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Abstract 

Compared to adult EEG, EEG signals recorded from pediatric populations have shorter recording 

periods and contain more artifact contamination. Therefore, pediatric EEG data necessitate 

specific preprocessing approaches in order to remove environmental noise and physiological 

artifacts without losing large amounts of data. However, there is presently a scarcity of standard 

automated preprocessing pipelines suitable for pediatric EEG.  

 

In an effort to achieve greater standardization of EEG preprocessing, and in particular for the 

analysis of pediatric data, we developed the Maryland Analysis of Developmental EEG (MADE) 

pipeline as an automated preprocessing pipeline compatible with EEG data recorded with 

different hardware systems, different populations, levels of artifact contamination, and length of 

recordings. MADE uses EEGLAB and functions from some EEGLAB plugins, and includes 

additional customizable features particularly useful for EEG data collected from pediatric 

populations.  

 

MADE processes event-related and resting state EEG from raw data files through a series of 

preprocessing steps and outputs processed clean data ready to be analyzed in time, frequency, or 

time-frequency domain. MADE provides a report file at the end of the preprocessing that 

describes a variety of features of the processed data to facilitate the assessment of the quality of 

processed data. In this paper we discuss some practical issues, which are specifically relevant to 

pediatric EEG preprocessing. We also provide custom-written scripts to address these practical 

issues.  

 

MADE is freely available under the terms of the GNU General Public License at 

https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline. 

 

 

Key words: pediatric, EEG, preprocessing, automated, pipeline 
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Introduction 
Electroencephalography (EEG) provides a measure of human neural activity with a high degree 

of temporal precision and the ability to characterize neuronal oscillations (Cohen, 2014; Luck, 

2014; Nunez & Srinivasan, 2006). There has been a recent surge of interest in the use of EEG as 

a reflection of brain activity, particularly for research in pediatric populations. For example, 

recent work in human infants has shown how specific measures of EEG might be useful for 

characterizing the effects of prenatal experience, early life adversity, as well as identifying 

infants at risk for different developmental disorders (Marshall, Fox, & Group, 2004; Orekhova et 

al., 2014). Unlike EEG data recorded from adults, however, EEG recorded from pediatric 

populations is particularly susceptible to artifact contamination and only short recording sessions 

can be tolerated. Thus, there is concern about the amount of artifact-free EEG that can be 

acquired from pediatric populations. Moreover, the traditional frequency bands of EEG (e.g., 

delta, theta, alpha, beta) are not defined in the same way for younger participants, compared to 

adults (Marshall, Bar-Haim, & Fox, 2002). For example, the peak frequency for oscillations 

within the alpha band changes over the first years of life, which may further necessitate specific 

preprocessing decisions when analyzing pediatric data.  

 

Before analyzing EEG to calculate neural measures of interest, it is necessary to perform a set of 

preprocessing steps (Luck, 2014), which serve to remove environmental noise and physiological 

artifacts. While there is general consensus as to what needs to occur during EEG preprocessing, 

the exact preprocessing steps vary amongst research labs, and as noted above, may differ for 

pediatric data. Moreover, a number of these preprocessing steps require subjective inputs and 

decisions by the user, which can result in further variability within and across labs. In an effort to 

achieve greater standardization of EEG preprocessing, particularly for the analysis of pediatric 

data, the Child Development Lab at the University of Maryland developed a preprocessing 

pipeline to exclude unwanted artifacts from data and improve the signal-to-noise ratio while 

minimizing data loss. The Maryland Analysis of Developmental EEG (MADE) pipeline achieves 

complete automation of EEG preprocessing, allowing objectivity and reproducibility, which is 

particularly well-suited for large-scale, multi-site projects.  

 

While there are other publicly available EEG preprocessing pipelines (Bigdely-Shamlo, Mullen, 

Kothe, Su, & Robbins, 2015; Mognon, Jovicich, Bruzzone, & Buiatti, 2011; Nolan, Whelan, & 

Reilly, 2010), the majority of these pipelines are optimized for adult EEG data. Although, 

recently HAPPE preprocessing pipeline has been optimized for pediatric populations, it is not 

suitable for preprocessing data intended for event-related potential (ERP) analyses (Gabard-

Durnam, Mendez Leal, Wilkinson, & Levin, 2018). The MADE pipeline was created to provide 

a variety of improvements over existing pipelines. First, MADE can process both resting state 

and event-related data from multiple different recording systems. Second, the MADE pipeline is 

transparent, as it is a set of MATLAB scripts that can be examined by the user, and is easily 

customizable by setting a few parameters at the beginning of the script. Third, the MADE 

pipeline utilizes advanced and automated artifact detection and correction procedures including a 

newly developed set of routines to modify current ICA approaches (Leach et al (under review).  

Finally, the MADE pipeline provides a variety of supplemental scripts to assist with re-labeling 

event-related data and excluding interference trials from infant data.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2020. ; https://doi.org/10.1101/2020.01.29.925271doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.925271
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

In line with the principles of open science, we have made our scripts publicly available 

(https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline). This manuscript serves 

as a companion paper to the set of publicly available scripts and achieves two purposes: 1) it 

provides a detailed treatment of the theory behind each of the preprocessing steps implemented, 

so that novices and experts alike can understand the rationale behind each preprocessing 

decision, and 2) it shows how the pipeline performs compared to other preprocessing 

approaches. Additionally, the online supplement of this manuscript provides a step-by-step 

tutorial of how to use and customize the available scripts so that users, even with little-to-no 

knowledge of EEG data analysis, can utilize the MADE pipeline. Our goal is to provide a simple, 

user-friendly, and effective EEG data-preprocessing pipeline to facilitate research with pediatric 

EEG data. 

 

Pipeline overview 

Our preprocessing pipeline is implemented as a set of MATLAB (The MathWorks, Natick, MA) 

scripts, which allow for complete automation of EEG preprocessing. The scripts that make up the 

pipeline draw heavily on the EEGLAB toolbox (Delorme & Makeig, 2004) functions and rely on 

the EEGLAB data structure as an organizing principle. We further leverage specific functions 

from some EEGLAB plugins for the identification of bad electrodes and artifactual independent 

components, respectively. The pipeline also includes additional customized features particularly 

useful for EEG data collected from pediatric populations, such as trial-level channel interpolation 

(e.g., Buzzell et al., 2019). Thus, the MADE pipeline reflects a novel combination of current 

state-of-the-art in EEG processing techniques, well-suited for pediatric data.  

 

The steps involved in our preprocessing pipeline (Figure 1) include: high and low-pass filtering, 

automated identification/removal of bad EEG channels, independent components analysis (ICA) 

to identify and remove artifacts, creating epochs, artifact rejection on epoched data using voltage 

thresholding, channel interpolation, and re-referencing of epoched data. In the section below we 

describe the theory behind our specific approach to each of these preprocessing steps.  
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Figure 1. Schematic representation of MADE pipeline’s preprocessing steps. Independent 

component analysis is abbreviated to ICA. The intermediate results are indicated by the suffix 

added to the file name in that specific processing step in the gray boxes.  

 

 

Filtering the data. Filtering EEG data can remove low-frequency drifts, skin potentials, high-

frequency noise, EMG artifacts and electrical line noise that commonly manifest at 50Hz or 

60Hz. We high-pass filter our data at .3 Hz and low-pass filter at/below the frequency of 

electrical line noise (50Hz or 60Hz), which is recommended for typical experiments studying 
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cognitive, affective, and perceptual processes (Luck, 2014). We have tried several procedures to 

remove electrical line noise and found them unsatisfactory; therefore, as part of our standard 

preprocessing stream, we prefer filtering out frequencies at/above electrical line noise (50 Hz or 

60 Hz). To avoid a latency shift that can be caused by some filters, we use a noncausal Finite 

Impulse Response (FIR) filter using the with FIRfilt plugin of EEGLAB (developed by A. 

Widmann: www.unileipzig.de/~biocog/ content/widmann/eeglab-plugins/). Furthermore, we 

filter our continuous data (before creating epochs) to avoid edge artifacts in each data epoch. To 

minimize additional artifact that is created by a “steep” filter rolloff (see Luck, 2014), our low-

pass filter is designed to have a 10 Hz transition band; we further apply a high-pass filter with a 

passband of .3 Hz and a stopband of .1 Hz. The reason for employing a passband of .3 Hz for the 

high pass filter, as opposed to .1 Hz, is because empirical research has shown that data recorded 

via high impedance systems (e.g. the EGI system) are susceptible to ultralow frequency artifacts 

(e.g. skin potentials) that need to be filtered out (Kappenman & Luck, 2010). We prefer applying 

the high and low-pass filters before identifying bad channels since filters can minimize noise and 

therefore improve detection of bad channels.  

 

Removal of bad channels. Electrodes can “go bad” during the recording of EEG data for a 

number of reasons, including displacement due to head or body movements, changes in 

impedance, or faulty wiring. Pediatric data are often more susceptible to the issues of 

displacement or impedance change given that children are less likely to remain still and are often 

less tolerant of electrode adjustments (e.g., moving hair or re-seating electrodes) after capping. 

Therefore, it is common to identify bad channels during preprocessing of EEG data, particularly 

for pediatric data.  

 

In order to detect bad channels, we use the ‘channel_properties.m’ function from the FASTER 

EEGLAB plugin (Nolan et al., 2010). The ‘channel_properties.m’ function identifies bad 

channels by first measuring three values that are standardized across all electrodes: the Hurst 

exponent, correlation with other channels, and channel variance. The Hurst exponent refers to a 

measure of the long-range dependence of time series data, with human EEG known to have a 

Hurst exponent of ~ 0.7; prior work has shown that deviations from a Hurst exponent of 0.7 can 

be used to detect the presence of a non-biological signal (Nolan et al., 2010). Therefore, if the 

Hurst exponent for a given channel is abnormal, then it is likely that the channel contains data 

that is primarily non-biological in nature (e.g. environmental noise). The correlation measure 

assesses how similar a given channel’s data is to other nearby channels, with the assumption that 

nearby channels should not be identical but should still be similar as a result of volume 

conduction (Nolan et al., 2010). Thus, if a given channel’s correlation value is abnormal, the 
channel likely did not record primarily brain activity. Finally, channel variance measures how 

variable the data for a given channel is over time; if the channel variance is abnormal, then it is 

assumed that the channel likely did not record primarily brain activity. The 

‘channel_properties.m’ function measures the Hurst exponent, correlation, and channel variance 

values for all channels and then standardizes them by transforming into Z-scores. We consider 

any channel that has an absolute Z-score greater than 3, for any of the three measures, to be 

considered a bad channel. We delete bad channels globally (across the entire recording period) 

and these channels are interpolated at a later step (described in detail below). We recommend not 

deleting more than 10% of the channels for a particular participant. 
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Optional removal of outer electrodes for infants’ data (a priori). One of the benefits of the 

EGI geodesic net, which is commonly employed in pediatric EEG research, is that it provides 

extensive coverage of the head (Tucker, 1993). However, we have found that the outermost ring 

of electrodes that are located near the base of the skull tend to have poor connections and are 

often noisy when recording from infants. For this reason, our standard procedure for 

preprocessing infant data is to remove this outer ring of electrodes, a priori, before running the 

‘channel_properties.m’ function. The reason for removing these electrodes a priori, instead of 
relying on the ‘channel_properties.m’ function to identify and remove them, is because this 

function operates via calculating standardized values. Therefore, if a large number of bad 

channels are present in the data, then this will reduce the Z-score values calculated by the 

‘channel_properties.m’ function, potentially making it more likely that not all bad channels are 

detected. This problem can be mitigated if a set of known bad channels (i.e. the outer ring of 

electrodes) is first removed. 

 

Independent components analysis (ICA). Even after filtering and the removal of bad channels 

(detected using either the FASTER tools or a priori removal described above), EEG recordings 

still contain a number of non-neural artifacts, including electrical deviations caused by: blinks, 

saccades, or EMG (Luck, 2014). One option for dealing with such artifacts is to simply identify 

the time segments in the data during which such artifacts are present and remove these segments 

completely from further analysis. This approach is valid and provides strong protection against 

misinterpreting physiological artifacts as neural data. However, in order to employ such an 

approach, it is necessary to either record data from a participant that is able to minimize blinks, 

saccades and muscle movements, or have a large amount of data so that even after throwing out 

such segments there is still an adequate amount of data left to analyze. Unfortunately, both of 

these options are often not feasible when analyzing EEG data from pediatric populations, 

especially infants. Therefore, an alternative approach to dealing with artifacts is to use ICA  

(Jung et al., 200; Delorme & Makeig, 2004) to identify such artifacts and then subtract the 

artifact-related activity from the rest of the EEG signal. ICA has the benefit of retaining the 

segments of data during which the artifacts occurred and is the approach that we employ in our 

pipeline.  

 

ICA has been shown to perform better on data that retains a degree of stationarity (Winkler, 

Debener, Müller, & Tangermann, 2015). For example, ICA performs better when the data is first 

filtered with a 1 Hz highpass filter and periods of the recording that contain large amounts of 

EMG or periods where electrodes exhibit unusually high/low amplitudes (e.g. +/- 1000 μV) are 

additionally removed (Viola, Debener, Thorne, & Schneider, 2010; Winkler et al., 2015). 

However, an issue with applying a 1 Hz filter and removing segments of data with EMG before 

running ICA is that researchers may be interested in low-frequency information or time periods 

during which excessive EMG occurs. Therefore, a hybrid approach involves making a “copy” of 
the data, applying a 1 Hz high-pass filter and removing segments containing excessive EMG or 

high/low amplitude data from the copy, running ICA on the copy, then copying the ICA weights 

(which contain the information needed to identify artifacts) back to the original dataset that has 

not been filtered with the 1 Hz high-pass filter (Viola et al., 2010). However, when removing 

segments that contain excessive EMG or unusually high/low amplitudes in the copied dataset, it 

is possible that a few bad channels (missed by the FASTER tools described above) lead to the 

removal of too many data segments prior to running ICA on the copy. Therefore, prior to 
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removing any segments of data from the copy, we first remove any channels that contain 

excessive EMG or unusually high/low amplitudes for greater than 20% of the recording; these 

same channels are removed from the original dataset as well. The end result of the copy/ICA 

process is an improved ICA decomposition without having to sacrifice low frequency 

information or time periods that contain excessive EMG or unusually high amplitudes. 

  

Once the ICA decomposition has been completed, it is necessary to select independent 

components (ICs) that correspond to artifacts (blinks, saccades, EMG) and then subtract these 

components from the data. Several algorithms have been developed in order to automatically 

select ICA components, with one of the most popular being the ADJUST EEGLAB plugin 

(Mognon et al., 2011). This toolbox performs similarly to human observers when applied to adult 

data (Mognon et al., 2011). However, we found that ADJUST does not perform as well on 

pediatric data and misidentifies ICA components as artifact. Rather than manually reviewing the 

ICA components to correct the identification of ICA artifacts, we developed an alternative 

system. We modified the ADJUST scripts to improve ICA identification on pediatric data. Our 

“adjusted-ADJUST” scripts automatically select artifact laden independent components (ICs) 

and have been shown to perform better than the original ADJUST algorithm in adults, children, 

and infants (Leach et al., under review). After identifying ICs, we then subtract the ICA time 

series for these artifacts from the rest of the EEG signal. The final result is a continuous EEG 

data file with ICA-identified artifacts removed. 

 

Epoching and removal of residual ocular artifact. To examine the task-related neural activity 

in EEG, it is common to cut the continuous EEG data into epochs (time segments) of data 

surrounding the experimental events before performing further analyses quantifying neural 

features within these epochs (Luck, 2014). Epochs are constructed by identifying event markers 

of interest and then cutting the continuous EEG data into epochs of appropriate length. For 

resting-state data, we recommend epoching; continuous resting-state data can be segmented into 

fixed length overlapping or non-overlapping epochs. 

 

Once epochs have been created, it is possible to then loop through all epochs and identify any 

residual artifacts present within a given epoch. It is worth noting that the goal of removing ICA-

identified artifacts is to “clean” the EEG signal without needing to completely reject time 

segments that contain ocular or other artifacts. However, we have found that ICA artifact 

identification and removal is rarely perfect, resulting in at least a small number of artifacts being 

missed and still present in the data following ICA-identified artifact removal. Therefore, we 

perform additional preprocessing steps to deal with such residual artifacts after epoching the 

data. First, we loop through each epoch and test whether the voltage recorded from a set of 

electrodes located near the eyes (ocular channels) exceeds a predetermined threshold (the exact 

threshold employed differs as a function of age, as discussed in the tutorial). If the voltage is 

exceeded at any one of the ocular channels for a given epoch, then we assume that residual 

ocular artifact is present within the epoch and reject the epoch (the epoch is removed from all 

further analyses). Next, we loop through all epochs a second time and identify whether any of the 

non-ocular channels (recorded from electrodes not located near the eyes) exceed the voltage 

threshold; for any epochs in which a non-ocular channel exceeds the voltage threshold, this 

channel is interpolated within that epoch using a spherical spline interpolation procedure (Perrin, 

Pernier, Bertrand, & Echallier, 1989). However, if greater than 10% of the non-ocular channels 
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exceed the voltage threshold within a given epoch, then this epoch is instead rejected completely 

(removed from further analyses). To summarize our approach for dealing with residual artifacts: 

we use the electrodes located near the eyes to identify and reject any epochs that exceed a 

voltage threshold indicating the presence of residual ocular artifact, then additionally reject any 

epochs where more than 10% of the non-ocular channels exceed the voltage threshold; for all 

other epochs, individual channels are interpolated at the epoch level when they exceed the 

voltage threshold.  

 

Channel interpolation. In the previous section, we noted that non-ocular channels exceeding a 

predefined voltage threshold during specific epochs are interpolated at the epoch level using a 

spherical spline interpolation procedure. However, even after these channels have been 

interpolated, there remain other channels missing from all epochs because they were rejected in 

one of the first preprocessing steps (those identified by the ‘channel_properties.m’ function). 

Following all other preprocessing steps, but before re-referencing the EEG data, we interpolate 

these missing channels using the spherical spline interpolation procedure as implemented in the 

EEGLAB toolbox. The reason for not interpolating these channels until all other preprocessing 

steps have been completed is because interpolated channels contribute no unique information to 

the ICA procedure (Delorme & Makeig, 2004). Additionally, the interpolated data will likely 

approach a closer estimate of the actual missing EEG data if other idiosyncratic artifacts are first 

removed from the channels being used to compute the interpolation. 

 

Re-referencing. The last step we perform in our preprocessing pipeline is to re-reference the 

epoched data. Re-referencing means that the voltage time series for each electrode will no longer 

reflect voltage relative to the reference electrode(s) used during data collection. Instead, the 

voltage time series will now reflect voltage relative to offline, re-referenced electrode(s). Re-

referencing is performed last, because in the case of computing an “average reference”, data 

from all channels are used in the computation of the average reference; therefore, all artifacts 

need to first be removed from all channels so that channel-specific artifacts are not propagated to 

all other channels during the computation of an average reference. Additionally, channel 

interpolation must be performed prior to computation of the average reference so that there is not 

a biased weighting of specific scalp locations in the estimate of the average reference. 

 

Validation Analysis of the MADE pipeline 

In order to validate the MADE pipeline, we tested its performance on three datasets across 

childhood: an infant (12-month old) dataset, a childhood (3 – 6 years old) dataset, and a late 

adolescent (16-year old) dataset. We preprocessed 10 subjects in each dataset using three 

methods: A) the MADE pipeline; B) a traditional method involving only epoch level 

interpolation before artifact rejection, but no ICA-based artifact rejection (i.e., no FASTER and 

no ICA); and C) an even more conservative method without interpolation before artifact 

rejection. The outcome of interest was the percent of trials retained after each preprocessing 

method.  

 

Methods 

Table 1 provides a description of the three EEG datasets used for testing the pipeline. In 

this section, we describe data acquisition procedures, the preprocessing steps and the results of 

the preprocessing of these three datasets. 
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Table 1. Acquisition parameters for 10 example data files from three age groups. 
 

 

 

 

 

 

 

 

 

 

EEG data acquisition      

Infant data. The infant dataset was part of a larger study examining the neural correlates of 

action observation and action execution in infants. Data were recorded with a 128-channel EGI 

system (NetAmps 300; Electrical Geodesics, Eugene, OR). The infants sat in their parent’s lap 
while viewing a variety of trials presented live by an experimenter behind a stage with a curtain. 

Infants saw 3 trial types in a block: observe grasp, observe point, and execute grasp. On each 

trial, the curtain was raised, and then the infant observed a colorful pinwheel spinning for 3 

seconds as the baseline period. The curtain was then lowered before being raised again to show 

the live experimenter executing one of the three trials. Observe grasp trials involved the 

experimenter reaching for and grasping a toy in the middle of the stage. Observe point trials 

involved the experiment pointing to a toy. Execute grasp trials involved the stage being pushed 

toward the baby for the baby to reach and grasp the toy. There were 15 blocks of these three trial 

types in a randomized order and the infants completed as many trials as possible. The vertex (Cz) 

electrode was used as online reference. EEG data were sampled at 500 Hz and impedances were 

kept below 100 kΩ. 
 

Child Data. The child data were part of a larger study examining the neural correlates of 

memory formation in children from a Northeast city from the United States (Riggins and Rollins, 

2015). Data were recorded using a 64-channel BioSemi Active 2 EEG recording system for a 

study investigating age-related differences in memory (Riggins & Rollins, 2015). EEG data were 

recorded at 512 Hz and Common Mode Sense (CMS) electrode was used as reference. Children 

completed an ERP task in which they passively viewed items on a computer screen. There were 

three blocks and each block included 54 items that the children had been familiarized with the 

previous day and 27 new distractor items. Stimuli were presented on the screen for 500 ms, 

followed by a fixation cross that was jittered from 1,250 to 1,700 ms. Each block consisted of 

random presentation of the 54 previously seen (target items) and 27 new (distracter) items, for a 

total of 243 ERP trials. 

 

Late Adolescent Data. The late adolescent dataset was part of a larger study examining the 

behavioral and neural effects of early neglect in children from Bucharest, Romania (Debnath et 

al., 2019). Data were recorded with a 64-channel EGI system (NetAmps 300) for a randomized, 

controlled trial of foster care placement in Bucharest, Romania (Debnath, Tang, Zeanah, Nelson, 

& Fox, 2019). The resting EEG was recorded for 6 min, alternating 1 min of eyes open and eyes 

closed. During the eyes open condition, the subjects were instructed to fixate on a small white 

EEG 

Dataset 

Participant 

Age (years) 

EEG type EEG 

System 

Sampling 

rate (Hz) 

No. of 

channels 

Reference 

Infant 1 Event 

Related 

EGI 500 128 Cz 

Childhood 3-6 Event 

Related 

BioSemi 512 64 CMS 

Late 

Adolescent 

16 Resting EGI 500 64 Cz 
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cross in the center of a computer screen. The vertex (Cz) electrode was used as an online 

reference. EEG data were sampled at 500 Hz and impedances were kept below 50 kΩ.  
 

Preprocessing with MADE 

EEG data from three studies were preprocessed with the fully automated version of the MADE 

pipeline and two more traditional methods (one with interpolation and one without). The 

following sections describe the MADE pipeline and the two traditional methods’ preprocessing 

steps that were applied to the three datasets and the post-processing reports generated by the 

MADE pipeline. In the infant dataset, EEG channels on the boundary of the electrode net were 

excluded from analyses since they were heavily susceptible to eye, face and head movements. 

This step removed 24 channels, leaving 104 channels included for further analysis. Infant and 

childhood data were down-sampled at 250 Hz. Continuous data collected with the EGI EEG 

system were high pass filtered at 0.3 Hz while the data collected with the BioSemi EEG system 

were high pass filtered at 0.1 Hz. The infant and child datasets were low pass filtered at 50 Hz 

and the adolescent dataset was low pass filtered at 40 Hz using FIR filters with a Hamming 

window with the FIRfilt plugin from EEGLAB. Artifact-laden channels were identified using 

FASTER (Nolan et al., 2010) and removed from analysis. To further remove ocular artifacts and 

generic noise, MADE performs independent component analysis (ICA). The ICA is performed 

on an identical copy of the dataset and the independent components (ICs) are transferred from 

the copied dataset to the original dataset. A copy of the dataset is made and further cleaned 

before performing ICA on this copied dataset. The copied dataset was high pass filtered at 1 Hz 

and segmented into 1s epochs. To achieve an improved ICA decomposition, noisy segments of 

data were rejected using a combined voltage threshold of ±1000 μV and spectral threshold (range 
–30 dB to +100 dB) within the 24–40 Hz frequency band to remove EMG-like activity. If this 

artifact rejection process identified more than 20% of the epochs for a given channel as 

containing artifact, that channel was removed from both the ICA copied dataset and the original 

dataset. After further cleaning, extended infomax (runica) ICA was performed on the copied 

dataset and the ICs were then transferred from the copied dataset to the original dataset. All 

further preprocessing steps were applied on this original dataset. 

 

Individual components (ICs) containing artifacts were identified by an automatic process using 

the adjusted-ADJUST scripts (Leach et al., under review). The continuous EEG data were then 

segmented into fixed length epochs separately for each dataset. The infant data were epoched 

from –1s to 2s relative to the three event markers: execution grasp complete, observation grasp 

complete and observation point onset. The childhood data were epoched from –1s to 1s relative 

to the two event markers: target and distracter, and the late adolescent data were segmented into 

2s epochs with 1s (50%) overlap. After segmenting data, the epochs in childhood data were 

baseline corrected using the time window from -1000 ms to -500 ms and the adolescent data 

were baseline corrected using the entire epoch (0–2000 ms), and the infant data were not baseline 

corrected. To further exclude artifacts from epoched data, a voltage threshold rejection (±150 

μV) was applied in a set of frontal electrodes (infant data: E1, E8, E14, E21, E25, E32; 

childhood data: F7, F8, AF7, AF8, FP1, FP2, FPz; adolescent data: E1, E8, E25, E32). If an 

epoch in these frontal channels exceeded the voltage threshold of ±150 μV, that epoch was 
rejected. For all other channels, artifacted channels in each epoch were interpolated using the 

artifact free data from the surrounding channels within that epoch. If more than 10% of the 

channels within an epoch were interpolated, that epoch was rejected. After artifact rejection, 
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missing channels were interpolated using spherical interpolation with the eeg_interp function 

from EEGLAB as implemented in the MADE pipeline. Epoched data were then re-referenced to 

an average of all channels. For each dataset, MADE produces a processing report for each EEG 

file in a single CSV file to evaluate preprocessing performance and data quality across subjects 

within a study. Table 2, 3, 4 present the processing report with all the metrics for the three 

example datasets. Figure 2 shows examples of EEG signals from the three datasets before and 

after MADE processing.               

 

Table 2. MADE preprocessing report for the 10 files in infant dataset 
EEG 

file 

No. of 

recording 

channels 

No. of 

preprocessed 

channels 

No. of 

bad 

channels 

EEG 

length 

(s) 

entered 

ICA 

 

Total 

ICs 

Number 

of bad 

ICs 

removed 

Total 

epochs 

before 

artifact 

rejection 

Total 

epochs 

after 

artifact 

rejection 

Number of 

interpolated 

channels 

p1201 
128 104 1 

1407 103 15 30 16 
1 

p1202 
128 104 0 

1654 104 4 45 26 
0 

p1203 
128 104 3 

1041 101 3 23 20 
3 

p1204 
128 104 1 

1172 103 0 24 19 
1 

p1205 
128 104 4 

1402 100 12 45 16 
4 

p1207 
128 104 1 

1063 103 1 25 13 
1 

p1208 
128 104 2 

956 102 19 24 20 
2 

p1209 
128 104 0 

1071 104 11 24 17 
0 

p1210 
128 104 4 

1500 100 0 41 33 
4 

p1211 
128 104 6 

1177 98 1 20 15 
6 

 

Table 3. MADE preprocessing report for the 10 files in childhood dataset 
EEG 

file 

No. of 

recording 

channels 

No. of 

preprocessed 

channels 

No. of 

bad 

channels 

EEG 

length 

(s) 

entered 

ICA 

Total 

ICs 

Number 

of bad 

ICs 

removed 

Total 

epochs 

before 

artifact 

rejection 

Total 

epochs 

after 

artifact 

rejection 

Number of 

interpolated 

channels 

311 
64 64 

4 552 60 3 243 207 4 

312 
64 64 

4 552 60 11 243 212 4 

313 
64 64 

1 556 63 17 243 209 1 

330 
64 64 

2 553 62 6 243 176 2 

349 
64 64 

4 544 60 9 243 212 4 

381 
64 64 

3 552 61 1 243 134 3 
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386 
64 64 

2 554 62 7 243 230 2 

388 
64 64 

2 544 62 3 243 168 2 

412 
64 64 

1 480 63 7 243 77 1 

448 
64 64 

2 501 62 3 243 226 2 

 

 

Table 4. MADE preprocessing report for the 10 files in late adolescent dataset 
 

EEG 

file 

No. of 

recording 

channels 

No. of 

preprocessed 

channels 

No. of 

bad 

channels 

EEG 

length 

(s) 

entered 

ICA 

Total 

ICs 

Number 

of bad 

ICs 

removed 

Total 

epochs 

before 

artifact 

rejection 

Total 

epochs 

after 

artifact 

rejection 

Number of 

interpolated 

channels 

005_eeg 64 64 1 
429 63 27 430 425 1 

006_eeg 64 64 3 
415 61 11 414 414 3 

008_eeg 64 64 1 
425 63 10 425 425 1 

010_eeg 64 64 1 
424 63 15 423 423 1 

011_eeg 64 64 4 
403 60 28 402 398 4 

013_eeg 64 64 2 429 62 14 430 430 2 

014_eeg 64 64 3 
400 61 15 399 396 3 

015_eeg 64 64 5 
450 59 12 452 386 5 

016_eeg 64 64 2 
404 62 15 405 400 2 

017_eeg 64 64 4 
396 60 6 400 391 4 
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Figure 2. EEG signal before and after MADE processing. Three files from the three example 

datasets are shown with 5 s of data extracted from the recording. The EEG signal after high-pass 

filtering is shown in the left panel. The EEG signal after MADE processing as described in the 

preprocessing section of the example analysis is shown in the right panel. All scales are in 

microvolts. 

 

Traditional Preprocessing Methods 

Similar to the MADE pipeline, the two traditional preprocessing methods applied a 0.3 Hz high 

pass filter to the continuous data collected with an EGI EEG system (0.1 Hz high pass for data 

collected with the BioSemi system) and a 50 Hz low pass filter to the infant and child datasets 

(40Hz low pass for the adolescent dataset). Infant and childhood data were down-sampled at 250 

Hz. Next, the continuous EEG data were segmented into fixed length epochs separately for each 

dataset (using the same epochs for each dataset as the MADE pipeline). For the traditional 

method that included interpolation, a voltage threshold rejection (±150 μV) was applied in a set 

of frontal electrodes (the same sets the MADE pipeline used for each dataset). As in the MADE 

pipeline, the epochs in childhood data were baseline corrected using the time window from -

1000 ms to-500 ms, the adolescent data were baseline corrected using the entire epoch (0-2000 

ms), and the infant data were not baseline corrected. If an epoch in these frontal channels 

exceeded the voltage threshold of ±150 μV, that epoch was rejected. For all other channels, 

artifacted channels in each epoch were interpolated using the artifact free data from the 
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surrounding channels within that epoch. If more than 10% of the channels within an epoch were 

interpolated, that epoch was rejected. For the method that did not include interpolation, voltage 

threshold rejection, (±150 μV) was applied over all channels and any epochs where at least one 

channel exceeded this voltage threshold of ±150 μV were rejected. Finally, for both of the 

traditional preprocessing methods, the remaining epoched data were then re-referenced to an 

average of all channels. 

 

Results 

The results of the comparisons of the three preprocessing methods are summarized in 

Table 5 and Figure 3. In order to compare the different methods, we performed Wilcoxon Signed 

Ranks tests on the proportion of trials retained for each preprocessing method, separately for the 

three datasets (Adolescent, Child, and Infant) as each dataset used a different task. To control for 

potential Type I errors due to multiple comparisons, we used the false discovery rate (FDR) 

correction (Benjamini and Hochberg, 1995). The FDR-corrected p value is represented by the q 

value.  

As seen in Figure 3, the MADE pipeline retained significantly more trials than the 

traditional preprocessing method with interpolation for adolescents, Z=2.52, p=0.012, q=0.012, 

children, Z=2.80, p=0.005, q=0.006, and infants, Z=2.80, p=0.005, q=0.006. The MADE pipeline 

also retained significantly more trials than the traditional method without interpolation for 

adolescents, Z=2.80, p=0.005, q=0.006, children, Z=2.80, p=0.005, q=0.006, and infants, Z=2.80, 

p=0.005, q=0.006. In sum, as expected, the MADE pipeline performed better than the two 

comparison methods.  
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Table 5. Descriptive Information on Trials Retained 
Descriptive information on the proportion of trials retained by each preprocessing method 

(MADE Pipeline, Traditional with interpolation, and Traditional without interpolation) for each 

of the three datasets (Adolescents, Children, and Infants). 

  

Age N Mean 

Std. 

Deviation Minimum Maximum 

Percentiles 

25th 

50th 

(Median) 75th 

Adolescents MADE 

Pipeline 
10 97.90% 4.45% 85.40% 100.00% 98.51% 99.13% 100.00% 

Traditional 

with 

interpolation 

10 94.31% 5.77% 80.53% 100.00% 92.42% 95.20% 98.88% 

Traditional 

without 

interpolation 

10 72.03% 
15.52% 

43.95% 
94.20% 

60.44% 
75.36% 

83.53% 

Children MADE 

Pipeline 
10 75.94% 19.76% 31.69% 94.65% 

65.64% 
84.90% 88.68% 

Traditional 

with 

interpolation 

10 43.61% 17.84% 23.05% 78.19% 29.61% 38.45% 57.20% 

Traditional 

without 

interpolation 

10 19.30% 17.32% 0.00% 45.27% 3.70% 13.62% 38.17% 

Infants MADE 

Pipeline 
10 67.44% 16.86% 35.56% 86.96% 53.00% 72.92% 81.20% 

Traditional 

with 

interpolation 

10 31.84% 11.53% 13.33% 48.00% 22.46% 31.88% 41.46% 

Traditional 

without 

interpolation 

10 21.70% 11.26% 6.67% 
41.67% 

11.88% 20.42% 31.50% 
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Figure 3. Box plots showing the proportion of trials retained by each preprocessing method 

(MADE Pipeline, Traditional with interpolation, and Traditional without interpolation) for each 

of the three example datasets (Adolescents, Children, and Infants) included in the analyses. 

 

Discussion 

Recent advancement in EEG data recording technology and the advent of high-density EEG nets 

have given impetus to using EEG in diverse population and large-scale studies. The use of EEG 

in large-scale studies with different subject groups yields large amounts of data. In many cases, 

the EEG data, particularly EEG data collected from pediatric populations, make the data 

processing procedure highly complex and challenging. The pediatric data often contain a high 

degree of artifact contamination, shorter recording lengths, and the quality of the EEG recordings 

is substantially reduced compared to recordings collected in adults. Traditionally, researchers 

relied on expert supervision for artifact identification and removal for pediatric EEG data. 

However, the manual data cleaning process decreases the replicability of methodology and the 

processed results. Moreover, with the increasing amount of available data and complexity of 

preprocessing procedures, the manual data processing becomes impractical and makes automatic 

preprocessing of EEG data essential. Multiple open source toolboxes and pipelines are publicly 

available for EEG data preprocessing (APP, Automagic, PREP) but these pipelines are optimized 

for data features that are often not particularly suitable for pediatric EEG data due to the 

constraints in pediatric EEG recordings. Although the HAPPE preprocessing pipeline has 

recently been streamlined to process pediatric data, it is unable to process ERP data. Therefore, 

there is a dearth of software with standard features used in adult EEG data processing (e.g. ICA, 

automatic identification of noisy channels) for processing of pediatric EEG data. To address 

these issues, we developed MADE, an open source MATLAB software that combines currently 

available standard preprocessing techniques and custom-made features particularly suitable for 

EEG data collected from pediatric populations. 

 

We developed MADE as an automated EEG preprocessing pipeline for pediatric EEG data and 

investigated the effect of processing resting and task-based EEG data from diverse populations 

through MADE. This validation revealed that MADE performs significantly better than two 

other processing streams, which are the common data analysis approaches used in many labs. 

MADE retained significantly more trials compared to the traditional methods for both resting 

and task-based EEG data in all age groups. At end of the processing of a dataset, MADE 

produces a report file containing summary of quality measures for each datafile. The report file 
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will allow the users to determine whether a particular subject needs to be excluded from analysis 

due to, for example, excessive contamination of artifacts or insufficient number of post-

processed artifact free trials. MADE is also able to save data at different levels of the 

preprocessing pipeline, which would allow the users to examine whether a particular datafile 

might have some issue that needs a closer look at an earlier step of data processing. Moreover, 

MADE is able to process both resting and ERP data, which was a limitation in previous pipelines 

developed for pediatric data. Finally, MADE is very easy to customize for a particular dataset 

and users, we believe, will be able to seamlessly adapt MADE for their study. 

 

There are some limitations to the MADE pipeline and the presented validation. We only tested 

MADE on 64- and 128-channel EEG datasets. However, we expect the pipeline to work equally 

well for recordings with more channels. We do not recommend the use of MADE for EEG data 

recorded with less than 32 channels. In such cases, MADE can still be used, but some parameter 

calculation and processing steps might not be optimal due to insufficient data channels. 

Furthermore, MADE relies heavily on ICA for artifact rejection, hence the correction of eye-

movement related artifacts using EOG channels cannot be performed. However, the most 

challenging part of ICA based artifact rejection technique is to correct classification of ICs. In 

this pipeline, we used an automatic ICs classification method, the adjusted-ADJUST, to avoid 

subjective bias in ICs classification. The adjusted-ADJUST scripts were created by optimizing 

the ADJUST algorithm for infant data and are believed to be performing significantly better in 

pediatric populations than existing ICs classification methods. Finally, the validation of the 

pipeline and comparison of results with traditional methods are limited to the percent of post-

processing trials. However, one of the main goals of this pipeline was to minimize loss of data, 

which is a major concern in EEG studies with pediatric population, while excluding unwanted 

artifacts from raw EEG signal.  

 

In sum, this paper proposes and validates MADE, an EEG preprocessing pipeline streamlined for 

pediatric EEG data. We validated MADE on EEG data recorded with different systems and 

populations. Our results show that MADE performs significantly better than other traditional 

preprocessing methods. MADE is freely available under the terms of the GNU General Public 

License (version 3) (Free Software Foundation, 2007). MADE and associated scripts may be 

accessed at: https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline. We hope that 

this automatic EEG data processing pipeline will contribute to pediatric EEG research and users 

will benefit from this pipeline and its accompanying MATLAB scripts.                 

 

 

Appendices 

 

Appendix A. Excluding interference trials from analysis 

In EEG experiments with pediatric populations, the subjects or caregivers often tend to make 

unintended motions in an experimental trial. The unintended motion can be of different natures 

depending on the experiment design such as gesture, gross motor movement, or leg movement. 

Moreover, there are trials in which the subjects do not perform the desired task event. The trials 

in which the subjects or caregivers appear to make unintended motions or the subjects do not 

perform the task are generally categorized as interference trials. In order to identify the 

interference trials, a common practice in pediatric EEG experiments is that the EEG tasks are 
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video recorded and videos are coded for live events and synchronized with the continuous EEG 

recording. The coders view the videos off-line to identify the event of interest and also 

interference trials. The interference trials are then excluded from analysis.  

 

There are different ways to code and exclude interference trials from analysis. Here we present a 

procedure, which is a standard method of our lab, to remove interference trials from EEG 

analysis. Two independent coders view each video file off-line frame-by-frame and separately 

identify each event of interest and all interference events. Coders identify the frame, in which an 

experimental event is completed and in which an interference event occurred. If the frame in 

which the interference occurred falls within an experimental trial, then that trial is coded as an 

interference trial to be excluded from analysis. After video coding, an excel file is created 

including the interference trials from all conditions and subjects. An example excel file of 

interference trials can be found on at https://github.com/ChildDevLab/MADE-EEG-

preprocessing-pipeline.           

 

To exclude the interference trials from analysis for each subject, we developed a method that 

includes a 3-step process: 1) reading the excel file containing interference trials of all subjects, 2) 

numerical labeling of all trials in each condition, 3) marking interference trials. The Matlab script 

exclude_interference_trials.m implements this method. The users can edit and adapt the script for 

their experiments and call the script to the pipeline for excluding interference trials from 

analysis. 

 

Appendix B. Segmenting eyes open and eyes closed resting state EEG data 

Resting state EEG data are one of the most commonly recorded brain measures in pediatric 

populations. Because resting state EEG does not involve any specific task event, the data are 

segmented by inserting dummy markers. The EEGLAB function eeg_regepochs.m has been used 

in the MADE pipeline to segment a continuous dataset into consecutive epochs of a specified 

regular length by adding dummy markers and epoching the data around these markers. This way 

the whole length of continuous EEG data is converted into epochs. However, resting state EEG 

is generally also recorded with two conditions: eyes open and eyes closed. It is increasingly 

becoming a common practice to record resting state EEG for several minutes, alternating eyes 

open and eyes closed conditions. The eeg_regepochs.m function cannot be used to segment data 

into separate eyes open and eyes closed conditions. Therefore, we have developed a procedure to 

segment continuous resting EEG data into specific length epochs in the eyes open and eyes 

closed conditions. The Matlab script create_eyes_open_closed_resting_epoch.m provides a 

customized method of creating separate eyes open and eyes closed epochs from continuous EEG 

data recorded in eyes open and eyes closed conditions. The script takes users inputs for dummy 

markers and epoch length, then inserts dummy markers at specific intervals and creates epochs 

of the specified length that are time locked to those dummy markers. Furthermore, it can create 

either overlapping or non-overlapping epochs based on user’s inputs. The users can customize 
the create_eyes_open_closed_resting_epoch.m script to adapt it for their data.         

 

Appendix C. Marker editing for task-related EEG data 

EEG files recorded while participants perform experimental tasks typically contain event 

markers that indicate when specific stimuli or motor responses were made. For example, a visual 

task requiring participants to indicate, via button press, what stimulus was presented to them will 
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at least contain event markers indicating exactly when the stimuli were presented and button 

presses were made by the participant. Depending on what software was used to present the 

experimental task and what kind of EEG system was used to collect EEG data, the individual 

event markers may contain further information and/or additional markers that contain 

information about the task parameters. For example, if two kinds of stimuli are presented to 

participants within a single experimental task, then the stimulus identity may already be coded in 

the stimulus event marker, or, an additional event marker may contain information about the 

stimulus identity. Similarly, in order to determine whether a given stimulus event marker arises 

from an experimental trial in which the participant correctly responded, accuracy information 

from the response marker, or another marker, needs to be “copied over” to the associated 
stimulus event marker. 

 

In order to properly label all event markers present in the EEG file, it is necessary for the MADE 

pipeline to call an additional script that loops through each event marker and properly labels 

them based on available information contained in other nearby markers. The script that will 

properly label the event markers in your EEG file needs to be customized for the purposes of the 

specific experimental task that is associated with your EEG file, as well as to be compatible with 

the software used to present the experimental task and EEG system used to collect the EEG data. 

As an example of what this script might look like, please refer to the script entitled, 

‘edit_event_markers_example.m’. This script is a simplified version of a more complicated 
script that we commonly employ to label event markers arising from a “visual Flanker task” 
presented on e-Prime software with EEG recorded using an EGI system. Please note that this 

script is only meant as a simplified example of an event marker labeling script, and should only 

serve as a starting point for your own customized scripts. 
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