
THE MARVIN MESSAGE AUTHENTICATION CODE AND THE LETTERSOUP

AUTHENTICATED ENCRYPTION SCHEME

MARCOS A. SIMPLICIO JR, PEDRO D’AQUINO F. F. S. BARBUDA, PAULO S. L. M. BARRETO†,
TEREZA C. M. B. CARVALHO, AND CINTIA B. MARGI

Abstract. We present Marvin, a new parallelizable message authentication code based on
the ALRED family. The new algorithm is designed with resource-constrained platforms
in mind and explores the structure of an underlying block cipher to provide security at
a small cost in terms of memory needs. Also, we show how Marvin can be used as an
authentication-only function or else in an Authenticated Encryption with Associated Data
(AEAD) scheme. We define a new AEAD proposal called LetterSoup, which is based on
the LFSRC mode of operation. Finally, we analyze the security and performance of the
resulting schemes.
Keywords: cryptographic algorithms, message authentication codes, authenticated encryp-
tion with associated data.

1. Introduction

Consider the problem of computing a message authentication code (MAC) for a mes-
sage M under a k-bit key K. For convenience, assume that M is partitioned in t blocks
M1 . . . Mt, where all blocks Mi except possibly Mt are n bits long. If an n-bit block cipher
E is available, a commonplace and economical strategy is to construct a MAC based on E.

Conventional block cipher based MAC schemes invoke the underlying block cipher t+ε
times, where ε stands for a small fixed number. Typically, the ancillary processing in such
schemes is much simpler and computationally less expensive than the cost of the block
cipher invocations. This is important for space-constrained platforms like smart cards or
cheap dedicated hardware, since the extra code storage or circuit area needed for the MAC
algorithm is small, say, within 10% of the space needed by E itself. Examples of such
schemes are CMAC [15, 21] and PMAC [6].

In contrast, Carter-Wegman [30] schemes potentially reduce the number of block cipher
invocations to ε. This happens when the Carter-Wegman structure can be implemented
more efficiently than one E call per message block, which is the case on platforms with
large storage spaces. The overhead per message block is then typically around 10%–20%
of a block cipher call. Besides, Carter-Wegman is fully parallelizable. However, space-
constrained platforms must resort to space-saving but much slower implementation tech-
niques, which nevertheless increase code storage or circuit area requirements as compared
to conventional schemes and thus constitute an overall efficiency degradation.

The ALRED construction [11] provides a trade-off for iterated block ciphers that pro-
cess data blocks in chunks of fixed bitlength, notably (but not exclusively) the ciphers of
the Square [8] or Shark [22] family, which includes AES [20]. The cost of processing a
message block is typically 25%–40% of a block cipher call. This is slower than the Carter-
Wegman approach when storage is abundant, but since the ancillary processing is directly

†Supported by the Brazilian National Council for Scientific and Technological Development (CNPq) under
grant 312005/2006-7. ‡Special thanks to Ericsson Research for the valuable support on this work.

1

based on the block cipher components, the extra code storage or circuit area is compa-
rable to conventional schemes and thus far smaller. The ALRED construction is thus a
good midway option to either conventional or Carter-Wegman MAC schemes, combining
reasonable efficiency with platform flexibility. However, it has the disadvantage of being
strictly sequential. This is particularly undesirable when we consider a situation where
cheap dedicated hardware is available, leading to a scenario combining the limitations of
code/area constrained devices with the large processing power of a highly parallel system.

Our main contributions in this paper are the definition of a new, fully parallelizable
MAC called Marvin, based on the ALRED family and designed with resource-constrained
platforms in mind, as well as a new Authenticated Encryption with Associated Data
(AEAD) scheme based on Marvin, called LetterSoup, which is based on the LFSRC mode
of operation and shows a high performance according to our benchmarks. We also present
an initial work concerning the security analysis of the resulting schemes, giving the basis
for a formal security proof.

This paper is organized as follows. Section 2 defines the mathematical background
and notation used herein. We define Marvin structure and justify the design decisions
on section 3. Section 4 discuss how the algorithm can be used in an AEAD scheme and
describe LetterSoup. We present our security analysis for both algorithms on sections 5
and 6. Section 7 briefly covers the overall performance of the algorithm, while section 8
complements the discussion by showing our benchmark results. Finally, we conclude in
section 9.

2. Preliminaries and notation

In what follows, E : {0, 1}k × ({0, 1}w)b → ({0, 1}w)b stands for an iterated block cipher
structured as a substitution-permutation network (SPN) with a key size of k bits and a
block size of n = bw bits, and EK(B) denotes the encryption of block B under key K. Here
we assume that the n-bit data blocks are organized and processed as b bundles of w bits
each (typically w = 4 or w = 8, meaning that the data is organized in nybbles or bytes,
respectively); we say that E is a b-bundle block cipher.

A substitution table or S-box is a nonlinear mapping S : {0, 1}w → {0, 1}w. S-boxes are
the usual way to introduce nonlinearity in iterated block ciphers.

We represent the finite field with 2n elements as GF(2n) ≡ GF(2)[x]/p(x), for a irre-
ducible polynomial p(x) of degree n such that xw is a generator modulo p(x).

We write bin(`) for the binary representation of the integer ` if ` > 0, or the empty
string if ` = 0. The length of a bitstring B is denoted |B|. If |B| 6 n, then rpad(B) ≡ B ‖ 0∗

(resp. lpad(B) ≡ 0∗ ‖ B) is the bitstring consisting of B left-padded (resp. right-padded)
with as many binary zeros as needed (possibly none) to produce an n-bit string. Also, B[τ]
is the string consisting of the leftmost τ bits of B. Finally, if B is a bitstring of fixed length
w, the expressions B � m, B � m, and B rotl m stand respectively for B left-shifted,
right-shifted, and left-rotated by m bits (with its length preserved, and padded with zero
bits where needed).

2.1. Square-complete transforms.

Definition 1. Let E be a b-bundle iterated block cipher. A square-complete transform
(SCT for short) � : ({0, 1}w)b → ({0, 1}w)b is the shortest sequence of unkeyed rounds of E
such that any differential characteristic of E spanning that number of rounds contains at
least b active S-boxes.

2

SCTs are the kernel of ALRED message authentication codes. Ciphers of the Square [8]
family have block size b = (d − 1)2 bundles where d is the distance of a certain linear error
correcting code, and one can show [10] that any 4-round differential characteristic of such
a cipher contains at least d2 active S-boxes, even though there are 3-round differential char-
acteristics containing no more than 2d − 1 active S-boxes. This is the reason why Pelican
adopts 4-round SCTs derived from these ciphers1. Similarly, ciphers of the Shark [22]
family have block size b = d − 1 and any 2-round differential characteristic of such a ci-
pher contains at least d active S-boxes, hence one could define ALRED schemes based on
2-round SCTs derived from these ciphers.

Other ciphers are handled analogously, although determining the number of rounds of
an SCT may not be straightforward. For instance, Present [7] is a 16-bundle cipher known
to contain at least 10 active S-boxes at each 5 rounds, so an SCT necessarily spans between
6 and 10 rounds, but computing the exact number (namely, 7 rounds) is somewhat involved.
The same holds for Noekeon [9], which is a 32-bundle cipher containing at least 20 active
S-boxes at each 4 rounds; here an SCT would span between 5 and 8 rounds but the exact
number is not currently known.

3. TheMarvinMAC structure

The Marvin structure closely follows the randomize-then-combine paradigm, intro-
duced by Bellare and Micciancio in the context of incremental hash function design [4].
The advantage of this approach is twofold: the resulting MAC function is both incremental
and parallelizable. The concept of incrementality can be better explained through an ex-
ample: suppose one computes the MAC of a message M, resulting in the tag T , and later
this message is modified, becoming M′. With an incremental MAC function, the new tag
M′ can be computed from T at a cost proportional the amount of modification made in M
to get M′, thus avoiding the need of computing T ′ from the scratch. This is particularly
interesting when we consider huge messages (an entire hard disk, for example).

Marvin adopts a variant of Krawczyk’s hp(M) cryptographic CRC [16] to generate se-
cret offsets, and a square-complete transform to mix the offsets with message blocks. These
operations are applied to each message block in parallel and accumulated. The encrypted
(and then possibly truncated) accumulation result defines the MAC tag. Marvin uses a con-
stant c left-padded to n bits to generate the offset seed. Algorithm 1 describes the Marvin
message authentication code, written as Marvin(M,K, τ). It is also depicted on Figure 1.
3.1. On the choice of c. To ensure that the offsets Oi are non-zero it is necessary that
R itself be non-zero. Assuming that the block cipher E has no weak key K̃ such that
EK̃(B) = B for any block B, or that finding such a key is infeasible for any fixed block B,
it is clear that EK(B) ⊕ B , 0n. All things being equal, the simple choice c = 0 would be
suitable. Indeed, many MAC constructions and other modes of operation for block ciphers
adopt the encryption of a block of null bits, EK(0n), as the seed for offset generation.

However, it is essential that R remain secret, yet disclosure of EK(0n) for key confirma-
tion purposes is widespread if not recommended in many scenarios, especially financial
applications. It is therefore advisable to choose c , 0 for the sake of robust deployment
in real-world systems. Any non-zero constant would seems to do equally well, a small
(say, 1-byte) value being preferred not to impart efficiency on constrained processors. The
actual value is c = 0x2A, which was chosen largely at random, although it might be better
justified in certain contexts [1].

1The Alpha-MAC scheme is somewhat different in that it adopts 1-round transforms, applying them to partial
blocks of size d − 1.

3

Figure 1. The Marvin message authentication code

Algorithm 1 The Marvin message authentication code

Input: M . message to authenticate, with |M| < 2bn/2c.
Input: K . MAC key.
Input: τ . desired MAC length (τ 6 n).
Output: T . MAC of message M under key K, truncated to τ bits.

1: Partition the message as M = M1 ‖ . . . ‖Mt, where |Mi| = n for i = 1, . . . , t − 1, and
0 6 |Mt | 6 n with |Mt | = 0 iff |M| = 0.

2: R← EK(lpad(c)) ⊕ lpad(c)
3: for i← 1 to t do . incrementally or in parallel
4: Oi ← R · (xw)i ; Ai ← �(rpad(Mi) ⊕ Oi)
5: end for
6: A0 ← R ⊕ rpad(bin(n − τ) ‖ 1) ⊕ lpad(bin(|M|))
7: A←

⊕t
i=0 Ai . incrementally or in parallel

8: T ← EK(A)[τ]
9: return T

3.2. Offset generation. Computing offsets involves multiplication in a finite field GF(2n),
and hence has to be designed carefully to avoid unnecessary burden on a variety of plat-
forms, particularly those where MAC computation must be carried out incrementally in-
stead of in parallel.

The original Krawczyk proposal involves multiplication by the polynomial xn and hence
a shift by the full block length n followed by an n-step reduction, which is likely to be
overkill. The variant employed in CS mode [26] and PMAC1 [24] consists of multiplica-
tion by the polynomial x and hence a shift by a single bit; although the ensuing reduction
is very simple, this choice destroys bundle alignment and incurs costly operations on many
platforms, particularly 8-bit smart cards and SSE2 processors. Such drawbacks are clearly
undesirable.

Marvin adopts the middle way: since the underlying block cipher organizes the data in
w-bit bundles (supposedly fit for efficient implementation on the target platform), the most
natural shift distance is w: it preserves bundle alignment, and as a consequence the offset
generation involves multiplication by xw. The polynomial reduction is potentially more

4

complex than that incurred by 1-bit shift; however, this can be remedied by using a small
table, as described in appendix 12 for the special case where the block cipher is the AES.

3.3. Message padding. Perhaps the most popular padding method used in MAC schemes
consists of replacing the last block Mt by rpad(Mt ‖ 1) when |Mt | < n, and adding a new
block when |Mt | = b. This method ensures that no two distinct messages are padded to
the same string, which would trivially lead to a MAC collision. A related method avoids
adding an entire new block when |Mt | = n by handling the last block in a different manner,
for instance by using a different offset.

Marvin adopts a different approach. The last block is simply completed with zero bits;
however, the message length and also the truncation length are separately included in the
MAC tag computation. This avoids both the block addition and the need for a different
block treatment.

4. Authenticated encryption with associated data

An authenticated-encryption (AE) scheme is a symmetric-key mechanism that provides
both confidentiality (through the encryption of M) and authentication (through its MAC
calculation). Certain modes of operation can authenticate messages consisting of both
plaintext and ciphertext. This is the case when one desires to authenticate not only the
encrypted message but also its packet header (a TCP/IP header, for example). A scheme of
this kind is called an authenticated encryption mode with associated data (AEAD), where
the “associated data” in the previous example is the packet header.

4.1. Using Marvin in an authenticated encryption mode with associated data. To date,
many AE schemes have been proposed and analyzed, such as EAX [5], GCM [18] and
AEM [24]. However, one problem with EAX is that it is not entirely parallelizable due to
the use of CMAC. GCM is parallelizable in principle, but the definition of its internal MAC,
GHASH, makes it necessary to either implement finite field exponentiation to combine the
authentication tags of the plaintext and ciphertext parts computed in parallel, or else to
impose that the full plaintext part be authenticated before processing of the ciphertext part
begins, thus preventing complete parallelizability. AEM is fully parallelizable without
the need of expensive arithmetic, but authentication costs one full cipher invocation per
block. CS mode is almost ideal in this regard, but it needs both encryption and decryption
block cipher functionalities to be available (all other modes considered here only need
the encryption direction) and, according to its authors, it is not recommended to use with
involutional block ciphers (a restriction not present in the other modes).

It turns out that one can avoid all these drawbacks by simply substituting Marvin for
CMAC in the definition of EAX. Another possibility is to use Marvin in a new AEAD
construction, discussed in the following.

4.2. A new AEAD-mode proposal: LetterSoup. It is interesting to notice that the linear
feedback shift register counter (LFSRC) mode for block ciphers [25] could also be based
on, and benefit from, the Marvin choice of offsets. This way, it is possible to maintain
a single counter and use it both for the encryption and authentication sub-processes. The
LFSRC mode is not only length-preserving (|C| = |M|) but also involutional: applying it
twice recovers the original plaintext (cf. Algorithm 8).

Algorithm 2 describes the resulting LFSRC-Marvin authenticated-encryption mode of
operation that, for the sake of pronunciation, we call LetterSoup(N,M,H,K, τ). For con-
venience, we write �∗(R,C, τ) as the value A accumulated by steps 3 to 7 of the Marvin
algorithm for (encrypted) message C and tag length τ. Also, LFSRC(N,M,K) denote the

5

LFSRC mode of operation, as described in Algorithm 8 and depicted in Figure 2. It is
important to notice that the specific way the nonce is preprocessed ensures that the offset
seeds R and L passed as parameters to �∗ and LFSRC are nonzero, as long as the under-
lying block cipher does not have weak keys as discussed in section 3.1. Also, the nonce
N = 0n is not allowed, since it is reserved for the computation of L.

Figure 2. LetterSoup: AEAD mode

Algorithm 2 LetterSoup: AEAD mode

Input: N . nonce, an integer value in range 0 < N < 2n.
Input: M . message to encrypt and authenticate, with |M| < 2bn/2c.
Input: H . associated data, with |H| + |M| < 2bn/2c.
Input: K . cipher key.
Input: τ . desired MAC length (τ 6 n).
Output: C . ciphertext of M under K.
Output: T . MAC of the message, truncated to τ bits.

1: Partition the message as M = M1 ‖ . . . ‖Mt, where |Mi| = n for i = 1, . . . , t − 1, and
0 6 |Mt | 6 n with |Mt | = 0 iff |M| = 0

2: R← EK(lpad(bin(N))) ⊕ lpad(bin(N))
3: C ← LFSRC(R,M,K) ; A← �∗(R,C, τ)
4: if (H , ε and |H| > 0) then
5: Partition the header as H = H1 ‖ . . . ‖Hs, where |Hi| = n for i = 1, . . . , s − 1, and

0 < |Hs| 6 n
6: L← EK(bin(0n)) ; D← �∗(L,H, τ) ; A← (A ⊕ �(D))
7: end if
8: T ← EK(A)[τ]
9: return C ‖T

6

It is also possible to further extend this idea to allow for associated data. Suppose the
authentication tag for some confidential message M under key K and nonce N is A ←
LetterSoup(N,M, ε,K, τ), and the authentication tag for some associated (cleartext) data
H is D← LetterSoup(0n,H, ε,K, τ). The simplest way to combine them would be setting
T = A⊕D, as is the case with for the AEM mode [24]. However, if the same key K is used to
authenticate H in a context distinct from that where K is used to encrypt and authenticate
M (so that actually M and H are semantically unrelated to each other), an attacker can
semantically link M and H by intercepting the authenticated encrypted message (N,C, ε, A)
corresponding to M and forging the authenticated encrypted message with associated data
(N,C,H, A ⊕ D) without knowing the key.

This undesirable situation could be prevented by using one-time keys, but the whole
point of using nonces is to avoid the need to change keys too often. Another possible
solution would be similar to the one adopted by EAX, which prepends a different constant
t to the OMAC algorithms (OMACt) used for authenticating H and M, but this could bring
a negative impact to performance. We decided to adopt a more elegant e efficient way to
thwart the problem, combining the accumulated tags before the final encryption using the
� operation either on A or D, the tags computed from M and from H, respectively.

5. On the Security ofMarvin

We evaluate the Security of Marvin considering both key recovery attacks and message
forgery. Most attacks are based in the notion of accumulation collisions, which generalize
internal collisions as defined in [11, section 2.2] for parallelizable MAC schemes. Two
messages M = M1 . . . Mr and M′ = M′1 . . . M′s are said to cause an accumulation collision
if there exists a subset of indices I ⊆ {1, . . . ,min(r, s)} such that Mk = M′k for all k ∈ I and⊕

i<I Ai =
⊕

j<I A′j, where Ai (resp. A′j) denotes the internal state of the MAC algorithm
corresponding to the processing of message block Mi (resp. M′j). Clearly such messages
have the same MAC value, and hence given the tag of either of them one can forge the tag
of the other. Finding the collision on the Ai and A′j internal state is equivalent to solving
the balance problem [4] in the additive group of a binary field without knowing the group
elements, since these states depend on a secret key.

This phenomenon is unavoidable regardless of the details of the (parallelizable) MAC:
if the same key is used to authenticate a large enough number of messages, namely, O(2n/2)
messages for a b-bit underlying block cipher, the birthday paradox [28] makes the condi-
tion
⊕

i<I Ai =
⊕

j<I A′j likely to occur, opening the way to forgery. Therefore, the number
of messages authenticated under any particular key must be much smaller than 2bn/2c.

As stated in the ALRED original security analysis, two general approaches to exploit
the iteration function must be considered in order to generate Accumulation Collisions:
Extinguishing Differentials and Fixed Points. The use of Extinguishing Collisions is simi-
lar to Differential Cryptanalysis of Block Ciphers. It consists in creating pairs of messages
of equal length having a difference (with respect to some group operation at the choice of
the attacker) that, with a high probability, results in a zero difference in a state following the
difference injection. As the use of SCTs prevents differential trails with high probability,
it assures a high resistance of the ALRED construction to this kind of attack. On the other
hand, Fixed Points refer to words that can be inserted in the message sequence without
impacting the state value after the insertion point. To avoid the viability of finding such a
word using the MAC function as an oracle, the number of times a message can be authen-
ticated under the same key is upper-bounded by 2blc/2c, where the parameter lc is named the

7

capacity. Preliminary studies of the ALRED design show that lc = b − 8 is usually a good
approximation for the capacity, with b the block size of the underlying cipher.

Given an adversary (a program with access to one or more oracles), the following the-
orems generalize the provable security properties satisfied by strictly sequential instances
of the ALRED construction [11, section 3.3] in a straightforward fashion.

Theorem 1. Every key recovery attack on Marvin requiring q (adaptively) chosen mes-
sages can be converted to a key recovery attack on the underlying block cipher requiring
q + 1 adaptively chosen plaintexts.

Proof. Let E be an encryption oracle that yields the ciphertext of a given message under
the same (unknown) key K, and let A be a MAC adversary that, given the authentication
tags (of length τ) corresponding to q adaptively chosen messages M(j), yields the MAC
key. The key recovery attack on the underlying block cipher proceeds as follows.

(1) Request c′ = EK(lpad(c)) from the encryption oracle E and set R = c′ ⊕ lpad(c).
(2) For j = 1 to q:

(a) Request the adaptively chosen message M(j) fromA.
(b) Compute A(j) = �∗(R,M(j), τ).
(c) Request T (j) = EK(A(j)) from E and input T (j)[τ] toA.

(3) Request the MAC key (which is also the cipher key) K fromA.
�

Theorem 2. Every forgery attack on Marvin not involving accumulation collisions and re-
quiring q (adaptively) chosen messages can be converted to a (known plaintext) ciphertext
guessing attack on the underlying block cipher requiring q+1 adaptively chosen plaintexts.

Proof. Let E be an encryption oracle that yields the ciphertext of a given message under
the same (unknown) key K, and letA be a MAC adversary that, without involving accumu-
lation collisions, given a message M and the authentication tags of length τ corresponding
to q adaptively chosen messages M(j), yields the authentication tag of length τ correspond-
ing to M. The ciphertext guessing (fake encryption) attack on the underlying block cipher
proceeds as follows.

(1) Request c′ = EK(lpad(c)) from the encryption oracle E and set R = c′ ⊕ lpad(c).
(2) Input the message M and the length τ toA.
(3) For j = 1 to q:

(a) Request the adaptively chosen message M(j) fromA.
(b) Compute A(j) = �∗(R,M(j), τ).
(c) Request T (j) = EK(A(j)) from E and input T (j)[τ] toA.

(4) Request fromA the authentication tag T of length τ corresponding to M.
(5) Compute A = �∗(R,M, τ).
(6) If there is an index j for which A = A(j), then A has generated an accumulation

collision, which conflicts with the assumption that the attack perpetrated by A
does not involve any such circumstance. Otherwise the tag T is the ciphertext
(truncated to length τ) corresponding to the known plaintext A.

�

Loosely speaking, Theorems 1 and 2 state that Marvin is no less secure than the under-
lying block cipher, since an attacker capable of breaking the MAC (by either recovering the
key or simply forging a tag) using the cipher as a black box is necessarily also capable of
breaking the cipher itself (by either recovering the key or faking a ciphertext) with roughly
the same effort.

8

6. On the Security of LetterSoup

In this section we introduce formal security definitions and build our security analysis
of LetterSoup. We follow mainly [5] for the set of definitions presented here.

6.1. Definitions. AEAD Schemes. A set of keys is a nonempty set of strings having a dis-
tribution (the uniform distribution when the set is finite). A (nonce-based) authenticated-
encryption with associated data (AEAD) scheme is a pair of algorithms Π = (D,E) where
E is a deterministic encryption algorithm E : Key × Nonce × Header × Plaintext →
Ciphertext and D is a deterministic decryption algorithm D : Key × Nonce × Header ×
Ciphertext → Plaintext

⋃
Invalid. The Key space Key is a set of keys while the nonce

space Nonce and the header space Header (also called the space of associated data)
are non-empty sets of strings. We will write EN H

K (M) for E(K,N,H,M) and DN H
K (CT)

for D(K,N,H,CT), with K ∈ Key, N ∈ Nonce, H ∈ Header, M ∈ Plaintext, and
CT ∈ Ciphertext. We require that DN H

K (EN H
K (M)) = M for all M ∈ Plaintext. For

notational simplicity, we assume along this document that Nonce, Header, Plaintext and
Ciphertext are all {0, 1}∗ and that |EN H

K (M)| = |M|.
Nonce-Respecting. Suppose A is an adversary with access to an encryption or-

acle E· ·K (·). This oracle, on input (N,H,M), returns EN H
K (M). Let the tuples

(N1,H1,M1), . . . , (Nq,Hq,Mq) denote its oracle queries. AdversaryA is said to be nonce-
respecting if it never repeats N, i.e. if N1, . . . ,Nq are always distinct, regardless of oracle
responses and of A’s internal coins. Adversaries for AE and AEAD schemes are always
assumed to be nonce-respecting [23]. We writeAe(·) to indicate thatA uses oracle e(·).

Privacy of AEAD Schemes. We consider nonce-respecting adversaries with access to
an encryption oracle E· ·K (·). The advantage of such an adversaryA in violating the privacy
of an AEAD scheme Π = (D,E) having key space Key is:

AdvPRIV
Π (A) = Pr[K

$
← Key : AE· ·K (·) = 1] − Pr[K

$
← Key : A$· ·(·) = 1].

where $· ·(·) denotes an oracle that, on input (N,H,M), returns a random string of length
|M|.

Authenticity of AEAD Schemes. We provide the adversary A with two oracles: an
encryption oracle E· ·K (·) as the one above and a verification oracle D̂· ·K (·). The latter ora-
cle takes as input (N,H,CT), returning 1 if DN H

K (CT) ∈ Plaintext and 0 if DN H
K (CT) =

Invalid. The adversary is assumed to satisfy the following three conditions, which must
hold regardless of the response to the its oracle queries orA’s internal coins:

• Adversary A must be nonce-respecting concerning its encryption oracle; a nonce
used in an encryption oracle query may be used in a query to its verification oracle,
though.

• AdversaryA may never make a verification oracle query (N,H,CT) such that the
encryption oracle previously returned CT in response to a query (N,H,M).

• Adversary A must call its verification oracle exactly once, and may not subse-
quently call its encryption oracle. (That is, it makes a sequence of encryption
oracle queries, then a verification oracle query, and then halts).

We say that an adversary forges if its verification oracle returns 1 in response to the
single query made to it. The advantage of such an adversaryA in violating the authenticity
of an AEAD scheme Π = (D,E) having key space Key is:

AdvAUT H
Π (A) = Pr[K

$
← Key : AE· ·K (·),D̂· ·K (·) f orges].

9

IV-based encryption. An IV-based encryption scheme (IVE scheme) is a pair of al-
gorithms Π = (E,D), where E : Key × IV × Plaintext → Ciphertext is a deterministic
encryption algorithm and D : Key × IV × Ciphertext → Plaintext

⋃
Invalid is a deter-

ministic decryption algorithm. The key space Key is a set of keys, while the plaintext
space Plaintext, the ciphertext space Ciphertext and the IV space IV are all nonempty sets
of strings. We write ER

K(M) for E(K,R,M) and DR
K(C) for D(K,R,C). We require that

DR
K(ER

K(M)) = M for all K ∈ Key and R ∈ IV and M ∈ Plaintext. We assume, as be-
fore, that Plaintext = Ciphertext = {0, 1}∗ and that |ER

K(M)| = |M|. Also, we assume that
IV = {0, 1}n for some n > 1 called the IV length.

Pseudorandom functions. A family of functions, or a pseudorandom function (PRF)
is a map F : Key × D → {0, 1}n where Key is a set of keys and D is a nonempty set of
strings. We call n the output length of F. We write FK for the function F(K, ·) and we write
f

$
← F to mean K

$
← Key; f ← FK . We denote by Rαn the set of all functions with domain

{0, 1}α and range {0, 1}n. We identify a function with its key, making Rαn pseudorandom
functions. The advantage of adversary A in violating the pseudorandomness of the PRF
F : Key × {0, 1}α → {0, 1}n is given by

Advpr f
F (A) = Pr[K

$
← Key : AFK (·) = 1] − Pr[ρ

$
← Rαn : Aρ(·) = 1].

A family of functions E : Key × D → {0, 1}n is a block cipher if D = {0, 1}n and each EK

is a permutation. We let Pn denote all the permutations on {0, 1}n and define:

Advprp
E (A) = Pr[K

$
← Key : AEK (·) = 1] − Pr[π

$
← Pn : Aπ(·) = 1].

Resources. If xxx is an advantage notion for which Advxxx
Π

(A) has been defined, we
write Advxxx

Π
(R) for the maximal value of Advxxx

Π
(A) over all adversaries A that use re-

sources at most R. When counting resource usage of the adversary, one maximizes over
all possible oracle responses, including those that could not be returned by any experiment
we have specified for adversarial advantage. Resources of interest are the ones named: t –
the running time; q – the total number of oracle queries; σ – the aggregate length of these
queries; σ̂ – the length of the longest query. The running time t of an algorithm is its ac-
tual running time (relative to some fixed RAM model of computation) plus its description
size (relative to some standard encoding of algorithms). The data complexity σ is defined
as the sum of the lengths of all strings encoded in the adversary’s oracle queries. In this
document, the length of the strings will be measured in n-bit blocks, for some understood
value n. The number of blocks in a string M is defined as ||M||n = max{1, d|M|/ne}, so that
the empty string counts as one block. When the big-O notation is used, it is understood
that the constants hidden by the notation are absolute constants.

6.2. Security Results. In the following, we analyze the pseudorandomness of Letter-
Soup, which is essential to show why we can use a single key when using Marvin and
LFSRC together. We do not provide all elements for a complete security proof, but rather
the ones on which a formal security analysis can be based upon.

Theorem 3. Pseudorandomness of LetterSoup with a random pseudorandom function.
Let A be a nonce-respecting attacker using resources at most (q, σ) aiming to distinguish
LetterSoup from a random function. Then we have

Advpr f
LetterSoup[Rn

n](q, σ) 6 7q2(σ̂2 + 1)/2n+1

Proof. Let A be a nonce-respecting attacker trying to distinguish LetterSoup[Rn
n] from a

random function. Assume that A uses resources σ and makes no repeated queries. We
10

simulate the behavior of LetterSoup[Rn
n] oracle in game Q1, depicted in Algorithm 3. As

a standard, Q1 avoids choosing ρ
$
← Rn

n at the initialization and instead fills in values
incrementally. We write Domain(ρ) for the set of all X ∈ {0, 1}n such that ρ(X) has been
set previously. Any time we need a ρ(X) value that has not yet been defined, we choose a
random value from {0, 1}n and make this to be ρ(X). When we need a ρ(X) that has already
been defined, we use that old value. In the latter case, we also set a flag to bad, which
is not visible to an adversary but is of central importance for the security analysis. Let
Q1 be another game, equivalent to R1, where we dropped the statements that immediately
follow the setting of the flag bad and we record the domain of ρ in a variable R instead of
using ρ itself. This is a standard way to deal with security analysis using the game-playing
technique. With these definitions, we have that Advpr f

LetterSoup[Rn
n](A) = Advdist

Q1,R1(A) 6
Pr[AR1 sets bad]. Thus, all we need is to understand the adversary’s chance of setting bad
in game R1.

Algorithm 3 Game Q1, which simulates LetterSoupρ, with ρ a random function from Rn
n

1: L
$
← {0, 1}n ; ρ(0n)← {L} ; bad ← f alse

2: On query (N,H,M), where M = M1 ‖ . . . ‖Mt and N = N1 ‖ . . . ‖Nu, do the following
3: R

$
← {0, 1}n

4: if N ∈ Domain(ρ) then
5: bad ← true ; R← ρ(N) ; ρ(N)← R . Due to Nonce
6: end if
7: for i← 1 to t do
8: S i

$
← {0, 1}n ; Oi ← (R ⊕ N) · (xw)i

9: if Oi ∈ Domain(ρ) then
10: bad ← true ; S i ← ρ(Oi) ; ρ(Oi)← S i . Due to Offset
11: end if
12: Ai ← �(Mi ⊕ Oi)
13: end for
14: A0 ← R ⊕ rpad(bin(n − τ) ‖ 1) ⊕ lpad(bin(|M|))
15: A←

⊕t
i=0 Ai

16: for i← 1 to u do
17: Oi ← L · (xw)i ; Di ← �(Hi ⊕ Oi)
18: end for
19: D0 ← L ⊕ rpad(bin(n − τ) ‖ 1) ⊕ lpad(bin(|H|))
20: D←

⊕t
i=0 Di ; A← (A ⊕ �(D))

21: T
$
← {0, 1}n

22: if A ∈ Domain(ρ) then
23: bad ← true ; T ← ρ(A) ; ρ(A)← T . Due to Accumulation Collision
24: end if
25: return T ‖ S 0 . . . S t

There are three ways forA to set bad in game R1: using a Nonce N that happens to be
in R (step 4), generate a value Ai that leads to an Accumulation Collision (step 22) or to
generate an offset Oi that is already defined in R (step 9). In the first case,A knows which
value has been added, but this information is not particularly useful because A is not able
to ask another query using N (which would certainly set bad) and, thus, A has to use
another of the two methods that involves variables Ai and Oi which A can not manipulate

11

Algorithm 4 Game R1, which simulates LetterSoupρ, with ρ a random function from Rn
n

1: L
$
← {0, 1}n ; R ← {L} ; bad ← f alse

2: On query (N,H,M), where M = M1 ‖ . . . ‖Mt and N = N1 ‖ . . . ‖Nu, do the following:
3: R

$
← {0, 1}n

4: if N ∈ R then bad ← true . Due to Nonce
5: R ← R ∪ N
6: end if
7: for i← 1 to t do
8: S i

$
← {0, 1}n ; Oi ← (R ⊕ N) · (xw)i

9: if Oi ∈ R then bad ← true . Offset already defined
10: end if
11: Ai ← �(Mi ⊕ Oi)
12: end for
13: R ← R ∪ {O0, . . .Ot}

14: A0 ← R ⊕ rpad(bin(n − τ) ‖ 1) ⊕ lpad(bin(|M|))
15: A←

⊕t
i=0 Ai

16: for i← 1 to u do
17: O′i ← L · (xw)i ; Di ← �(Hi ⊕ O′i)
18: end for
19: D0 ← L ⊕ rpad(bin(n − τ) ‖ 1) ⊕ lpad(bin(|H|))
20: D←

⊕t
i=0 Di ; A← (A ⊕ �(D))

21: T
$
← {0, 1}n

22: if A ∈ R then bad ← true . Accumulation Collision
23: end if
24: R ← R ∪ {A}
25: return T ‖ S 0 . . . S t

directly. In fact, Oi is dependent of R, which is randomly defined on each query, while Ai

also depends on R and uses the � transform exactly to prevent manipulations of H or M
that could lead to an accumulation collision. With these remarks in mind, we can calculate
the probability associated to each method in a query q as shown in Table 1.

During the calculations we assumed that the values of the offsets Oi generated inside a
query are always different, which should hold true since we consider that xw is a generator
for GF(2n). To facilitate the calculations, we will use σ̂ = maxi{σi} instead of each σi.
Thus, we can write Pr(Nonce)[q, σ] 6 (2q2 + qσ̂(q − 1))/2n+1 and Pr(Offset)[q, σ] 6
σ̂(2q(1 + q) + qσ̂(q − 1))/2n+1 and Pr(Ac. Collision)[q, σ] 6 q(1 + q)(2 + σ̂)/2n+1, which
leads to the conclusion of the proof:

Advpr f
LetterSoup[Rn

n](A) = Advdist
Q1,R1(A)

6 Pr[AR1 sets bad]
= (4q2 + 4q2σ̂ + 2qσ̂ + q2σ̂2 − qσ̂2 + 2q)/2n+1

6 7q2(σ̂2 + 1)/2n+1.

�

This result is of fundamental importance to evaluate the security of the final LetterSoup
scheme. For that, we describe attacker P, (in Algorithm 5), which has an oracle z that

12

responds to queries (N,M,H) with a string R S 0S 1 · · · S t (where t = |M|) and simulates
LetterSoup[Rn

n]. With this attacker, we are able achieve the following results:

AdvPRIV
LetterSoup[Rn

n ,τ](q, σ) 6 7q2(σ̂2 + 1)/2n+1

AdvAUT H
LetterSoup[Rn

n ,τ](q, σ) 6 7q2(σ̂2 + 1)/2n+1 + σ2/2n + 1/2τ

Algorithm 5 Adversary Pz for attacking LetterSoup[Rn
n, τ]

1: RunA
2: for i← 1 to q do
3: WhenA makes oracle query Qi(N,H,M), answer the query as follows:
4: T ‖ S 0S 1 · · · S t ← z(N,H,M) . with |T | = n
5: C ← Mi ⊕ (S 0S 1 . . . S t)
6: return CT ← (C ‖T [τ]) as the oracle response
7: end for
8: WhenA halts and outputs a bit b, return b
9: WhenA makes a forgery attempt (N,H,C,T), and halts, do the following:

10: Tag← z(N,H,M) . with |Tag| = n
11: if Tag[τ] ≡ T and (N,H,C||T) , (Ni,Hi,Ci||Ti) for all 1 6 i 6 q then
12: return 1
13: else
14: return 0
15: end if

We omit the proof, that can be constructed using P like in EAX [5, Theorem 5] when
one considers the LFSRC mode instead of CTR as IVE scheme. Moving to the usage of a
block cipher E : Key × D→ {0, 1}n instead of Rn

n, we can achieve the following result in a
completely standard way (t′ = t + O(σ)):

AdvPRIV
LetterSoup[E,τ](q, σ) 6 Advprp

E (t′, σ) + (σ2 + 7q2(σ̂2 + 1))/2n+1

AdvAUT H
LetterSoup[E,τ](q, σ) 6 Advprp

E (t′, σ) + (σ2 + 7q2(σ̂2 + 1))/2n+1 + σ2/2n + 1/2τ

7. Efficiency considerations

Ignoring setup time, the computational cost incurred by a Galois-Carter-Wegman MAC
like GHASH to process one message block can be as small as that needed to compute one
round of the block cipher. This is achieved by using w-bit lookup tables (LUTs), which
may be very large: O(2wb) n-bit blocks of extra storage, or about 64 KiB per key for a 128-
bit underlying block cipher and 8-bit lookup indices. In storage-constrained environments
the cost of a plain GHASH implementation is likely to be comparable to a full encryption.
In contrast, Marvin typically consists of 2 rounds of a Shark-like cipher or 4 rounds of
a Square-like cipher, and hence it is 2 to 4 times slower than GHASH. However, Marvin
does not require any extra storage space since it simply reuses part of the already available
block cipher implementation itself. Thus on storage-constrained platforms Marvin can
easily match Galois-Carter-Wegman schemes.

On the other hand, Marvin is typically 2.5–4 times faster than MAC constructions that
need a full cipher invocation per message block. Furthermore, contrary to strictly sequen-
tial MAC constructions like CMAC or Pelican [12], Marvin is fully parallelizable.

13

Table 2 summarizes the features and efficiency considerations for the authentication
schemes discussed here, while Table 3 does the same for all the AEAD modes considered.

8. Benchmark results

In this section, we provide a preliminary benchmark of our Marvin implementations,
comparing it to CMAC, EAX and GCM both in constrained and powerful platforms. The
underlying block cipher chosen for the following tests is AES with 128-bit keys, for which
we have R = 4 rounds instead of the usual 10 rounds.

8.1. 32-bit Platform: x86. The AES, EAX and GCM implementations used for the tests
are the ones developed by Gladman [13], while Marvin, LetterSoup and CMAC were
developed according to specification. All the implementation are written in C++ and com-
piled using Visual Studio. The results of our tests, performed on a Intel Core 2 Processor,
are depicted in Figure 3.

Figure 3. Marvin performance on 32-bit platform

We note that Marvin is slower than CMAC for very short messages, which is due to
Marvin’s offset multiplication overhead: for short messages, e.g. 24 bytes, Marvin per-
forms 2 full encryptions and 2 square-complete transforms, which adds up to 28 unkeyed
AES rounds. On the other hand, CMAC performs 3 full encryptions, or 30 full rounds. In
this scenario, the overhead introduced by the offset multiplication (which enable it to be
parallelizable) become more visible. As shown in Figure 4, the break-even point for the
Marvin vs. CMAC comparison is achieved around 80 bytes. As the difference is at most a
few milliseconds, it should not be considered a problem in most 32-bit platforms. We note
two performance peaks, for 80 and 160-byte messages, which are explained by the lack of
padding in the measured points, since they are multiple of the cipher block size.

On the other hand, Marvin’s performance in 32-bit platforms is of much higher interest
when we consider larger messages. On a preliminary calculation, where only the number
of rounds of the underlying cipher is taken into account, Marvin’s advantage over CMAC
should be 10/10 − 4/10 = 60% as presented in Table 2. In practice, we have achieved

14

Figure 4. Detail of Marvin vs. CMAC on 32-bit platform, for short messages

52% in our tests. Furthermore, using LetterSoup we were able to achieve a substantial
advantage compared to both EAX and GCM (using 64KiB tables), for all message sizes.

We point out that, in the present benchmark, we did not take advantage of Marvin’s
intrinsic parallelism. For short messages this approach would most probably not be the
best choice, since the overhead involved in creating a thread would overshadow the perfor-
mance improvement from the concurrent processing; nonetheless, for large messages (e.g.
10MiB), a significant performance enhancement could be achieved.

8.2. 8-bit platform: Avrora Sensor Simulator. As testbed, we adopted the Avrora Sim-
ulator version 1.6.0 - Beta [29], simulating a microcontroller from the ATmega128 [2]
series; as recommended by Avrora documentation, we adopted avr-objdump and avr-gcc
(both GNU utilities) as compilation tools. We also developed CMAC, AEX and Mar-
vin/LetterSoup implementations, aiming at investigating the effect of size- and speed-
optimizations in the comparison. The underlying AES code is the C implementation orig-
inally developed by Martins and Barreto [17], which is tailored to constrained platforms.

The results of our tests are presented on Table 4, which shows that Marvin has a slight
advantage over CMAC in terms of performance, but has a considerably bigger code size.
Based on these results, our recommendation is for an implementation which does not use
tables and is speed-optimized.

We have also tested LetterSoup and compared its results with EAX. Due to the reduced
memory available on the platform, all tests were performed without using precomputed ta-
bles. The results, presented in Table 5, show that LetterSoup outperforms EAX-CMAC
by 29-28% in all tested scenarios. Thus, our recommendation is for a size-optimized im-
plementation.

9. Conclusions

We have presented Marvin, a new parallelizable message authentication code based
on the ALRED family, and LetterSoup, an AEAD scheme that explores some interesting
properties of LFSRC block-cipher mode of operation. Both algorithms are interesting
when one needs platform flexibility: on the one hand, they need about 25%–40% of a
block cipher call per processed block and may be implemented using a reduced space in
memory, interesting features in constrained scenarios such as mobile and sensor networks;
on the other hand, they can take advantage of scenarios where higly parallel systems are
available and can be further optimized using extra memory.

15

Also, we analyzed the security and provided a benchmark comparing their performance
with other important algorithms both on limited and resourceful platforms. Our security
analysis is not completely developed, but presents the essential elements that support the
security of the proposed schemes, providing the basis for a formal security proof. Our
preliminary benchmark shows that Marvin is an attractive alternative to CMAC when one
needs to authenticate fairly big messages in 32-bit platforms; for more constrained plat-
forms, Marvin has a bigger code size than CMAC, but is an advantageous algorithm in
terms of processing speed for all message sizes. Finally, LetterSoup benchmark shows
that the algorithm is an interesting option both in resource-constrained and in powerful
platforms.

10. Future and OngoingWork

We are currently evaluating the performance of Marvin and LetterSoup with other
underlying ciphers, especially those of the Curupira [3, 27] family, which were developed
with constrained platforms in mind. In fact, the adoption of the Curupira-2 [27] should
considerably decrease the amount of code needed by the algorithms proposed here, as they
present similar instructions in their structure.

References

[1] D. Adams. The Hitchhiker’s Guide to the Galaxy. Completely Unexpected Productions Ltd, 1979.
[2] Atmel. AVR 8-Bit RISC processor - ATmega128 e ATmega128L, 2007.
[3] P. Barreto and M. Simplicio. Curupira, a block cipher for constrained platforms. In Anais do 25o Simpsio

Brasileiro de Redes de Computadores e Sistemas Distribudos - SBRC 2007, volume 1, pages 61–74, Belm,
Brazil, 2007. SBC.

[4] M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incrementality at reduced cost.
In Advances in Cryptology – Eurocrypt’97, volume 1233 of Lecture Notes in Computer Science, pages
163–192, Heidelberg, Germany, 1997. Springer.

[5] M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation: A two-pass authenticated-encryption
scheme optimized for simplicity and efficiency. In Fast Software Encryption 2004, pages 389–407, February
2004.

[6] J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable message authentication. In
Advances in Cryptology – Eurocrypt’2002, volume 2332 of Lecture Notes in Computer Science, pages 384–
397, Heidelberg, Germany, 2002. Springer.

[7] J. Black and P. Rogaway. Present: An ultra-lightweight block cipher. In Cryptographic Hardware and Em-
bedded Systems – CHES’2007, Lecture Notes in Computer Science, Heidelberg, Germany, 2007. Springer.
To appear.

[8] J. Daemen, L. R. Knudsen, and V. Rijmen. The block cipher Square. In Fast Software Encryption – FSE’97,
volume 1267 of Lecture Notes in Computer Science, pages 149–165, Heidelberg, Germany, 1997. Springer.

[9] J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen. The Noekeon block cipher. In First open NESSIE
Workshop, pages 384–397, Leuven, Belgium, November 2000. NESSIE Consortium.

[10] J. Daemen and V. Rijmen. The Design of Rijndael: AES – The Advanced Encryption Standard. Springer,
Heidelberg, Germany, 2002.

[11] J. Daemen and V. Rijmen. A new MAC construction Alred and a specific instance Alpha-MAC. In Fast Soft-
ware Encryption – FSE’2005, volume 3557 of Lecture Notes in Computer Science, pages 1–17, Heidelberg,
Germany, 2005. Springer.

[12] J. Daemen and V. Rijmen. The Pelican MAC function. Cryptology ePrint Archive, Report 2005/088, 2005.
http://eprint.iacr.org/2005/088.

[13] B. Gladman. Aes and combined encryption/authentication modes. http://fp.gladman.plus.com/AES/, 2008.
[14] IEEE. Standard Specifications for Public-Key Cryptography – IEEE Std 1363:2000. IEEE P1363 Working

Group, 2000.
[15] T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. In Fast Software Encryption – FSE’2003, volume

2887 of Lecture Notes in Computer Science, pages 129–153, Heidelberg, Germany, 2003. Springer.
[16] H. Krawczyk. LFSR-based hashing and authentication. In Advances in Cryptology – Crypto’94, volume 839

of Lecture Notes in Computer Science, pages 129–139, Heidelberg, Germany, 1994. Springer.
16

[17] G. Y. Martins. Projeto de um dispositivo de autenticao e assinatura. Master’s thesis, Escola Politcnica da
Universidade de So Paulo, 2007.

[18] D. McGrew and J. Viega. The galois/counter mode of operation (GCM). Submission to NIST Modes of
Operation Process, January 2004.

[19] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press,
Boca Raton, USA, 1999.

[20] NIST. Federal Information Processing Standard (FIPS 197) – Advanced Encryption Standard (AES). Na-
tional Institute of Standards and Technology – NIST, November 2001.

[21] NIST. Special Publication 800-38B – Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. National Institute of Standards and Technology, May 2005. http://csrc.nist.
gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-38B.pdf.

[22] V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. De Win. The cipher Shark. In Fast Software
Encryption – FSE’96, volume 1039 of Lecture Notes in Computer Science, pages 99–111, Heidelberg,
Germany, 1996. Springer.

[23] P. Rogaway. Authenticated-encryption with associated-data. In CCS ’02: Proceedings of the 9th ACM con-
ference on Computer and communications security, pages 98–107, 2002.

[24] P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC.
In Advances in Cryptology – Asiacrypt’2004, volume 3329 of Lecture Notes in Computer Science, pages
16–31, Heidelberg, Germany, 2004. Springer.

[25] R. Schroeppel. Comment for AES cipher selection. Email Comments on Block Cipher Modes of
Operation (NIST document), 2000. http://csrc.nist.gov/CryptoToolkit/modes/workshop1/
email-comments.pdf.

[26] R. Schroeppel, W. E. Anderson, C. L. Beaver, T. J. Draelos, and M. D. Torgerson. Cipher-state (CS)
mode of operation for AES. Submission to NIST’s Computer Security Resource Center (CSRC) forum
on modes of operation for symmetric key block ciphers, 2004. csrc.nist.gov/groups/ST/toolkit/
BCM/documents/proposedmodes/cs/cs-spec.pdf.

[27] M. Simplicio, P. Barreto, T. Carvalho, C. Margi, and M. Näslund. The Curupira-2 block cipher for con-
strained platforms: Specification and benchmarking. In Proceedings of the 1st International Workshop on
Privacy in Location-Based Applications - 13th European Symposium on Research in Computer Security
(ESORICS’2008), volume 397, Malaga, Spain, 2008. CEUR-WS.

[28] D. R. Stinson. Cryptography: Theory and Practice. Chapman & Hall/CRC Press, Boca Raton, USA, 2nd
edition, 2002.

[29] B. Titzer, D. Lee, and J. Palsberg. Avrora scalable simulation of sensor networks with precise timing. Center
for Embedded Network Sensing Posters - Paper 93, 2004.

[30] M. N. Wegman and J. L. Carter. New hash functions and their use in authentication and set equality. Journal
of Computer and System Sciences, 22:265–279, 1981.

11. Tables

Table 1. Probability to set bad in game R1. The arrows indicate how
many items are added to the set R

#query |R|
Pr(Nonce) Pr(Offset) Pr(Ac. Collision)
→ +1 → +σi → +1

i = 1 1 1/(2n) (2σ1)/(2n) (2 + σ1)/(2n)
i = 2 σ1 + 3 (σ1 + 3)/(2n) (σ1 + 4)σ2/(2n) (σ1 + 4 + σ2)/(2n)
...

...
...

...
...

i = q 1 +
∑q−1

j=1 σ j + 2 (|R|)/(2n) (|R| + 1)σi/(2n) (|R| + 1 + σi)/(2n)

12. Appendix: Incremental generation of offsets

The Marvin offsets are incrementally defined as O0 ← R, Oi+1 ← Oi · xw. Let GF(2n) =

GF(2)/p(x) where p(x) is a primitive pentanomial over GF(2) such that xw is a primitive
17

Table 2. Efficiency comparison between some MACs

MAC Parallelizable? Encryptions/block Storage (blocks)
CMAC No 1 O(1)
Pelican No ≈ 0.25–0.4 O(1)

GHASH (LUTs) Yes ≈ 0.1–0.25 O(2wb)
GHASH (plain) Yes ≈ 1 O(1)

Marvin Yes ≈ 0.25–0.4 O(1)

Table 3. Features and Efficiency of AEAD modes

Mode Parallelizable Input MAC Extra Encryption
order cost storage only

EAX-CMAC No Free 1 No Yes
GCM Yes Partially ≈ 0.1–0.25 Yes Yes
AEM Yes Free 1 No Yes
CS Yes Free ≈ 0.1 No No

EAX-Marvin Yes Free ≈ 0.25–0.4 No Yes
LetterSoup Yes Free ≈ 0.25–0.4 No Yes

Table 4. Marvin performance on the 8-bit platform

Marvin Cycles Adv. CMAC Code Size Adv. CMAC
Using tables, speed-optimized 44414 4.6% 1412 −192.9%

No tables, speed-optimized 44433 4.5% 942 −95.4%
Using tables, size-optimized 45302 2.7% 1322 −174.3%

No tables, size-optimized 45334 2.6% 846 −75.5%

Table 5. LetterSoup performance on the 8-bit platform

LetterSoup Cycles Adv. EAX Code Size Adv. EAX
Speed-optimized 76907 29.2% 2098 −24.7%

Compromise 77972 28.2% 1662 1.2%
Size-optimized 78099 28.1% 1364 18.9%

root of p(x). We choose a pentanomial basis representation because primitive pentanomials
are available for all n of practical interest [14]; primitive trinomials would result in a better
performance but are seldom available, and do not exist at all in the important case 8 |
n [19]). The motivation for a multiplication by xw instead of x is the result of the following
theorem:

Theorem 4. Let p(x) = xn + xk3 + xk2 + xk1 + 1 be a primitive pentanomial of degree
n = bw over GF(2) such that k3 > k2 > k1, k3 − k1 6 w, and either w | k3 or w | k1. Then
multiplication by xw in GF(2n) = GF(2)[x]/p(x) can be implemented with no more than 5
XORs and 4 shifts on w-bit words. Moreover, if 2 × 2w bytes of storage are available, the
cost drops to no more than 2 XORs on w-bit words and 2 table lookups.

Proof. For u =
⊕n−1

d=0 ud xd ∈ GF(2n) let Ui = uwi+w−1xw−1 + · · · + uwi, i = 0, . . . , b − 1, so
that u = Ub−1xw(b−1) +Ub−2xw(b−2) +· · ·+U0, which for brevity we write u = (Ub−1, . . . ,U0).

18

Then one can compute u · xw as:

(Ub−1xw(b−1) + Ub−2xw(b−2) + · · · + U0) · xw =

Ub−1xn + Ub−2xw(b−1) + · · · + U0xw =

Ub−2xw(b−1) + · · · + U0xw + Ub−1(xk3 + xk2 + xk1 + 1) =

(Ub−2, . . . ,U0,Ub−1) ⊕ Ub−1(xk3 + xk2 + xk1).

Assume that k1 = wk for some k; the case w | k3 is handled analogously. Thus:

u · xw = (Ub−2, . . . ,U0,Ub−1) ⊕ Ub−1(xk3−k1 + xk2−k1 + 1)xwk.

Since deg(Ub−1) 6 w − 1 and deg(xk3−k1 + xk2−k1 + 1) 6 w, their product is a polynomial
of degree not exceeding 2w − 1, and hence it fits two w-bit words for any value of Ub−1.
Besides, multiplication of this value by xwk corresponds to simply displacing it k words to
the left. Let

T1[U] ≡ (U � (w − (k3 − k1))) ⊕ (U � (w − (k2 − k1))),
T0[U] ≡ (U � (k3 − k1)) ⊕ (U � (k2 − k1)) ⊕ U;

these values can be either computed on demand or else precomputed and stored in two 2w-
entry tables. Then u · xw = (Ub−2, . . . ,Uk ⊕ T1[Ub−1],Uk−1 ⊕ T0[Ub−1], . . . ,U0,Ub−1). One
easily sees by direct inspection that the computational cost is that stated by the theorem. �

As an illustration of this method, the following polynomials are especially well suited
for implementation according to the above theorem, tailored for commonplace block sizes
and data organized in 8-bit bytes:

• x64 + x8 + x7 + x5 + 1:

(U7, . . . ,U0) · x8 = (U6, . . . ,U1,U0 ⊕ T1[U7],T0[U7]), where
T1[U] ≡ U ⊕ (U � 1) ⊕ (U � 3),
T0[U] ≡ U ⊕ (U � 7) ⊕ (U � 5).

• x96 + x16 + x13 + x11 + 1:

(U11, . . . ,U0) · x8 = (U10, . . . ,U1 ⊕ T1[U11],U0 ⊕ T0[U11],U11), where
T1[U] ≡ U ⊕ (U � 3) ⊕ (U � 5),
T0[U] ≡ (U � 5) ⊕ (U � 3).

• x128 + x29 + x27 + x24 + 1:

(U15, . . . ,U0) · x8 = (U14, . . . ,U3 ⊕ T1[U15],U2 ⊕ T0[U15],U1,U0,U15), where
T1[U] ≡ (U � 3) ⊕ (U � 5),
T0[U] ≡ (U � 5) ⊕ (U � 3) ⊕ U.

In fact, the circular byte permutation does not need to be effectively implemented: the
same effect can be achieved if we keep track of the index imsb corresponding to the most
significant byte of U. Thus, if we use the imsb-th byte as the first byte of U in every
calculation, it suffices to update imsb after each multiplication by xw. Using this strategy,
word permutations within a block can be performed essentially for free.

We point out that these observations do not impair implementation on platforms that
are not byte-oriented. For instance, if a block fits one machine word, then clearly mul-
tiplication by xw incurs only 1 rotation, 1 AND, 3 shifts, and 3 XORs, as illustrated by
algorithm 6. Then again, we can improve the computation performance by means of a
single 2w-word table Tw[U] = (U � k3) ⊕ (U � k2) ⊕ (U � k1)

19

Algorithm 6 Wordwise multiplication by xw in GF(2n)

Input: V . n-bit word to multiply by xw.
Output: V · xw.

1: V ← V rotl w ; R← V & bin(2w − 1)
2: V ← V ⊕ (R � k3) ⊕ (R � k2) ⊕ (R � k1)
3: return V

For the sake of comparison, algorithm 7 describes bytewise multiplication by x in
GF(2n), assuming that deg(p(x) − xn) < 8 (so that the mask Z computed at the begin-
ning of the algorithm fits one byte). One sees that the cost is b XORs, 2b − 1 shifts, and
one bit test. In other words, the cost of multiplying by x is proportional to the block size,
while that of multiplying by xw is constant.

Algorithm 7 Bytewise multiplication by x in GF(2n)

Input: B . n-bit word to multiply by x.
Output: B · x.

1: if testbit(Bb−1, 7) = 1 then
2: Z ← p(x) − xn

3: else
4: Z ← 0
5: end if
6: for i← b − 1 downto 1 do
7: Bi ← (Bi � 1) ⊕ (Bi−1 � 7)
8: end for
9: B0 ← (B0 � 1) ⊕ Z

10: return B

13. Appendix: Other Algorithms

Algorithm 8 Linear feedback shift register counter (LFSRC) encryption-only mode.

Input: N . nonce, an integer value in range 0 < N < 2n.
Input: K . cipher key.
Input: M . message to encrypt.
Output: C . ciphertext of M under K.

1: Partition the message as M = M1 ‖ . . . ‖Mt, where |Mi| = n for i = 1, . . . , t − 1, and
0 6 |Mt | 6 n with |Mt | = 0 iff |M| = 0.

2: for i← 1 to t do . incrementally or in parallel
3: Oi ← N · (xw)i ; Ci ← Mi ⊕ EK(Oi)[|Mi|]
4: end for
5: return C ← C1 ‖ . . . ‖Ct

Departamento de Engenharia de Computação e Sistemas Digitais (PCS), Escola Politécnica, Universidade
de São Paulo, Brazil. E-mail: {mjunior,paquino,pbarreto,carvalho,cbmargi}@larc.usp.br

20

