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The Mass of an Asymptotically Flat Manifold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ROBERT BARTNIK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Australian National zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUniversity 

Abstract 

We show that the mass of an asymptotically flat n-manifold is a geometric invariant. The proof is 
based on harmonic coordinates and, to develop a suitable existence theory, results about elliptic 
operators with rough coefficients on weighted Sobolev spaces are summarised. Some relations between 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmass. xalar curvature and harmonic maps are described and the positive mass theorem for 
,c-dimensional spin manifolds is proved. 

Introduction 

Suppose that ( M ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg )  is an asymptotically flat 3-manifold. In general relativity 
the mass of M is given by 

where glJ ,  denotes the partial derivative and dS‘ is the normal surface element 
to S,, the sphere at infinity. This expression is generally attributed to [3]; for a 
recent review of this and other expressions for the mass and other physically 
interesting quantities see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(41. However, in all these works the definition depends 
on the choice of coordinates at infinity and it is certainly not clear whether or not 
this dependence is spurious. Since it is physically quite reasonable to assume that 
a frame at infinity (“observer”) is given, this point has not received much 
attention in the literature (but see [15]). 

It is our purpose in this paper to show that, under appropriate decay 
conditions on the metric, (0.1) generalises to n-dimensions for n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3 and gives an 
invariant of the metric structure ( M ,  g). The decay conditions roughly stated (for 
n = 3) are lg - 61 = o(r- ’12),  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlag1 = o ( f 3 1 2 ) ,  etc, and thus include the usual 
falloff conditions. We note that an example of Denisov and Solov’ev [12] shows 
that these conditions are optimal for the mass to be uniquely defined. 

The approach we take is to construct coordinates which are harmonic near 
infinity and use these to show that there are no “twisted” coordinates at infinity. 
Harmonic coordinates have been used previously in [ll] to study the mass but 
under more stringent conditions and with a different purpose. From the resulting 
uniqueness of the structure at infinity and an interpretation of the mass in terms 
of the scalar curvature, i t  is not hard to derive the uniqueness of the mass, but 
there is a simple but curious cancellation which deserves to be better understood. 
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We remark that the interpretation of the mass in terms of scalar curvature is 
implicit in the Hamiltonian formulation of general relativity (e.g. [29], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[36]) .  

In view of some future applications we have chosen to work with weak 
regularity assumptions on the metric. For this reason we start with a survey of 
the methods and results of the theory of elliptic operators on weighted Sobolev 
spaces; the treatment is slightly unorthodox but (we hope) clearer than the 
existing works, and there are some new observations. Of particular interest are 
the a priori estimates for operators transverse to the kernel (Proposition 1.12) and 
the description of the dimension of the kernel as the weighting is varied 
(Proposition 2.2 and Corollary 2.3). 

Having set the stage, the uniqueness results follow readily, the main difficulty 
being that of deciding just what needs to be proven. Some ancillary results are 
also described that show that harmonic coordinates are in some sense the best 
possible. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 emphasises this as we give an alternate interpretation of the 
mass in terms of harmonic maps and a quick proof of a weak version of the 
positive mass theorem (see [28], [31], (331). This proof also shows that the mass 
estimates some quantities of partial differential equations interest. In the final 
section we show that Witten's proof of the positive mass theorem can be 
generalised to higher-dimensional spin manifolds. This result has also been 
announced by R. Schoen. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. Operators on Weighted Sobolev Spaces 

In this section we review those parts of the theory of weighted Sobolev spaces 
that will be needed later. Much of the material is well known (the treatment here 
is particularly indebted to [9], [25], [23] and [22]) but there are a number of 
technical improvements and some new observations. We have tried to emphasise 
the two basic ideas which underlie this subject; the use of scaling to convert local 
estimates into global estimates, and secondly, sharp estimates for constant 
coefficient operators arising from explicit expressions for the Greens function. 
The first is well known in the PDE literature-for example see the treatment of 
weighted Schauder norms in [17] and [16]-while the second has been periodi- 
cally rediscovered. Some references additional to those mentioned above are [24], 
[5], [8] and [21], while [2],[14],[20] contain similar ideas. Most of these papers 
deal with elliptic systems with dominant part a scale invariant operator, not 
necessarily with homogeneous symbol. Since it is all that is required by our 
prospective applications we consider here only operators close to the Laplacian at 
infinity. This suffices to illustrate the main ideas. 

We work initially in R", n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3, although the physical interest is in n = 3, and 
set r = 1x1, (I = (1 + r 2 ) l l 2 .  Subsets of interest are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, = B,(O), the closed ball of 
radius R and centre 0, the annulus A ,  = B,, \ B, and the exterior domain 
E ,  = R" \ B,. The summation convention applies and partial derivatives may be 
denoted by subscripts, u,  = a,u = d u / d x , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADu = ( u , ) .  The flat metric is S,, and 
the standard Laplacian is A = L3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, while A R  denotes a metric Laplacian, 
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Constants will be denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc and their dependence on interesting 
parameters will be noted as appropriate. 

DEFINITION 1.1. The weighted Lebesgue spaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL[,  E{, 1 5 p 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00, with 
weight S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R are the spaces of measureable functions in LiP,(Rn), LP,(Rn \ {0}), 
respectively, such that the norms 1 1  l l p , 6 ,  1 )  llb,& defined by 

are finite. The weighted Sobolev spaces are now defined in the usual way: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 

W P :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl lul lk.p.6 = ClI~'ulIp,8-,' 

W,lk.p: Ilull;.p.s = ZlIwl;,6-p 

0 

(1.2) k 

0 

Observe that CP(Rn), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC?(R" \ (0)) are dense in Wt-P,  WBk*p, respectively, 
for 1 5 p < 00 and that L,P = LP(Rn) for 6 = - n / p .  The indexing chosen for 
the weights differs from that usually used but has the advantage that it directly 
describes the growth at infinity (see (1.10) below). Another simplification is that 
the rescaled function 

(1.3) u R ( x )  = u (  R x )  

satisfies, by a simple change of variables, 

l I ~ R l l ; , p J  = Rsl141L,p,8 

and, with an obvious notation for norms over subsets of R", 

6 (1.4) I I u l l k . p . 8 ; A ,  R -  I l u R l t k , p . 8 ; A ,  for 2 1,  

where " = " means "is comparable to, independent of R 2 1". The estimate (1.4) 
is the key to proving global weighted inequalities from local inequalities. 

THEOREM 1.2. (i) If 1 5 p 6 q 5 a, S ,  < S ,  and u E L;,, then 

(1.5) I l ~ l l p , 6 ,  5 cIIullq.6,~ 

and hence L:, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc L[. 
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(i i) (Holder inequality) If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALi,, u E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL& and 6 = 6, + a,, 1 6 p ,  (I, r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

00, l / p  = l / q  + l / r ,  then 

(1 4 

u E W?'P, 1 s p  

(1.7) 

(1 4 IIUll.p,(n-kp).6 s C I I ~ l l k . , . S  

I I ~ U l l P .  8 s l l ~ l l y .  6,11"llr. B1.  

(iii) (Interpolation inequality) For any E > 0, there is a C ( E )  such that, for all 
do, 

I l ~ l l , . p . 8  6 EIIUI12.p.8 + C(E)I IUI IO.p.d.  

(iv) (Sobolev inequality) If u E Wt*P,  then 

i f  n - kp > 0 andp 5 q 5 n p / ( n  - k p ) ,  

(1.9) IIUll,,8 5 cIIullk.p.8 i f  n - kP < 0, 

and in fact 

(1.10) I U ( X ) I  = o ( r 8 )  as r + 00. 

(v) I f u  E Wt.P, 0 < a 5 k - n / p  5 1, then 

(1.11) IIuIlcp I cIIullk.p.8. 

where the weighted Holder norm is defined by 

Anulogous to (1.10) we haoe 

( 1 . 1 3 )  ( I ~ l l ~ $ a ( ~ , )  = ~ ( l )  US R + 00.  

Proof: The first two estimates follow directly from the definition and 
Holders inequality. The other estimates follow from the technique of rescaling 
and applying local estimates, which we illustrate by proving (iv). Supposing that 
p* = np / (n  - kp) < do, we have 
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by the usual Sobolev inequality applied to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A, followed by Holders in- 
equality. Rescaling gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

l l u l lp * ,8 ;  A ,  c l l u l l k .q ,8 ;  ARY 

and writing u = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACru j  with uo = uIB,, u j  = ~ I ~ o - 1 '  , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1, we see that 

I W  

since p*  2 q and ( C U ~ ) ' ' ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 (Ca,')''' for aj 2 0, r 5 s. When n - kp < 0, the 
same scaling argument implies 

suplula-6 = llullw,8; A ,  5 C I I U l l k , p , G ; A ,  
A ,  

which gives (19) and since I I U ~ ~ ~ , ~ , ~  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco we have I I U I ~ ~ , ~ , ~ ; ~ ,  = o(1) as R -, co, 
giving (1.10). 

The counterexample u ( x )  = (logr)-', r 2 2, shows that (i) cannot be im- 
proved to 6 ,  = 8,. The following weighted Poincart inequality is rather more 
subtle than the above estimates and seems to be closely related to invertibility of 
the Laplacian on weighted spaces. Related ideas can be found in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[32] and [l]. 

THEOREM 1.3. (i) For any u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE Wil*P with 1 5 p < 00, 6 # 0, we have 

(1.14) llu11;.6 5 1 ~ 1 - ' l l U ~ 1 1 ; . * - 1  6 l ~ l - 1 1 1 ~ ~ l l ; , 8 - l ~  

where u,  = a,u = r - l x  9 Du. 
(ii) If 6 < 0, there is a constant C such that 

(1.15) IIuIIp.8 5 CIIurIIp.8-1 for any u E WbvP* 

Remark. By modifying u in the interior the constant in (1.15) can be made 
arbitrarily close to 161-'. 

Proof: By a previous remark, in order to prove (1.14) it suffices to consider 
u E Cp"(R"\ (0 ) ) .  Since Ar(,-*) = 0 in R"\ {0}, testing with r-'PIuIP gives 
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which expands to 

and then Holders inequality gives (1.14). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA similar calculation using Au2-" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- n ( n  - 2 ) ~ - ~ - "  and 6 < 0 with u E C,P"(R") yields 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ( r )  = ISl(1 - (1 - n/161p) / ( l  + r 2 / a 2 ) ) .  The estimate (1.15) now fol- 
lows by noting that X ( r )  -, 161 as r -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00, X ( ( r )  + n/p as r + 0. 

Next we recall the weighted Rellich-Kondrat'ev compactness theorem (see [9]) 

and note that counterexamples based on "travelling bumps" in x-space (for 6)  
and [-space (for k )  show that the hypotheses cannot be improved. This result 
indicates that there is a nice duality between the k, 6 indices, provided by the 
Fourier transform and the Paley-Wiener theorem. 

LEMMA 1.4. (191, Lemma 2.1). Fork > j ,  6 < E and 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 p < 00, the inclusion 
W:.P c Wi*P is compact. 

The scaling argument and standard local estimates give estimates in weighted 
spaces for elliptic operators whose coefficients are well behaved at infinity. 
Conditions appropriate for our purposes (but certainly not optimal-compare 
[25]) are given by 

DEFINITION 1 . 5 .  The operator u + Pu defined by 

(1.17) Pu = a"( x )  a;u + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh'( x )  a,u + c( x)  u 

will be said to be asymptotic to A ( a t  rate T )  if there exist n < q < 00 and T 2 0 
and constants C, ,  X such that 

X1EI2 5 a"(x)E,E, 5 A-'1EI2 for all x E R", E E R", 

(1.18) 

where a,, is the usual flat metric on R". 

By (l.ll), a" is Holder-continuous and l a ' ' ( x )  - 6,,1 = o(r - ' )  at infinity. 
The conditions (1.18) are also satisfied by the divergence-form operator A, when 
g , ,  is a uniformly elliptic metric on R" and (g,, - 6',) E W',! for some T 2 0. 

I t  is clear from Theorem 1.2 that if P is asymptotic to A, then the map P: 
W:.P + W:*$ is bounded for 1 5 p 5 q and 6 E R. In fact the following 
weighted estimate holds. 

I l a "  - 6 1 , 1 1 1 , 9 . - T  + ~ ~ " ~ ~ 0 , 9 , - 1 - T  + IICllo.9/2,-2-T 5 '1, 
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PROPOSITION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASuppose that P is asymptotic to A ,  1 < p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 4, and 6 E R. 
There is a constant C = C(n,  p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, 6 ,  C,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA) such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi j u  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALpP and Pu E L:!2, 
then u E W;*P and 

(1.19) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI l ~112 .p .6  2 c(IIpullo.p.s-2 + l l ~ l l o , p , 6 ) ~  

Proof: Elliptic regularity applies to show that u E W&P, and the remaining 
conclusions follow from the usual interior LP estimates (see [17], Chapter 9) and 
the scaling technique. 

Observe that the same argument gives the estimate (1.19) with the Wik,p  
norms instead. We now investigate the Fredholm properties of P. The arguments 
which follow show that (1.19) is not sufficient to prove "Fredholmness"; a 
strengthened estimate with the "error term" on the right-hand side being com- 
pact with respect to W82-P is needed. To prove the scale-broken version of (1.19) 
which is required by the Rellich-Kondrat'ev theorem, we rely on a sharp estimate 
for the flat Laplacian based on an explicit expression for the integral kernel of 
A-'  on weighted spaces (cf. [25], [23], [24]). 

The weighting parameter 6 E R is said to be nonexceptional if 6 E R/{ k E Z, 
k # - 1, - 2 , .  . . , 3 - n }, where the exceptional values { k E Z, k # 

- 1, - 2; - , 3  - n }  correspond to the orders of growth of harmonic functions in 
R" \ B,.  It will also be useful td define 

(1.20) 

non-negative integer. Then the map 

k - ( 6 )  = max(k exceptional, k < 6 ) .  

THEOREM 1.7. Suppose that 6 is nonexceptional, 1 < p < 00, and s is a 

(1.21) A :  wp+2*P + wg"..f 

is an isomorphism and there is a constant C = C ( n ,  p ,  6 ,  s )  such that 

(1.22) l l ~ I l : + 2 , p . 6  5 cllAa,p, 6 - 2 .  

Proof (compare [23]): It will suffice to prove (1.22) for s = 0. We first show 
that the distributional inverse of (1.21) has convolution kernel K ( x ,  y ) :  

( Ix - Y12-" if 2 - n < 6 < 0 ,  

k J 

Ix - y12-" - IxI2-" x q A ( p ) (  #) if k < 2 - n ,  
0 

where k = k - ( 6 ) ,  p = (x  * y ) / l x )  Iyl and CA are the ultraspherical functions 
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arising in the Taylor series expansion 

Let us first show that (1.23) defines a bounded operator from W{!*p to WiO*P. 
Since the three cases are very similar, we only consider the second in detail. 
Following [23], we have the estimates 

Now recall ([25], Lemma 2.1): 

LEMMA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.8. Fix p E (1; a), p' = p / ( p  - 1) and let a ,  b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R be such that 
u + b > 0. Suppose K ' ( x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the kernel 

K ' ( x ,  y )  = (xI-'Ix - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy12-"lyl-" for x # y ,  

and for u E LP(Rn) define 

Then there is a constant c = c (n ,  p ,  a, b )  such that 

i f  and only i f  a < n / p  and b < n/p ' .  

Let K , ,  K ,  be the operator kernels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIx - y12-"(lxl/ly!)" with a = k + 1, a = 

n + k - 2,  respectively. The above lemma shows that the kernel 

defines a bounded operator LP + LP when 6 + n / p  - k - 1 < n / p  and - 6  - 
n / p  + k + 3 < n/p',  i.e., when 3 - n + k < 6 < k + 1, and then 

IIKlull;.s cIIr2-'-"/P U I I P  6 cllull;,a-2. 

Similarly, KK;(x, y )  = Ix(- '-"/PK2(x, y)lyl'-*+"/P is bounded LP + LP when 
k < 6 < n + k - 2 and then K 2 :  W{!!.j' + W{O*P is likewise bounded. These 
two estimates and (1.24) show that K :  W;:: + Wi0*P is bounded when k < 6 
< k + 1 as claimed and the boundedness for the other two cases in (1.23) follows 
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similarly. The distributional identities 

(1.25) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA , K ( x ,  y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A , K ( x ,  y )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(x - y )  in D'(R"\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 0 ) ) .  

imply that K(  Au) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu for all u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE Cp(R" \ {0}), so the boundedness of K gives 

since C,P"(R" \ ( 0 ) )  is dense. This and the scaling estimate (1.19) yield (1.22) for 
s = 0. Now suppose { u i )  c Wi2*P, { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi} c W;:p are sequences such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ,  = 
Aui and f ,  -, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf. By (1.22), { u i }  is a Cauchy sequence and hence is convergent to 
u E Wi2-P with Au = f, since A: Wd2#P -, Wi!'+f is bounded. This map thus has 
closed range and by (1.25) we have A ( K f ) ( x )  = f ( x )  for f E  CF(R"\ (0)) and 
Kf E Wio*P, so it is also surjective. Finally, (1.22) shows that the kernel is trivial 
and this establishes the isomorphism. 

I t  is clear that the above arguments require only the scale-invariant estimate 
(1.19) and explicit estimates for the Greens function such as (1.24). Thus the 
generalization to operators with homogeneous symbol is straightforward, and a 
change of variables R"\ ( 0 )  = S"-' X R permits the generalization to dilation- 
invariant operators (see [5], [22], (21). 

The estimate (1.22) implies the following well-known Liouville theorem. 

COROLLARY 1.9. Suppose that Au = 0 and u E L;, 1 < p < co, and let 
k = k - (  8 ) .  I f  k < 0, then u = 0; while if k 2 0, then u is a harmonic polynomial 
of degree less than or equal to k .  

Proof: Elliptic regularity shows that u E C"(R"). Let h k ( x )  be the Taylor 
series expansion of u about x = 0, 

u ( x )  = h k ( x )  + O ( ~ X ( ~ + ' )  as 1x1 + 0. 

Since Au(0) = 0, h k ( x )  is a harmonic polynomial so that ( u  - h k )  E LLP, and 
the estimate (1.22) applied to u - h ,  now shows that u = h,. 

The scale-broken estimate (1.26) which follows is the key to proving 
Fredholm properties. 

THEOREM 1.10. Suppose that P is asymptotic to A and S E R is nonexcep- 
q the map P: Wi'P + W,"-; has finite-dimensional kernel and tional. For 1 < p 

closed range and, for any u E Wi*P, 

(1.26) 

where C, R are (computable) constants depending on P ,  6, n ,  p ,  q. 
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Proof: Define the operator norm 

and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 I ( o p .  , denote the same norm restricted to functions with support in 
E, = R"\ B,. Then if supp(u) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,, since q > n, 

using (1.6) and (1.8). Since P is asymptotic to A this shows that 

(1.27) 1IP - Al(op.R = ~ ( l )  as R + 00. 

Let x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE C,p"(E2) be a patch function, 0 5 x 1, x = 1 in B , ,  and set 
x,(x) = x(x/R). Writing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = uo + urn, uo = X,U, urn = (1 - xR)u  with R a 
constant to be determined, the sharp estimate (1.22) yields 

and proceeding as before we estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 IIPullo,p,8-2 + Cll4lLp.8; A,' 

and using (1.19) and the interpolation inequality (1.7) gives (1.26). Now suppose 
that { u k ]  is a sequence in ker P satisfying ( I u ~ J ~ ~ , ~ , ~  = 1, so that by the Rellich 
lemma we may assume that ( u k }  converges strongly in LP(BR).  Estimate (1.26) 
now shows that I(u, - ukl12,p.6 + 0 as min(j, k)  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00, thus ( u k )  is Cauchy and 
hence convergent in Wt-P which implies that kerP is finite-dimensional. To 
show that P has closed range we follow [9], Theorem 6.3. Since dim ker P -= a, 
there is a closed subspace Z such that W:,P = Z + kerP and we claim there is a 
constant C such that 
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For if this were not the case, there would be a sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu k }  C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I u ~ ~ ~ ~ , ~ . ~  = 1 and + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. The usual Rellich lemma applied to (1.26) 
shows that { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu k }  has a subsequence which is Cauchy in Z and whose limit is a 
non-zero element of ker P n Z, which is a contradiction. The argument in 
Theorem 1.7 now implies that P has closed range. 

We are interested in the dimension of the kernel of P, which will be denoted 
by 

(1.29) N (  P,  6)  = dimker( P: W:,p -, W6-2 0 .  P )  

with 1 < p 5 q (from Prpposition 1.6 it is clear that N(  P, 6) does not depend on 
p ) .  Purely function-theoretic arguments give some information and yield as a 
by-product some estimates which do not seem to be derivable by direct PDE 
methods. The first result is the upper-semicontinuity of N ( P ,  6) and is well 
known (e.g. [25], [19]). To simplify notation we write X = W?-P, Y = W:’$ for 6 
nonexceptional and 1 < p 5 q, so that Theorem 1.10 shows that P: X + Y is 
semi-Fredholm (see [19]), i.e., has finite-dimensional kernel and closed range. 

PROPOSITION 1.11. Suppose that P: X + Y is a semi-Fredholm map between 
Banach spaces X ,  Y. Then there are constants C, E > 0 depending onb on P such 
that if P’ :  X + Y is any semi-Fredholm map satisfying 1 1  P - P’llop < E ,  then 

(1.30) 

and for any u E X we have the estimate 

dim ker P’ 5 dim ker P ,  

(1.31) IIU - kerPIIx 5 CIIPUII,, 

where 

Ilu - kerP(Ix = inf{l(u - w(Ix: w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ke rP)  

is the quotient norm on X/(ker P). 

Proof: The argument in Theorem 1.10 gves (1.31). Now let E = (2C)-’ and 
suppose (1.30) fails, so there is u E ker P ’  such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIIuJIx = 1 and IIu - ker PIJ, 
> f .  Then 

+ .c IN - kerPIIx 5 CIIPUII, 5 CIIP - P’llopll~llx 

< CE, 

which is a contradiction. 

Intuitively C(P)- ’  measures the distance (in the operator norm) of P to a 
semi-Fredholm operator with larger kernel. This picture is reinforced by the 
following partial converse. 
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PROPOSITION 1.12. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ,  Y be as above and set 

F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= { P: X + Y, P satisfies the conditions (1.18)) .  

Suppose that U c F has the property that there is a constant N such that 

dim (ker P )  = N for all P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE U .  

Then given P E U ,  there are constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE > 0, C < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACQ, such that 

(1.32) 11u - ker P’ll 5 CIIP’ully 

for all u E X and all P’ E U with )I P - P’Jlop 5 E .  

Proof: Suppose this is not the case, so that there are sequences P k  --* P in U 

and { u k }  C X such that llukllX = 1, lluk - kerPk(Ix > f and 

l lUk  - kerP,IIx 2 klIP,u,llv. 

This shows that P k u k  + 0; thus using (1.26) and the Rellich lemma again and 
passing to a subsequence we see that uk -, u in X ,  Pu = 0, JIulIx = 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
JIu - ker Pkll 2 a for k sufficiently large. A similar argument shows that ker P k  

converges to an N-dimensional subspace of ker P, which however cannot contain 
u. This contradicts dim ker P = N .  

Finally we note the following result which indicates that the set of operators 
for which dim ker is bigger than usual is “small”. 

THEOREM 1 .13  ([19], Theorem IV.5.31). Suppose that P :  X + Y is semi- 
Fredholm and A :  X -+ Y is P-bounded (i.e., llAully 5 C(IIPul), + Ilullx) for all 
u E X ) .  Then there is A ,  > 0 such that P + X A is semi-Fredholm for 1x1 < A,  and 

dim ker( P + X A )  = constant for 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1x1 < A, .  

(Note that X = 0 is not included in the last conclusion.) 

If the formal adjoint 

(1.33) P*:  w,”-;‘, + w-n-8 - 2.  pl 

of P also satisfies the conditions (1.18), then more information can be obtained 
by using the Fredholm index. Here W::!; is the subspace of D’(R”) consisting 
of those distributions which extend to give bounded linear functionals on WSzsP, 
endowed with the dual norm. If S is nonexceptional and moreover 1 < p 5 q, 
p’ = p / (  p - l), then Proposition 1.6 and the Sobolev inequality (1.8) show that 
ker( P*) c W:::-, and hence 

dimcokerP = dimkerP* = N ( P * , 2  - n - 6 ) .  
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This is finite by Theorem 1.10; hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP is Fredholm with Fredholm index 

(1 -34) i ( P , 6 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= N ( P , 6 )  - N ( P * , 2  - n - 8 ) .  

Since the index is locally constant in the space of Fredholm operators with the 

i ( P ,  6 )  = i ( A ,  6 )  = ~ ~ ( 6 )  

and the index r o ( S )  of the flat Laplacian can be explicitly computed. Let {rp,+}, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ+, 1 5 a 5 n, ,  be a basis for the eigenfunctions of ASn-l  with eigenvalue 
A, = - k ( n  + k - 2), so that (see [7]) 

(1.35) n ,  = dimH, = ( n  - 2 + 2 k ) ( n  - 3 + k ) ! / k ! ( n  - 2 ) ! ,  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH, = {homogeneous harmonic polynomials of degree k in R”}. Then, 
defining No(&)  = N ( A ,  6) we have 

(1.36) 

II llop topology (see WI, [W, we have 

N o ( 6 )  = no + n 1  + n2 + + n ,  = ( n  - 1 + 2 k ) ( n  - 2 + k ) ! / k ! ( n  - I)! 

when k = k - ( S )  > 0 and thus 

The above remarks are summarised as 

PROPOSITION 1.14. Suppose that P and P *  both satisfy conditions (1.18) and 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS is nonexceptional, 1 < p 5 q. Then P :  Wi-P + W:!$ is a Fredholm 
operator and N( P ,  6)  = dim ker P is independent of p .  If k - ( 6 )  < 6‘ 5 6 ,  then 
N (  P ,  6)  = N( P ,  8 ‘ )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif u E Wi-P and Pu E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW$_P,, then u E Wi*P. 

Proof: Previous remarks show that P is Fredholm and N ( P ,  S) does not 
depend on p. From the invariance of the index and K ( 6 )  < 8‘ 6 6 we have 

l (  P ,  6 )  - l ( P ,  6’) = 0 

and writing this in terms of N(  P, 6) gives 

N ( P , S )  - N ( P , 6 ’ )  = N ( P * , 2  - n - 6 )  - N ( P * , 2  - n - 6’).  

The inclusion L[ c L[* for 8 ,  < 6, implies that the right-hand side of this 
equality is non-positive whilst the left-hand side is non-negative, so N ( P ,  S) = 

N (  P, 6’). Now if Pu E W$P, then juPu dx = 0 for all u E ker( P * ,  2 - n - 6’) 
so that Pu E Ran(P,  6’)  and there is w E W$P such that Pu = Pw. Then 
( u  - w )  E ker( P ,  a), but ker(P, 6) = ker( P ,  6’) and hence u E W:vP. 
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When P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ag,  then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP* = P (where the adjoint is determined by the pairing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( u ,  u )  = /uu& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd x )  and some more information is available. 

PROPOSITION 1.15. Suppose that g, , (x)  is uniformly elliptic in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR" and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E Wd.q for some n < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq < 30, and that 6 is nonexceptional and (gf, - 

1 < p 5 q. Then A,: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWl-P + W i * ;  is Fredholm and N ( A g ,  6 )  = N,(6). 

Proof: In view of the invariance of the index and the selfadjointness of A g  it 
will suffice to show that N(A8, 6 )  = 0 for S < 0. But if A,u = 0 and u E W:*P, 
6 < 0, then u = o(1) at infinity and the strong maximum principle for weak 
solutions (see [17], Theorem 8.19) shows that u = 0. 

COROLLARY 1.16. Let S he nonexceptional, n < q < 00, and 1 < p q. 
Then there are constants C, E > 0 such that, for any metric g,, with llglJ - Sl , l l , ,q .o  
I - E ,  

Proof: This follows immediately from Propositions 1.12 and 1.15. 

I t  would be interesting to find a direct PDE proof of the estimate (1.37). 

When 2 - n < 6 < 0 and A is an isomorphism, this can be done using the 
weighted PoincarC inequality (1.15) but in general it seems quite difficult. 

The classical expansion of harmonic functions in terms of the spherical 
harmonics (P,.~ can be adapted to operators asymptotic to A at rate 7 > 0. A 
bootstrap argument based on the Schauder estimates was given in [24] and easily 
adapts to the present situation. 

THEOREM 1.1 7. Suppose that P is asymptotic to A at rate 7 > 0 and u E W? Q, 

S nonexceptional, satisfies Pu = 0 in E ,  = R" \ B, for some R 2 1. Then there is 
un exceptional value k 5 k ( 6 )  and h ,  E Cw(R") such that h ,  is harmonic and 
homogeneous of degree k in E ,  and 

(1 .38 )  u - h ,  = o ( r k P T )  as r + 00. 

Remarks. 1. The method also applies to Pu = f and, by using the explicit 
kernel, lower-order terms of the expansion (1.38) can be estimated as in [24]. 

2. If T = 0, then Proposition 1.14 can be used to infer that u = o ( r k  '') for 
any E > 0. but the exact analogue of (1.38) is false since u = log u, P = A - 
( n  - 2 ) ~ - ~ ( 1 o g  2a)- '  provides a counter-example. 

Proof: From Pu = f in E ,  we have Au = F, where F = - a'j)d,:u - 
by the decay assumptions on P .  Since b'a,u - cu in 1x1 > R;  thus F E W;.; 
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A: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW,'.: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ W,o"f(-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis Fredholm, there is a u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE Wi:: such that 

A ( u -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu )  = O  for I x I>  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. 

( I t  may not be possible to have A(u - u )  = 0 in all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR" since A may have 
non-trivial cokernel.) The classical expansion for harmonic functions now shows 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

u - u = h ,  + O ( r k - ' )  

for some k k - ( S )  and h,  as above. The decay estimate for u is improved by 
iteration: u - h,  E W:!! implies F E W ~ : j - , ,  and hence, by Proposition 1.14, 
o E W::;,. This argument can be repeated until we obtain ( u  - h , )  E Wk'l",. 

Observe that this result and the following corollary depend only on the 
structure of P at infinity and thus generalise to asymptotically flat manifolds. 

COROLLARY 1.18. Suppose that P is asymptotic to A at rate T > 0. 
(i) If k > 0 is exceptional and 0 < E < 1, then 

where nk = N,(k + E )  - N,(k - E )  is giuen explicitly by (1.35). 

( 1  A O )  N( P,  6 )  = 0 for all 8 < K nonexceptional. 

(ii) There is an exceptional ualue K < 0 such that 

Proof: (i) follows immediately from the expansion (1.38) and the definition 
of n k .  Theorem 1.17 shows that u E ker(P, S) grows like an integral power of r 
and (ii) then follows from the inclusion ker( P, 8 )  C ker( P,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf) for S < t and the 
finite-dimensionality of ker( P, t). 

2. Asymptotically Flat Manifolds 

DEFINITION 2.1. A smooth n-dimensional manifold ( M ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg )  with complete 
Riemannian metric g E W 2 ( M )  for some n < q < 00 is said to be asymptoti- 
cally flat if there is a compact K c c M such that M / K has a structure of 
inJinity:-there is R 2 1 and a C" diffeomorphism 0: M\ K + ER which 
satisfies 

(i) (@*g),, is uniformly equivalent to the flat metric S,, on E,, so that there 
is a X 2 1 such that 

(2.2) (0 ,g )  i j  - S i j  E W:-p( E R )  for some decay rate T > 0. 
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Alternatively we may consider zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ as defined by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoordinates at injnity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x ’  = @ ‘ ( m ) ,  m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE M ,  and write the structure at infinity as (a, x ) .  

For simplicity of presentation we have chosen not to consider manifolds with 
more than one infinity (“end”) and incomplete manifolds. The extensions gener- 
ally require only minor modifications, which we leave to the reader. In the next 
section we shall show that the conditions (2.1), (2.2) essentially determine the 
structure at infinity, but for the present we fix a structure @ and consider the 
properties of the operator Ag. 

To define suitable function spaces let u E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC m ( M )  be a strictly positive 
function satisfying 

and define the weighted spaces L,P(M)  using the weight function u ( m )  and the 
natural volume form of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(M,  g) in the same manner as before. Condition (2.1) 
guarantees that L ; ( M )  is independent of the structure (a, x )  used to define it, 
but the spaces Wk*P(@),  k 2 1, defined using partial derivatives with respect to 
the coordinates ( x i )  will depend on @. This is unavoidable since the metric is not 
smooth enough to define higher covariant derivatives and also because of the 
rather weak assumption (2.2) on the derivatives of 0. Note however that 
Proposition 1.6 shows that ker(A,, 6 )  is independent of 0. 

With straightforward modifications most of the results of Section 1 are also 
valid for elliptic operators on M and we have in particular: 

PROPOSITION 2.2, 
nonexceptional. Then 

Suppose that ( M ,  g ,  @) are as above, 1 < p 4, and S is 

is Fredholm and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu E ker(A,, 8) admits an expansion (1.38) at injnity. Further- 
more, 

(2.5) N(A,.S) = dimker(A,: Wg?,P(@) - WQ”14(@)) = N o ( S ) ,  

where N o ( S )  is dejned by (1.36), and thus Ag: W:.P(@) -+ W8112 P(@) is an 
isomorphism i f  2 - n < 6 < 0. 

Proof: The Fredholm property and the expansion at infinity are proved as 
in Section 1, while if S < 0, then (2.5) follows from the strong maximum 
principle as in Proposition 1.5. Now suppose k = k - ( 6 )  2 0 and let hk E C m ( M )  
be a harmonic polynomial in E,. Then Anhk E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWf:;-T (the dependence on ip 
here is implicit) and since A:: W:!:-k+T -, wr:qk+T has trivial kernel, we can 
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find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW;:4, such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA , ( h ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo k )  = 0 and hence dimker(A,,S) 2 No(S) .  
The expansion (1.38) at infinity for arbitrary u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ker(A,, S) shows however that 
N (  Ag, 8) N o ( 8 )  which gives (2.5). The isomorphism follows from the triviality 
of the kernel of the adjoint A:: Wz*P + W$-P, since S' = 2 - n - S < 0. 

This gives a nice description of N (  P, 6): 

COROLLARY 2.3. Suppose that the elliptic operator P given by (1.17) is 
formally selfadjoint and is asymptotic to A at rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr > 0 (this entails a straightfor- 
ward generalisation of Definition 1.5). Then i (  P, S )  = l o ( & )  and 

(2.6) N(P,S) = N , ( S )  + E ( 6 ) ,  

where E :  R \ { exceptional} + Z+ U (0) is continuous and satisfies 

(i) E ( 6 )  = E(2 - n - S ) ,  

(ii) E ( 6 )  is increasing for 6 5 1 - i n  
and decreasing for 6 2 1 - i n ,  

(iii) E ( 6 )  = 0 for6 > Kand S < 2 - n - K ,  
for some exceptional value K 2 0. 

Remark. When P is C", Proposition 2.2 and the equality of the Fredholm 
indices follow from results in [22] and [21]. 

Proof: Let go be a metric on M which is flat for r > R. Then the invariance 
of the index shows that i(P, 6) = i(Ago, S) and the previous result implies that 
this equals i o ( S ) .  Statement (i) follows from the definition 

i(P,S) = N(P,6) - N(P,2 - n - S ) ,  

and N,,(S) = 0 for 6 < 0 gives the non-negativity of E ( 6 ) .  The expansion (1.38) 
gives (iii) as in Corollary 1.18 and also implies that 

N(P, k + E )  - N(P, k - E )  5 nk 

for any 0 < E < 1 and exceptional k 2 0, which gives (ii). 

3. The Uniqueness of Infinity 

In this section we show that the structure of infinity of (M, g )  is essentially 
unique, in the sense that any two structures of infinity @,+ differ by a rigid 
motion and terms which are o ( r l - T ) .  Since Definition 2.1 almost implies that 
(@*a - +*a) E W'.P(M), this conclusion is not unexpected. 

As observed previously, the space L6p( M) is invariantly defined while the 
higher derivative spaces WtsP(@) will depend on the structure of infinity (D 
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chosen, so the following result may be interpreted as saying that harmonic 
coordinates at infinity give a preferred zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC" structure for M (with respect to the 
metric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg l J )  which is C'. "-compatible with the original structure. 

THEOREM 3.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALet (0, x )  be a structure of infinity, 0: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM\ K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-, E ,  where 
K C C M, R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1, and f ix 1 < < 2. There are functions y' E L,4(M), i = 

1; . ., n, such that A K y i  = 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x '  - y ' )  E Wf:!(0; E R )  and hence there is 
R ,  2 R such that ( y ' )  give coordinates in O - ' ( E R , )  with 

Furthermore, the set of functions { 1, y', . . , y " ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis a basis for 

(3.2) H, = { u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE L ,4 (M) :  A p  = O} .  

Remark. By Proposition 1.6, H, is intrinsic to (M, g) and does not depend on 
the structure of infinity 0. 

in M\ K, where rfk is the usual Christoffel symbol. Corollary 2.2 shows that 
AglW,?:(0) has trivial cokernel so there is u i  E W::!(0) such that A J x '  - u ' )  
= 0 in M. Setting y' = x '  - u' gives (3.1), and (3.2) follows from the estimates of 
Theorem 1.2. Theorem 1.6 shows that 

H ,  = ker( A K :  W<*q -+ W:!;) 

and this has dimension ( n  + 1) by Corollary 2.2. The functions y i  are linearly 
independent since the differentials dy' form a basis for T*M near infinity and 
hence (1, y ' ; .  -,  y " )  is a basis for HI.  

COROLLARY 3.2 (Uniqueness of infinity). Let ( M ,  g )  be an asymptotically 
frat manifold (possibly with boundary) and suppose that (0, x )  and ('P, z )  are two 
distinct structures at infinity with decay rates r l ,  r2, respectively. Then there is a 
rigid motion (0;'. a ' )  E O( n,  R) x R" of R", and a compact K C c M such that 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmin( T ~ ,  rl }. More precisely, the transition function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF = 'k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW': E,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R", some R > 1, satisfjes (with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI' = F ' ( x ) )  

Proof: Since this is a statement about the structures at infinity only, we can 
reduce the case where M has boundary to that where M = R" by first excising 
the compact set { m  E M, a ( m )  g R } ,  for R sufficiently large. Compactness 
guarantees that glueing in @ ( B R )  and extending g,, to M U @ ( B R )  does not 
change the asymptotic flatness with respect to either structure, so the result will 
follow from the case M = R". 

Let ( y ' ) ,  ( w ' )  be the harmonic coordinates constructed in the previous 
theorem, and corresponding to the structures a, 'k, respectively. Then 
(1,  y':.., y " } , { l , w l , - - ~ , w " }  are both bases for H, so there is an affine 
transformation ( A ; ,  a ' )  E G u n ,  R) X R" such that 

y' = AJw' + a' .  

Since y ' ,  w' are asymptotically rectangular it follows that A; E O(n, R) and the 
conclusions all follow now from the estimates of Theorem 3.1. 

The example of [12] shows that different structures may have differing decay 
rates and one consequence of Theorem 3.1 is that harmonic coordinates have the 
best possible decay. By assuming more regularity we show that this decay rate is 
determined by the decay of the Ricci tensor. 

PROPOSITION 3.3. Suppose that ( M ,  g )  has a structure of infinity 0 with 
decay rate q > 0, so (@,g - 6 )  E W2.J E R )  for some q > n ,  R 2 1, and that the 
Ricci tensor of ( M ,  g )  satisfies 

Ric(g) E L ! , - , ( M )  forsomenonexceptional T > q. 

Then there is a structure of infinity 0 defined by coordinates harmonic near infinity 
which satisfies ( 0 , g  - 6 )  E W?p(ER, ) ,  for some R ,  2 R .  

Proof: Defining 8 by harmonic coordinates near infinity as in Corollary 3.2, 

we have the identity 

where Q,,(g, dg )  is quadratic in dg. Since Ric(g) is a tensor, the left-hand side 
is in L ! , - , ( M )  and the Sobolev inequality (1.9) shows that if (0,g - 6) E 
W?{( E R ) ,  then Q( a g )  E Wy24_2,,( E,) .  Proposition 1.14 now implies that 
(@,g - 6)  E W?lp,(ER), where q* = min{2q, T }  > q and the result follows by 
repeating this argument until q* = 7 .  
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4, Uniqueness of the Mass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this section we give sharp conditions on (M, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg )  under which the expression 

(0.1) for the mass of an asymptotically flat 3-manifold is well defined and does 
not depend on the (implicit) structure of infinity. The arguments work more 
generally for n-dimensional manifolds, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3, where the mass is defined analo- 
gously by 

and c(n) is some normalising constant. This will show that the mass is a 
geometric invariant of ( M ,  g). 

The key is the identity for the scalar curvature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ( g )  of (M, g )  in local 
coordinates, 

where I" = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgk'rL,.  This formula is a special case of the important expansion of 
the Einstein-Hilbert action (valid in all dimensions) 

where 0," is the Levi-Civita connection 1-form of g,, with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa frame 
{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXu}, *l  is the metric volume form and qah = (Xu A Xb)-t*l. This shows that 
the mass can be interpreted as a generalisation of the geodesic curvature term in 
the Gauss-Bonnet theorem. 

We say that (M, g )  satisfies the mass decay conditions if there is an asymp- 
totic structure 4) such that 

PROPOSITION 4.1. Suppose that ( M ,  g, 4)) satisjes the mass decay conditions 
(4.4). Let { D, }?  be an exhaustion of M by closed sets such that the sets 
S ,  = 4)( d D , )  are connected ( n  - 1)-dimensional C' submanifolds without boundary 
in R" such that 

R, = inf{ 1x1: x E S , }  - 00 as k + 00, 

R,("-')area(S,) ishoundedas k -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco, 
(4.5) 
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and R ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 R, .  Then the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmass(g, a) of (M, g, a), defined by 

(4.6) 

is independent of the sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ s k } .  

Proof: Working in the coordinates (xi) at infinity, the asymptotic decay 
assumptions and the Sobolev estimate (1.9) imply that the boundary term in (4.2) 
can be written as 

(4.7) lgIl/2gij( rj - 4 dj(loglgi)) = gij, - gjj,; + o(  r - 1 - 2 T ) .  

The condition T 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(n - 2) implies that the error term in (4.7) is o( r - ( " - ' ) )  and 
thus does not contribute in the limit of (4.6). Integration by parts of (4.2) over 
D, \ D, now shows that 

and since gij, f L 2 ( M )  and R ( g )  E L ' (M) ,  the right-hand side has a limit 
which is independent of the sequence {Sk}. 

We now show that mass(g, a) as defined by (4.5) is in fact independent of the 
structure of infinity 0. This relies on the uniqueness result of the previous section 
and a curious cancellation (4.9) which seems to be a generic phenomenon when 
dealing with the scalar curvature (see eg. [33], [28]). An infinitesimal form of this 
cancellation is folklore in the relativity community (see [34]). 

THEOREM 4.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALet (a, x),(\k, z )  be two structures of injinity for ( M ,  g)  
satisfying the mass decay conditions (4.4) with decay rates rl, r2, respectively, so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r = min{ T, ,  r 2 }  2 +(n - 2). Then rnass(g, @), mass(g, \k) are well defined and 
equal. 

Proof: Write the identity (4.3) as R 1 = dA + B, where the boundary term 
A = g'h," A q k ,  depends on the frame { X , ) .  Under a frame change XI = QiX; 
defined by Q: M\ K -, G u n ,  R), the change in boundary term is easily 
calculated, 
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Setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,,, X,' = aZt, the estimate (3.5) implies that Q ; ( x )  = 0; + o( r - ' )  
for some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,' E O ( n ,  R )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaQ,/ = o ( r - ( ' + ' ) ) .  The coordinates ( z ' )  can be 
rotated so that 0,J -, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,J (note this does not change the mass (4.1)), and then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(X; A g ikXk)J* l  = *o(dx' A dx ' )  + o ( r - ' ) ,  

where * is the Hodge star corresponding to the flat metric in the ( X I )  

coordinates. Letting A, ,  A ,  denote the boundary terms of the frames 
{ a,, ). { }, respectively, we thus have 

(4.9) 

thus the mass integrals over the boundaries S, in (4.6) differ by o(1) and a term 
which integrates to zero. 

In [12]. a family of coordinate systems on the standard Schwarzschild 
spacelike slice ( n  = 3) is constructed such that the metric has the form 6 + 
O( r-' '2) and the mass uaries within the family, which shows that the conditions 
of Theorem 4.2 are exactly optimal for the mass to be uniquely defined. From 
Proposition 3.3 we have an intrinsic method of determining whether the mass can 
be properly defined. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA! J  

THEOREM 4.3. Suppose that ( M ,  g )  satisfies the decay conditions of Proposi- 
tion 3.3,  so that 

Ric( g )  E LV,-,( M ) .  

(i) If 7 2 t ( n  - 2), then the mass exists and is unique. 
(ii) If 7 > n - 2, rhen the mass is zero. 

Proof: From Proposition 3.3, there are asymptotically flat coordinates with 
decay rate 7, so (i) follows from Theorems 4.1 and 4.2. If 7 > n - 2, then we use 
an observation of R. Schoen [30]: from Theorem 1.17 and Proposition 3.3 we 
have an expansion in harmonic coordinates ( X I ) :  

g,, = 6,, + A I J r 2 - n  + O ( r  '), 

where A , ,  is a constant matrix. The harmonic condition implies that 

0 = A I J x J  - $AJJx' for all ( X I )  E R", 

so that A , ,  = 0 and the mass vanishes. 

We then have the following interesting consequence. 
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THEOREM 4.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASuppose that ( M ,  g) satisjies the mass decay conditions with 

(i) R ( g )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 and ( M ,  g) is a manifold for which the positive mass theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 > n - 2 and has Ric( g) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE L4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 -  T (  M ) .  If either of the following holds: 

holds (eg .  see Section 6), or 
(ii) Ric(g) 2 0, 

then ( M ,  g )  = (R", 8 ) .  

Proof: (i) follows immediately from the above remark that mass(g) = 0 by 
applying the uniqueness part of the positive mass theorem. To show (ii) we give 
an argument of [33]. Let (y') be globally defined harmonic functions forming 
rectangular coordinates at infinity and let 

so that ( K ( ' ) \ 2  = g". Now, in harmonic coordinates the mass integral simplifies to 

(4.10) - 

so that integrating the identity 

over M (the asymptotic conditions on Ric(g) and Theorem 3.1 ensure that all 
terms are integrable) and applying Stokes theorem one obtains 

= 2c( n)mass( g ) .  

But the mass is zero by the previous theorem; thus the K ( ' ) ,  i = 1;. a ,  n ,  are 
globally parallel forms and hence ( M ,  g )  is flat. 

5. Remarks on Harmonic Coordinates 

The harmonic coordinates which entered peripherally into the proof of the 
uniqueness of the mass (Corollary 4.2) have some useful properties. As has been 
seen, they form an almost canonical coordinate system at infinity and in this 
section we shall describe their relation with the mass. This includes a new and 
elementary proof of the positive mass theorem for sufficiently flat initial data 
(with non-negative scalar curvature) and an estimate whch should be useful 
when considering the Einstein conjecture (see [lo]) (the instability of Minkowski 
space). 
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For this section we shall assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( M ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg) is an asymptotically flat 

3-manifold with a structure of infinity (0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) such that 

(5.1) ((cP*g) - 6 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW!;V(ER) for some R > 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq > 3 and T > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, 

(5 .2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN g )  E w”;.Zr(M). 

(5.3) 

The condition that the coordinates (X I )  be harmonic implies that 

r, = g k / r ; ,  = = g l / g ” / (  g,,,, - fg,,, j )  = o 

and then the basic identity (4.2) simplifies to 

(5.4) iA,(loglgl) = - R ( g )  + g”r,’kr;. 

Thus i f  (a, x )  is a coordinate system harmonic at infinity, then the assumed 
decay conditions (5.1), (5 .2)  and Theorem 1.17 shows that 

( 5 . 5 )  loglg) = c / r  + o ( r - l )  

for some constant c. Using (4.2) and (5.3) we see that the definition of mass 
becomes 

1 
mass(g) = - -$ a,(logJgJ) dS’ 

32a s, 

and hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc = 8m(g) .  If we write gi ,  = S,, + h,,, where h,, = o(r-‘), then (5 .5 )  
shows that 

(5.7) 

which is a gauge condition that has been proposed by J. York [34]. 

special case of the following result. 
The definition of the mass via (5.6) has a purely geometric interpretation as a 

PROPOSITION 5.1. Suppose that ( N ,  h )  is another asymptotically jlat 3-mani- 
fold satisfying the conditions (5.1), (5.2) and that F M -+ N is a harmonic map 
(see [13]) which is asymptotic to the identity; that is, there is a structure of injinity 
0 on M such that 

Denoting the Jacobian determinant of F by 

J (  F) -‘det( a,x8 ( FP)g’,h,,,), 
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we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

mass( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- mass( h )  = - -$ &(log J (  F ) )  dS'. 
32q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, 

( 5 . 9 )  

Proof: The condition (5.8) guarantees that the pullback F*yP = y P ( F ( x ) )  
of coordinates ( y p )  at infinity for N are also coordinates at infinity for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. Then 
the harmonic mapping equation with respect to these coordinates x'  = y ' ( F ( x ) )  
becomes 

( 5  .lo) g " ( q ( g )  - rgw) = 0, 

where 

using (5.10). Expanding the Christoffel symbols shows that the right-hand side is 

2( aJg,, - a,gJ - 2( a , , ( ~ * h ) , ,  - a x W h ) , , )  + o ( + ~ + ) ,  

and the result follows from the definition (4.6) of the mass. 
It is worth noting that the identity (4.2) which underlies the definition of the 

mass has a counterpart here which explains to some extent the appearance of 
J ( F )  and harmonic maps in the formula (5.9). Letting & denote the second 
fundamental form of F: M 

A,log(J(F)) = R ( g )  - g ( d F p ,  dF')Ric(h),, - g " ( ( d F ) - ' B ) I , ( ( d F ) - ' B ) : ,  

which simplifies when ( N ,  h )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(R3, 6) and ( x ' )  are harmonic coordinates to 
(5.4). 

The identity (5.4) can also be used to prove the positive mass theorem (see 
[31],[33]) if the initial data is sufficiently flat and R ( g )  is non-negative. This 
applies particularly to spacetimes which are close to Minkowski space and satisfy 
the weak energy condition, since such spacetimes admit asymptotically flat 
maximal surfaces (see [6 ] ) .  This proof should be compared with the rather more 
elaborate constructions of [ll]. 

N (see [13]) we have the identity 
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THEOREM 5.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThere is an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiJ ( M ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg )  is any asymptoticallyflut 
3-manifold with M = R' and R(g) >= 0 and metric g,, with respect to the natural 
global coordinates ( x i )  derived from the diffeomorphism M = R3, which satisfies, 
for some q > 3, < r ,  

IlglJ - ' I J I I 2 . 9 .  --I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'1 

then 

Proof: Choose E small enough so that Propositions 1.12 and 1.15 guarantee 
the existence of global asymptotically flat harmonic coordinates ( y ' )  which 
satisfy 

Jg,, - 8, ,1 (m)  =< for all m E M. 

Now working in these harmonic coordinates we note that I" = 0 implies that 

(5.12) a,ioglgl = gJka,g,& = 2gJk a,g,& = -2gl, a k g J k  

and hence 

From the definition of the Christoffel symbols, the bad term in (5.4) may be 
written as 

(5.14) gi~r,:r; = - 4g 1 11 g k l  g p 9 a  I k p  aJg19+ tgklaigJkaJg" 

and the first term on the right-hand side will be denoted by Jag)2 for short. The 
boundary term in (5.13) gives the mass, so by (5.4) we have 

The remaining bad term is now handled by 

gkl aigJk aJgr /  = (gkl - ' & I )  aigJk aJgr/  + ' i g J k  aJgrk 
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using (5.12). The decay conditions ensure that the boundary integrand in this 
expression will be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo ( r - * ) ;  thus, inserting this in (5.15), one obtains (5.11). 

6. The Positive Mass Theorem 

In 1982, E. Witten described a proof of the positive mass theorem using 
spinors (see [33], [28]). The techniques developed thus far enable us to generalise 
this proof to dimensions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3 with the same asymptotic conditions needed to 
ensure that the mass is well defined (Theorem 4.2), under the assumption that the 
manifold M" admits a spin structure. This is a topological condition (a2( M )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) 
which is automatically satisfied for oriented 3-manifolds, but it is a nontrivial 
condition in dimensions n 2 4. 

The approach basically generalises that of [28], with some differences. For 
example, we use only the pure Dirac operator; the original calculations and a 
number of recent papers (see eg. [27]) modified this by adding zero-order terms 
(spinor endomorphisms) which give rise to additional terms which can be 
physically interpreted (e.g., charge, momentum). 

We start by recalling the construction of spinors: for more details see [35]. 
The Clifford algebra Cl(V) of a vector space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV with inner product zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg is the 
algebra generated by V and the relations 

(6.1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 2 =  - g ( u , u )  forall U E  v 

If dim V = n,  then dim C1( V)  = 2" and C1( V )  is naturally isomorphic (as a 
graded vector space) with the exterior algebra A(V) .  Now suppose that g is 
positive definite and { e,} is an orthonormal basis of V so that g(e,, e,) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,,, 
and denote C1( V )  = Cl(n). There is an irreducible representation (not unique in 
general) 

7 :  C1( n )  -, End( S) 

of Cl(n) as linear transformations (matrices) on some complex vector space S 
such that V acts by skew-Hermitean matrices with respect to the usual Hermitean 
inner product on S. We shall often denote this action by T ( X )  = x - for 
x E Cl(n). 

The Lie group Spin(n) imbeds in Cl(n) as the subgroup 

(6.2) 

and thus has a linear representation (not irreducible), 

Spin(n) = exp{span,{ e,e,, i < j } }  

T: Spin(n) -, Aut(S), 

so that S is called the space of Diruc spinors. That the group defined by (6.2) is 
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Spin( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn )  can be seen from the double covering 

7:  Spin(n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso(n) ,  

defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n ( u ) :  u -B uuu-1, 

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV c Cl(n), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu E Spin(n). Since V generates C1( V ) ,  for u E Spin(n), the 
action 

extends to give a commuting diagram 

Cl(n) x s +S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 7 ~  

Clifford multiplication 
+ 

J 
Cl(n) x s * S  

which allows us to extend Clifford multiplication to bundles. Thus, suppose M "  
is a Riemannian spin manifold, so that the frame bundle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 of TM has a double 
cover (spin structure) 

Then there is a natural action Cl(M) X A + A of the Clifford bundle 

on the bundle of Dirac spinors 

A = 9- xSpin(,,)S. 

We say that Ic, E A is a constant spinor with respect to the frame f: U + 9, 
U open in M, if $ = [ f  - , Go], the equivalence class in A determined by the 
lifting f - of f, with $o: I/ -+ S constant. 

The Lie algebra isomorphism spin(n) = so(n)  can be described by 

$e .e  1 J  - el A ei, 

where e, A ej  is the generator in so (n )  of an anti-clockwise rotation in the 
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(e;, eJ)-plane: el zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ eJ, ej + -eJ. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA connection on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, 

(6.3) 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc w i j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 e, A ej E A1(T* M )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 s o ( n ) ,  
i C J  

lifts to a connection on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 - and its associated bundle A, given by 

w -  = - +  C w i j  Q e,e,, 
i C J  

so that the covariant derivative of a constant spinor is 

(6.4) vrp = - + C wiJ Q e, ej rp. 
1 .  J 

The Dirac operator 9: F( A )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI-( A )  is defined by 

and it is not hard to verify the Lichnerowicz identity 

where R is the scalar curvature. Using the Hermitean inner product on A one 
obtains 

where 

a . =  t [e j ,  el] = eiej + a j j .  
1 1  

The identity (6.7) is the key to Wittens method, which requires us first to find 
a spinor + satisfying 9# = 0 and + -+ J l 0 ,  a constant spinor at infinity, and then 
to identify the boundary term in (6.7) with the mass. As emphasised in [27], tlus 
identification does not depend on the Dirac equation. Henceforth we suppose 
that (M, g, 0 )  is a complete asymptotically flat n-dimensional spin manifold 
satisfying the mass decay conditions (4.4) and having non-negative scalar curva- 
ture (in the weak sense), 
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PROPOSITION 6.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq < n - 1,  the Dirac operator 

is an isomorphism, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW:qp( A )  denotes the weighted Sobolev space of sections 
of A .  

Proof: The arguments of Section 1 extend readily to the Dirac operator (see 
e.g. [25], [9], [22]) and show that (6.9) is Fredholm with adjoint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 = 9*: W t ; f , , ( A )  + W i : $ ( A ) .  

I f  \c/ E ker(9,  -q). then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1412 + 0 at infinity and from (6.6) we have 

and the strong maximum principle implies that I J / i 2  = 0, so that, for 0 < q < 
n - 1, both ker.9 and k e r 9 *  are trivial. 

Given asymptotically flat coordinates (XI) satisfying (4.4), we can easily 
construct an orthonormal frame e,  = ejd,, near infinity such that the “vielbein” 
e,‘ satisfies 

(6.10) ej - ti,, E w?:( E ~ , ) .  

This frame { e , }  will be called asymptotically constant (with respect to the 
coordinates (x , ) )  and the spinor \c/o is constant near injnity if it is  constant with 
respect to such a frame. Note that from Corollary 3.2, up to terms in W??( ERo),  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4,) is constant with respect to any other asymptotically constant frame. 

COROLLARY 6.2. Let be a spinorjeld on M which is constant near infinity. 
Then there is a spinorjeld 4 such thui 

(6.11) 

Proof: 
orem 6.1 gives a unique 
4 = 4” + 

The asymptotic conditions ensure that 94” E W”:  7 ( A ) ;  thus The- 
€ W?.P(A) such that 9 4 ,  = -9#”, and then 

is the required spinor. 
We now have 

THEOREM 6.3 (Positive Mass). Suppose that ( M ,  g )  is a compfete spin mani- 
jbld satislving the mass decay conditions (4.4) with non-negative scalar curvature 
(6.8). Lei be a spinor. constani near infinity and normulised by I J / 0 1 2  + 1 at 
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inflnity, and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ be the solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Dirac’s equation constructed in Corollary 6.2. 
Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe mass of M is non-negative and is given by 

(6.12) 

Furthermore, if mass(g) = 0, then M i spat .  

c(n>mass(g) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj (41v+12 + R I $ l 2 ) * 1 .  
M 

Proof: By virtue of Corollary 6.2, we must identify the boundary term in 
(6.7) with the mass. Following [28], the identity 

d ( ( ~ ” l / ’ X ) * ( e l A e ] ) )  = ( ( q 7 ‘ l J * v / X ) -  ( ‘ l / * v / ~ ~ X ) ) * e l  

shows that the boundary term can be written as 

The decay conditions and (6.11) ensure that the last two terms are o ( r - 1 - 2 7 )  and 
hence do not contribute to the boundary integral in the limit, while the second 
term drops out since d 2  = 0. We evaluate the remaining term using (6.4): 

($01 ‘11 v J $ o )  * e l  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ’ c 4 e / ) ( 4 0 7  011 ‘ k /  $ 0 )  * el. 
i . j . k . 1  

Since ulJ is skew-Hermitean and we are only interested in real components, this 
simplifies to 

where u lJk /  = e,e,e,e, if i ,  j ,  k, 1 are distinct and 0 otherwise. In terms of the 
coordinate Christoffel symbols r,,, and vielbein e j ,  the connection is 

~ , / ( e k )  = ‘ repe~r r9p  + e r e ~ g p 9  a r ( e 7 )  

= rkll + a,(.;) + o ( r  l p 2 t ) .  

Decomposing e = (el) = 6 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs + a ,  where s, a are symmetric, antisymmetric, 
respectively, and o ( r P T ) ,  we see that 

d g  = 2 a s  + o ( r -  l - ” )  

and thus from (6.3), we have 
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Now 

so we find that the mass is given by 

(6.14) 

A similar calculation using the antisymmetry of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuijkr shows that the second term 
of (6.13) is divergence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ o(r - ' - ' ' )  and again does not contribute, so (6.12) 
follows. Now, "the square of a spinor is a vector", i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( u + ,  X) = Im($, X * $ )  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR" 

defines a vector u,, E R" from a spinor $ and using the double covering 
Spin( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn)  + SO( n )  i t  is not hard to see that this map S -P R" is onto. If the mass 
vanishes, then v$ = 0 and hence vu,, = 0. Since $o is an arbitrary constant at 
infinity spinor, we can find a basis for TM consisting of covariantly constant 
vector fields. Thus M is flat. 
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