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The Mass of an Asymptotically Flat Manifold

ROBERT BARTNIK

Australian National University

Abstract

We show that the mass of an asymptotically flat n-manifold is a geometric invariant. The proof is
based on harmonic coordinates and, to develop a suitable existence theory, results about elliptic
operators with rough coefficients on weighted Sobolev spaces are summarised. Some relations between
the mass. scalar curvature and harmonic maps are described and the positive mass theorem for
n-dimensional spin manifolds is proved.

Introduction

Suppose that (M, g) is an asymptotically flat 3-manifold. In general relativity
the mass of M is given by

1 i
(0.1) mass = mﬁ (gij,j - gjj,i) as’,

where g;; , denotes the partial derivative and dS' is the normal surface element
to S,,, the sphere at infinity. This expression is generally attributed to [3]; for a
recent review of this and other expressions for the mass and other physically
interesting quantities see [4]. However, in all these works the definition depends
on the choice of coordinates at infinity and it is certainly not clear whether or not
this dependence is spurious. Since it is physically quite reasonable to assume that
a frame at infinity (“observer”) is given, this point has not received much
attention in the literature (but see [15]).

It is our purpose in this paper to show that, under appropriate decay
conditions on the metric, (0.1) generalises to n-dimensions for n > 3 and gives an
invariant of the metric structure (M, g). The decay conditions roughly stated (for
n = 3) are |g — 8| = o(r~1/?), |dg| = o(r~3/?), etc, and thus include the usual
falloff conditions. We note that an example of Denisov and Solov’ev [12] shows
that these conditions are optimal for the mass to be uniquely defined.

The approach we take is to construct coordinates which are harmonic near
infinity and use these to show that there are no “twisted” coordinates at infinity.
Harmonic coordinates have been used previously in [11] to study the mass but
under more stringent conditions and with a different purpose. From the resulting
uniqueness of the structure at infinity and an interpretation of the mass in terms
of the scalar curvature, it is not hard to derive the uniqueness of the mass, but
there is a simple but curious cancellation which deserves to be better understood.
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We remark that the interpretation of the mass in terms of scalar curvature is
implicit in the Hamiltonian formulation of general relativity (e.g. [29], [36]).

In view of some future applications we have chosen to work with weak
regularity assumptions on the metric. For this reason we start with a survey of
the methods and results of the theory of elliptic operators on weighted Sobolev
spaces; the treatment is slightly unorthodox but (we hope) clearer than the
existing works, and there are some new observations. Of particular interest are
the a priori estimates for operators transverse to the kernel (Proposition 1.12) and
the description of the dimension of the kernel as the weighting is varied
(Proposition 2.2 and Corollary 2.3).

Having set the stage, the uniqueness results follow readily, the main difficulty
being that of deciding just what needs to be proven. Some ancillary results are
also described that show that harmonic coordinates are in some sense the best
possible. Section 5 emphasises this as we give an alternate interpretation of the
mass in terms of harmonic maps and a quick proof of a weak version of the
positive mass theorem (see [28],[31],[33]). This proof also shows that the mass
estimates some quantities of partial differential equations interest. In the final
section we show that Witten’s proof of the positive mass theorem can be
generalised to higher-dimensional spin manifolds. This result has also been
announced by R. Schoen.

1. Operators on Weighted Sobolev Spaces

In this section we review those parts of the theory of weighted Sobolev spaces
that will be needed later. Much of the material is well known (the treatment here
is particularly indebted to [9], [25], [23] and [22]) but there are a number of
technical improvements and some new observations. We have tried to emphasise
the two basic ideas which underlie this subject; the use of scaling to convert local
estimates into global estimates, and secondly, sharp estimates for constant
coefficient operators arising from explicit expressions for the Greens function.
The first is well known in the PDE literature— for example see the treatment of
weighted Schauder norms in [17] and [16]—while the second has been periodi-
cally rediscovered. Some references additional to those mentioned above are [24],
[5], [8] and [21], while [2],[14],[20] contain similar ideas. Most of these papers
deal with elliptic systems with dominant part a scale invariant operator, not
necessarily with homogeneous symbol. Since it is all that is required by our
prospective applications we consider here only operators close to the Laplacian at
infinity. This suffices to illustrate the main ideas.

We work initially in R", n > 3, although the physical interest is in n = 3, and
set r = |x|, 0 = (1 + r2)!/2, Subsets of interest are By = Bg(0), the closed ball of
radius R and centre 0, the annulus Ay = B,z \ By and the exterior domain
E, = R*\ B,. The summation convention applies and partial derivatives may be
denoted by subscripts, u, = d,u = du/dx,, Du = (u;). The flat metric is §,; and
the standard Laplacian is A = ¥4, 3, while A, denotes a metric Laplacian,

A =1gl"?3,(1g1"%" d,¢).
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Constants will be denoted by C or ¢ and their dependence on interesting
parameters will be noted as appropriate.

DefFINITION 1.1. The weighted Lebesgue spaces Lf, L¥, 1 < p < o0, with

weight 8§ € R are the spaces of measureable functions in L{ (R"), L{ (R"\ {0}),
respectively, such that the norms ||+, 5, || * ||}, 5 defined by

1/p
(f ]ulpo‘s"‘”dx) , P <o,
R

esssupp(0?lu)), p= o0,

Lf: lull, s =

(1.1)

1/p
'u,Pr—&D—ndx) , p<oo,

Ly: WMJ=(ANW

€ss SuUP gy (o, (7 °14]), p= 00,

are finite. The weighted Sobolev spaces are now defined in the usual way:

k
Ws P lulli,p.s = LDl 55
0
(1.2)
k .
Wee:?: lulli p.s = LUDull) 50
0
Observe that C®(R"), C2(R"\ {0}) are dense in Wy 7, W7, respectively,
for 1 £ p < oo and that Lf = L?(R") for § = —n/p. The indexing chosen for
the weights differs from that usually used but has the advantage that it directly

describes the growth at infinity (see (1.10) below). Another simplification is that
the rescaled function

(1.3) up(x) = u( Rx)
satisfies, by a simple change of variables,
lurlle, 5.5 = RUulli, .5
and, with an obvious notation for norms over subsets of R”,
(1.4) lwlle.p 840 = R™*Nttklla,p 5.0, for R21,

where “ = " means “is comparable to, independent of R > 1”. The estimate (1.4)
is the key to proving global weighted inequalities from local inequalities.

THEOREM 1.2. (i) If 12 p <9< 0,8, <8, andu € L], then
(1.5) lull,, s, < cllullg s,

and hence L c Lspl.
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(ii) (Holder inequality) If u € qu’ ve L and § = 8§, +8,,1sp,qrx
w,1/p=1/q+ 1/r, then

(1.6) luoll, 5 < llully, s ll0l, 5,

(iii) (Interpolation inequality) For any & > 0, there is a C(&) such that, for all
ue Wﬁz‘p’ 1 §P = o,

(1.7) ey, 5,5 < llullz, s + CCe)llullo, p.5-

(iv) (Sobolev inequality) If u € Wi'?, then

(18) ”u“np/(n—kp).s = C“u”k,q,a

if n—kp>0andp<qsnp/(n—kp),

(1.9) lullo,s < Cllwlly. p.5 i n—kp <0,
and in fact
(1.10) lu(x))|=o(r®) as r— .

(v) Ifue WP 0<axgk—n/p<l, then
(1.11) llullco.e < Cllullk, p. s

where the weighted Holder norm is defined by

—§+a u(x) —u
lullcge = sup [072*%(x)  sup %ﬂ

xeR" alx—y|ga(x) Y
(1.12)

+ sup {o7%(x)|u(x)|}.

x€R”

Analogous to (1.10) we have
(1.13) Nullcgea,y =0(1) as R — oo.

Proof: The first two estimates follow directly from the definition and
Holders inequality. The other estimates follow from the technique of rescaling
and applying local estimates, which we illustrate by proving (iv). Supposing that
p* = np/(n ~ kp) < oo, we have

1/p*
»
o0 = [ (0 00)""0" x|
R

=< CR_8||“R”p',s;A,

-5
< CR “uR”k.q‘S‘.Ap
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by the usual Sobolev inequality applied to £ = A, followed by Holders in-
equality. Rescaling gives

Null po. 5, < Clltllk, g,5:

and writing ¥ = X3u; with ug = u|g, u; = u|,u-v, j 2 1, we see that

0 1/p*
Null o5 = (Znu,-n;;-,s)
0
) 1/p*
< C(Z"l‘j”f,q,s)
0

00 1/4
= C(E”“;”Z,q,s) 4
0

since p* > ¢ and (Za)"/* < (Za})/" fora; 2 0, r <s. When n — kp <0, the
same scaling argument implies

S:lplulo_s = ”“”co,&;AR é C”u“k,p,s;/(,z

which gives (19) and since [|u||, , 5 < oo we have {|ull,, , 5, 4, = 0(1) as R = oo,
giving (1.10).

The counterexample u(x) = (logr)~!, r > 2, shows that (i) cannot be im-
proved to 8, = 8,. The following weighted Poincaré inequality is rather more
subtle than the above estimates and seems to be closely related to invertibility of
the Laplacian on weighted spaces. Related ideas can be found in [32] and [1].

THEOREM 1.3. (i) Forany u € Wy ? with1 < p < o0, 8 # 0, we have
(1.14) Null, s < 1817wl 5o S 18]~ Dull’, 5-1,

where u, = d,u = r"'x* Du.
(ii) If 8 < 0, there is a constant C such that

(115) “u”p,B é C”urllp.a—l for any u € Wsl'p'

Remark. By modifying ¢ in the interior the constant in (1.15) can be made
arbitrarily close to 8]~

Proof: By a previous remark, in order to prove (1.14) it suffices to consider
u € C*(R"\ {0)). Since Ar@~" = 0 in R"\ {0}, testing with r~%7|u|”? gives

' f D(r2=") + D(r=%7|u|P)dx =0
R™\{0}
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which expands to

| a1 Ll N Lt PH IS AL
R\ {0} R™\{0}

and then Holders inequality gives (1.14). A similar calculation using Ag2~" =
—n(n— 20" %" and § < 0 with u € C®(R") yields

(116) [ fulPA(r)o™""dx < [l lPA(r)! 7 (r/0) a2 D,
R” R"

where A(r) =18(1 — (1 — n/|8|p)/(1 + r?/a?)). The estimate (1.15) now fol-
lows by noting that A(r) = |8] as r = o, A((r) = n/p as r - 0.

Next we recall the weighted Rellich-Kondrat’ev compactness theorem (see [9])
and note that counterexamples based on “travelling bumps” in x-space (for 8)
and &-space (for k) show that the hypotheses cannot be improved. This result
indicates that there is a nice duality between the k, § indices, provided by the
Fourier transform and the Paley-Wiener theorem.

LEMMA 1.4. ([9], Lemma 2.1). Fork > j, 8 <eand 1 £ p < oo, the inclusion
Wg-P c W/7 is compact.

The scaling argument and standard local estimates give estimates in weighted
spaces for elliptic operators whose coefficients are well behaved at infinity.
Conditions appropriate for our purposes (but certainly not optimal—compare
[25]) are given by

DeriNiTION 1.5, The operator u — Py defined by
(1.17) Pu=a"(x)3}u+ b'(x)du+ c(x)u

will be said to be asymptotic to A (at rate 1) if thereexist n <g< ocand 7> 0
and constants C;, A such that

MEI2 < a(x)€4, <A YE? forall x€R* £€R,
(1.18) )
Na'’ — & ll1,q. -« T 16'll0, 4. —1-+ + licllo, g2, -2-+ < C15

where §,; is the usual flat metric on R".

By (1.11), 4"/ is Holder-continuous and |a'/(x) — §,| = o(r™") at infinity.
The conditions (1.18) are also satisfied by the divergence-form operator A, when
g,; is a uniformly elliptic metric on R" and (g,, - §,,) € W4 for some 7 2 0.

It is clear from Theorem 1.2 that if P is asymptotic to A, then the map P:
WP — W% is bounded for 1 < p < g and 6 €R. In fact the following
weighted estimate holds.
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PROPOSITION 1.6. Suppose that P is asymptotic to A, 1 < p < q, and § € R.
There is a constant C = C(n, p, q,8,Cy, X) such that if u € LY? and Pu € L}-?,,
then u € Wi* and

(1.19) lulla, .8 < CIIPully , 52 + llullo, ».5)-

Proof: Elliptic regularity applies to show that u € W27, and the remaining
conclusions follow from the usual interior L” estimates (see [17], Chapter 9) and
the scaling technique.

Observe that the same argument gives the estimate (1.19) with the Wyk-#
norms instead. We now investigate the Fredholm properties of P. The arguments
which follow show that (1.19) is not sufficient to prove “Fredholmness”; a
strengthened estimate with the “error term” on the right-hand side being com-
pact with respect to W;> 7 is needed. To prove the scale-broken version of (1.19)
which is required by the Rellich-Kondrat’ev theorem, we rely on a sharp estimate
for the flat Laplacian based on an explicit expression for the integral kernel of
A~ on weighted spaces (cf. [25],[23],[24]).

The weighting parameter 8 € R is said to be nonexceptional if 6 € R/{k € Z,
k+ —1,—-2,---,3 — n}, where the exceptional values {k € Z, k +
—1,—-2,---,3 -~ n} correspond to the orders of growth of harmonic functions in
R"\ B,. It will also be useful to define

(1.20) k~(8) = max{ k exceptional, k < §}.

THEOREM 1.7. Suppose that 8 is nonexceptional, 1 < p < o0, and s is a
non-negative integer. Then the map

(1.21) At WPthr —» Wiy
is an isomorphism and there is a constant C = C(n, p, 8, s) such that
(1.22) Nullssz, 5.5 < CllAuUl; , 5-2-

Proof (compare [23]): It will suffice to prove (1.22) for s = 0. We first show
that the distributional inverse of (1.21) has convolution kernel K(x, y):

Ix —y1>7" if 2-n<8<0,

Ix = y|2~" lyI“ZP*(u)( ) if k20,

|x]
(1.23) ¢,K(x,y) = 1!
Wl

u—yﬁm—uﬁ"szm( ) it k<2-n,

where kK = k7(8), p=(x+y)/|x|]y] and Pj)‘ are the ultraspherical functions
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arising in the Taylor series expansion

o j
== SR (] 1< Jsl.
0

Let us first show that (1.23) defines a bounded operator from Wy%f to Wy%?.
Since the three cases are very similar, we only consider the second in detail.
Following [23], we have the estimates

k+1

(1x1/11)
(1x1/1»D

if (x| < 3yl
n+k—2

(129) |K(x,y)|§c(n,k)|x—y|2'"{ AR
it x| 2 3yl

Now recall ([25], Lemma 2.1):

LEMMA 18. Fixpe (1;0), p’=p/(p — 1) and let a, b € R be such that
a + b > 0. Suppose K'(x, y) is the kernel

K'(x,y) =1x|"“lx = y|> "y|I™® for x#+y,

and for u € LP(R™) define

K'u(x) = [K'(x, y)u(y) dy.
Then there is a constant ¢ = c(n, p, a, b) such that
K ull < cllultys
ifandonly ifa < n/pand b < n/p’.

Let K|, K, be the operator kernels |x — y|2""(|x|/|y)* witha =k + 1, a =
n + k — 2, respectively. The above lemma shows that the kernel

K{(x,y) =|x|"%""/?K \(x, y)|y|®~**"/?

defines a bounded operator L? — L? whend + n/p— k-1 <n/p and —8 —
n/p+k+3<n/p,ie,when3 —n+ k<8 <k +1, and then

Kyl 5 < clir? 27" Pull p < cllull) 52

Similarly, K3(x, y) = |x|"% "/?K,(x, y)|y{®~%*"/? is bounded L? - LP when
k<8<n+ k-2 and then K;: Wy%f — Wy%7 is likewise bounded. These
two estimates and (1.24) show that K: W;/%F —» Wy** is bounded when k < 6
< k + 1 as claimed and the boundedness for the other two cases in (1.23) follows
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similarly. The distributional identities
(1.25) AK(x,y)=A4,K(x,y)=8(x—y) in D'(R"\ {0}).
imply that K(Au) = u for all u € C*(R"\ {0}), so the boundedness of K gives
llulls, .0 < CllAully , 5, forall ue Wykr,

since C°(R"\ {0}) is dense. This and the scaling estimate (1.19) yield (1.22) for
s = 0. Now suppose {u;} C Wy>», { f,} € W/*/ are sequences such that f, =
Au,and f, — f. By (1.22), {u4,} is a Cauchy sequence and hence is convergent to
u € WP with Au = f, since A: Wy>? — Wy%# is bounded. This map thus has
closed range and by (1.25) we have A(Kf)(x) = f(x) for f € C*(R"\ {0}) and
Kf € Wy%?, so it is also surjective. Finally, (1.22) shows that the kernel is trivial
and this establishes the isomorphism.

It is clear that the above arguments require only the scale-invariant estimate
(1.19) and explicit estimates for the Greens function such as (1.24). Thus the
generalization to operators with homogeneous symbol is straightforward, and a
change of variables R"\ {0} = S$"~! X R permits the generalization to dilation-
invariant operators (see [5],[22],{2]).

The estimate (1.22) implies the following well-known Liouville theorem.

COROLLARY 1.9. Suppose that Au=0 and u€ Lf, 1 <p < o, and let
k =k (8). If k <0, then u = 0; while if k = 0, then u is a harmonic polynomial
of degree less than or equal to k.

Proof: Elliptic regularity shows that u € C*(R"). Let h,(x) be the Taylor
series expansion of u about x = 0,

u(x) =h,(x) + O(|x|**') as |x|— 0.

Since Au(0) = 0, h,(x) is a harmonic polynomial so that (¥ — ;) € L}, and
the estimate (1.22) applied to u — h, now shows that u = h,.

The scale-broken estimate (1.26) which follows is the key to proving
Fredholm properties.

THEOREM 1.10. Suppose that P is asymptotic to A and § € R is nonexcep-

tional. For 1 < p < q the map P: W? — W-? has finite-dimensional kernel and
closed range and, for any u € Wi ?,

(1.26) lullz, .5 < C(I1PUllo, .52 + 14ll o)

where C, R are (computable) constants depending on P, 8, n, p, q.
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Proof: Define the operator norm
1P = Allgp = sup{I(P = A)ullo,p.5-2: 4 € W7, Jlullz, .5 = 1}

and let || *||,,  denote the same norm restricted to functions with support in
E; = R"\ Bg. Then if supp(u) C Ep, since ¢ > n,

(P —B)ullg, , -2 |S|upk{laij(x) - 8;;]} ”D2u|lo,p,a—2

+C”b”O.q,l;I:'R”Du”l.p.s—l + C”cIIO,q/2,2;ER”uHZ,p_59
using (1.6) and (1.8). Since P is asymptotic to A this shows that
(1.27) IP = Al r=0(1) as R - c0.
Let x € C*(B,) be a patch function, 0 £ x <1, x=1 in B, and set
X r(x) = x(x/R). Writing u = ug + u_, #y= Xpl, 4, = (1 — xz)u with R a
constant to be determined, the sharp estimate (1.22) yields
“uco”Z,p,S é C“Auco”()‘p,S—Z

§ C(”Puoollo.p.8—2 + “P - A“op,R”“oo”Z,p,S)

and proceeding as before we estimate

1Pugllo p.5 S 1PUllg p 5-2 127U, 3 x5 + (“U xr+ b 31XR)“”0,,;,5«-2;A,,
SN Pullo, p 5-2F Cllully p 5, 4,

Since ||P — All,, & = 0(1), for R sufficiently large

(1.28) lt4llo, p.5 < CLUIPUlo, p.5-2 + lully, p.5: 4, )

and using (1.19) and the interpolation inequality (1.7) gives (1.26). Now suppose
that {u,} is a sequence in ker P satisfying ||u,||, , s = 1, so that by the Rellich
lemma we may assume that {u, } converges strongly in L7(Bg). Estimate (1.26)
now shows that |[u; — u,|l, , s = 0 as min(j, k) = o, thus {u,} is Cauchy and
hence convergent in W27 which implies that ker P is finite-dimensional. To
show that P has closed range we follow [9], Theorem 6.3. Since dimker P < o0,
there is a closed subspace Z such that W»? = Z + ker P and we claim there is a
constant C such that

”u”Z‘p‘a _S_ C“Pullo‘p_a__z fOI' all ue Z.
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For if this were not the case, there would be a sequence {u,} C Z such that
llugllz, 5.5 =1 and (|Pullg » 5-2 = 0. The usual Rellich lemma applied to (1.26)
shows that {u,} has a subsequence which is Cauchy in Z and whose limit is a
non-zero element of ker P N Z, which is a contradiction. The argument in
Theorem 1.7 now implies that P has closed range.

We are interested in the dimension of the kernel of P, which will be denoted
by
(1.29) N(P,8) = dimker( P: W7 —» W2£)
with 1 < p < g (from Proposition 1.6 it is clear that N(P, §) does not depend on
p). Purely function-theoretic arguments give some information and yield as a
by-product some estimates which do not seem to be derivable by direct PDE
methods. The first result is the upper-semicontinuity of N(P,8) and is well
known (e.g. [25], [19]). To simplify notation we write X = W7, Y = W% for &
nonexceptional and 1 < p < g, so that Theorem 1.10 shows that P: X - Y is
semi-Fredholm (see [19)]), i.e., has finite-dimensional kernel and closed range.

PROPOSITION 1.11. Suppose that P. X — Y is a semi-Fredholm map between
Banach spaces X, Y. Then there are constants C, ¢ > 0 depending only on P such
that if P’: X — Y is any semi-Fredholm map satisfying |P — P’||,, < &, then

(1.30) dimker P’ < dimker P,
and for any u € X we have the estimate

(1.31) lu = ker P||x < Cl|Pully,
where

llu — ker P|| x = inf{||u — w|| x: w € ker P}
is the quotient norm on X /(ker P).

Proof: The argument in Theorem 1.10 gives (1.31). Now let ¢ = (2C)~! and
suppose (1.30) fails, so there is u € ker P’ such that ||u)|, = 1 and ||u — ker P||
> 4. Then

<|lu — ket P||x < Cl|Pully < CI|P = P’l|opllull x

o=

< Cg,
which is a contradiction.
Intuitively C(P)~! measures the distance (in the operator norm) of P to a

semi-Fredholm operator with larger kernel. This picture is reinforced by the
following partial converse.
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PROPOSITION 1.12.  Let X, Y be as above and set
F = {P: X > Y, P satisfies the conditions (1.18)}.
Suppose that U C F has the property that there is a constant N such that
dim(kerP) =N forall P U.
Then given P € U, there are constants ¢ > 0, C < oo, such that
(1.32) llu — ker P’||x < C||P'ully

for allu € X and all P’ € U with ||P — P'||,, < e.

Proof: Suppose this is not the case, so that there are sequences P, = P in U
and {u,} € X such that ||u,||, =1, |lu, — ker P, ||, > 4 and

llu, — ker Pyl x 2 k||Pruylly-

This shows that P,u, — 0; thus using (1.26) and the Rellich lemma again and
passing to a subsequence we see that u, » u in X, Pu=20, |lully=1 and
lu — ker P||x = % for k sufficiently large. A similar argument shows that ker P,
converges to an N-dimensional subspace of ker P, which however cannot contain
u. This contradicts dimker P = N.

Finally we note the following result which indicates that the set of operators
for which dim ker is bigger than usual is “small”.

THEOREM 1.13 ([19], Theorem IV.5.31). Suppose that P. X —» Y is semi-
Fredholm and A: X — Y is P-bounded (i.e., ||Au|ly < C({|Pully + |\ulix) for all
u € X). Then there is Ay > 0 such that P + X A is semi-Fredholm for |[\| < A and

dimker(P + AA4) = constant for 0 <|A| < A,.
(Note that A = 0 is not included in the last conclusion.)
If the formal adjoint
(1.33) P*: WP o WIkF

of P also satisfies the conditions (1.18), then more information can be obtained
by using the Fredholm index. Here W_27; is the subspace of D’(R") consisting
of those distributions which extend to give bounded linear functionals on W2,
endowed with the dual norm. If 8 is nonexceptional and moreover 1 < p < g,
p’ = p/(p — 1), then Proposition 1.6 and the Sobolev inequality (1.8) show that
ker(P*) C W,29_, and hence

—-_n-

dim coker P = dimker P* = N(P*,2 — n — §).
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This is finite by Theorem 1.10; hence P is Fredholm with Fredholm index
(1.34) t(P,8) = N(P,8) — N(P*,2—-n-38).

Since the index is locally constant in the space of Fredholm operators with the
[l « lop topology (see [26],[19]), we have

«(P,8) =1(4,8) =1,(8)

and the index ¢,(8) of the flat Laplacian can be explicitly computed. Let {¢, .},
keZ* 1 gaczgn,, be abasis for the eigenfunctions of Ag.-1 with eigenvalue
A, = —k(n + k — 2), so that (see [7])

(1.35) n,=dimH, = (n— 2+ 2k)(n = 3 + k)/k!(n - 2)!,

where H, = {homogeneous harmonic polynomials of degree k£ in R"}. Then,
defining N (8) = N(A, §) we have

(1.36)
No(8)=mg+my+ny+ - +n,=(n—-1+2k)(n=2+k)\/k!(n—1)!
when k = k7(8) > 0 and thus

(8) Ny(5) it 8> 0,
TN N2 -n-8) if s<0.

The above remarks are summarised as

PROPOSITION 1.14. Suppose that P and P* both satisfy conditions (1.18) and
that & is nonexceptional, 1 < p < gq. Then P: W27 > W2 is a Fredholm
operator and N(P,8) = dimker P is independent of p. If k= (8) < 8' £ 8, then
N(P,8) = N(P,8) and if u € W7 and Pu € W2, then u € W >,

Proof: Previous remarks show that P is Fredholm and N(P,8) does not
depend on p. From the invariance of the index and k7(8) < §' £ 8 we have

«(P,8) —u(P,8')=0
and writing this in terms of N(P, §) gives
N(P,8) — N(P,8') =N(P*,2—n—8)— N(P*2-n-2¢8").

The inclusion Lf c L§ for 8, < 8, implies that the right-hand side of this
equality is non-positive whilst the left-hand side is non-negative, so N(P, 8) =
N(P,8"). Now if Pu€ WP, then [vPudx = 0 for all v € ker(P*,2 — n — §’)
so that Pu € Ran(P,8’) and there is w € W;>” such that Pu = Pw. Then
(u — w) € ker(P, 8), but ker(P, §) = ker(P, §) and hence u € Wi ?,
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When P = A, then P* = P (where the adjoint is determined by the pairing
(u,v) = juuf dx) and some more information is available.

PROPOSIT]ON 1.15. Suppose that g, (x) is uniformly elliptic in R" and
(g;,— 8, € W) 9 for some n < q < o0, and that & is nonexceptional and
1<pcx < q Then A W? — W55 is Fredholm and N(A, 8) = Ny(8).

Proof: In view of the invariance of the index and the selfadjointness of A it
will suffice to show that N(A,,8) = 0for 8 <0.Butif A,ju=0and u € Wi,
8§ < 0, then u = o(1) at infinity and the strong maximum principle for weak
solutions (see [17], Theorem 8.19) shows that u = 0.

COROLLARY 1.16. Let § be nonexceptional, n < g < oo, and 1 <p <q.
Then there are constants C, e > 0 such that, for any metric g;, with ||g,; — 8, |l ,.0
=6

(1.37) llu—kerA |, , s < CllAully , 5 » forall ue Wir.

Proof: This follows immediately from Propositions 1.12 and 1.15.

It would be interesting to find a direct PDE proof of the estimate (1.37).
When 2 —n <8 <0 and A is an isomorphism, this can be done using the
weighted Poincaré inequality (1.15) but in general it seems quite difficult.

The classical expansion of harmonic functions in terms of the spherical
harmonics ¢, , can be adapted to operators asymptotic to A at rate 7 > 0. A
bootstrap argument based on the Schauder estimates was given in [24] and easily
adapts to the present situation.

THEOREM 1.17.  Suppose that P is asymptotic to A at rate 7> 0 andu € W9,
8 nonexceptional, satisfies Pu = 0 in Eq = R*\ By for some R > 1. Then there is
an exceptional value k < k (8) and h, € C®(R") such that h, is harmonic and
homogeneous of degree k in Ep and

(1.38) u—h,=o0(r*"") as r— oo.

Remarks. 1. The method also applies to Pu = f and, by using the explicit
kernel, lower-order terms of the expansion (1.38) can be estimated as in [24].

2. If 7 = 0, then Proposition 1.14 can be used to infer that u = o(r*'*) for
any ¢ > 0, but the exact analogue of (1.38) is false since u =logs, P=A —
(n — 2)o~%(log20) ! provides a counter-example.

Proof: From Pu = f in Ep we have Au = F, where F = (8,, — a'/)d u —
b'du—cuin |x|> R; thus F e W2 7 _, by the decay assumptlons on P. Since
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A: W4 - W 4_, is Fredholm, there is a v € Wz 7 such that
A(u—v)=0 for |x]|>R.

(It may not be possible to have A(u — v) =0 in all R" since A may have
non-trivial cokernel.) The classical expansion for harmonic functions now shows
that

u—v="h,+0(r* 1

for some k < k~(8) and h, as above. The decay estimate for v is improved by
iteration: u — h, € W9 implies F € W;>4_,, and hence, by Proposition 1.14,
v E Wsz;gr. This argument can be repeated until we obtain (¥ — h,) € W24,
Observe that this result and the following corollary depend only on the
structure of P at infinity and thus generalise to asymptotically flat manifolds.

COROLLARY 1.18. Suppose that P is asymptotic to A at rate v > 0.
(1) If k > 0 is exceptional and 0 < ¢ < 1, then

N(P,k+¢e) — N(P,k—¢) <n,,
(1.39) *
N(P2—n—k+e)-N(P.2—n—k—¢)<n,,

where n, = Ny(k + e) — Ny(k — ¢) is given explicitly by (1.35).
(i) There is an exceptional value K < 0 such that

(1.40) N(P,8) =0 forall & < K nonexceptional.

Proof: (i) follows immediately from the expansion (1.38) and the definition
of n,. Theorem 1.17 shows that u € ker( P, §) grows like an integral power of r
and (ii) then follows from the inclusion ker( P, 8) C ker(P, 3) for § < } and the
finite-dimensionality of ker( P, 4).

2. Asymptotically Flat Manifolds

DEFINITION 2.1. A smooth n-dimensional manifold (M, g) with complete
Riemannian metric g € W9 M) for some n < g < oo is said to be asymptoti-
cally flar if there is a compact K C € M such that M\ K has a structure of
infinity:—there is R 21 and a C* diffeomorphism ®: M\ K — E, which
satisfies

(i) (P4g);; is uniformly equivalent to the flat metric 8, ; on Ep, so that there
isa A = 1 such that

(21)  ATHEP < (®,8)i(x)EE < NE? forall x € Eg, ¢ €R",
(i1)

(2.2) (®ag)ij — 8, € WLI(Eg) for some decay rate 1> 0.
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Alternatively we may consider ® as defined by the coordinates at infinity
x''= ®'(m), m € M, and write the structure at infinity as (®, x).

For simplicity of presentation we have chosen not to consider manifolds with
more than one infinity (“end”) and incomplete manifolds. The extensions gener-
ally require only minor modifications, which we leave to the reader. In the next
section we shall show that the conditions (2.1), (2.2) essentially determine the
structure at infinity, but for the present we fix a structure ® and consider the
properties of the operator 4A,.

To define suitable function spaces let 0 € C*(M) be a strictly positive
function satisfying

n 1/2
(2.3) o(m) =|&(m)| = (Z(x'(m))z) for me M\K,
1

and define the weighted spaces Lf(M) using the weight function 6(m) and the
natural volume form of (M, g) in the same manner as before. Condition (2.1)
guarantees that Lf(M) is independent of the structure (®, x) used to define it,
but the spaces Wy #(®), k 2 1, defined using partial derivatives with respect to
the coordinates (x') will depend on ®. This is unavoidable since the metric is not
smooth enough to define higher covariant derivatives and also because of the
rather weak assumption (2.2) on the derivatives of ®. Note however that
Proposition 1.6 shows that ker(4 , §) is independent of ®.

With straightforward modifications most of the results of Section 1 are also
valid for elliptic operators on M and we have in particular:

PROPOSITION 2.2. Suppose that (M, g, ®) are as above, 1 < p < q, and 8 is
nonexceptional. Then

(2.4) Ay WP (9) - Wh4(0)

is Fredholm and u € ker(A,, 8) admits an expansion (1.38) at infinity. Further-
more,

(2.5)  N(A,.8) =dimker(A_: W P(®) > W22(®)) = Ny(8),

where Ny(8) is defined by (1.36), and thus A, WEP(®) > W 5(®) is an
isomorphism if 2 — n < 8§ <0.

Proof: The Fredholm property and the expansion at infinity are proved as
in Section 1, while if 8 <0, then (2.5) follows from the strong maximum
principle as in Proposition 1.5. Now suppose k = k7 (8) 2 Oandlet A, € C®(M)
be a harmonic polynomial in Ez. Then A h, € W24 _ (the dependence on &

here is implicit) and since A%: wle . ..— W29, has trivial kernel, we can
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find v, € W24 such that A (h, — v,) = 0 and hence dimker(4,, 8§) = Ny(8).
The expansion (1.38) at infinity for arbitrary u € ker(A,, §) shows however that
N(A,.8) < Ny(8) which gives (2.5). The isomorphism follows from the triviality
of the kernel of the adjoint A%: Wi? — WP, since 8’ =2-n—-8<0.

This gives a nice description of N(P, 8):

COROLLARY 2.3. Suppose that the elliptic operator P given by (1.17) is
formally selfadjoint and is asymptotic to A at rate T > 0 (this entails a straightfor-
ward generalisation of Definition 1.5). Then «( P, 8) = 1,(8) and

(2.6) N(P,8) = Ny(8) + E(8),
where E: R\ {exceptional} = Z* U{0} is continuous and satisfies

O] E(8)=EQ2 - n-9),

(i1) E(8) isincreasing for 6 <1 — in
and decreasing for § > 1 — in,

(iii) E(0)=0for§>Kand 6 <2 —n - K,
for some exceptional value K > 0.

Remark. When P is C*, Proposition 2.2 and the equality of the Fredholm
indices follow from results in [22] and [21}.

Proof: Let g, be a metric on M which is flat for > R. Then the invariance
of the index shows that «(P,8) = (4, , §) and the previous result implies that
this equals ¢,(8). Statement (i) follows from the definition

W(P,8) = N(P,8) — N(P,2 — n — §),

and Ny(8) = 0 for 8 < 0 gives the non-negativity of E(8). The expansion (1.38)
gives (iii) as in Corollary 1.18 and also implies that

N(P,k+¢)—N(P, k—¢)<n,

for any 0 < £ < 1 and exceptional k > 0, which gives (ii).

3. The Uniqueness of Infinity

In this section we show that the structure of infinity of (M, g) is essentially
unique, in the sense that any two structures of infinity @, ¥ differ by a rigid
motion and terms which are o(r!~"). Since Definition 2.1 almost implies that
(®*8 — ¥*§) € WL 9(M), this conclusion is not unexpected.

As observed previously, the space L{(M) is invariantly defined while the
higher derivative spaces W;*'?(®) will depend on the structure of infinity @
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chosen, so the following result may be interpreted as saying that harmonic
coordinates at infinity give a preferred C* structure for M (with respect to the
metric g;;) which is C l.e.compatible with the original structure.

THEOREM 3.1. Let (®, x) be a structure of infinity, ®: M\ K — Eg where
KccM, Rz1, and ﬁx 1 <n < 2. There are functions y' € L{M), i=
1,---,n, such that A, y' =0 and (x' = y'y € W29(®; Eg) and hence there is
R, = R such that (y' ) give coordinates in @~ I(ER ) with

Ix' = y'l(m) = o(a(m)""7)

(3.1) _
lg(ax" ax’) - g(ay" ay’) (m) = O(O(m) T)

as o(m) - o0.

Furthermore, the set of functions {1, y',---, y"} is a basis for
(3.2) H, = {ue Li(M): Aju=0}.

Remark. By Proposition 1.6, H, is intrinsic to (M, g) and does not depend on
the structure of infinity ®.

Proof: Extend the functions x in a C*® manner to all of M. Then A gx" S
WP (M) since

(3.3) Ax'=T'= gjkr' = ig (‘9 Bt 0,8y~ 3;8;&)
in M \K where [, is the usual Christoffel symbol. Corollary 2.2 shows that
A |W 9(®) has tr1v1a1 cokernel so there is V' € W2 9(®) such that A Lx' —0")
= 0 in M. Setting y’ = x' — v* gives (3.1), and (3.2) follows from the estlmales of
Theorem 1.2. Theorem 1.6 shows that

H, = ker(A,: W29 - W29)

and this has dimension (n + 1) by Corollary 2.2. The functions y' are linearly
independent since the differentials dy’ form a basis for T*M near infinity and
hence {1, y',---, y"} is a basis for H,.

COROLLARY 3.2 (Uniqueness of infinity). Ler (M, g) be an asymptotically
flat manifold ( possibly with boundary) and suppose that (®, x) and (¥, z) are two
distinct structures at infinity with decay rates 1, t,, respectively. Then there is a
rigid motion (0!, a’) € O(n,R) X R of R", and a compact K C C M such that

(34)  |x' = (02 +a')|{(m) = oa(m)""") for meM\K,
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where T = min{7,, 7,}. More precisely, the transition function F = ¥ o ®~': E,
— R, some R > 1, satisfies (with z' = F'(x))

(3.5) lx’ - (Oj'Ff(x) + a’)l € Wkra(®; Ey) for i=1,--, n.

Proof: Since this is a statement about the structures at infinity only, we can
reduce the case where M has boundary to that where M = R” by first excising
the compact set {m € M, a(m) < R}, for R sufficiently large. Compactness
guarantees that glueing in ®(Bg) and extending g;; to M U ®(Bg) does not
change the asymptotic flatness with respect to either structure, so the result will
follow from the case M = R".

Let (y'),(w') be the harmonic coordinates constructed in the previous
theorem, and corresponding to the structures ®, ¥, respectively. Then
(L, y4 -, "), {1, wl,---,w"} are both bases for H, so there is an affine
transformation (4}, a’) € GL(n,R) X R” such that

y=Awl +a'.

Since y', w' are asymptotically rectangular it follows that 4% € O(n,R) and the
conclusions all follow now from the estimates of Theorem 3.1.

The example of [12] shows that different structures may have differing decay
rates and one consequence of Theorem 3.1 is that harmonic coordinates have the
best possible decay. By assuming more regularity we show that this decay rate is
determined by the decay of the Ricci tensor.

PROPOSITION 3.3. Suppose that (M, g) has a structure of infinity ® with
decay rate 1 > 0, so (P,g - 8) € WZ‘,,"(ER) for some ¢ > n, R > 1, and that the
Ricci tensor of (M, g) satisfies

Ric(g) € LY,_,(M) for some nonexceptional 7> 7.

Then there is a structure of infinity © defined by coordinates harmonic near infinity
which satisfies (@48 — 8) € W23(Ey ), for some R, 2 R.

Proof: Defining ® by harmonic coordinates near infinity as in Corollary 3.2,
we have the identity

(3.6) Ric,; = —1g*'82/(s,,) + 0,(g. 92),

where Q,;(g, dg) is quadratic in dg. Since Ric(g) is a tensor, the left-hand side
is in L9,__(M) and the Sobolev inequality (1.9) shows that if (8,g — ) €
W2J(Eg), then Q(dg) € WoJ_ ) (Eg). Proposition 1.14 now implies that
(O.g-8) e Wf'n",(ER), where 7* = min{27, v} > 7 and the result follows by
repeating this argument until n* = 7.
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4. Uniqueness of the Mass

In this section we give sharp conditions on (M, g) under which the expression
(0.1) for the mass of an asymptotically flat 3-manifold is well defined and does
not depend on the (implicit) structure of infinity. The arguments work more
generally for n-dimensional manifolds, n > 3, where the mass is defined analo-
gously by

(4.1) e(m)mass = (g, = 8;..) 45",

and c(n) is some normalising constant. This will show that the mass is a
geometric invariant of (M, g).

The key is the identity for the scalar curvature R(g) of (M, g) in local
coordinates,

(4.2) R(g) =1g1"/%3,(181"* (T, - % 8,(loglg))))

~ 38", d,(loglgl) + 8887 Ty, Lyrs
where I'' = g*I'/,. This formula is a special case of the important expansion of
the Einstein-Hilbert action (valid in all dimensions)

(4.3) R#1=d(g%f A m,) + 805 A @] A 1,

where w) is the Levi-Civita connection 1-form of g, with respect to a frame
{X,}, *1 is the metric volume form and 7,, = (X, A X,)l*1. This shows that
the mass can be interpreted as a generalisation of the geodesic curvature term in
the Gauss-Bonnet theorem.

We say that (M, g) satisfies the mass decay conditions if there is an asymp-
totic structure ® such that

(4.42) (®,g—8) € W2I(E, ) forsome Ry>1,¢>n,and 72 4(n - 2),
(4.4b) R(g) € L{(M).

PROPOSITION 4.1. Suppose that (M, g, ®) satisfies the mass decay conditions
(4.4). Let {D,}T be an exhaustion of M by closed sets such that the sets
S, = ®(dD,) are connected (n — 1)-dimensional C ! submanifolds without boundary
in R" such that

R,=inf{|x]: x€ S, } 200 as k— oo,
(4.5)

R, " Varea(S,) isboundedas k — oo,
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and R, 2 R,. Then the mass mass(g, ®) of (M, g, ®), defined by
(4.6) mass(g, P) = Jim fi_(((ptg)ij.j - (®,8)5.1) aS’
o0 V.8

is independent of the sequence {S,}.

Proof: Working in the coordinates (x‘) at infinity, the asymptotic decay
assumptions and the Sobolev estimate (1.9) imply that the boundary term in (4.2)
can be written as

(4.7) 18128 1(T, - 13, (loglg) = g,,., = 85,1 + o(r~1-77).

The condition 7 > 4(n — 2) implies that the error term in (4.7) is o(r~ "~ V) and
thus does not contribute in the limit of (4.6). Integration by parts of (4.2) over
D, \ D, now shows that

lim (((D*g)u,j— (‘Dtg)jjvi) ds’

k—=o0ds,

= é‘(((p#g)ij-j ~ (®yg) i) dS’

- i Y
+ Jim ka\Dl(R(g) + 38Ty 9, (loglgl) + 88" 8T 4, Ty ) * 1,
and since g, , € LX(M) and R(g) € L'(M), the right-hand side has a limit
which is independent of the sequence { S, }.

We now show that mass(g, ®) as defined by (4.5) is in fact independent of the
structure of infinity ®. This relies on the uniqueness result of the previous section
and a curious cancellation (4.9) which seems to be a generic phenomenon when
dealing with the scalar curvature (see eg. [33], [28]). An infinitesimal form of this
cancellation is folklore in the relativity community (see [34]).

THEOREM 4.2. Let (9, x), (¥, z) be two structures of infinity for (M, g)
satisfying the mass decay conditions (4.4) with decay rates 1y, 7,, respectively, so
T =min{r, 1} = #(n — 2). Then mass(g, P), mass(g, ¥) are well defined and
equal.

Proof: Write the identity (4.3) as R®1 = d4 + B, where the boundary term
A = g"wf A n;; depends on the frame { X;}. Under a frame change X, = Q/X/
defined by Q: M\ K — GL(n, R), the change in boundary term is easily
calculated,

(4.8) A=A =dQi A(X] A g*X,)1s1.
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Setting X, = 3., X/ = 8,, the estimate (3.5) implies that Q/(x) = O/ + o(r™")
for some O/ € O(n, R) and 3Q/ = o(r "*V). The coordinates (z') can be
rotated so that O/ — 8/ (note this does not change the mass (4.1)), and then

(Xj’ A g’ka)Jtl = #,(dx/ Adx") + o(r ")

>

where *, is the Hodge star corresponding to the flat metric in the (x')
coordinates. Letting Ay, A, denote the boundary terms of the frames
{3, }.{9d.}, respectively, we thus have

(4.9) Ay— Az =d(*o(Q/ dx! A dx')) + o(r~1777);

thus the mass integrals over the boundaries S, in (4.6) differ by o(1) and a term
which integrates to zero.

In [12], a family of coordinate systems on the standard Schwarzschild
spacelike slice (n = 3) is constructed such that the metric has the form §,; +
O(r~'/?) and the mass varies within the family, which shows that the conditions
of Theorem 4.2 are exactly optimal for the mass to be uniquely defined. From
Proposition 3.3 we have an intrinsic method of determining whether the mass can
be properly defined.

THEOREM 4.3.  Suppose that (M, g) satisfies the decay conditions of Proposi-
tion 3.3, so that

Ric(g) € LY,_.(M).

(i) If T = 3(n — 2), then the mass exists and is unique.
(i1) If T > n — 2, then the mass is zero.

Proof: From Proposition 3.3, there are asymptotically flat coordinates with
decay rate 7, so (i) follows from Theorems 4.1 and 4.2. If T > n — 2, then we use
an observation of R. Schoen [30): from Theorem 1.17 and Proposition 3.3 we
have an expansion in harmonic coordinates (x'):

g;=198,+ Aier—n +0(r'7),
where 4, ; is a constant matrix. The harmonic condition implies that
0=4,x'—14,x" forall (x')eR",
so that 4,, = 0 and the mass vanishes.

We then have the following interesting consequence.
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THEOREM 4.4. Suppose that (M, g) satisfies the mass decay conditions with
T >n — 2 and has Ric(g) € L9,_ (M). If either of the following holds:

(i) R(g) 20 and (M, g) is a manifold for which the positive mass theorem
holds (eg. see Section 6), or

(i) Rie(g) 2 0,
then (M, g) = (R", 8).

Proof: (i) follows immediately from the above remark that mass(g) = 0 by
applying the uniqueness part of the positive mass theorem. To show (ii) we give
an argument of [33]. Let (»') be globally defined harmonic functions forming
rectangular coordinates at infinity and let

KO = gy, i=1,-,n,

so that |K )}2 = g*. Now, in harmonic coordinates the mass integral simplifies to
4.10 — 2¢(n)mass = ., dSt,
(4.10) (n)mass = g,

so that integrating the identity
A K @2 =2IvK D) + 2Ric( KD, KD)

over M (the asymptotic conditions on Ric(g) and Theorem 3.1 ensure that all
terms are integrable) and applying Stokes theorem one obtains

2y f (VK92 + Ric(K<">,K<f>))dvol=¢ 3,(1K"?) ds’
i=1"M S,

= 2c(n)mass(g).

But the mass is zero by the previous theorem; thus the K, i = 1,---, n, are
globally parallel forms and hence (M, g) is flat.

5. Remarks on Harmonic Coordinates

The harmonic coordinates which entered peripherally into the proof of the
uniqueness of the mass (Corollary 4.2) have some useful properties. As has been
seen, they form an almost canonical coordinate system at infinity and in this
section we shall describe their relation with the mass. This includes a new and
elementary proof of the positive mass theorem for sufficiently flat initial data
(with non-negative scalar curvature) and an estimate which should be useful
when considering the Einstein conjecture (see [10]) (the instability of Minkowski
space).
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For this section we shall assume that (M, g) is an asymptotically flat
3-manifold with a structure of infinity (®, x) such that

(5.1) ((Psg) —8) € W2I(Eg) forsome R>1,¢>3andr> 1,
(5.2) R(g)e W%, (M).

The condition that the coordinates (x') be harmonic implies that

(5.3) I = g“rlil = —Ag‘xi = 8”8“(8,/(./ - Jz‘gkl,j) =0

and then the basic identity (4.2) simplifies to

(54) 34, (logig)) = —R(g) + g"T, L.

Thus if (®, x) is a coordinate system harmonic at infinity, then the assumed
decay conditions (5.1), (5.2) and Theorem 1.17 shows that

(5.5) logigl=c/r +o(r 1)

for some constant ¢. Using (4.2) and (5.3) we see that the definition of mass
becomes

1 .
(5.6) mass(g) = — ?27742 d,(log|gl) 4S’

and hence ¢ = 8m(g). If we write g,, = §,; + h,, where h,, = o(r™"), then (5.5)
shows that

3
(5.7) Zhjj=8m(g)/r+o(r_1),

which is a gauge condition that has been proposed by J. York [34].
The definition of the mass via (5.6) has a purely geometric interpretation as a
special case of the following result.

PROPOSITION 5.1.  Suppose that (N, h) is another asymptotically flat 3-mani-
fold satisfying the conditions (5.1), (5.2) and that F: M — N is a harmonic map
(see [13]) which is asymptotic to the identity; that is, there is a structure of infinity
b on M such that
(5.8) ((F*h)., - g,) € W23(®).

Denoting the Jacobian determinant of F by

J(F) ='det(3,.(F?)g'h,,),
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we have
1 .
(5.9) mass(g) — mass(h) = ~ mé d,(log J(F)) as’.

Proof: The condition (5.8) guarantees that the pullback F*y? = y?(F(x))
of coordinates ( y?) at infinity for N are also coordinates at infinity for M. Then
the harmonic mapping equation with respect to these coordinates x’' = y'( F(x))
becomes

(5.10) g(T(g) — T5(h) =0,
where

TA(h) = $(F*R) (8, (F*h) i+ 3. (F*h)y — 8,(F*h);))
and

J(F) = det((F*h),;)/det(g,;).
Now, since g’/ = (F*h)"” + o(r~7), the boundary integrand in (5.9) is
9,(log J(F)) = g*( 3, (F*h) ;x — 8,8,) + o(r~*7%")
= 9,(F*h),; — 3,8, + 2(1}11(8) - rj,-,-(h)) +o(r 17?7,

using (5.10). Expanding the Christoffel symbols shows that the right-hand side is

2( 9,8, — aigjj) — 28, (F*h)i; — 8. (F*h) ;) + o(r—1727),

and the result follows from the definition (4.6) of the mass.

It is worth noting that the identity (4.2) which underlies the definition of the
mass has a counterpart here which explains to some extent the appearance of
J(F) and harmonic maps in the formula (5.9). Letting B/ denote the second
fundamental form of F: M — N (see [13]) we have the identity

A log(J(F)) = R(g) — g(dF?, dF7)Ric(h) o — g((dF)™'B), ((dF)'B)},

which simplifies when (N, k) = (R 8) and (x') are harmonic coordinates to
(5.9).

The identity (5.4) can also be used to prove the positive mass theorem (see
[31],[33]) if the initial data is sufficiently flat and R(g) is non-negative. This
applies particularly to spacetimes which are close to Minkowski space and satisfy
the weak energy condition, since such spacetimes admit asymptotically flat
maximal surfaces (see [6]). This proof should be compared with the rather more
elaborate constructions of [11}].



686 R. BARTNIK

THEOREM 5.2, There is an € > 0 such that if (M, g) is any asymptotically flat
3-manifold with M = R® and R(g) 2 0 and metric g, ; with respect to the natural
global coordinates (x') derived from the diffeomorphism M = R, which satisfies,
for some g > 3, L <1,

”gij - 81‘]”2.4,—1 § £,
then

(5.11) 16mm(g) 2 [ (R(g) + Hsl?) dx.

Proof: Choose & small enough so that Propositions 1.12 and 1.15 guarantee
the existence of global asymptotically flat harmonic coordinates (y') which
satisfy

lg;,; — 8,(m) <107% forall me M.

Now working in these harmonic coordinates we note that I'* = 0 implies that

(5.12) d,log|g| = gjkaigjk =2g%* ajglk = -2g; d,8"*
and hence
(5.13) ~ 14, log|gl = —4d,(g"log|gl) — 4|V log|gl[".

From the definition of the Christoffel symbols, the bad term in (5.4) may be
written as

(5.14) g /T, = —igg*'gP93,8,,9,8,, + 18, 9,87 9,8"

and the first term on the right-hand side will be denoted by |dg|? for short. The
boundary term in (5.13) gives the mass, so by (5.4) we have

(5.15) 16mm(g) = [ (R(g) + 41981 + 4| loglgll® = 1gu 3,8 9,8") a.
The remaining bad term is now handled by
843,87 9,8" = (g1 — 8,,) 9,87 9,8" + 9,87 3,8™
= (8~ 8) 9,87 9,8 + 3,(g* 9,8 — g’ 9,87%)
+0,8"% 9,8

< 10792 + 1w loglg||* + 9,(g/* 9,8 — g™* 8,g7%),
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using (5.12). The decay conditions ensure that the boundary integrand in this
expression will be o(r~2); thus, inserting this in (5.15), one obtains (5.11).

6. The Positive Mass Theorem

In 1982, E. Witten described a proof of the positive mass theorem using
spinors (see [33], [28]). The techniques developed thus far enable us to generalise
this proof to dimensions 7 > 3 with the same asymptotic conditions needed to
ensure that the mass is well defined (Theorem 4.2), under the assumption that the
manifold M " admits a spin structure. This is a topological condition (w,(M) = 0)
which is automatically satisfied for oriented 3-manifolds, but it is a nontrivial
condition in dimensions n > 4.

The approach basically generalises that of [28], with some differences. For
example, we use only the pure Dirac operator; the original calculations and a
number of recent papers (see eg. [27]) modified this by adding zero-order terms
(spinor endomorphisms) which give rise to additional terms which can be
physically interpreted (e.g., charge, momentum).

We start by recalling the construction of spinors: for more details see [35].
The Clifford algebra Ci(V') of a vector space V' with inner product g is the
algebra generated by V and the relations

(6.1) v?= —g(v,v) forall veV.

If dimV = n, then dimCIl(}) = 2" and CI(V) is naturally isomorphic (as a
graded vector space) with the exterior algebra A(V). Now suppose that g is
positive definite and {e,} is an orthonormal basis of V so that g(e, e;) =8, ,
and denote CI(V') = Cl(n). There is an irreducible representation (not unique in
general)

7: Cl(n) —» End(S)

of Cl(n) as linear transformations (matrices) on some complex vector space S
such that ¥ acts by skew-Hermitean matrices with respect to the usual Hermitean
inner product on S. We shall often denote this action by 7(x) = x- for
x € Cl(n).

The Lie group Spin(n) imbeds in Cl(n) as the subgroup
(6.2) Spin(n) = exp{spang{ee;, i <j}}
and thus has a linear representation (not irreducible),

7: Spin(n) — Aut(S),

so that S is called the space of Dirac spinors. That the group defined by (6.2) is
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Spin(n) can be seen from the double covering
7: Spin(n) — so(n),
defined by
1

7(a): v = ovo?,

for v € V € Cl(n), o € Spin(n). Since V generates CI(V'), for o € Spin(n), the
action

a:VxXS=>VxS, (v,¢)—(r(e)v,7(a)y)

extends to give a commuting diagram

Cl(n) X § +S
Clifford multiplication
(o) P (o)
Cl(n) x S +S

which allows us to extend Clifford multiplication to bundles. Thus, suppose M "
is a Riemannian spin manifold, so that the frame bundle % of TM has a double
cover (spin structure)
F-oF-oM
Then there is a natural action CI(M) X A = A of the Clifford bundle
CUAM) =F " XgumCl(n) = FX g5, Cl(n)

on the bundle of Dirac spinors

A=F" X spin(n)S -

We say that | € A is a constant spinor with respect to the frame f: U -» %,
Uopenin M, if y =[f",y,], the equivalence class in A determined by the
lifting f = of f, with y,: U — § constant.

The Lie algebra isomorphism spin(n) = so(n) can be described by

1
268, O e A e,

where e, A e; is the generator in so(n) of an anti-clockwise rotation in the
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(e, ej)-plane: e, > e, e; > —e; A connection on #,
w=-Yw;®eAe,€A(T+M) ®so(n),
i<y
(6.3)

W, = <ei’vej>’
lifts to a connection on % ~ and its associated bundle A, given by

-~ = 1
w = 22“’1/@3:“’/’
i<j

so that the covariant derivative of a constant spinor is

(6.4) V(p=—%2wu®ei°ej'q).
ij

The Dirac operator 2: I'(A) — I'(A) is defined by

(6.5) DY = Z_e, VR

and it is not hard to verify the Lichnerowicz identity
(6.6) 2% = -V + iRy,

where R is the scalar curvature. Using the Hermitean inner product on A one
obtains

(6.7) (V¥ + AR = 1291°)#1 = d((¥, 0, V) re,),

where

o= i[e.e] = e.e;+ 5.

The identity (6.7) is the key to Wittens method, which requires us first to find
a spinor ¢ satisfying 2y = 0 and ¢ — ¢, a constant spinor at infinity, and then
to identify the boundary term in (6.7) with the mass. As emphasised in [27], this
identification does not depend on the Dirac equation. Henceforth we suppose
that (M, g, ®) is a complete asymptotically flat n-dimensional spin manifold
satisfying the mass decay conditions (4.4) and having non-negative scalar curva-
ture (in the weak sense),

(6.8) R(g) 2 0.
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PROPOSITION 6.1. For 0 < n < n — 1, the Dirac operator
(6.9) 9: WZ,',,"(A) - Wnl;‘{(A)

is an isomorphism, where WX P(A) denotes the weighted Sobolev space of sections

of A.

Proof: The arguments of Section 1 extend readily to the Dirac operator (see
e.g. [25),{9}),[22]) and show that (6.9) is Fredholm with adjoint
D=9*: W29 (A) - w9 (4).

n+1l—n

If Y € ker(2, —v), then |¢|> = 0 at infinity and from (6.6) we have
AlI? = SRV + VY| 2 0,

and the strong maximum principle implies that {¢|?> = 0, so that, for 0 <y <
n — 1, both ker 2 and ker 2* are trivial.

Given asymptotically flat coordinates (x') satisfying (4.4), we can easily
construct an orthonormal frame e, = e/d, near infinity such that the “ vielbein”
e/ satisfies

(6.10) el —8,€ W2i(Eg ).

This frame {e;} will be called asymprotically constant (with respect to the
coordinates (x')) and the spinor y, is constant near infinity if it is constant with
respect to such a frame. Note that from Corollary 3.2, up to terms in W2 9(E R, )
¥, is constant with respect to any other asymptotically constant frame.

COROLLARY 6.2. Let y, be a spinor field on M which is constant near infinity.
Then there is a spinor field § such that

2y =0,
(6.11)
4} - \I{/O € WE'T‘I(A).

Proof: The asymptotic conditions ensure that 2y, € W‘-l" ,(4); thus The-
orem 6.1 gives a unique ¢, € W29(A) such that @y, = —2Dy,, and then
¥ = Y, + ¢, is the required spinor.

We now have

THEOREM 6.3 (Positive Mass). Suppose that (M, g) is a complete spin mani-
fold satisfying the mass decay conditions (4.4) with non-negative scalar curvature
(6.8). Let Y be a spinor, constant near infinity and normalised by |yo|* = 1 at
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infinity, and let  be the solution of Dirac’s equation constructed in Corollary 6.2.
Then the mass of M is non-negative and is given by

(6.12) c(n)mass(g) = [ (4[> + RIy[?)#1.
M
Furthermore, if mass(g) = 0, then M is flat.

Proof: By virtue of Corollary 6.2, we must identify the boundary term in
(6.7) with the mass. Following [28], the identity

d({p.0,-x)*(e;Ae)) = ({90, Vx) — (0, V,0, X)) *e,
shows that the boundary term can be written as
(¥0,0,;* Viggy*e + d((‘l’o, o, ¥y*(e A "j))
+ (o0, V) + (0,0 Vo ¥1)) * ey

The decay conditions and (6.11) ensure that the last two terms are o(r~!~27) and
hence do not contribute to the boundary integral in the limit, while the second
term drops out since d? = 0. We evaluate the remaining term using (6.4):

(‘I’Osoi,"vﬂpo>"ei= -i Z ‘*’kl(%)(‘l’o»of‘j'Uki"l’o)"'ei-

iojok, 1

Since o, is skew-Hermitean and we are only interested in real components, this
simplifies to

(6.13) %“’fj(ej)lli’olz *e, — %‘*’k/(ej)<‘l’o’ Ok Vo) * e,

where o, = e,e e.e, if i, j, k, | are distinct and 0 otherwise. In terms of the
coordinate Christoffel symbols [, and vielbein e/, the connection is

wéj(ek) = eipelqeir(rrqp t eipe;gpq 8,(8}’)

=T, + d,(e) + o(r '~>).

Decomposing e = (ej ) =20+ s+ a, where s, a are symmetric, antisymmetric,
respectively, and o(r~7), we see that

dg '=23s+o(r 1777
and thus from (6.3), we have

wij(ej) = %(ajgij_ aigjj) + ajaij+ o(r—l_zr)'
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Now
3ja,-jte,. = d(a,.jm(dxi A dxj)) + 0(,-1—21)’

so we find that the mass is given by
(6.14) 2¢(n)mass(g) = 2¢ w;,(e)re,.
5w

A similar calculation using the antisymmetry of o, ,, shows that the second term
of (6.13) is divergence + o(r~'72") and again does not contribute, so (6.12)
follows. Now, *“the square of a spinor is a vector”, i.e.,

(Vys Xy =Im{y, X+¢) for XeR"

defines a vector v, € R" from a spinor ¢ and using the double covering
Spin(n) — SO(n) it is not hard to see that this map S — R" is onto. If the mass
vanishes, then vy = 0 and hence vy, = 0. Since y, is an arbitrary constant at
infinity spinor, we can find a basis for TM consisting of covariantly constant
vector fields. Thus M is flat.
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