

· 150 3.717 (5.760) 1.024 (0.634) 2.689 (3.150)

· 200 3.721 (4.759) 1.000 (0.472) 2.588 (2.601)

(4, 4, 2) 50 3.608 (8.172) 4.605 (21.140) 3.036 (5.150)

· 100 3.677 (5.234) 4.262 (11.467) 2.668 (2.989)

· 150 3.737 (4.039) 4.172 (8.228) 2.510 (2.169)

· 200 3.796 (3.247) 4.138 (6.370) 2.389 (1.588)
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Figure 7 MSE curves for δ ∈ {0.3, 1, 4}, η = 0.5, 1, 2 and n = 200. (a)MSE(̂α), (b)MSE(β̂), (c)MSE(̂δ).

that their MSEs tend to zero, we can expect that there exists a sample size n0 such that

biases of the MLEs decrease when the sample sizes increase from n0.

The results provide evidence that the scenarios under the condition η > 1 yield a hard

estimation (having larger variation ranges of the MSEs than those obtained for the cases

when η < 1) for α and β parameters, and that the MLEs present smaller values of the

MSEs under such conditions. Figure 7 illustrates the above behavior for the cases δ ∈
{0.3, 0.8, 1, 2, 4} and n = 200. In summary, the scenario with less numerical problems is

(η, δ) = (2, 0.1), whereas that one which requires more attention for estimating theMOG

parameters is (η, δ) = (0.5, 4).

7.2 Applications

Here, the usefulness of the MOEW distribution is illustrated by means of two real data

sets.

7.2.1 Uncensored data

Here, we compare the fits of some special models of theMOEW family using a real data

set. The estimation of the model parameters is performed by the maximum likelihood

method discussed in Section 5. We use the maxLik function of the maxLik package in

R language. In this function, if the argument “method” is not specified, a suitable method

is selected automatically. For this application, we use the Newton-Raphson method. The

data represent the percentage of body fat determined by underwater weighing for 250

men. For more details about the data see http://lib.stat.cmu.edu/datasets/bodyfat.

Table 4 provides some descriptive measures. They suggest an empirical distribution

which is slightly asymmetric and platykurtic.

We compare the classical models and generalized models within the MO family. The

null hypothesis H0 : δ = 1 is tested against H1 : δ �= 1 using the LR statistic. The com-

parisons are presented in Table 5. For the MOW and MOEP models, one cannot say

that the parameter δ is statistically different from one at the 10% significance level. Based

on this result, we fit the W , exponential power (EP), MOG and Marshall-Olkin flexible

Weibull extension (MOFWE) models to the current data (see Table 1). Thesemodels are

compared with two other three-parameter models, namely: the modified Weibull (MW)

Table 4 Descriptive statistics

Mean Mode Median Std. Desv. Skewness Kurtosis Min Max

19.30 20.40 19.25 8.23 0.19 2.62 3.00 47.50

http://lib.stat.cmu.edu/datasets/bodyfat
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Table 5 Comparison of fittedmodels using the LR test

Null hypothesis Models LR statistic p-value

δ = 1

G × MOG 11.2963 0.0008

W × MOW 0.7638 0.3822

EP × MOEP 2.1959 0.1384

FWE × MOFWE 12.3659 0.0004

and generalized Birnbaum-Saunders (GBS) (Owen 2006) distributions. The GBS density

is given by

f (x;φ, η, κ) =
1

φ
√
2πηxκ

(
1 − κ +

ηκ

x

)
exp

[
−

1

2φ2

(x − η)2

ηx2κ

]
, x > 0.

In Table 6, we present the MLEs (standard errors in parentheses) of the parameters of

the fittedMOFWE ,MOG, EP ,W ,MW and GBS distributions. Also, we provide the

goodness-of-fit measures (p-values in parentheses). Thus, these values indicate that the

null models are strongly rejected for the MOFWE and MOG distributions, since the

associated p-values are much lower than 0.001.

Table 7 gives the values of the Akaike information criterion (AIC), Bayesian informa-

tion criterion (BIC), consistent Akaike information criterion (CAIC) and Hannan-Quinn

information criterion (HQIC). Since the values of the AIC, CAIC and HQIC are smaller

for theMOFWE distribution compared to those values of the other fitted models. Thus,

this new distribution seems to be a very competitive model to explain the current data.

Figures 8(a) and 8(b) display the estimated density and survival functions of the

MOFWE distribution. The plots confirm the excellent fit of this distribution to the data.

Figure 8(c) shows that the estimatedMOFWE hrf is an increasing curve.

7.2.2 Censored data

Now, we consider a set of remission times from 137 cancer patients [Lee andWang (2003),

pag. 231]. Lee and Wang (2003) showed that the log-logistic (LL) model provides a good

fit to the data. Ghitany et al. (2005) compared the fits of the MOW and W models to

these data. Now, we present a more detailed study by comparing the fitted W , LL, EP ,

MOW , Marshall-Olkin log-logistic (MOLL), MOEP and GBS models to these data.

Table 6MLEs and goodness-of-fit statistics

Model Estimates (standard errors) Goodness-of-fit (p-value)

α̂(or φ̂) δ̂(or η̂) γ̂ (or κ̂) β̂ (or λ̂) AD CM

MOFWE
1 2.9136 0.0552 14.3666 0.1082 0.0115

× (1.1321) (0.0022) (3.7615) (0.9939) (0.9987)

MOG
0.1289 18.8183 – 0.0183 0.6825 0.0938

(0.0151) (2.9308) × (0.0063) (0.0739) (0.1361)

EP
1 1 0.0359 1.7778 0.2537 0.0273

× × (0.0008) (0.0870) (0.7301) (0.8800)

W
0.0004 1 2.5373 – 0.4344 0.0667

(0.0002) × (0.1434) × (0.2985) (0.3079)

MW
0.0007 1 2.2292 0.0149 0.2761 0.0384

(0.0007) × (0.4384) (0.0191) (0.6546) (0.7094)

GBS
1.3189 18.7623 0.1328 × 0.5672 0.0876

(0.1847) (0.5784) (0.0513) × (0.1404) (0.1642)
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Table 7 Statistics AIC, BIC, CAIC and HQIC

Models AIC BIC CAIC HQIC

MOFWE 1753.989 1764.553 1754.087 1758.241

MOG 1767.305 1777.870 1767.403 1771.557

EP 1764.136 1771.178 1764.184 1766.970

W 1756.843 1763.886 1756.892 1759.678

MW 1757.997 1768.561 1758.094 1762.248

GBS 1761.136 1771.701 1761.234 1765.388

The functionsH(x; γ , c) = log(1+γ xc) and h(x; γ , c) = γ c xc−1/(1+γ xc) are associated

with the LLmodel.

The hypothesis that the underlying distribution is W (or EP) versus the alternative

hypothesis that the distribution is the MOW (or MOEP) is rejected with p-value =

0.0055 (or p-value = <0.0001). Further, the hypothesis test that the underlying distribu-

tion is LL versus theMOLL distribution yields the p-value = 1.0000. Thus, we compare

theMOW ,MOEP , LL and GBS models to determine which model gives the best fit to

the current data.

Table 8 lists theMLEs (and corresponding standard errors in parentheses) of the param-

eters and the values of the AD and CM statistics (their p-values in parentheses). The

figures in this table, specially the p-values, suggest that the MOW distribution yields a

better fit to these data than the other three distributions.

Table 9 lists the values of the AIC, BIC, CAIC and HQIC statistics. The figures in

this table indicate that there is a competitiveness among the MOW , MOEP and LL

models. However, if we observe the Figures 9(a), 9(b) and 9(c), we note that the MOW

andMOEP models present better fits to the current data.

Figure 9(d) really shows that the MOW and MOEP distributions present good fits

to the current data. We can conclude that the MOW and MOEP distributions are

excellent alternatives to explain this data set.

8 Conclusion

In this paper, theMarshall-Olkin extendedWeibull family of distributions is proposed and

some of its mathematical properties are studied. The maximum likelihood procedure is

Figure 8 Plots of the estimated. (a) density, (b) survivor function (c) and hrf of theMOFWE model.
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Table 8MLEs and goodness-of-fit statistics

Model

Estimates (standard errors) Goodness-of-fit (p-value)

α̂ (or φ̂) δ̂ (or η̂) γ̂ (or κ̂ or β̂) ĉ (or λ̂) AD CM

MOW
0.0037 0.0736 1.5719 − 0.1889 0.0264

(0.0043) (0.0727) (0.1616) × (0.8994) (0.8908)

MOEP
− 0.0233 0.0144 1.6012 0.2057 0.0279

× (0.0165) (0.1423) (0.0042) (0.8686) (0.8733)

GBS
1.6313 7.1422 0.3356 − 1.2753 0.2116

(0.1226) (0.7374) (0.0314) × (0.0025) (0.0038)

LL
− − 0.0427 1.6900 0.2891 0.0380

× × (0.0118) (0.1249) (0.6101) (0.7164)

used for estimating the model parameters. Two special models in the family are described

with some details. In order to assess the performance of the maximum likelihood esti-

mates, a simulation study is performed by means of Monte Carlo experiments. Special

models of the proposed family are compared (through goodness-of-fit measures) with

other well-known lifetime models by means of two real data sets. The proposed model

outperforms classical lifetime models to these data.

Appendix: An expansion for f(x; δ,α, ξ)F(x; δ,α, ξ)c

Here, we obtain an expansion for the quantity f (x; δ,α, ξ)F(x; δ,α, ξ)c. First, we consider

an expansion for F(x; δ,α, ξ)c. Based on (5), the power of the cdf can be expressed as

F(x; δ,α, ξ)c = {1 − exp[−αH(x; ξ)] }c︸ ︷︷ ︸
≡A

{1 − δ exp[−αH(x; ξ)] }−c

︸ ︷︷ ︸
≡B

.

Applying expansion (9), we have

A =
∞∑

k=0

(−1)k
(
c

k

)
exp[−kαH(x; ξ)] .

Now, we expand the quantity B. Equation (9) under the restriction δ < 1 (implying that

δ exp[−αH(x; ξ)]< 1) yields

B =
∞∑

j=0

(c)j

j!
δ
j
exp[−jαH(x; ξ)] .

Moreover, it is clear that δ = 1 implies B = 1. Finally, for δ > 1 (i.e., {1 − δ

exp[−αH(x; ξ)] } > 1), the quantity B can be rewritten as

B =
{
1−[ 1 − {1 − δ exp[−αH(x; ξ)] }−1]

}c
.

Table 9 Statistics AIC, BIC, CAIC and HQIC

Models AIC BIC CAIC HQIC

MOW 843.1171 851.8770 843.2975 846.6769

MOEP 843.1898 851.9498 843.3703 846.7497

GBS 858.3686 867.1285 858.5490 861.9284

LL 843.7586 849.5986 843.8481 846.1318
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Figure 9 Plots of the estimated. (a) Q-Q plot ofMOW , (b)LL, (c)MOEP distributions and (d)

Kaplan-Meier curve estimated survival and upper and lower 95% confidence limits for the cancer patients.

Using the binomial expansion, we have

B =
∞∑

j=0

(−1)j
(
c

j

) [
1 −

{
1 − δ exp [−αH(x; ξ)]

}−1
] j

.

Thus,

F(x; δ,α, ξ)c = I(δ<1)

∞∑

j,k=0

(−1)k
(c)j

j!

(
c

k

)
δ
j
exp[−(j + k)αH(x; ξ)]

+ I(δ=1)

∞∑

k=0

(−1)k
(
c

k

)
exp[−kαH(x; ξ)]

+ I(δ>1)

∞∑

j,k=0

(−1)j+k

(
c

k

)(
c

j

)
exp[−kαH(x; ξ)]

×[ 1 − {1 − δ exp[−αH(x; ξ)] }−1]j .
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Hence, based on Equation (13), the following expansion holds

f (x; δ,α, ξ)F(x; δ,α, ξ)c =
( ∞∑

v=0

wv g (x; (v + 1)α, ξ)

)
F(x; δ,α, ξ)c = I(δ<1)

∞∑

j,k,v=0

(−1)k

× wv
(c)j

j!

(
c

k

)
δ
j
exp[−(j + k)αH(x; ξ)] g(x; (v + 1)α, ξ)

+ I(δ=1)

∞∑

k,v=0

(−1)k wv

(
c

k

)
exp[−kαH(x; ξ)] g(x; (v + 1)α, ξ)

+ I(δ>1)

∞∑

j,k,v=0

(−1) j+k wv

(
c

k

)(
c

j

)
exp[−kαH(x; ξ)]

×
[
1 − {1 − δ exp[−αH(x; ξ)] }−1

] j
g(x; (v + 1)α, ξ). (24)
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