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We investigate the relation of the mass of the graviton to the number of information � in a 	at universe. As a result we 
nd that
the mass of the graviton scales as�gr ∝ 1/√�. Furthermore, we 
nd that the number of gravitons contained inside the observable
horizon is directly proportional to the number of information�; that is,�gr ∝ �. Similarly, the total mass of gravitons that exist

in the universe is proportional to the number of information �; that is,�gr ∝ √�. In an e�ort to establish a relation between
the graviton mass and the basic parameters of the universe, we 
nd that the mass of the graviton is simply twice the Hubble mass�� as it is de
ned by Gerstein et al. (2003), times the square root of the quantity � − 1/2, where � is the deceleration parameter
of the universe. In relation to the geometry of the universe we 
nd that the mass of the graviton varies according to the relation�gr ∝ √	sc, and therefore�gr obviously controls the geometry of the space time through a deviation of the geodesic spheres from
the spheres of Euclidean metric.

1. Introduction

In Einstein’s theory of general relativity, linearization of the

eld equations demonstrates that small perturbations of the
metric obey a wave equation [1]. �ese small disturbances,
referred to as gravitational waves, travel at the speed of light.
However, some other gravity theories predict a dispersive
propagation (see [2] for references). �e most commonly
considered form of dispersion supposes that the waves obey
a Klein-Gordon-type equation that is given below:
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�2 − ∇2 − (
��
2ℏ )2)� = 0. (1)

Physically, the dispersive term is ascribed to the quantum of
gravitation having a nonzero rest mass ��, or equivalently a
nonin
nite Compton wavelength �� = ℎ/��
, where � is the
potential function of the gravitational 
eld.

Moreover, several of today’s theories like string theory,
superstring theory, M-theory and loop quantum gravity,

and quantum 
eld theory predict the existence of graviton
particles. In quantum 
eld theory graviton is the elementary
particle that mediates the gravitational force and is expected
to be massless, and that is because the gravitational force
itself has an in
nite range. Furthermore, graviton must be a
spin-2 boson, which results from the fact that the source of
gravitation is the stress-energy tensor itself. Additionally, it
can be shown that any massless spin-2 
eld could give rise
to a force that is indistinguishable from gravitation because a
massless spin-2 
eld must couple to the stress-energy tensor
in the sameway that the gravitational 
eld does [3].�erefore,
this result suggests that if a massless spin-2 particle is dis-
covered, it must be the graviton [1]. �us graviton detection
remains vital in the validation of the theories and also in
the research that strives to unify quantum mechanics with
general relativity. Although physicists normally speak as if
bosons mediating the gravitational force exist, the extremely
weak character of the gravitational interaction makes the
detection of graviton an extremely hard issue. Recently,
Dyson has suggested that “the detection of a single graviton
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may in fact be ruled out in the real universe” [4]. If researchers
answer Dyson’s question in an armative way, concluding
that graviton detection is impossible, this will immediately
raise issues in relation to the necessity of gravity quanti-
zation. However, attempts to extend the standard model
with gravitons have run into serious theoretical diculties
at high energies (processes with energies close to or above
the Planck scale) because of in
nities arising due to quantum
e�ects (in other words, gravitation is nonrenormalizable).
Since classical general relativity and quantum mechanics are
incompatible at such energies, from a theoretical point of
view, the present situation is not tenable. Some proposed
models of quantumgravity [5] attempt to address these issues,
but these are speculative theories.

�ere are only a few conceivable sources of graviton
production, like black hole decay, spontaneous emission
of gravitons from neutral hydrogen, bremsstrahlung from
electron-electron collisions in stellar interiors, and conserva-
tions of photons to gravitons by interstellar magnetic 
elds.
Here we will only brie	y touch upon the graviton production
by black hole decay, which appears to be the most promising
mechanism. Black holes of mass � possess a Hawking
temperature that is equal to

�BH = ℏ
38�����, (2)

where �� is the Boltzmann constant, � is the gravitational
constant, ℏ is Planck’s constant, and 
 is speed of light. A

primordial black hole withmass� ≤ 1019 kg can in principle
evaporate gravitons of energy � ≥ 10 eV or higher and, with
no observational constraints on the mass of the primordial
black holes applied [6], can constitute most of the universe’s
dark matter. On the other hand, primordial black holes with
mass � ≤ 1012 kg that emit particles with energy higher� ≥ 108 eV would have already long been evaporated.

Recently, Finn and Sutton [7] have examined the binary
pulsar, PSR B1913 + 16, of which the observed decay rate coin-
cideswith that expected from relativity to approximately 0.3%
[7]. A nonzero graviton mass would upset this remarkable
agreement altering the predicted orbital decay, implying an
upper limit on the graviton mass. �e authors have obtained
a crude estimate on this bound using dimensional analysis.
For a system with characteristic frequency � one expects the
e�ects of a graviton mass to appear at second order in �/�
[7]. For gravitational waves at twice the orbital frequency of

PSR B1913 + 16, requiring (�/�)2 < 0.003 implies an upper

limit of order 10−20 eV/c2. �is is comparable to the best limit
from solar system observations, � < 0.44 × 10−21 eV/c2.
Finn and Sutton [7] have examined an extension of linearized
general relativity which includes amass term for the graviton.
�ey have chosen the unique mass term for which the wave
equation of the linearized theory takes the standard formwith
an ℎ-independent [7] source and forwhich the prepredictions
of massless general relativity are recovered by setting� → 0
at the end of the calculations.

In recent papers by Novello and Neves [8] as well
as Neves (2004) and Liao [9] the authors express a link
between the cosmological constant and the graviton mass

��. Similarly, in Bousso [10] the author argues that the
total observable entropy is bounded by the inverse of the
cosmological constant. �is holds for all space-times with a
positive cosmological constant, including cosmologies dom-
inated by ordinary matter and recollapsing universes [10].
Boussos’ conjecture is largely in	uenced by Banks’ idea of
cosmological constant [11]. Moreover, in Mongan [12], the
author examines a vacuum-dominated Friedmann universe
asymptotic to a de Sitter space, with a cosmological event
horizon that its area in Planck’s units determines the maxi-
mum amount of information that will ever be available to any
observer. Moreover, in a recent paper by Mureika and Mann
[13], the authors examine the idea of information transfer
between a test particle and the holographic screen in entropic
gravity. �e transfer respects both the uncertainty principle
and causality, and a lower limit on the number of information
bits in the universe relative to the mass may be derived. �e
corresponding limits indicate that particles travelling with
the speed of light—photon and/or graviton—have a nonzero

mass � ≥ 10−68 kg. �eir result is found to be in excellent
agreement with the current experimental mass bound of
photon and graviton, suggesting that entropic gravity might
be the result of a recent local symmetry that is so�ly broken
[13]. In particular cosmological holography postulates that
all the information content in our universe is encoded on its
cosmological horizon.�is proposal has been put forward by
Smoot [14] and in short states that all possible past and future
histories of our universe are encoded on its apparent horizon
and by that making a connection. Moreover, the authors
proceed by asking how much the universe as a whole, mass,
and information included can tell us about its parts or the
lightest possiblemass of the elementary particles.�e authors
further claim that in entropic gravity there is a lower limit to
the number of bits of holographic screen which provides the
information transfer between the test particle and the screen,
which obeys causality as well as the uncertainty principle.

Similarly, in Haranas and Gkigkitzis [15], the authors
examine the Bekenstein bound of information number� and
its relation to cosmological parameters in a universe, where
in Gkigkitzis et al. [16] the authors use a recent result for the
number of information� derived from Landauer’s principle;
they obtain an expression for the cosmological constant Λ.
Finally, inHaranas andGkigkitzis [17], the authors investigate
the number of information � as related to the minimum
quantum and gravitational masses in a vacuum-dominated
universe. In this contribution we seek to investigate and
understand the physics behind any possible relations that
might result from the relation of the graviton mass to the
surface area of the universe expressed in Planck units accord-
ing to the holographic principle. As a result the number of
information � on the horizon of the universe enters our
calculation, and therefore the relation of the graviton mass to
the number of information�will be established, via the cos-
mological constant lambda Λ dependence on the number of
information. Moreover, we use Landauer’s principle of infor-
mation in relating the graviton mass to the mass of the uni-
verse and the mass of an elementary particle. Finally, we fur-
ther investigate the relation of the graviton mass to the Ricci
scalar and basic cosmological parameters of the universe.
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2. The Mass of the Graviton

In a recent paper by Das (2014) the author uses the quantum
Raychaudhuri equation to obtain the quantum corrected
Friedmann equation for the range of graviton/photon. Simi-
larly, with reference toWesson [18], Novello [19], Tajmar [20],
and Liao [9], we write that the proposed relation between the
graviton mass and the cosmological constant is

1�2gr =
2Λ3 = �2gr
2ℏ2 , (3)

where ℏ is Planck’s constant, 
 is the speed of light, and�gr is the graviton wavelength. �is equation also follows
from Einstein’s linearized 
eld equations which include the
cosmological constant lambdaΛ and also from the equations
of motion for a massive spin-2 
eld that propagates in a de
Sitter background. Using (1) we obtain that the mass of the
graviton can be written as

�gr = ℏ
√2Λ3 . (4)

Equation (4) is actually the same equation as the one given in

Wesson [18], in which�gr = �wes/√3.�e dependence of the

gravitonmass on√Λ is a property that remains valid not only
for de Sitter but also for arbitrary background geometries as
long as they stay in the setting of Einstein’s second description
of the equations of motion [19]. We can also construct a mass
associated with lambda by using Planck’s constant ℏ and also
the speed of light 
 (ibid., [19]). Following Novello [19] we
write that the total mass of gravitons that exist in the universe
is given by

�gr = �gr�gr = 
3�ℏΛ ℏ
√2Λ3 = 
2�√ 23Λ, (5)

where �gr is the total number of gravitons contained inside
the observable horizon and it is equal [19] to

�gr = 
3�ℏΛ = 1Λ = ΛmaxΛ , (6)

where ℓ� is the Planck length and Λmax = 
3/�ℏ is the
maximum value of the cosmological constant as it is de
ned
in [15]. �erefore we write the total number of gravitons in
the universe in the following way:

�gr = Λmax
 (√ 23Λ)ℏ. (7)

3. The Relation of the Graviton Mass to
the Number of Information

�e holographic principle indicates a possible nonlocal-
ity mechanism in any vacuum-dominated Friedmann uni-
verse. To be more precise, a holographic nonlocal quantum
mechanical description can be possible for a 
nite amount of
information in a closed vacuum-dominated universe. Today’s

theories assume that the universe began by a quantum 	uc-
tuation from nothing, underwent in	ation, and became so
large that it is locally almost 	at and that since the in	ationary
era the vacuum energy density of the universe is constant.
�is is the case of the existence of a nonzero cosmological
constant Λ. More information of such a universe arising
in quantum cosmological way is presented in Mongan [21].
Systems that dynamically evolve in time not only transform
but also process information. Using the relation given in
Haranas andGkigkitzis [15, 17] we can write the cosmological
constant as a function of the number of information to be

Λ = 3��ℓ2� ln 2 =
3�� ln 2Λmax. (8)

Substituting (8) into (2) we obtain that

�gr = ℏ
√ 2��ℓ2� ln 2 =
ℏ
ℓ�√

2�� ln 2 = %0 �Pl√�, (9)

where %0 = (2�/ ln 2)1/2 ≈ 3.010 and �Pl = (ℏ
/�)1/2
is the Planck mass; therefore we see that �gr ∝ 1/√�.
Similarly, the total number of gravitons contained inside the
observable horizon can bewritten as a function of the number
of information� in the following way:

�gr = 
3�ℏ �ℓ
2
� ln 23� = ln 23� �, (10)

or in other words�gr ∝ �.�erefore, the total gravitonmass
in the universe is equal to

�gr = �gr�gr = '0�Pl
√�, (11)

where '0 = (1/3)(2 ln 2/�)1/2 and therefore �gr ∝ √�.
Similarly, using (9), we obtain that the number of information� is given by

� = 2�
ln 2(�Pl�gr

)2. (12)

Moreover, from (11), we obtain a second expression for the
number of information� that reads

� = 9�2 ln 2(
�gr�Pl

)2. (13)

As a result we 
nd that the number of information � can
be expressed as the square of the ratio of two fundamental
masses, namely, the Planck mass and the mass of the graviton
or the square of the total number of gravitons in the universe
over the Planck mass.

4. Landauer’s Principle and
the Mass of the Graviton

In relation to the laws of physics we say that they determine
the amount of information that a given system can register
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(i.e., number of bits or nats) as well as the number of ele-
mentary logic operations that the given system can perform
(i.e., number of operations). With reference to Landauer
[16, 22, 23] we can say that information is physical, and
that also all information is registered and processed by
physical systems. Physical systems can be described in terms
of information, and information processing is related to the
system description by physical laws. Landauer’s principle is a
physical principle pertaining to the lower theoretical limit of
energy consumption of a computation. Landauer postulated
that any “logically irreversible manipulation of information,
such as the erasure of a bit or themerging of two computation
paths, must be accompanied by a corresponding entropy
increase in non-information-bearing degrees of freedom of
the information processing apparatus or its environment”
[24]. Landauer’s principle asserts that there is a minimum
possible amount of energy required to change one bit of
information, known as the Landauer limit, and it is equal to
[25]

�min = ��� ln 2, (14)

where �� = 1.38 × 10−23 J/K is Boltzmann’s constant and �
is the temperature of the circuit.�erefore Landauer’s energy
formula can be written in terms of the information number� in the following way:

� = ���� ln 2. (15)

Recent experimental studies provide further evidence that
Landauer’s prediction is true. For example, the equivalence
between information and energy can be interpreted using the
results obtained in recent experiment by Funo et al. [26].

In their experiment the authors have shown that entan-
glement can produce an increase or gain of thermodynamic
work, where the gain is determined by the change of the
information content. Similarly, Bérut et al. [27] have shown
that there is a link between information theory and thermo-
dynamics. Landauer’s principle is a simple consequence and
its logic emanates directly from the second law of thermo-
dynamics. �e law states that the entropy of a closed system
cannot decrease at the same time with the corresponding
temperature. �erefore, if one nat of information is lost
during a computation, the amount of entropy generated
is at least �� ln 2, and therefore the energy emitted in the
environment is � ≥ ��� ln 2. Landauer’s principle has been
accepted as a physical law, but it has also been challenged by
Shenker [28] and Norton [29] and defended by Bennett [24]
and Ladyman et al. [30].

Next, with reference to Alfonso-Faus and Fullana i
Alfonso [31] and Gkigkitzis et al. [16], the authors say that “all

physical systems of mass� and energy�
2 are equivalent to
an amount of information in number of bits” of the order of

� ≅ (�
2ℏ5 ) , (16)

where� is the mass of the system, 
 is the speed of light, ℏ is
Planck’s constant, and5 is the Hubble constant.

In Alfonso-Faus and Fullana i Alfonso [31] the authors
claim that (3) is of “universal validity.” �ey further say that
the unit of energy that should be taken as the minimum
quantum of energy is ℏ5. �is implies that the relativistic
energy of a mass� has � times this minimum quantum of
energy�ℏ5, where� is the number of information in nats.
In otherwords the product�ℏ5 corresponds to the energy of
all the information number� carried by the system.�us, the
expression for the cosmological constant lambda Λ obtained
in Gkigkitzis et al. [16] is used below:

Λ = 3�
ln 2 ( 5
���) , (17)

where�� is the totalmass of the universe and5 is theHubble
parameter, and substituting (16) in (2) and simplifying we
obtain that

�gr = %0√ ℏ25�
�� = %0 (
�3/2��� ) = %0(

�3���)
1/2, (18)

where�� = (ℏ25/
�)1/3 is the mass of the pion as it is given
by Weinberg [32], and therefore we can write the mass of the
universe�� in the following way:

�� = %20 (�3��2gr) , (19)

or in other words as the ratio of two fundamental particle
masses in the universe.

5. Time Dependence of the Graviton Mass,
Ricci Scalar, and Information Number

In order to investigate a possible relation of the gravitonmass
to time  let us now consider a 	at universe, that is, � = 0,
where � is the curvature constant and density parameterΩ =1. Following Gkigkitzis et al. [16] we can write that in a 	at
universe the number of information� evolves as a function
of time in the following way:

�() = 4�
ln 2( 
ℓ�)

22 = ( 4�
ln 2)( �)

2. (20)

�e bound is not 
xed but rather grows as time progresses
and the horizon expands and encompasses more particles
[33]. �e expression above is in agreement with the work of
Lloyd [23] and Davies [33] where the authors predict that in

a 	at universe� ∝ 2. Substituting (20) in (9) we obtain that

�gr = ( ln 28� )
1/2�Pl (Pl ) , (21)

and therefore we 
nd that the mass of the graviton in a 	at
universe evolves as �gr ∝ 1/. Using (21) we 
nd that in a
	at universe at the moment where  = 0 where 0 = 4.346 ×1017 s [24] is the age of the universe the mass of the graviton
becomes

�gr = ( ln 28� )
1/2�Pl = 8.777 × 10−62�Pl [kg] . (22)
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In order to investigate the relation of the graviton mass with
fundamental cosmological parameters let us look at Haranas
and Gkigkitzis [34]. In this paper the authors derive the Ricci
scalar that is de
ned by [35, 36]

	sc = −( 6	̈
2	 + 6	̇
2


2	2 + 6�	2) . (23)

	 is the scale factor of the universe. In a 	at universe the
resulting Ricci scalar can be written as a function of the
number of information number� in the following way to be
[34]

	sc = 6�
ln 2 (� − Ω)ℓ2�� , (24)

where � and Ω = 1 are the deceleration and density param-
eters of the 	at universe. Solving (24) for the deceleration
parameter of the universe we obtain

� = Ω + ln 26� ℓ2�	sc�. (25)

Next, in a 	at universe 
lled with nonrelativistic matter, that
is,F = 0, corrected for the graviton contribution, we have that
the deceleration parameter given by [37]

� = − 	̈	52 = 12 + 1452(
�gr
2ℏ )2. (26)

�erefore, equating (25) and (26), we obtain that the mass of
the graviton is given by

�2gr = 4ℏ252
4 [Ω − 12 + ln 26� ℓ2�	sc�] , (27)

where the quantity ℏ5/
2 = �Hub is the Hubble mass de
ned

in [38]. In the present era we have that �0Hub = ℏ50/
2 =ℎ(3.8 × 10−66) g ≅ 2.7 × 10−66 g when ℎ = 0.71 [38]. Equation
(27) gives the mass of the graviton in terms of the Humble

parameters5, the density parameterΩ, the Planck length ℓ2�,
the Ricci scalar 	sc, and 
nally the number of information
number �. Using (5) in Haranas and Gkigkitzis [34] and
eliminating the number of information�, that is,� = 6�(�−Ω)/ ln 2ℓ2�	sc, we obtain the following expression for themass
of the graviton to be

�gr = 2ℏ5
2 (� − 12)
1/2 = 2�Hub(� − 12)

1/2. (28)

Similarly, we 
nd that the mass of the graviton is related to
the Ricci scalar 	sc in the following way:

�gr = 2ℏ
 [ (� − 1/2)3 (� − Ω)	sc]
1/2, (29)

where 	� is the universe horizon, as well as to deceleration
parameter �. Using the fact that the graviton range is given
by �gr = ℏ/�gr
 [38] we obtain an expression for the Ricci

scalar as a function of graviton range and the cosmological
parameter � to be

	sc = 34�2gr
(� − Ω)(� − 1/2) . (30)

Next, following Gershtein et al. [37] we write the expression
for the time that the universe expands fromamaximal density
to a minimal density dominance and is determined by the
stage of the nonrelativistic matter dominance to be

max ≅ √23 �ℏ�gr
2 . (31)

�erefore, (31) can also be related to the number of informa-
tion� via the relation of the graviton mass to the number of
information, and therefore we 
nd that

max ≅ √� ln 23 Pl√�. (32)

Solving (32) for the number of information� we obtain that

� = 3� ln 2( Pl)
2. (33)

Our result is in agreement with that of Lloyd [23] and
Davies [33] where the author predicts that this is equal to the
maximum number of bits registered by the universe using
matter, energy, and gravity, and it is found with the help of
the Bekenstein bound and the holographic principle to the
universe as a whole. It is given by the square of the ratio of
the age of the universe to that of Planck time. Similarly, using
(9) for the totalmass of the gravitons, we 
nd that the number
of information� can also be written in the following way:

� = 9�2 ln 2(
�gr�Pl

)2. (34)

6. Discussion and Numerical Results

In this paper we have considered an expression for the
mass of the graviton as it is given by Novello [19]. Novello’s
expression depends on the cosmological constant lambda Λ.
Using the result in Haranas and Gkigkitzis [15, 17] we 
nd a
relation of graviton mass �gr to the number of information�. As a result we 
nd that the mass of the graviton is
inversely proportional to the number of information�; that

is, �gr ∝ 1/√�. Furthermore we 
nd that the number of
gravitons contained inside the observable horizon is directly
proportional to the number of information�; that is,�gr ∝�. Similarly, the total mass of gravitons that exist in the
universe is proportional to the number of information �;

that is,�gr ∝ √�. We 
nd two di�erent expressions for the
number of information �, one that is given as the square of
the ratio of the Planck mass to the mass of the graviton, that

is, � ∝ (��/�gr)2, and another that is equal to the square
of the ratio of the total graviton mass in the universe over the
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Planck mass, that is, � ∝ (�gr/��)2. Next, using a recent
de
nition for the number of information � resulting from
Landauer’s principle, we 
nd that the mass of the graviton
can be expressed as the square root of third power of the pion
mass�3� over themass of the universe��, which implies that
the mass of the universe is further equal to the third power
of the pion mass �3� over the square of the Planck mass �2Pl.
Moreover we 
nd that in a 	at universe the graviton mass
varies according to �gr ∝ 1/, and furthermore we 
nd that
at time  = 0 (where 0 is age of the universe) the mass of

the graviton is �gr = 8.777 × 10−62�Pl = 1.909 × 10−69 kg.
�is order of magnitude is in agreement with the result given
in Gershtein et al. [38] where the authors predict that �gr =3.2 × 10−66 g to 95% con
dence level. Similarly DGP (Dvali-
Gabadadze-Porrati) constraints predict that the mass of the
graviton falls in the range�gr ≅ 10−67 − 10−69 kg [13].

In an e�ort to establish a relation of the mass of graviton
to basic parameters of the universe, we
nd that the mass
of the graviton is simply twice the Hubble mass �� as it is
de
ned by Gershtein et al. [38], times the square root of the
quantity � − 1/2, where � is the deceleration parameter of
the universe. In reference to the geometry of the universe
we 
nd that the mass of the graviton varies according to

the relation �gr ∝ √	sc or �2gr ∝ 	sc and therefore �gr

obviously controls the geometry of the space time through
a deviation of the geodesic spheres from the spheres of
Euclidean metric. In general relativity, the scalar curvature
is the Lagrangian density for the Einstein-Hilbert action.
�erefore, the graviton mass �gr determines the curvature	sc since 	sc ∝ �2gr and therefore the Einstein-Hilbert action

itself depends on the graviton mass. Similarly, we obtain that

the Ricci scalar scales as 	sc ∝ 1/�2gr, and in a similar way the

action itself can also depend upon the range of the graviton�gr. Furthermore, the time interval taken for the universe
expansion from a maximum to a minimum density varies as
the square root of the number of information, that is, max ∝√�, resulting in an expression for the number of information
as a function of time  that agrees with that derived by Lloyd
[23]; namely,� = (3/� ln 2)�Lloyd. Using (2) and (6) we 
nd
that number of information� associated with themass of the
graviton is given by

� = ( 3�ℏ2
ln 2
2ℓ2

Pl
�2gr) =

2�
ln 2(�Pl�gr

)2 ≈ 4.20 × 10122, (35)

where the mass of the graviton is taken to be �gr = 3.2 ×10−66g [38]. �is is a rather curious result which suggests
that the number of information bits � associated with the
graviton mass is of the same order of magnitude as the
numbers appearing in cosmology. For example, Funkhouser
[39] 
nds a new large number of coincidences as well as a
scaling law for the cosmological constant and other quantities
which are also investigated. As a result the author claims
that the pure numbers originate naturally from basic ratios
of fundamental parameters and they do not require arbitrary
powers of coecients [39]. In a similar paper [17] we have
shown that the number of information � is associated with

the cosmological constant lambda Λ and is equal to 4.661 ×
10122, a number in agreement with that given in Funkhouser
[39]. �is is still two orders of magnitude smaller than the
number of information that can 
t in the universe to which a
physicalmeaning can be attributed.�is is a huge number but
still small to compare various numbers, one of which is called
Graham number [40]. Finally the entropy of the graviton
mass can be estimated using the formula

Kgr = ��log2 (2�)
= ( 2�

ln 2)(�Pl�gr

)2��
≈ 4.191 × 10122��
≈ 6.0 × 1099 J/K.

(36)

�e calculated entropy is of the same order of magnitude
as the entropy within the cosmic horizon calculated when
matter within is taken into account and has been recently
given in a paper by Egan and Lineweaver [41] to be equal to(2.88 ± 0.16)×10122�� ≅ 4.0×1099 J/K. FollowingNovello [19]
we have that �gr = 
3/�ℏΛ = 1/ℓ2�Λ = Λmax/Λ, where �gr

is the total number of gravitons in the universe, and therefore
the total entropy due to the total number of gravitons is given
by

Kgr (tot) = ( 2�ln 2) ��
4Λ�2�2gr . (37)

Using (6) and (7) along with the fact that ℓ2� = �ℏ/
3 in (32)
we 
nd that the entropy due to the total number of gravitons
in the universe as a function of the number of information�
is given by the following simpli
ed expression:

Kgr (tot) = ( ln 23� ) ���2 = 1.015 × 10−24�2. (38)

Moreover in a 	at universe using (18) we obtain that the
entropy due to the total number of gravitons in the universe
evolves in time in the following way:

Kgr (tot) = ( 16�3 ln 2) ��( Pl)
4. (39)

During a very early era and in particular when  = Pl the total
entropy due to the total number of gravitons takes the values

Kgr (tot) = ( 16�3 ln 2) �� = 3.335 × 10−22 J/K, (40)

where �� = 1.38 × 10−23 J/K and 	 = √ℏ�/
5 = 5.391 ×10−44 s. Similarly, in the present era when  is the age of the
universe,  = age = 13.798 by =4.387 × 1017 s [24], we obtain
that the total entropy due to the total number of gravitons is
given by

Kgr (tot) = 3.336 × 10222 J/K. (41)



International Scholarly Research Notices 7

Finally, using the relation given inMureika andMann [13], we
write that the graviton mass satis
es the following relation:

�gr ≥ 16�2 (��� ) , (42)

where �� is the mass of the universe and � = �� is the
number of events or operations that could have occurred in
the age of the universe  = age. Using that, the maximum
number of bits using gravitational degrees of freedom as
well as conventional matter and energy is equal to the
maximum number of elementary operations [23] and using
an expression given in Gkigkitzis et al. [16] we write that

�() ≅ �ops = 4�
ln 2( Pl)

2, (43)

and a�er substituting in (42) we obtain that

�gr ≥ 4� ln 2 (2Pl52)��. (44)

Next substituting for the Planck time Pl = (�ℏ/
5)1/2 and
for the mass of the universe as it is given in Haranas and

Gkigkitzis [15] and also Valev [42], namely, �� = 
3/�5,
and simplifying we obtain that

�gr ≥ 4� ln 2 (ℏ5
2 ) ≥ 4� ln 2�Hub, (45)

where �Hub = ℏ5/
2 is de
ned in Gershtein et al. [38], to
be the Hubble mass. Following Sivaram [43] we de
ne the
gravitational self-energy of the graviton to be�GSE = ℏ5 (45)
which can be further written as

�gr ≥ 4� ln 2 (�GSE
2 ) ≤ 4� ln 2�GSE, (46)

where �GSE is the corresponding gravitational self-mass of
the graviton. In Valev [44] the author gives a theoretical
estimation of the graviton mass based on the assumption
that the Compton wavelength of the graviton is close to the
Hubble distance 
/5, which produces a value of the graviton

mass that is given by the relation�gr ≈ ℏ5/
2.
7. Conclusions

In this paper we investigate the relation of the graviton mass

to the number of information� in the universe, and an�−1/2
dependence has been found. Similarly, we 
nd that the total
number of gravitons inside the horizon of the universe is
proportional to the number of information�. Furthermore,
using Landauer’s principle, we obtain that the mass of the
graviton can also be expressed as the one-third power of the
ratio of the mass of the pion over the mass of the universe,
from which we obtain that the mass of the universe is related
to the cube of the mass of the pion over the square of the
graviton mass. Moreover, we 
nd that the evolution of the
graviton has an inverse time dependence; that is, �gr ∝ 1/.
Finally, in relation to the geometry of the universe, we 
nd
that themass of the graviton is related to the Ricci scalar in the
following way:�gr ∝ √	sc, where at the same time the Ricci
scalar depends on the inverse of the graviton range according

to the relation 	sc ∝ 1/�2gr.
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