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ABSTRACT 

Supermassive black holes are believed to be ubiquitous at the centers of galaxies. Measuring their masses is 
extremely challenging yet essential for understanding their role in the formation and evolution of cosmic structure. 
We present a direct measurement of the mass of a black hole in an active galactic nucleus (Arp 151) based 
on the motion of the gas responsible for the broad emission lines. By analyzing and modeling spectroscopic and 
photometric time series, we find that the gas is well described by a disk or torus with an average radius of 3.99±1.25 
light days and an opening angle of 68.9+21.4 

−17.2 deg, viewed at an inclination angle of 67.8 ± 7.8 deg (that is, closer to 
face-on than edge-on). The black hole mass is inferred to be 106.51±0.28 M0. The method is fully general and can be 
used to determine the masses of black holes at arbitrary distances, enabling studies of their evolution over cosmic 
time. 
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1. INTRODUCTION 

In the past decade, it has become clear that supermassive black 
holes are a fundamental ingredient of the universe (Ferrarese & 
Ford 2005). Accretion onto their deep gravitational potential is 
responsible not only for some of the most powerful sources of 
light (Lynden-Bell 1969), but also appears to be a key ingredient 
for the formation and evolution of galaxies (Granato et al. 2004; 
Croton et al. 2006). Energy released by the accretion mechanism 
is believed to play a role in regulating the heating and cooling 
of interstellar gas, and therefore the formation of stars. The 
“smoking gun” of this connection between galaxies and black 
holes is the tight correlation between the mass of black holes and 
the stellar velocity dispersion σ∗ of their host galaxies, observed 
at small redshifts (Ferrarese & Merritt 2000; Gebhardt et al. 
2000). This correlation represents the endpoint of the so-called 
coevolution of galaxies and black holes, though it is still unclear 
how galaxies and black holes coevolve across cosmic time. Both 
galaxies and black holes are believed to grow by mergers and 
accretion from initial perturbations of the density field in the 
early universe; however, it is not yet known whether galaxies 
and black holes grow in lockstep, or one of the two forms first 
and subsequently acts as a seed for the other. 

The main challenge in mapping the coevolution across cosmic 
time is determining black hole masses. Traditional methods rely 
on spatially resolved kinematics of stars and gas within the grav
itational sphere of influence of the black hole. Therefore, they 
are only applicable with current technology in the very local uni
verse (Ferrarese & Ford 2005). Alternative methods are needed 
to measure black hole masses out to distances of several billion 
light years—look-back times corresponding to a sizable fraction 
of the present-day age of the universe (Komatsu et al. 2011). 

Reverberation mapping is the most promising method for 
measuring the masses of black holes powering active galac
tic nuclei (AGNs) at cosmologically interesting distances 
(Blandford & McKee 1982; Peterson 1993; Peterson et al. 2004). 
The technique is made possible by the temporal variations in the 
intrinsic brightness of the central continuum source and by the 
subsequent response of line-emitting gas well within the grav
itational sphere of influence of the black hole, known as the 
broad-line region (BLR). By measuring the time delay (or lag) 
τ between the variations of the continuum and the variations 
of the broad emission lines, the physical size of the BLR can 
be determined. In addition, the typical orbital velocity of the 
broad-line gas can be measured from the width of the broad lines 
themselves, σl . Combining this velocity measurement with the 
radius yields an estimate of the mass of the central black hole, 
MBH = f σ 2cτ /G (Peterson et al. 2004), where f is the so-called l 
virial coefficient, c is the speed of light, and G is the gravitational 
constant. 

Despite the simplicity of the reverberation mapping idea, its 
practical implementation is beset with numerous difficulties 
(e.g., Krolik 2001). First, in its standard implementation, the 
formula connecting black hole mass to spectral line width and 
the time lag includes a virial coefficient that depends on the 
unknown geometry of the orbiting BLR gas (Onken et al. 2004; 
Woo et al. 2010; Greene et al. 2010; Decarli et al. 2011). 
Second, the adopted approach is usually indirect: the data are 
used to measure properties of the transfer function describing 
the distribution of lags, or simply the mean lag. To constrain 
properties of the BLR gas distribution itself, another layer of 
modeling is necessary to reveal which possible BLR geometries 
are consistent with the inferred transfer function (Bentz et al. 
2010). 
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Figure 1. Continuum flux time series from LAMP, and the corresponding Hβ 
flux time series. The curve drawn through the continuum data shows a realization 
of an interpolation of the continuum data using Gaussian processes. 

(A color version of this figure is available in the online journal.) 
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We overcome these difficulties by applying a new framework 
to modeling high-quality spectrophotometric monitoring data 
of the Type 1 active nucleus of Arp 151. The combination 
of dynamical models with high-quality data allows us to 
characterize the structure of the BLR and achieve a direct 
determination of the mass of a supermassive black hole using 
reverberation mapping. Our measurement is independent of any 
external information on the virial coefficient. 

2. DATA AND MODELING FRAMEWORK 

The data were collected as part of the Lick AGN Monitoring 
Project (LAMP) campaign (Bentz et al. 2009; Walsh et al. 2009). 
They consist of 84 epochs of photometric monitoring and 43 
epochs of spectroscopic monitoring of the region containing the 
Hβ emission line (Bentz et al. 2009; Walsh et al. 2009). The 
continuum and line flux temporal series are shown in Figure 1. 
The Hβ spectral time series is illustrated in the left panel of 
Figure 2 (wavelength on the abscissa, epoch on the ordinate; the 
epochs are approximately one day apart, but not exactly, due to 
gaps and scheduling issues). 

In order to infer the BLR geometry and the black hole 
mass, we take a Bayesian Inference approach to the problem 
(Sivia & Skilling 2006). We construct a model characterized 
by a finite number of parameters describing the black hole 
mass, the spatial density profile of the BLR and its kinematic 
structure, and the intrinsic continuum light curve, denoting these 
parameters collectively by Φ. We define broad prior probability 
distributions for Φ and then define the probability distribution 
for the data, conditional on knowledge of all of these properties 
p(D|Φ). Given specific data, the prior distribution gets updated 
to the posterior distribution which describes knowledge of the 
parameters after taking into account the data, using Bayes’ rule 
p(Φ|D = D ∗) ∝ p(Φ)p(D|Φ)|D=D∗ . In practice, we quantify 
our results by generating randomly sampled models from the 
posterior distribution using a Nested Sampling method (Brewer 
et al. 2010). 

The physical model consists of a large number (1000) of BLR 
clouds that are in orbit in the Keplerian potential of the central 
black hole. The spatial distribution of the clouds is generated 
using a flexible model that is capable of representing generic 
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Figure 2. Top left: measured spectrum of the broad Hβ emission line as a 
function of epoch; these are the data used for our inference. Top right: model-
predicted spectrum as a function of time, using parameter values chosen at 
random from the posterior distribution. The major features of the data (time 
variation, line widths) are reproduced by our model. Bottom: example of the 
spectral line shape at two times, along with model fits. 

(A color version of this figure is available in the online journal.) 

Figure 3. Distribution of extra path lengths the light must travel from 
the central engine to a BLR cloud and then to the observer is the cause of the 
delayed response of the emission-line flux, and the variations in line shape. The 
distribution of BLR gas in this diagram corresponds to a probable configuration 
inferred from the Arp 151 data. 

(A color version of this figure is available in the online journal.) 

geometries including thin disks and tori as well as complete 
spheres and shells. By applying spatially varying illumination to 
the clouds, we can also describe non-axisymmetric geometries. 
The cloud emission is assumed to respond linearly to continuum 
variations. Therefore, the observed spectrum at a given time 
is the result of the continuum emission at earlier times, with 
time lags corresponding to the optical path from the central 
continuum to the cloud to the observer. The configuration of a 
model that well represents the data is illustrated in Figure 3. 

Fitting of models to the data requires knowledge of the 
continuum flux at all times, not just the measured times. To 
solve this problem, our method uses Gaussian processes to 
interpolate and extrapolate the continuum light curve taking 
errors into account. A typical intrinsic light curve generated 
by this process is shown in Figure 1. Thus, our results include 
uncertainty caused by the fact that we have noisy measurements 
of the continuum flux at a finite number of times. Our modeling 
of the continuum light curve is similar to that independently 
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developed by Zu et al. (2010) and used outside of reverberation 
mapping in studies of quasar variability (e.g., Kozłowski et al. 
2010; Kelly et al. 2009; MacLeod et al. 2010). Additional 
information on the method in general is given by Pancoast et al. 
(2011, hereafter P11). 

3. THE DYNAMICAL MODEL 

We do not aim to infer the position and velocity of each 
cloud from the data, but rather to use the clouds to map 
out a spatial and dynamical model described by a small 
number of hyperparameters. This approach is equivalent to 
that followed by P11, except that we are using Monte Carlo 
samples of clouds to represent the distribution of BLR gas 
as opposed to computing the density on a spatial grid. To 
generate a three-dimensional distribution of BLR clouds, we 
start by generating an axisymmetric distribution in the x–y 
plane, and then apply rotations to “puff up” the model into a 
three-dimensional configuration. Finally, we weight the clouds 
by a non-axisymmetric illumination function to model non
axisymmetric distributions of gas. 

The distance of a cloud from the black hole is prescribed 
according to r = Fμ  + (1  − F )G, where F ∈ [0, 1] and G is 
drawn from a gamma distribution with mean μ and standard 
deviation βμ. With this prescription, μ is the overall mean 
radius, F is the fraction of the mean radius that is due to the 
hard lower limit, and β ∈ [0, 1] describes the shape of the 
distribution; β ≈ 1 is an exponential distribution, and β ≈ 0 is  
a narrow normal distribution. The polar coordinate φ of a cloud 
is chosen uniformly from [0, 2π ]. 

For the inference, the priors on these parameters are as 
follows. We use a uniform prior for β, a scale invariant ∝ 1/x 
prior for μ (between generous limits), and a uniform prior for 
black hole mass given μ, such that the predicted line widths 
are on the order of those in the data, reducing the volume of 
parameter space that needs to be explored. 

We then assign cloud velocities in a probabilistic manner (note 
that we can assign multiple velocities to each cloud in order 
to improve sampling of the phase space in a computationally 
efficient way; throughout this Letter, we adopt 100 velocities 
for each of the 1000 clouds). As in P11, we assume that the only 
force acting on the BLR clouds is gravity from the central black 
hole. 

The total energy of a cloud at a distance r from the black hole, 
moving with angular momentum L, is given by ( ) 

1 L2 GM 
E = ṙ2 + − , (1)

22 r r 

which has the minimum possible value 

GM 
Emin = −  . (2) 

r 
If we knew the position, energy, and angular momentum of a 
cloud, we could solve for the radial velocity,  ( ) 

GM L2 

ṙ = ± 2 E + − 
2 
. (3) 

r r

We choose the negative (inbound) solution with probability q 
and the outbound with probability 1 − q, a free parameter. For 
solutions to exist, the angular momentum must satisfy ( ) 

2 2L2 � L = 2r E + 
GM 

. (4)max r 

Circular orbits are obtained if we set the energy and angular 
momentum to 

1 GM 
Ecirc = −  , (5)

2 r 

Lcirc = ±Lmax. (6) 

To get elliptical orbits, instead of assigning E and L the exact 
circular values above, we assign them at random from the 
following probability distributions: ( ) 

1 
E = Emin, (7)

1 + exp(−χ ) 

where χ ∼ N (0, λ2), and ( |L|)
p(L) ∝ exp , |L| < Lmax. (8)

λ 

These probability distributions are centered around the values 
for circular velocities, but the parameter λ describes the dis
persion, or how noncircular typical orbits will be. The circular 
orbit formulae are reproduced when λ → 0. The probability 
distributions for E and L given three different values for λ are 
shown in Figure 4, along with the corresponding line shapes. 
For the inference, we use a uniform prior on λ between 0 and 1. 

The main advantage of our implementation of this method 
with respect to that of P11 is that we can generate relatively broad 
distributions of E and L with a smaller number of parameters. 
The drawback is that this model is technically nonstationary 
(in the case of noncircular orbits) and would change if it 
were allowed to evolve in a dynamically self-consistent way. 
Our model can be thought of as describing the time-invariant 
illuminated part of the full phase-space distribution, even though 
the underlying particles are actually flowing through the region. 
We checked that this simplifying assumption does not bias our 
inference on the black hole mass by analysis of the data with 
the code developed by P11. The results are consistent with the 
ones presented here. 

We then rotate the models (positions and velocities of 
the clouds) by an appropriate distribution of angles to gen
erate an axisymmetric distribution of angular momentum 
vectors. The first rotation is about the y-axis by a small 
random angle; the typical size of these angles determines 
the opening angle of the disk or torus. We then rotate around 
the z-axis by random angles to restore the axisymmetry of the 
model. Finally, we rotate again about the y-axis by the inclina
tion angle to model the inclination of the system with respect to 
the line of sight. For the inference, we use uniform priors on the 
opening angle and the inclination angle. 

To obtain non-axisymmetric models, in order to reproduce 
the line asymmetry, we weight each cloud by a simple spatially 
varying illumination function. In spherical polar coordinates, 
this function is 

1 
W (r, φ, θ ) = + κ cos φ,  (9)

2 
1where κ ∈ [− 1 

2 , ] is a free parameter with a uniform prior. 2 
Positive κ illuminates the front portion of the BLR, while 
negative κ illuminates the back. We also implemented, as a 
secondary check, a model with a different (linear in x) functional 
form for the illumination, but this model did not reproduce 
the data as well, although the final black hole mass estimate 
was similar. In predicting the observed spectra, we included the 
narrow-line component as a constant which does not respond to 
the continuum variations. 
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Figure 4. Probability distributions for energy and angular momentum that generate elliptical orbits for the clouds. The effects on the predicted line shape are illustrated
 
for an edge-on disk for three different values of the “noncircularity parameter” λ.
 

(A color version of this figure is available in the online journal.)
 

Figure 5. Joint and marginal posterior distributions for the parameters of the BLR geometry and kinematics. The strongest correlation is between the inclination angle
 
and the opening angle of the disk. Both of these parameters are also strongly correlated with the black hole mass.
 

(A color version of this figure is available in the online journal.)
 

4. RESULTS AND CONCLUSIONS	 hypothesis that Type 1 AGNs are viewed close to face-on, if 
the dusty torus is coplanar with the BLR. The mean radius μ 

Our results	 are presented in Figure 5. We find that the of the disk is 3.99 ± 1.25 light days, and the radial profile is 
= 0.86+0.10

geometry of the BLR is well described by a thick disk or inferred to be close to exponential (β −0.19). We note that 
torus (opening angle 68.9+21.4 deg), viewed at an inclination four light days corresponds to <10−5 arcsec at the distance of −17.2 
67.8 ± 7.8 deg (where 0◦ = edge-on and 90◦ = face-on), Arp 151 (redshift 0.021), an angular size more than a thousand 
as depicted in Figure 3. This geometry is consistent with the times smaller than what can be resolved even with the Hubble 
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Space Telescope. The orbits of the BLR clouds are found to 
depart significantly from circular, and there is no strong evidence 
favoring either inflow or outflow (see Figure 5). 

We note that the posterior distribution does not rule out radial 
profiles that peak close to r = 0, which is unphysical due to 
the high ionizing flux from the accretion disk (Korista & Goad 
2004). However, conditioning on the peak of the radial profile 
being at the high end of the posterior does not significantly 
change any inferences except for the inflow fraction q: inflow 
becomes favored by a ratio of 70:30 if we assume the density 
peaks at r > 1 light day. Thus, there is weak evidence for inflow, 
as found by Bentz et al. (2010). If inflow is present, then the 
front of the disk must be more visible than the back (i.e., κ > 0), 
either because of obscuring material or nonuniform illumination 
effects. 

By marginalizing over all of the model parameters, we derive 
the posterior probability distribution function for the central 
black hole mass. The median and 68% credible interval are 

51±0.28 M106. 0. This is lower than, but overlaps with, the value 
85±0.07 Mof 106. 0 obtained by Bentz et al. (2009) assuming 

log10 f = 0.74 based on requiring active and inactive galaxies 
to obey the same correlation between MBH and host-galaxy 
stellar velocity dispersion σ∗ (Onken et al. 2004), and neglecting 
uncertainty in f. Recent measurements suggest that the intrinsic 
uncertainty in f from this method is at least 0.4 dex (Woo et al. 
2010; Greene et al. 2010). Reversing the traditional argument, 
our measurement implies that log10 f = 0.40 ± 0.28, a low 
value, for this particular system. Modeling a larger sample 
of systems and comparing the results of traditional methods 
with our direct approach would allow us to test the assumption 
that active galaxies obey the same MBH−σ∗ relation as inactive 
galaxies (Davies et al. 2006; Hicks & Malkan 2008; Onken et al. 
2007). 

To summarize, our measurement has three key advantages 
with respect to traditional methods. First, it is direct, indepen
dent of any assumption regarding the correlations between su
permassive black holes and their host galaxies, thus allowing us 
to test this assumption. Second, it provides a more precise mea
surement (smaller formal uncertainties) than traditional meth
ods. Finally, the outputs of the inference procedure are physical 
properties of the BLR, rather than a transfer function, bypassing 
the need for an additional modeling step. 

We conclude by listing some of the limitations of this work 
and the prospects for future improvements. In our dynamical 
model we neglect radiation-pressure support and the dynamical 
influence of the accretion disk itself, as is commonly the case 
in traditional reverberation mapping analysis. We also neglect 
the optical depth of the BLR clouds themselves (Bottorff et al. 
1997). If the motion of the BLR clouds were partially supported 
by radiation pressure, then we would be underestimating the 
mass of the central black hole. This is currently a topic of 
debate (Marconi et al. 2008; Netzer & Marziani 2010), and 
external information needs to be used to break the degeneracy 
between black hole mass and pressure support. Once external 
information is available, it can easily be taken into account in 
interpreting our results. 

On a more detailed level, our model for the spatial profile 
of the BLR is significantly oversimplified with respect to the 
real physical picture. Thus, we cannot reproduce all features of 
the observed line profiles (Figure 2). Neglecting this systematic 
uncertainty would lead us to underestimate the uncertainty in 
the parameter values. In this study, we addressed this issue 
by inflating the observed error bars (see Figure 2) until the 

model reproduced just the macroscopic features of the emission 
lines. In other words, we do not expect to be able to model all 
features of the lines, to within the given noise level. Inflating 
the measurement error bars on the data protects our results from 
some (but not all) systematic errors, particularly those that would 
result in fluctuations in the line profiles smaller than the domain 
of the data. See Brewer et al. (2011) for a discussion of this 
issue. 

For these reasons, our uncertainty in the black hole mass is 
significantly larger than what the method can in principle deliver 
for data of comparable quality in the absence of modeling errors, 
∼0.05 dex (P11). In addition, our model neglects collisional 
effects as well as anisotropic winds, which could change 
somewhat the dynamics and geometry of the BLR, but should 
not affect the inference on black hole mass as long as gravity is 
the dominant force. 

Thus, modeling uncertainties dominate over measurement 
uncertainties, driving the total uncertainty in black hole mass. 
Therefore, the next step toward improving the overall precision 
of the measurement is to develop more flexible and physically 
realistic models. Such models will also allow us to explore in 
more detail the kinematics of the BLR. 
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