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ABSTRACT
We present a family of robust tracer mass estimators to compute the enclosed mass of galaxy
haloes from samples of discrete positional and kinematical data of tracers, such as halo stars,
globular clusters and dwarf satellites. The data may be projected positions, distances, line-
of-sight velocities or proper motions. The estimators all assume that the tracer population
has a scale-free density and moves in a scale-free potential in the region of interest. The
circumstances under which the boundary terms can be discarded and the estimator converges
are derived. Forms of the estimator tailored for the Milky Way Galaxy and for M31 are given.
Monte Carlo simulations are used to quantify the uncertainty as a function of sample size.

For the Milky Way Galaxy, the satellite sample consists of 26 galaxies with line-of-sight
velocities. We find that the mass of the Milky Way within 300 kpc is M300 = 0.9 ± 0.3 ×
1012 M� assuming velocity isotropy. However, the mass estimate is sensitive to the assumed
anisotropy and could plausibly lie between 0.7 × 1012 and 3.4 × 1012 M�, if anisotropies
implied by simulations or by the observations are used. Incorporating the proper motions of
six Milky Way satellites into the data set, we find M300 = 1.4 ± 0.3 × 1012 M�. The range
here if plausible anisotropies are used is still broader, from 1.2 × 1012 to 2.7 × 1012 M�.
Note that our error bars only incorporate the statistical uncertainty. There are much greater
uncertainties induced by velocity anisotropy and by selection of satellite members.

For M31, there are 23 satellite galaxies with measured line-of-sight velocities, but only
M33 and IC 10 have proper motions. We use the line-of-sight velocities and distances of the
satellite galaxies to estimate the mass of M31 within 300 kpc as M300 = 1.4 ± 0.4 × 1012 M�
assuming isotropy. There is only a modest dependence on anisotropy, with the mass varying
between 1.3 × 1012 and 1.6 × 1012 M�. Incorporating the proper motion data set does not
change the results significantly. Given the uncertainties, we conclude that the satellite data
by themselves yield no reliable insights into which of the two galaxies is actually the more
massive.

Leo I has long been known to dominate mass estimates for the Milky Way due to its
substantial distance and line-of-sight velocity. We find that And XII and And XIV similarly
dominate the estimated mass of M31. As such, we repeat the calculations without these
galaxies, in case they are not bound – although on the balance of the evidence, we favour their
inclusion in mass calculations.

Key words: galaxies: general – galaxies: haloes – galaxies: individual: M31 – galaxies:
kinematics and dynamics – dark matter.

1 IN T RO D U C T I O N

The structure and extent of dark matter haloes have important im-
plications for modern astrophysics, yet the determination of such

�E-mail: nwe@ast.cam.ac.uk

properties is a difficult task and the results are often conflicting. A
neat illustration is provided by the usage of Sagittarius Stream data
to constrain the shape of the Milky Way dark halo. This has told
us that the halo is nearly spherical (Fellhauer et al. 2006), prolate
(Helmi 2004), oblate (Johnston, Law & Majewski 2005) or triaxial
(Law, Majewski & Johnston 2009) in nature! The Milky Way is
the closest halo available for our study, the availability of data has
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The masses of the Milky Way and Andromeda galaxies 265

improved substantially in recent years, and yet we are not able to
determine its shape reliably.

Similarly, we are unable to measure the masses of the Milky
Way, or its neighbour, the Andromeda galaxy (M31) with any pre-
cision. Despite their proximity to us, their masses remain sketchily
determined and there is some controversy as to which halo is more
massive. Judged by criteria such as the surface brightness of the
stellar halo or the numbers of globular clusters or the amplitude of
the gas rotation curve, M31 is seemingly the more massive. Judged
by criteria such as the velocities of the satellite galaxies and distant
globulars or tidal radii of the dwarf spheroidals, then the Milky Way
is seemingly the more massive. For example, Evans et al. (2000)
argued that the M31 halo is roughly as massive as that of the Milky
Way, with the Milky Way marginally being the more massive of the
two, while recent studies have found evidence favouring either the
Milky Way (e.g. Evans & Wilkinson 2000; Gottesman, Hunter &
Boonyasait 2002) or M31 (e.g. Klypin, Zhao & Somerville 2002;
Karachentsev et al. 2009) as the more massive galaxy.

The masses of both haloes within a few tens of kiloparsecs are
reasonably well constrained by gas rotation curve data (e.g. Rohlfs
& Kreitschmann 1988; Braun 1991). However, these data only sam-
ple the inner parts of the haloes. In order to probe further out, we
must turn to the kinematics of the satellite populations. Such tracers
are a valuable tool for studying the dark matter haloes as their orbits
contain important information about their host potential. Distance,
radial velocity and proper motion data can be used to constrain halo
extent, mass and velocity anisotropy (see e.g. Little & Tremaine
1987; Zaritsky et al. 1989; Kochanek 1996; Wilkinson & Evans
1999).

The uncertainties in the mass estimates for the Milky Way and
M31 are largely due to the fact that there are seldom proper motion
data available to complement distance and radial velocity informa-
tion. With only one velocity component to work with, the eccentric-
ities of the orbits are poorly constrained. Statistical methods must
be applied to determine masses and these methods suffer greatly
from the small sample sizes available, even with the recent burst of
satellite discoveries associated with both galaxies.

The projected mass estimator was introduced by Bahcall &
Tremaine (1981). They assumed that only projected distance and
line-of-sight velocity information were available. The estimator is
also contained in the study of White (1981) on scale-free ensembles
of binary galaxies. The analysis was extended by Heisler, Tremaine
& Bahcall (1985) and further modified by Evans et al. (2003) to
consider the case of tracer populations. These previous studies suc-
cessfully used the mass estimator to weigh M31. However, in its
present form, the mass estimator is ill-suited for application to the
Milky Way and such a study has not yet been attempted.

Here, we develop alternative forms of the estimator, and analyse
the conditions under which they are valid. In addition, the census
of satellites around M31 has increased significantly (Zucker et al.
2004, 2007; Martin et al. 2006; Ibata et al. 2007; Majewski et al.
2007; Irwin et al. 2008; McConnachie et al. 2008) since the last
studies of this type were attempted and so we have more data at
our disposal. Hence, we apply our estimator to M31 with these new
data.

2 MASS ESTIMATORS

The projected mass estimator (Bahcall & Tremaine 1981) takes the
form

M = C

G

〈
v2

losR
〉 � C

G

1

N

N∑
i=1

v2
los,iRi (1)

for a set of N tracers objects (e.g. planetary nebulae, stars, globular
clusters, dwarf spheroidal galaxy satellites) with line-of-sight ve-
locities vlos and projected distances R. Here, G is the gravitational
constant and C is a constant determined by the host potential and
the eccentricities of the orbits. They found that C = 16/π for test
particles with an isotropic velocity distribution orbiting a point mass
and C = 32/π for test particles moving on radial orbits.

This analysis was extended by Heisler et al. (1985) to consider
the case in which tracers may track the total mass (e.g. in galaxy
groups). They found that C = 32/π for particles with an isotropic
velocity distribution and C = 64/π for particles on radial orbits. A
key assumption in this work is that the members/tracers track the
mass of the group/host. This is not true for all tracer populations,
particularly for those tracers which are commonly used to estimate
the masses of ellipticals or the haloes of spiral galaxies.

2.1 Tracer mass estimator

Here, we give a formal derivation of our tracer estimators so as to
clarify the conditions under which they converge to the enclosed
mass. Readers primarily interested in applications, and willing to
take convergence on trust, should skip straight to the estimators
themselves, namely equations (16), (23), (24) and (26). We give
formulae for the various cases in which true distances or projected
distances, and line-of-sight velocities, or radial velocities or proper
motions, are known for the tracers. The estimators are both simple
and flexible.

Let us begin by supposing that the observations are discrete posi-
tions r and radial velocities vr of N members of a tracer population.
Here, r is measured from the centre of the host galaxy, whilst
vr = ṙ is the radial velocity. We propose to combine the positional
and kinematic data to give the enclosed mass M in the form

M = C

G

〈
v2

r r
λ
〉 � C

G

1

N

N∑
i=1

v2
r,i r

λ
i . (2)

Here, unlike equation (1), the constant C is not necessarily dimen-
sionless. Notice that a priori we do not know the best choice for λ.
This will emerge from our analysis.

If f is the phase space distribution function of the tracers and σ r

the radial velocity dispersion, we see that under the assumption of
spherical symmetry:

〈
v2

r r
λ
〉 = 1

M t

∫
d3r d3v f v2

r r
λ = 4π

Mt

∫
ρσ 2

r rλ+2 dr, (3)

where Mt is the mass in the tracers:

Mt = 4π

∫
r2ρ dr. (4)

Now, let us assume that the tracer population is spherically sym-
metric and has a number density which falls off like a power law,

ρ(r) ∝ r−γ ,
d log ρ

d log r
= −γ, (5)

at least within the radius interval [rin, rout] where the data lie. Then,
the estimator reduces to〈
v2

r r
λ
〉 = 1

M

∫ rout

rin

rλ−γ+2σ 2
r dr;

M =

⎧⎪⎪⎨
⎪⎪⎩

r
3−γ
out − r3−γ

in

3 − γ
(γ �= 3),

log
( rout

rin

)
(γ = 3),

(6)
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where log x is the natural logarithm. Once the behaviour of σ 2
r is

found, we may relate this estimator to the dynamical halo mass
M(r). This can be achieved through solving the Jeans equation,
which reads

1

ρ

d
(
ρσ 2

r

)
dr

+ 2βσ 2
r

r
= −GM(r)

r2
. (7)

Here, we have introduced β = 1 − σ 2
t /σ

2
r , the Binney anisotropy

parameter, in which σ t is the tangential velocity dispersion. Now,
β → ∞ corresponds to a circular orbit model, β = 1 corresponds
to purely radial orbits and β = 0 is the isotropic case. We note that
the Jeans equation (7) in a spherical system can be put into the form

Qρσ 2
r = −

∫
Qρ

GM(r)

r2
dr , log Q =

∫
2β

r
dr. (8)

If β is independent of r, this simplifies to be Q = r2β .
To proceed further, the underlying gravity field is assumed to

be scale-free at least in the interval [rin, rout], that is, the relative
potential up to a constant is given by

ψ(r) =

⎧⎪⎪⎨
⎪⎪⎩

v2
0

α

( a

r

)α

(α �= 0)

v2
0 log

(a

r

)
(α = 0)

(9)

with −1 ≤ α ≤ 1.1 Here, a is a fiducial radius, which should lie in
the region for which the power-law approximation for the relative
potential is valid (i.e. rin ≤ a ≤ rout) and v0 is the circular speed at
that radius a. When α = 1, this corresponds to the case in which the
test particles are orbiting a point-mass; when α = 0, the satellites
are moving in a large-scale mass distribution with a flat rotation
curve; when α = γ − 2, the satellites track the total gravitating
mass. We remark that our model of a scale-free tracer population of
satellites in a scale-free potential has previously been used to study
the mass of the Milky Way by Kulessa & Lynden-Bell (1992),
although using the standard technique of maximum likelihood for
parameter estimation.

The scale-free assumption is also equivalent to proposing the halo
mass profile to be

M(r)

M(a)
=

( r

a

)1−α

, (10)

and the local mass density ∝ r−(α+2). Consequently, if the power-law
behaviour were allowed to be extended to infinity, the total mass of
the dark halo would necessarily be infinite unless α = 1. (However,
if the halo density were to fall off faster than r−3 and so the total
gravitating mass is finite, the leading term for the potential would
be Keplerian. That is to say, for the case of a finite total mass halo,
the gravity field experienced by the tracers may be approximated
to be that of a point mass, given that rin is chosen to be sufficiently
large so that the gravitating mass inside the sphere of rin dominates
the mass within the shell region populated by the tracers.)

Combining this with the constant-anisotropy assumption, the
Jeans equation integrated between r and rout then reduces to

r2β−γ σ 2
r (r) − r

2β−γ
out σ 2

r (rout) = GM(a)

a1−α

∫ rout

r

r̃2β−γ−α−1dr̃ (11)

1α = −1 corresponds to the gravitational field that pulls with an equal
magnitude force regardless of radius, which is formally generated by a halo
density falling off as r−1. Provided we regard the scale-free potential as
an approximation valid over a limited range and not extending to spatial
infinity, we can permit α ≥ −2, since α = −2 corresponds to the harmonic
potential generated by a homogeneous sphere.

provided that all our assumptions remain valid in the radius interval
[rin, rout] and r, a ∈ [rin, rout].

Now, our goal is to find the total halo mass. In reality, the observed
tracers are only populated up to a finite outer radius, and so, any mass
distribution outside of that radius does not affect our observations in
a strictly spherical system (Newton’s theorem). We therefore extend
the power-law potential assumption only up to the finite outer radius
(here rout), and set a = rout. In other words, the halo mass that
we are interested in is that contained within the outer radius, M =
M(rout). With a = rout, solving equation (11) for σ 2

0 (r) results in (here
s ≡ r/rout)

σ 2
r =

⎧⎪⎪⎨
⎪⎪⎩

σ 2
r (rout) − v̂2

0

s2β−γ
+ v̂2

0

sα
(α + γ − 2β �= 0),

σ 2
r (rout) − v2

0 log s

sα
(α = 2β − γ ),

(12)

where v2
0 = GM/rout is the circular speed at rout whilst v̂2

0 ≡ v2
0/(α+

γ − 2β).
Then, substituting the result of equation (12) into equation (6)

and explicitly performing the integration yields (ignoring particular
parameter combinations that involve the logarithm)〈

v2
r r

λ
〉

(3 − γ )rλ
out

= v2
0

(λ − α + 3 − γ )(α + γ − 2β)

1 − uλ−α+3−γ

1 − u3−γ

+ 1

λ − 2β + 3

[
σ 2

r (rout) − v2
0

α + γ − 2β

]
1 − uλ−2β+3

1 − u3−γ
, (13)

where u ≡ rin/rout. Notice now that the choice of λ = α makes the
u-dependence of the first term on the right-hand side drop out. In
fact, this could also have been deduced on dimensional grounds by
requiring that our estimator is not dominated by data points at small
radii or large radii.

The last terms in equation (13) basically constitute the surface
‘pressure’ support terms in the Jeans equation, which we wish to
minimize as u → 0. Here, we limit ourselves to the case λ = α,
when the corresponding leading term is

1 − uα−2β+3

1 − u3−γ
∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 2β − α, γ < 3,

−u−(2β−α−3) γ < 3 < 2β − α,

−uγ−3 2β − α < 3 < γ,

uα+γ−2β 3 < 2β − α, γ.

(14)

In other words, provided that γ > 3 and γ > 2β − α, the pressure
term vanishes as u → 0, and we obtain the scale-free Jeans solutions
of Evans, Hafner & de Zeeuw (1997). In fact, since β ≤ 1 and −1 ≤
α ≤ 1, we find that 2β − α ≤ 3 and thus the second condition
here is essentially redundant. Consequently, provided that γ > 3,
that is the tracer density falls off more quickly than r−3, we find the
estimator to be〈
v2

r r
α
〉 � rα

out

α + γ − 2β

GM

rout
+ R, (15)

where the remainder R → 0 vanishes as rin/rout → 0 (here, rin and
rout are the inner and outer radius of the tracer population).

Alternatively, if γ < 3 and 2β − α < 3, the remainder term
tends to a constant as u → 0. In a perfectly scale-free halo
traced by again strictly scale-free populations, this constant must
be zero. This is because, for such a system, σ 2

r should also be
scale-free. Yet equation (12) implies that this is possible only if
σ 2

r (rout) = v̂2
0 . Subsequently, this also indicates that the coefficient

for the remainder in equation (13) vanishes too. Even after relaxing
the everywhere-strict power-law behaviour, we would expect that
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σ 2
r ∼ v̂2

0 and consequently that |σ 2
r − v̂2

0 | � v̂2
0 , provided that 2β

− α < γ , which is required to ensure v̂2
0 > 0. That is to say, we

expect that v̂2
0r

α
out � R as u → 0 in equation (15) for 2β − α < γ

< 3, which is sufficient for justifying the applicability of our mass
estimator.

In other words, we have obtained a very simple result

M = C

G

〈
v2

r r
α
〉
, C = (α + γ − 2β) r1−α

out , (16)

provided that C > 0 (the simple interpolative argument indicates that
this is still valid for γ = 3). This corresponds to the case in which
the tracers have known radial velocity components vr resolved with
respect to the centre of the galaxy, as well as actual distances r.
For satellites of the Milky Way, the line-of-sight velocity vlos is
measured, and corrected to the Galactic rest frame. Now, vr may be
calculated from vlos only if proper motion data exists. Alternatively,
a statistical correction can be applied to estimate vr from vlos:〈
v2

r

〉 =
〈
v2

los

〉
1 − β sin2 ϕ

, (17)

where ϕ is the angle between the unit vector from the Galactic
Centre to the satellite and the unit vector from the Sun to the satellite.

Note too that in the important isothermal case (α = 0), the galaxy
rotation curve is flat with amplitude v0. Then, for members of a
population with density falling like ρ ∼ r−3, such as the Galactic
globular clusters, equation (16) reduces to

v2
0 = (3 − 2β)

〈
v2

r

〉
. (18)

This is a generalization of the estimator of Lynden-Bell & Frenk
(1981) to the case of anisotropy. When the population is isotropic
(β = 0), it reduces to the appealing simple statement that the circular
speed is the rms velocity of the tracers multiplied by

√
3 ≈ 1.732.

Even if three-dimensional distance r is replaced by projected
distance R or vr by some other projections of the velocity, the basic
scaling result of equation (16) remains valid. Different projections
simply result in distinct constants C, as we now show.

2.2 A family of estimators

Now, suppose that we have actual distances r from the centre of
the host galaxy, but only projected or line-of-sight velocities vlos.
This is the case for many of M31’s satellite galaxies, for which
distances have been measured by using the tip of the red giant
branch method (see, e.g. McConnachie et al. 2005) and for which
projected velocities are known from spectroscopy. The calculation
proceeds by considering〈
v2

losr
α
〉 = 1

M t

∫
d3r d3v f v2

losr
α

= 2π

M t

∫ rout

rin

dr

∫ π

0
dθ ρσ 2

losr
α+2 sin θ. (19)

We now need the relationship between line-of-sight velocity disper-
sion σ los and the radial velocity dispersion σ r, namely

σ 2
los = σ 2

r (1 − β sin2 ϕ), (20)

which is similar to equation (17) but here the angle ϕ is the angle
between the line of sight and the position vector of the satellite with
respect to the centre of the host galaxy (see, e.g. Binney & Tremaine
1987, Section 4.2). If the polar z-axis of the coordinate system is
chosen such that the sun (that is, the observer) lies on the negative
z-axis (i.e. θ = π ) at a distance d from the centre of the host galaxy,
we find that

sin2ϕ = sin2θ

1 + 2 r

d
cos θ +

(
r

d

)2 . (21)

However, for most external galaxies, it is reasonable to assume d �
rout, and therefore, we can safely approximate2 that sin2ϕ ≈ sin2θ .
Then,

〈
v2

losr
α
〉 = 〈

v2
r r

α
〉 ∫ π/2

0
dθ sin θ (1 − β sin2 θ ), (22)

and thus we find that

M = C

G

〈
v2

losr
α
〉
, C = 3 (α + γ − 2β)

3 − 2β
r1−α

out . (23)

Next, we consider the case in which we have full velocity in-
formation for the satellites, i.e. both radial velocities and proper
motions. For example, this is the case for a subset of the satellites
of the Milky Way (see, e.g. Piatek et al. 2002). In this case, we can
utilize σ 2 = σ 2

r + σ 2
t = (3 − 2β)σ 2

r , and therefore the estimator
becomes

M = C

G
〈v2rα〉, C = α + γ − 2β

3 − 2β
r1−α

out . (24)

Finally, we can assume a worst-case scenario in which the only
data available are projected distances R and line-of-sight velocities
vlos for the tracers. Outside of the galaxies of the Local Group, this is
the usual state of affairs. So, this would be the form of the estimator
to find the dark matter mass of nearby giant ellipticals like M87
from positions and velocities of the globular clusters. The estimator
is derived following the same procedure with R = r sin θ , which
results in the relation

〈
v2

losR
α
〉 = 〈

v2
r r

α
〉 ∫ π/2

0
dθ sinα+1θ (1 − β sin2 θ ). (25)

Consequently, the corresponding estimator is found to be

M = C

G

〈
v2

losR
α
〉
, C = (α + γ − 2β)

Iα,β

r1−α
out , (26)

where

Iα,β = π 1/2
(

α

2 + 1
)

4
(

α

2 + 5
2

) [α + 3 − β(α + 2)] (27)

and (x) is the gamma function. This case is related to work by
Bahcall & Tremaine (1981). So, for example, in the Keplerian case
(α = 1), a distribution of test particles with γ = 3 gives

C = 32

π

2 − β

4 − 3β
. (28)

When β = 0, this implies that C = 16/π ; whilst when β = 1,
C = 32/π .

Some of these estimators are implicit in other work. In particular,
some are equivalent to those introduced by White (1981), who had
a different focus on the dynamics of binary galaxies but who made
the same scale-free assumptions to obtain robust mass estimators.
Very recently, An & Evans (2010, in preparation) found a related
family of estimators that are independent of parameters derived
from the tracer density (such as γ ). Also notable is the halo with a
flat rotation curve (α = 0) traced by the population of γ = 3, for
which the mass estimators in equations (23), (24), (26) and (27) are
all independent of β, resulting in v2

0 = 〈v2〉 = 3〈v2
los〉 (see Evans

et al. 1997; Wolf et al. 2009).

2On the other hand, for the satellites of the Milky Way, it is often assumed
that d � rin, which leads to sin ϕ ≈ 0 and consequently 〈v2

losr
α〉 ≈ 〈v2

r rα〉.
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Figure 1. Distribution of mass estimate as a fraction of the true mass for 1000 Monte Carlo realizations, assuming that parameters α, β and γ are known
exactly. Left: N = 10 000. Middle: N = 100. Right: N = 30. The number of satellites in the simulation and the form of the estimator used to recover the mass is
shown in the top left corner of each panel. A best-fitting Gaussian is plotted for each distribution and the standard deviation of the distribution is shown in the
top right corner of each panel. On average, the tracer mass estimator recovers the true mass of the host. The standard deviations here are in fact consistent with
∼ N−1/2 uncertainty on the mean. The central limit theorem appears to hold good for N > 100, whereas N = 30 shows a little skewness in the distribution.
[The cases shown correspond to α = 0.55, β = 0.0 and γ = 2.7].

3 C H E C K S W I T H M O N T E C A R L O
SIMULATIONS

In order to verify the correctness of our mass estimators, we gen-
erate synthetic data sets of anisotropic spherical tracer populations.
Distances r are selected in [rin, rout] assuming the power-law density
profile in equation (5). Projection directions are determined by the
position angles: cos θ is generated uniformly in [−1, 1] and φ is gen-
erated uniformly in [0, 2π ]. If R lies outside of the allowed range,
the projection direction is regenerated until R is within [Rin, Rout].

The phase-space distribution functions that give rise to such den-
sity profiles are given in Evans et al. (1997). Tracer velocities are
picked from the distributions

f (v) ∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v2−2β

∣∣∣∣ψ(r) − 1

2
v2

∣∣∣∣
[2γ−3α−2β(2−α)]/(2α)

(α �= 0),

v2−2β exp

(
− v2

2σ 2

)
(α = 0).

(29)

For α > 0, the maximum velocity at any position is
√

2ψ(r); for α

≤ 0, the velocities can become arbitrarily large. Following Binney
& Tremaine (1987), we introduce spherical polar coordinates in
velocity space (v, ξ, η) so that the velocities resolved in spherical

polar coordinates with respect to the centre are then

vr = v cos η vθ = v sin η cos ξ vφ = v sin η sin ξ . (30)

To generate velocities with the correct anisotropy, ξ is generated
uniformly in [0, 2π ] and η is picked in [0, π ] from the distribution

F (η) ∝ |sin η|1−2β , (31)

where β is the Binney anisotropy parameter. Finally, the line-of-
sight velocities are calculated and used in the tracer mass estimator.

Fig. 1 shows the distribution of mass estimates as fractions of the
true mass for 1000 realizations, assuming that parameters α, β and
γ are known exactly; the left panels show simulations with 10 000
tracers, the middle panels for 100 tracers and the right panels for 30
tracers. The panels show the different forms of the estimator given
in equations (26), (23), (16) and (24), respectively. A Gaussian
with the same standard deviation as each distribution is also plotted
for each panel. The standard deviation is included in the top-right
corner of each plot and gives an estimate of the error in each case.

We see that our mass estimators are unbiased – that is, on average,
the true mass is recovered in all cases. The benefit of using three-
dimensional distances r instead of projected distances R is modest,
as is the improvement gained by using vr in place of vlos. However,
if proper motion data are available, then using v instead of vr gives
a more accurate mass estimate.
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So far, we have assumed that we know α, β and γ exactly, which
is, of course, not the case. Our estimates for α, β and γ have errors
associated with them, not least because the notion of a scale-free
density profile in a scale-free potential is an idealization. As these
parameters enter the estimator through the prefactor C, it is straight-
forward to obtain the additional uncertainty in the final answer using
propagation of errors. As we will show in the next section, α and
γ are constrained either by cosmological arguments or by the data.
The right-most column in Fig. 1 (a host with 30 satellites) is the
most applicable to our data sets at present as the Milky Way has
26 satellites and M31 23 satellites with a recorded line-of-sight
velocity. The error on the mass estimate obtained in this case is
∼25 per cent. This is much larger than that the effects of errors on α

and γ and so the latter will be ignored for the rest of the discussion.
However, the case of the velocity anisotropy β is different as it is

poorly constrained, with theory and data pointing in rather different
directions. Changes in β can therefore make a substantial difference
to the mass estimate.

Note that these simulations yield no insight into systematic er-
rors, because the mock data are drawn from the same distribution
functions used to derive the form of the mass estimators. This is a
concern as there are a number of causes of systematic error – for
example, dark halos may not be spherical, or infall may continue to
the present day so that the observed satellites may not necessarily
be virialized. Deason et al. (2010, in preparation) have tested the
estimators derived in this paper, as well as a number of other com-
monly used mass estimators, against simulations. Specifically, they
extracted samples of Milky Way-like galaxies and their satellites
from the Galaxies Intergalactic Medium Interaction Calculation
(Crain et al. 2009), a recent high-resolution hydrodynamical simu-
lation of a large volume of the Universe. They find that the estimators
in this paper significantly outperform the projected mass estimator
of Bahcall & Tremaine (1981) and the tracer mass estimator of
Evans et al. (2003).

Let us emphasize then that only random errors are assessed in
this paper. Systematic errors from, for example, non-sphericity,
non-equilibrium dynamics, and radial variations in parameters will
normally exist as well. To address this requires comparison to N-
body simulations. Such an analysis will be presented in a separate
follow-up paper (Deason et al. 2010).

4 MASS ESTIMATES FOR ANDROMEDA
A N D T H E MI L K Y WAY

4.1 Choice of power-law index parameters

We now apply the mass estimators to the Milky Way and M31, the
two largest galaxies in the Local Group. In converting heliocentric
quantities to Galactocentric ones, we assume a circular speed of
220 km s−1 at the Galactocentric radius of the sun (R� = 8.0
kpc)3 and a solar peculiar velocity of (U, V , W) = (10.00, 5.25,
7.17) km s−1, where U is directed inward to the Galactic Centre,
V is positive in the direction of Galactic rotation at the position of
the sun, and W is positive towards the North Galactic Pole (see,
e.g. Dehnen & Binney 1998).

3Reid et al. (2009) have argued that the parallaxes and proper motions of
maser sources suggest that the circular rotation speed is probably closer to
250 km s−1 and the distance to the Galactic Centre is ∼8.4 kpc. We have
checked that using these values makes only very modest changes to our
mass estimates for the Milky Way.

Figure 2. The best-fitting value of the power-law index α to an NFW profile
as a function of the concentration and virial radius. Note that for plausible
values of the concentration c and the virial radius rvir for galaxies like the
Milky Way and M31, α lies in the range 0.5–0.6. The surface is smooth and
flattish, implying that α is reasonably insensitive to the details of the NFW
potential.

For the M31 satellites, positional and velocity data must be com-
puted relative to M31 itself. We take the position of M31 to be
(�, b) = (121.2◦, −21.6◦) at a distance of 785 kpc and its line-of-
sight velocity to be −123 km s−1 in the Galactic rest frame (see,
e.g. McConnachie et al. 2005; McConnachie & Irwin 2006).

In order to apply our estimators to these systems, we need to
compute the power-law index of the host potential α, the velocity
anisotropy β and the power-law index of the satellite density dis-
tribution γ . There are cosmological arguments suggesting that the
potentials of dark haloes are well approximated by Navarro–Frenk–
White (NFW) profiles (Navarro, Frenk & White 1996). Fig. 2 shows
the best-fitting power law to the NFW potential for a wide range
of concentrations and virial radii. The fitting is performed in the
region 10 < r/kpc < 300, which is where the majority of the satel-
lites lie. Now, Klypin et al. (2002) argued that the concentrations
of the Milky Way and M31 are c ≈ 12, whilst the virial radii rvir

are in the range of 250–300 kpc. In other words, for the range of
concentrations and virial radii appropriate to galaxies such as the
Milky Way and M31, we see – fortunately – that the surface in Fig. 2
is slowly changing and flattish with α ≈ 0.55.

If the satellite number density distribution n(r) follows a power
law with index γ , then the number of satellites within any radius,
N(<r), also follows a power law with index 3 − γ . We fit power
laws to the Milky Way and M31 satellite cumulative distributions in
order to estimate γ . We restrict ourselves to the inner regions of the
satellite distributions, r ≤ 300 kpc; beyond this range, the satellite
population is likely to be seriously incomplete. The distributions and
the best-fitting power laws are shown in Fig. 3; the Milky Way data
are shown in the upper panel and M31 data are shown in the lower
panel. We find γ = 2.6 for the Milky Way and γ = 2.1 for M31.
Note that data from the Sloan Digital Sky Survey (SDSS; York
et al. 2000) have been instrumental in the identification of many
of the recently discovered Milky Way dwarfs. The SDSS coverage
includes only the region around the North Galactic Cap, and, as such,
the distribution of known Milky Way satellites is concentrated in
that area of the sky. However, given our underlying assumption that
the distribution of satellites is spherically symmetric, this directional
bias does not impair our mass estimators. A bigger worry may be
the incompleteness in the satellite distribution, which could affect
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Figure 3. Cumulative numbers of satellite N(< r) for the Milky Way (upper)
and M31 (lower). The best-fitting power laws in the range r ≤ 300 kpc are
also plotted. The index of these power-law fits may be used to estimate the
power-law index of the satellite density distribution n(r).

the power index for the tracer number density if the directional
incompleteness varies in different distances.

Finally, there are a number of possibilities for the velocity
anisotropy for the satellite galaxies. Previous studies often as-
sumed isotropy, arguing that there is no compelling evidence to
the contrary. However, Diemand, Kuhlen & Madau (2007) found
that the velocity anisotropy of satellites in simulations behaves like
β(r) � 0.55 (r/rvir)

1/3 for 0.2rvir ≤ r ≤ rvir. To estimate β for the
Milky Way and M31 satellites, we calculate the weighted mean of
this distribution:

β̄ =
∫ rvir

0.2rvir
β(r)n(r)r2dr∫ rvir

0.2rvir
n(r)r2dr

, (32)

where the weighting function n(r) is the satellite number density
distribution. This gives β̄ = 0.44 for the Milky Way and β̄ =
0.45 for M31. This is similar to the anisotropy of halo stars (β =
0.37) in simulations reported by Xue et al. (2008). Even though
these numbers have the backing of simulations, they are somewhat
surprising. Most of the Milky Way satellites with measured proper
motions are moving on polar or tangential orbits. Using the sample
of the seven Milky Way satellites with proper motions, we can
compute the radial and tangential components of the Galactocentric
velocity. From these, the observed anisotropy β ∼ −4.5, which

Figure 4. The sensitivity of the estimated mass on the anisotropy parameter
β for a satellite population with α = 0.55, β = 0 and γ = 2.7. The figure
shows the mass recovered using the input values of α and γ and varying the
value of β. The functional form of the curve is easy to deduce. It is a rational
function of β for the upper panel, which uses the estimator of equation (23),
and a linear function of β for the lower panel, which uses equation (16).

favours tangential orbits. This is consistent with the earlier, though
indirect, estimate of Wilkinson & Evans (1999), who found β ∼
−1, again favouring tangential orbits. The origin of this discrepancy
between simulations and data is not well understood. Perhaps there
is considerable cosmic scatter in the anisotropy of the satellites, as
it may depend on the details of the accretion history of the host
galaxy. Fig. 4 plots bring both good news and bad news. The upper
panel shows that the mass estimates for external galaxies using the
line-of-sight estimator of equation (23) are reasonably insensitive
to the precise value of β. This make sense, as for a galaxy like M31,
the line-of-sight velocity encodes information on both the radial
and tangential velocity components referred to the M31’s centre.
However, in the case of the Milky Way, the situation is very different.
The measured velocities provide information almost wholly on the
radial component referred to the Galactic Centre. In the absences
of proper motions, the velocity anisotropy is largely unconstrained
by the data. This is the classical mass-anisotropy degeneracy, and
so – as the lower panel shows – there is considerable uncertainty in
the mass estimates inferred using equation (16).
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Table 1. Data table for the satellites of the Milky Way. Listed are Galactic
coordinates (l, b) in degrees, Galactocentric distance r in kpc and corrected
line-of-sight velocity in km s−1.

Name l b r vlos Source
(deg) (deg) (kpc) (km s−1)

Bootes I 358.1 69.6 57 106.6 1,2
Bootes II 353.8 68.8 43 −115.6 3,4
Canes Venatici I 74.3 79.8 219 76.8 5,6
Canes Venatici II 113.6 82.7 150 −96.1 6,7
Carina 260.1 −22.2 102 14.3 8,9
Coma Bernices 241.9 83.6 45 82.6 6,7
Draco 86.4 34.7 92 −104.0 8,10,11
Fornax 237.3 −65.6 140 −33.6 8,12,13
Hercules 28.7 36.9 141 142.9 6,7
LMC 280.5 −32.9 49 73.8 8,14,15
Leo I 226.0 49.1 257 179.0 8,16,17
Leo II 220.2 67.2 235 26.5 8,18,19
Leo IV 265.4 56.5 154 13.9 6,7
Leo T 214.9 43.7 422 −56.0 6,20
Leo V 261.9 58.5 175 62.3 21
SMC 302.8 −44.3 60 9.0 8,22,23
Sagittarius 5.6 −14.1 16 166.3 8,24
Sculptor 287.5 −83.2 87 77.6 8,25,26
Segue 1 220.5 50.4 28 113.5 3,27
Segue 2 149.4 −38.1 41 39.7 28
Sextans 243.5 42.3 89 78.2 8,9,29
Ursa Major I 159.4 54.4 101 −8.8 3,6
Ursa Major II 152.5 37.4 36 −36.5 6,30
Ursa Minor 104.9 44.8 77 −89.8 8,10,11
Willman 1 158.6 56.8 42 33.7 2,3

Sources: 1, Belokurov et al. (2006); 2, Martin et al. (2007), 3, Martin, de
Jong & Rix (2008); 4, Koch et al. (2009); 5, Zucker et al. (2006a); 6, Simon
& Geha (2007); 7, Belokurov et al. (2007); 8, Karachentsev et al. (2004);
9, Mateo (1998); 10, Bellazzini et al. (2002); 11, Armandroff, Olszewski &
Pryor (1995); 12, Saviane, Held & Bertelli (2000); 13, Walker et al. (2006a);
14, Freedman et al. (2001); 15, van der Marel et al. (2002); 16, Bellazzini
et al. (2004); 17, Koch et al. (2007a); 18, Bellazzini, Gennari & Ferraro
(2005); 19, Koch et al. (2007b); 20, Irwin et al. (2007); 21, Belokurov et al.
(2008); 22, Cioni et al. (2000); 23, Harris & Zaritsky (2006); 24, Ibata et al.
(1997); 25, Kaluzny et al. (1995); 26, Queloz, Dubath & Pasquini (1995);
27, Geha et al. (2009); 28, Belokurov et al. (2009); 29, Walker et al. (2006b);
30, Zucker et al. (2006b).

In what follows, we typically quote mass estimates for the
anisotropies derived both from observations βdata and from sim-
ulations βsim, as well as for the case of isotropy (β = 0). In the
absence of consistent indications to the contrary, our preference
is to assume isotropy and to give greatest credence to the mass
estimates obtained with this assumption.

4.2 Radial velocity data sets

Armed with values for α, β and γ , we now set the mass estimators
to work. Data for the satellites of the Milky Way and M31 are given
in Tables 1 and 2, respectively. Objects for which no line-of-sight
velocity has been measured (And XVII, And XVIII, And XIX,
And XX, And XXI and And XXII) are included in the tables, but
excluded from the analysis.

Using equation (16) and recalling that the Monte Carlo sim-
ulations gave errors of ∼25 per cent, we give estimates of the
mass with 100, 200 and 300 kpc for the Milky Way Galaxy in
Table 3. Assuming velocity isotropy, we obtain for the mass of

Table 2. Data table for the satellites of M31. Listed are Galactic coordinates
(l, b) in degrees, actual distance r from the centre of M31 in kpc, projected
distance R from the centre of M31 in kpc and corrected line-of-sight velocity
in km s−1.

Name l b r R vlos Source
(deg) (deg) (kpc) (kpc) (km s−1)

M33 133.6 −31.3 809 206 74 1,2
M32 121.1 −22.0 785 5 95 2,3
IC 10 119.0 −3.3 660 261 −29 2,3,4
NGC 205 120.7 −21.1 824 39 58 1,2
NGC 185 120.8 −14.5 616 189 106 1,2
IC 1613 129.8 −60.6 715 510 −56 2,3,5
NGC 147 119.8 −14.2 675 144 117 1,2
Pegasus 94.8 −43.6 919 473 85 1,2
Pisces 126.7 −40.9 769 268 −37 1,2
And I 121.7 −24.8 745 59 −84 1,2
And II 128.9 −29.2 652 185 83 1,2
And III 119.4 −26.3 749 75 −57 1,2
And V 126.2 −15.1 774 109 −107 1,2
And VI 106.0 −36.3 775 267 −64 1,2
And VII 109.5 −9.9 763 218 21 1,2
And IX 123.2 −19.7 765 41 94 1,6,7
And X 125.8 −18.0 702 110 130 8,9
And XI 121.7 −29.1 785 102 −140 7,10
And XII 122.0 −28.5 830 107 −268 7,10,11
And XIII 123.0 −29.9 785 115 64 7,10
And XIV 123.0 −33.2 740 161 −204 12
And XV 127.9 −24.5 770 94 −57 13,14
And XVI 124.9 −30.5 525 280 −106 13,14
And XVII 120.2 −18.5 794 45 15
And XVIII 113.9 −16.9 1355 589 16
And XIX 115.6 −27.4 933 187 16
And XX 112.9 −26.9 802 128 16
And XXI 111.9 −19.2 859 148 17
And XXII 132.6 −34.1 794 220 17

Sources: 1, McConnachie et al. (2005); 2, McConnachie & Irwin (2006); 3,
Karachentsev et al. (2004); 4, Sakai, Madore & Freedman (1999); 5, Cole
et al. (1999); 6, Zucker et al. (2004); 7, Collins et al. (2009); 8, Zucker et al.
(2007); 9, Kalirai et al. (2009); 10, Martin et al. (2006); 11, Chapman et al.
(2007); 12, Majewski et al. (2007); 13, Ibata et al. (2007); 14, Letarte et al.
(2009); 15, Irwin et al. (2008); 16, McConnachie et al. (2008); 17, Martin
et al. (2009).

the Milky Way M300 = 0.9 ± 0.3 × 1012 M�. The cussedness of
the mass–anisotropy degeneracy is well illustrated by the fact that
using the observationally derived βdata gives M300 = 3.4 ± 0.9 ×
1012 M�, whilst using that from simulations gives M300 = 0.6 ±
0.2 × 1012 M�. The huge spread in mass estimates is due to the
fact that the line-of-sight velocities for the satellites are almost en-
tirely providing information on the radial velocities as judged from
the Galactic Centre. There is almost no information on the tangen-
tial motions in our data set. However, there are other astrophysical
reasons why masses higher than ∼2 × 1012 M� are disfavoured.

Using equation (23), we obtain the mass of M31 within 300 kpc
as M300 = 1.4 ± 0.4 × 1012 M�. Here, though, in sharp distinc-
tion to the case of the Milky Way, plausible changes in the velocity
anisotropy generate modest changes of the order of 10 per cent
in the mass estimate, as shown in Table 3. Of course, this is un-
derstandable, as the line-of-sight velocity now has information on
both the radial and tangential components, albeit tangled up in the
projection.
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Table 3. Enclosed mass within 100, 200 and 300 kpc for the Milky Way and Andromeda galaxies. We offer three estimates: one using the anisotropy inferred
from data (β ∼ −4.5), one assuming isotropy (β = 0) and the third with the anisotropy derived from simulations (β ∼ 0.45).

Galaxy M300(×1011 M�) M200(×1011 M�) M100(×1011 M�)
βdata Isotropic βsim βdata Isotropic βsim βdata Isotropic βsim

Milky Way 34.2 ± 9.3 9.2 ± 2.5 6.6 ± 1.8 21. 1 ± 5.7 5.5 ± 1.6 3.8 ± 1.0 13.9 ± 4.9 3.3 ± 1.1 2.1 ± 0.7
. . . excl Leo I 25.2 ± 7.5 6.9 ± 1.8 5.0 ± 1.2 . . . . . . . . . . . . . . . . . .

. . . excl Leo I, Her 21.1 ± 6.3 5.8 ± 1.5 4.2 ± 1.1 17. 5 ± 5.3 4.6 ± 1.4 3.2 ± 0.8 . . . . . . . . .

MW with PMs 38.6 ± 7.0 24.1 ± 5.3 22.1 ± 5.3 28. 3 ± 5.5 18.5 ± 4.2 17.0 ± 4.2 22.2 ± 5.0 13.8 ± 3.9 11.4 ± 3.1
. . . excl Draco 27.1 ± 4.9 14.1 ± 3.1 12.2 ± 2.7 18. 1 ± 3.4 10.0 ± 2.3 8.7 ± 2.2 12.9 ± 3.1 6.9 ± 1.9 5.4 ± 1.5
. . . excl LMC/SMC 38.8 ± 6.8 24.6 ± 5.8 21.7 ± 4.9 28. 3 ± 5.7 18.4 ± 4.3 16.3 ± 4.1 22.7 ± 5.6 13.9 ± 4.2 11.2 ± 3.4
. . . excl Draco, LMC/SMC 25.9 ± 5.1 12.4 ± 2.9 10.6 ± 2.5 17. 0 ± 3.5 8.5 ± 2.2 7.2 ± 1.8 11.3 ± 2.9 5.4 ± 1.7 4.2 ± 1.3

M31 15.8 ± 3.3 14.1 ± 4.1 13.1 ± 3.8 15. 4 ± 4.1 12.4 ± 3.8 10.6 ± 3.5 2.6 ± 1.0 2.1 ± 1.0 1.8 ± 1.0
. . . excl And XII 12.2 ± 2.7 10.9 ± 3.1 10.1 ± 3.2 11. 4 ± 3.2 9.2 ± 3.1 7.9 ± 2.8 . . . . . . . . .

. . . excl And XII, And XIV 9.6 ± 2.1 8.5 ± 2.4 8.0 ± 2.4 8. 6 ± 2.6 6.9 ± 2.4 5.9 ± 2.2 . . . . . . . . .

M31 with PMs 15.1 ± 3.8 13.9 ± 3.5 13.1 ± 3.5 . . . . . . . . . . . . . . . . . .

Taking the masses derived using velocity isotropy (β = 0), we
note that this work hints at the removal of a long-standing puzzle,
namely that the kinematic data on the satellite galaxies suggested
that M31 was less massive than the Milky Way, whereas other
indicators (such as the total numbers of globular clusters or the
amplitude of the gas rotation curve) suggested the reverse. In fact,
with the new data sets, the ratio of the masses of M31 to the Milky
Way (∼1.5) is close to that which would be inferred using the
Tully–Fisher relationship and the assumption that the luminosity is
proportional to the total mass (2504/2204 ≈ 1.67). If instead the
radial anisotropies derived from simulations are preferred, then the
ratio is ∼1.98.

However, it may be imprudent to include all the satellites. For
example, Leo I has long been known to dominate mass estimates
of the Milky Way, on account of its large distance (∼260 kpc)
and high line-of-sight velocity (see, e.g. Kulessa & Lynden-Bell
1992; Kochanek 1996; Wilkinson & Evans 1999). It is unclear that
Leo I is actually on a bound orbit, as opposed to a hyperbolic
one. Hence, many attempts at determining the mass of the Milky
Way quote estimates both including and excluding Leo I. In fact,
recent photometric and spectroscopic evidence presented by Sohn
et al. (2007) favours the picture in which Leo I is bound on an
orbit with high eccentricity (∼0.95) and small perigalacticon (10–
15 kpc). In particular, such models give good matches to the surface
density and radial velocity dispersion profiles of Leo I, and imply
high mass estimates for the Milky Way. However, Sales et al. (2007)
using simulations found a population of satellite galaxies on extreme
orbits ejected from haloes as a result of three-body slingshot effects,
and suggested that Leo I might be an example of such an object.
So, although the present evidence favours a bound orbit, a definitive
verdict must await the measurement of Leo I’s proper motion by
the Gaia satellite, which should resolve the issue.

Given that there is one satellite that is known to inflate the Milky
Way’s mass, it is interesting to investigate whether any of the other
satellites, particularly the recent discoveries, play similar roles. The
upper panel of Fig. 5 shows the fractional contributions each satellite
makes to the Milky Way’s mass (Cv2

losr
α/(GN)) – it is the total of

these values that we take to be the mass estimate. There are two
clear outliers; the outermost satellite in this distribution is Leo I,
the less extreme satellite is Hercules. Like Leo I, Hercules has
a substantial radial velocity and a relatively large Galactocentric
distance (∼130 kpc). Hercules has a highly elongated, irregular and
flattened structure (Belokurov et al. 2007; Coleman et al. 2007).

Figure 5. The fractional contribution each satellite makes to the mean mass
estimator for the Milky Way (top) and M31 (bottom). For both galaxies, the
mass budget is dominated by two satellites. For the Milky Way these are
Leo I (red, dotted) and Hercules (blue, dashed). For M31, these are And XII
(red, dotted) and And XIV (blue, dashed).

This is consistent with tidal disruption during pericentric passages
on a highly eccentric orbit (e > 0.9). This seems good evidence that
Hercules is truly bound to the Milky Way.

We repeat the same analysis for M31 and the results are shown in
the bottom panel of Fig. 5. Interestingly, we see that there are two
outliers in the distribution, namely two of the recent discoveries,
And XII and And XIV. Notice that though both objects have a
substantial effect on M31’s mass estimate, neither is as extreme as
Leo I. It is the inclusion of these two new objects in the satellite data
set that has augmented the mass of M31, so that it is now somewhat
greater than that of the Milky Way.

But, this begs the question: should these satellites be included?
And XIV was discovered by Majewski et al. (2007) in a survey of
the outer M31 stellar halo. They recognized its extreme dynamical
properties and suggested that it may either be falling into M31
for the first time or that M31’s mass must be larger than hitherto
estimated by virial arguments. In fact, And XIV’s lack of gas and
its elongated structure suggest that ram pressure stripping and tidal
effects may have been important in its evolution. This is consistent
with And XIV being a true satellite of M31 that has already suffered
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a pericentric passage, a conclusion that could be strengthened with
deeper imaging, which might reveal the presence of tidal tails around
And XIV.

And XII is a still more ambiguous object – it was discovered as
a stellar overdensity by Martin et al. (2006). Spectroscopic obser-
vations were subsequently taken by Chapman et al. (2007), who
conjectured that the satellite might be falling into the Local Group
for the first time. The evidence for this is its large velocity and its
likely location behind M31. However, it remains unclear whether
this evolutionary track is consistent with the absence of detection of
H I gas in the object. Pristine, infalling dwarfs, which have not yet
experienced a pericentric passage of 50 kpc or less, should retain
sizeable amounts of neutral H I gas, whereas Chapman et al. (2007)
constrain the mass in H I to be less than 3 × 103 M�.

In light of this, we provide more mass estimates, after remov-
ing possible ambiguous objects (and recomputing the parameter γ

where necessary). For the Milky Way, we exclude Leo I only and
then Leo I and Hercules. For M31, we exclude And XII only and
then And XII and And XIV. These mass estimates are also shown
in Table 3. Note that, for example, the exclusion of Leo I does not
change the mass estimate within 100 or 200 kpc, as Leo I is outside
of this range. Similarly, And XII and And XIV lie outside of 100 kpc
from the centre of M31, so the mass estimates without them do not
change the final column of the table.

In the case of velocity isotropy (β = 0), it requires the excision of
both And XII and And XIV from the data sets for the mass estimate
of M31 to become comparable to or smaller than the Milky Way. For
example, the mass of M31 with And XII and And XIV both removed
is 0.85 ± 0.24 × 1012 M�, as compared to the mass of the Milky
Way with Leo I retained of 0.92 ± 0.25 × 1012 M�. However, we
have argued that And XIV is most likely bound, whilst And XII is
a more ambiguous case. In other words, the problem pointed to by
Evans & Wilkinson (2000) – namely that the mass of M31 inferred
from the kinematics of the satellites is less than the mass of the
Milky Way – has indeed been ameliorated by the discovery of more
fast-moving M31 satellites.

It seems particularly intriguing that such satellites exist for both
the Milky Way and M31. Wilkinson & Evans (1999) used virialized
models to estimate that the probability that, in a sample of 30 satel-
lites, there is an object like Leo I, which changes the mass estimate
by a factor of a few. They found that the probability is minute, only
∼0.5 per cent. Prior expectation does not favour the existence of
objects like Leo I or And XII, yet in fact, both big galaxies in the
Local Group possess such satellites. The clear conclusion is that the
satellites in the outer parts of these galaxies cannot all be virialized.
This is a point in favour of processes such as those advocated by
Sales et al. (2007) to populate such orbits.

4.3 Simultaneous solution for mass and anisotropy

There is one further way in which the estimators can be set to work
with the line-of-sight velocities. When three-dimensional positions
and projected positions are simultaneously available – as for ex-
ample in the case of M31’s satellites – it is possible to use the
estimators based on both the 〈v2

losr
α〉 and the 〈v2

losR
α〉 moments to

solve simultaneously for both the total mass and the anisotropy pa-
rameter. There is however no guarantee that the solution for β is in
the physical range −∞ ≤ β ≤ 1.

The success of this procedure of course rests on the accuracy of
the data. The distances of the M31 satellites are determined by the
tip of the red giant branch method and have errors of ±30 kpc (see,
e.g. McConnachie et al. 2005). If we use equations (23) and (26),

and simultaneously solve for the unknowns, we obtain

M300 = 1.5 ± 0.4 × 1012 M�, β = −0.55+1.1
−3.2, (33)

which corresponds to mild tangential anisotropy. These are surpris-
ingly sensible answers given the distance errors.

Fig. 6 is inferred from Monte Carlo simulations and shows the
distributions of anisotropy parameters derived from simultaneous
mass and anisotropy fitting for mock data sets. Also given in the
panels are the median and 68 per cent confidence limits for the
anisotropy parameter, in the case of 21 satellite galaxies (compara-
ble to the present data set for M31) and the case of 500 satellites.
Although with 21 tracers, the errors on the anisotropy parameter
are substantial, matters improve significantly with larger numbers
of tracers. A data set of 500 halo satellites (dwarf galaxies, globular
clusters and planetary nebulae) is not unreasonable for a galaxy like
M31 in the near future. This raises the possibility that the method
of simultaneous fitting may prove more compelling in the future. In
fact, given 500 tracers, it is reasonable to use the estimators based
on both 〈v2

losr
α〉 and 〈v2

losR
α〉 moments to fit simultaneously at each

distance, thus giving the run of anisotropy parameter and mass with
radius.

4.4 Radial and proper motion data sets

Thus far, we have used only the line-of-sight velocities to make mass
estimates. In this section, we add in the proper motions of satellites,
where available. Thus, for the Milky Way Galaxy, we combine
results from equation (16) for satellites without proper motions and
from equation (24) for those with proper motions, weighting each
estimate by the reciprocal of the standard deviation to give the final
answer.

Proper motions, albeit with large error bars, have been measured
for a total of nine of the Milky Way satellite galaxies. It seems
prudent to exclude Sagittarius, as it is in the process of merging with
the Milky Way. Additionally, the interacting Magellanic Clouds are
treated as a single system by computing the proper motion of their
mass centroid, taking the masses of the LMC and SMC as ∼2 ×
1010 M� and 2 × 109 M�, respectively (Kroupa & Bastian 1997).
This leaves us with a set of seven satellites with proper motion data,
summarized in Table 4. In most cases, errors on proper motions
are large and, where multiple studies exist, the measurements are
sometimes in disagreement. The proper motions inferred by ground-
based methods are in reasonable agreement with those derived from
the Hubble Space Telescope (HST) in the cases of Fornax (Piatek
et al. 2007; Walker, Mateo & Olszewski 2008), Carina (Piatek et al.
2003; Walker et al. 2008) and the Magellanic Clouds (Piatek, Pryor
& Olszewski 2008; Costa et al. 2009). But, for Ursa Minor (Scholz
& Irwin 1994; Piatek et al. 2005) and for Sculptor (Piatek et al. 2006;
Walker et al. 2008), agreement between different investigators is not
good, and we have preferred to use the estimates derived from HST
data. None the less, it is important to include the proper motion data,
especially for mass estimates of the Milky Way Galaxy. We use these
proper motions along with distance and line-of-sight velocity data
to calculate full space velocities for these satellites, as described in
Piatek et al. (2002).

In addition, there are two satellites of M31 with measured proper
motions, namely M33 and IC 10. This astonishing feat has ex-
ploited the Very Long Baseline Array to measure the positions of
water masers relative to background quasars at multiple epochs
(Brunthaler et al. 2005; Brunthaler et al. 2007b). Unfortunately, the
technique cannot be extended to M31 itself, as it does not contain
any water masers, and so its proper motion is much less securely
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Figure 6. Distribution of β obtained from simultaneous mass and velocity anisotropy fitting. The median of each distribution is shown as a blue dashed line
and the 68 per cent confidence limits as cyan dotted lines. These values are also given in blue and cyan on the plot. The left panel shows the idealised case
for 500 tracers, the right panel the case tailored to our M31 data where only 21 tracers are used. The value of β used to generate the tracer population is also
shown.

Table 4. Table of proper motion data for the satellites of the
Milky Way and M31. Listed are equatorial proper motions in
mas century−1.

Name μα cos δ μδ Source
(mas/century) (mas/century)

Carina 22 ± 9 15 ± 9 1
Draco 60 ± 40 110 ± 30 2
Fornax 48 ± 5 −36 ± 4 3
LMC/SMC 198 ± 5 25 ± 5 4
Sculptor 9 ± 13 2 ± 13 5
Sextans −26 ± 41 10 ± 44 6
Ursa Minor −50 ± 17 22 ± 16 7
M33 2.3 ± 0.7 0.8 ± 0.9 8
IC 10 −0.2 ± 0.8 2.0 ± 0.8 9
M31 2.1 ± 1.1 −1.0 ± 0.9 10

Sources: 1 - Piatek et al. (2003), 2 - Scholz & Irwin (1994), 3 -
Piatek et al. (2007), 4 - Piatek et al. (2008), 5 - Piatek et al. (2006),
6 - Walker et al. (2008), 7 - Piatek et al. (2005), 8 - Brunthaler
et al. (2007a), 9 - Brunthaler et al. (2007b), 10 - van der Marel
& Guhathakurta (2008), though unlike the other proper motions,
this is not a measurement but inferred from indirect evidence.

known. However, van der Marel & Guhathakurta (2008) reviewed
the evidence from a number of sources – including kinematics of
the M31 satellites, the motions of the satellites at the edge of the
Local Group, and the constraints imposed by the tidal distortion of

M33’s disk – to provide a best estimate. These data are also listed
in Table 4.

The Milky Way satellites are so remote that their line-of-sight
velocities in the Galactic rest frame are almost identical to their
radial velocities, as judged form the Galactic Centre. The proper
motion data provide genuinely new information on the tangential
motions and this is the only way to break the mass-anisotropy
degeneracy. The same argument does not hold with equal force
for M31, as the line-of-sight velocities incorporate contributions
from both the radial and tangential components as reckoned from
the centre of M31. None the less, it is good practice to use all the
data available, even though the proper motions of M33 and IC 10
with respect to the M31 reference frame must be inferred using an
estimate of M31’s proper motion (rather than a measurement).

For the satellites without proper motions, we use the form of the
estimator given in equations (16) or (23) for the Milky Way and
M31, respectively; for those with proper motions, we use equa-
tion (24). We combine results from the two estimators, weighting
each estimate by the reciprocal of the standard deviation to give
the final answer. To infer the standard deviation, we perform Monte
Carlo simulations. So, for the case of the Milky Way, we generate
mock data sets of 25 satellites, for which only seven have proper
motions. The errors on radial velocities are dwarfed by the uncer-
tainty caused by the small number statistics and so are neglected.
But, the errors on the proper motions are not negligible and they
are incorporated into the simulations by adding a value selected
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Figure 7. Distribution of mass estimates as a fraction of true mass for Monte
Carlo simulations using (top) 23 satellites with radial velocities, (middle) 7
satellites with proper motions and (bottom) 23 satellites, 7 of which have
proper motions. The standard deviation of the best-fitting Gaussian is shown
in the top-right hand corner of each panel. [These plots assume β = −4.51,
as estimated from the data].

at random from the range [−0.5μ, 0.5μ], where μ is the proper
motion. The flat distribution has been chosen as systematic errors
are as important as random Gaussian error in the determination of
proper motions. However, we have tested alternatives in which we
use the relative observational errors, or the relative observational
errors multiplied by 2.5, and find that our results are robust against
changes to the error law. The standard deviations of the fractional
mass distribution the satellites with and without proper motions are
separately computed, as illustrated in the panels of Fig. 7. We lin-
early combine the mass estimates, weighting with the reciprocal of
the standard deviation, to give the final values reported in Table 3.

Given that the Milky Way satellites with measured proper motions
are moving on polar orbits, it is no surprise that the mass estimate
of the Milky Way has now increased. Adopting the value of β we
estimate from the data, we find M300 = 3.9 ± 0.7 × 1012 M�
for the Milky Way Galaxy and M300 = 1.5 ± 0.4 × 1012 M� for
M31. Assuming isotropy, we find M300 = 2.5 ± 0.5 × 1012 M�
for the Milky Way Galaxy and M300 = 1.4 ± 0.4 × 1012 M� for
M31. Notice, however, that the mass estimate for M31 has barely

Figure 8. The fractional contribution each satellite with proper motions
makes to the mean mass estimate for the Milky Way Galaxy. Notice the
extreme effect of Draco’s proper motion.

changed from the value inferred from the full radial velocity data
set.

Again, we calculate the contribution that each satellite makes
to the mass estimate to investigate whether any is dominating the
final answer. First, this procedure guards against the possibility of
a completely rogue proper motion measurement. Second, there are
some suggestions that the Magellanic Clouds may not be bound,
or even if bound may only be on its second passage and so may
not be part of the relaxed distribution of satellite galaxies (Besla
et al. 2007). So, it is helpful to check that our results are not unduly
sensitive to its inclusion. As Fig. 8 shows, we find that Draco is a
clear outlier and nearly doubles the Milky Way mass estimate. If
we remove the Draco proper motion from the sample, we instead
recover a mass M300 = 2.7 ± 0.5 × 1012 M� (assuming βdata) or
M300 = 1.4 ± 0.3 × 1012 M� (assuming isotropy). It is particularly
concerning that the proper motion of Draco has such a substantial
effect, because – as judged from the size of the error bars in Table 4 –
it is one of the noisier measurements. By contrast, the exclusion of
the Magellanic Clouds has only a minor effect, as is evident from
the results listed in Table 3.

We have covered a number of possibilities, so it is probably
useful for us to give our best estimates. On balance, we think the
case for including at least And XIV among the satellite sample
for Andromeda is strong. Whilst And XII is a more ambiguous
case, the lack of any H I gas suggests to us that it should also
be included. Among the satellites of the Milky Way, we favour
including Leo I based on the work of Sohn et al. (2007), whilst
we are inclined to discard the proper motion of Draco reported in
Scholz & Irwin (1994) until corroborated. Until the discrepancy
between the velocity anisotropies reported in simulations and in
data is explained, we prefer to use the data as our guide. So, our
best estimate for the mass of the Milky Way within 300 kpc is

M300 ∼ 2.7 ± 0.5 × 1012 M� (34)

whilst for M31, it is

M300 ∼ 1.5 ± 0.4 × 1012 M�. (35)

These estimates are obtained using the combined radial velocity and
proper motion data sets. The error bars only incorporate the statis-
tical uncertainty. As we have emphasized, there are much greater
uncertainties induced by selection of satellite members and velocity
anisotropy. In particular, when these uncertainties are considered,
it is not possible to decide which of the Milky Way or M31 is more
massive based on satellite kinematic data alone.
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5 D ISCUSSION

It is instructive to compare our results with a number of recent esti-
mates of the masses of the Local Group and its component galaxies.
Xue et al. (2008) extracted a sample of ∼2400 blue horizontal
branch stars from the SDSS. These are all resident in the inner halo
within 60 kpc of the Galactic Centre. This has the advantage that the
BHBs are surely virialized, but the disadvantage that no inference
can be made about the mass exterior to 60 kpc. Hence, any estimate
as to the total mass is driven wholly by prior assumptions rather
than the data. In fact, Xue et al. (2008) assumed an NFW halo with
a canonical concentration holds, and then estimated the virial mass
of the Milky Way’s dark matter halo as M = 1.0+0.3

−0.2 × 1012 M�,
using Jeans modelling with an anisotropy parameter inferred from
numerical simulations. This is lower than our preferred value, but
in good agreement with our comparable calculations using line-of-
sight velocity data sets alone.

A somewhat similar calculation for M31 has been reported by
Seigar, Barth & Bullock (2008). The mass of the baryonic material
is estimated using a Spitzer 3.6-μm image of the galaxy, together
with a mass-to-light ratio gradient based on the galaxy’s B − R
colour. This is combined with an adiabatically contracted NFW
halo profile to reproduce the observed H I rotation curve data. They
find a total virial mass of M31’s dark halo as 8.2 ± 0.2 × 1011 M�.
This is lower than most of our estimates, with the exception of those
based on samples excluding both And XII and And XIV.

Although these calculations are interesting, it is worth remark-
ing that the final masses are not wholly controlled by the data.
We know that, from Newton’s theorem, any mass distribution out-
side the limiting radius of our data has no observational effect
in a spherical or elliptical system. To estimate the virial mass
from data confined to the inner parts (such as BHBs or the opti-
cal disk) requires an understanding of the structure of the pristine
dark halo initially, as well as how it responds to the formation of
the luminous baryonic components. It is this that controls the final
answer.

Li & White (2008) used the Millennium Simulation to extract
mock analogues of the Local Group and calibrate the bias and error
distribution of the Timing Argument estimators (see e.g. Kahn &
Woltjer 1959; Raychaudhury & Lynden-Bell 1989). From this, they
obtain a total mass of the two large galaxies in the Local Group
of 5.3 × 1012 M� with an inter-quartile range of [3.8 × 1012,
6.8 × 1012] M� and a 95 per cent confidence lower limit of 1.8 ×
1012 M�. Importantly, Li & White (2008) showed that the mass
estimate from the timing argument is both unbiased and reasonably
robust. This is a considerable advance, as there have long been
worries that the gross simplification of two-body dynamics implicit
in the original formulation of the Timing Argument may undermine
its conclusions.

It therefore seems reasonable to assume that the combined mass
of the Milky Way Galaxy and M31 is at least 3.8 × 1012 M�,
and perhaps more like 5.3 × 1012 M�. The low estimates of the
Milky Way and M31 masses of Xue et al. (2008) and Seigar et al.
(2008) are not compatible with this, and barely compatible with Li
& White’s 95 per cent lower limit. Using our preferred values in
equations (34) and (35), the combined mass in the Milky Way and
M31 galaxies is 4.2 ± 0.6 × 1012 M�. This is comparable to the
3.8 × 1012 M� of Li & White.

Li & White (2008) also estimated a virial mass for the Milky Way
of 2.4 × 1012 M� with a range of [1.1 × 1012, 3.1 × 1012] M�,
based on timing arguments for Leo I. Given all the uncertainties,
this is in remarkable accord with our best estimate.

6 C O N C L U S I O N S

We have derived a set of robust tracer mass estimators, and discussed
the conditions under which they converge. Given the positions and
velocities of a set of tracers – such as globular clusters, dwarf galax-
ies or stars – the estimators compute the enclosed mass within the
outermost data points. The accuracy of the estimator has been quan-
tified with Monte Carlo simulations. The estimators are applicable
to a wide range of problems in contemporary astrophysics, includ-
ing measuring the masses of elliptical galaxies, the haloes of spiral
galaxies and galaxy clusters from tracer populations. They are con-
siderably simpler to use than distribution function-based methods
(see, e.g. Little & Tremaine 1987; Kulessa & Lynden-Bell 1992;
Wilkinson & Evans 1999), and involve no more calculation than
taking weighted averages of combinations of the positional and
kinematical data. They should find widespread applications.

The mass estimators are applied to the satellite populations of
the Milky Way and M31 to find the masses of both galaxies within
300 kpc. These estimates are the first to make use of the recent
burst of satellite discoveries around both galaxies. Both satellite
populations have nearly doubled in size since previous estimates
were made. We summarize our results by answering the questions;
What are (1) the minimum, (2) the maximum and (3) the most likely
masses of the Milky Way and M31 galaxies?

(1) The mass of the Milky Way Galaxy within 300 kpc could be
as low as 0.4 ± 0.1 × 1012 M�. This would imply that Leo I is
gravitationally unbound, contrary to the recent evidence provided
by by Sohn et al. (2007). Leo I would then be either an interloper
or an object being ejected from the Milky Way by an encounter. It
would also require that the proper motion of Draco (Scholz & Irwin
1994) is incorrect, which is not inconceivable given the difficulty of
the measurements. It implies that the satellite galaxies are moving
on radial orbits and so the velocity anisotropy is radial.

The mass of M31 within 300 kpc could plausibly be as low
as 0.8 ± 0.2 × 1012 M�. This would be the case if both And
XII and And XIV are not gravitationally bound, which is possible
if mechanisms such as those proposed by Sales et al. (2007) are
ubiquitous. It would also require that the proper motion data on
M33 and IC 10 or – perhaps more likely – the indirectly inferred
proper motion of M31 is in error. Again, such a low estimate for the
mass occurs only if the satellites are moving predominantly radially.

Although it is interesting to ask how low the masses of the Milky
Way and M31 could be, it does produce a mystery in the context
of the Timing Argument, which typically yields larger combined
masses. It is possible that some of the mass of the Local Group
is unassociated with the large galaxies. Although not the conven-
tional picture, this is probably not ruled out and there have been
suggestions that ∼1012 M� may be present in the Local Group in
the form of baryons in the warm-hot intergalactic medium (Nicastro
et al. 2003). There are few constraints on the possible existence of
dark matter smeared out through the Local Group, and unassociated
with the large galaxies. However, the clustering of the dwarf galax-
ies around the Milky Way and M31 does suggest that the gravity of
the dark matter is centred on the prominent galaxies.

(2) The largest mass estimate we obtained for the Milky Way
Galaxy is 3.9 ± 0.7 × 1012 M�. This extreme value is driven
by the assumption of tangential anisotropy for the satellites, so
that the measured line-of-sight velocities also imply substantial
tangential motions as well. The estimate assumes all the satellites
including Leo I to be bound, and the anomalously high proper
motion measurement of Draco to be valid.
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Note that the present data allow considerably more scope to
increase the mass of the Milky Way Galaxy than M31. Our largest
mass estimate for M31 is a much more modest 1.6 ± 0.4 × 1012 M�,
which occurs when we analyse the whole sample incorporating
And XII and And XIV and assume tangentially anisotropic velocity
distributions.

The current consensus is that the two galaxies are of a roughly
similar mass, with M31 probably the slightly more massive of the
two. This though is inferred from indirect properties, such as the
numbers of globular clusters, which correlates with total mass al-
beit with scatter, or the amplitude of the inner gas rotation curve.
The stellar halo of M31 is certainly more massive than that of the
Milky Way, although this may not be a good guide to the dark
halo. Of course, it could be that the current consensus is wrong,
and that the Milky Way halo is more massive than that of An-
dromeda. There is also some indirect evidence in favour of this –
for example, the typical sizes of the M31 dwarf spheroidals are
larger than those of the Milky Way, which is explicable if the
Milky Way halo is denser. However, it does not seem reasonable
to postulate that the mass of the Milky Way is substantially larger
than that of M31. Hence, the very large estimate of 3.9 ± 0.7 ×
1012 M� is best understood as a manifestation of the degeneracy in
the problem of mass estimation with only primarily radial velocity
data.

(3) Our preferred estimates come from accepting Leo I, And
XII and And XIV as bound satellites, whilst discarding the Draco
proper motion as inaccurate. This gives an estimate for the mass of
the Milky Way within 300 kpc as 2.7 ± 0.5 × 1012 M� and for M31
as 1.5 ± 0.4 × 1012 M�, assuming the anisotropy implied by the
data (β ≈ −4.5). The error bars are just the statistical uncertainty
and do not incorporate the uncertainty in anisotropy or sample
membership. In view of this, it is not possible to decide which of
the Milky Way Galaxy or M31 is the more massive based on the
kinematic data alone.

These values for the masses are attractive for a number of reasons.
First, the mass ratio between the Milky Way and M31 is roughly of
order unity, which accords with a number of other lines of evidence.
Second, the values allow most of the dark matter in the Local Group
implied by the Timing Argument to be clustered around the two
most luminous galaxies. Third, they are within the range found for
cosmologically motivated models of the Milky Way and M31 (Li
& White 2008).

We prefer to assume the anisotropy implied by the admittedly
scanty data on the proper motions of the satellites. However, for
completeness, we quickly sketch the effects of dropping this as-
sumption. If the velocity distribution is isotropic, or even radially
anisotropic as suggested by the simulations, then the mass of the
Milky Way becomes 1.4 ± 0.3 × 1012 M� or 1.2 ± 0.3 × 1012 M�,
respectively. Similarly for M31, the values are 1.4 ± 0.4 × 1012 M�
(isotropy) or 1.3 ± 0.4 × 1012 M� (radially anisotropic).

The greatest sources of uncertainty on the masses remain the role of
possibly anomalous satellites like Leo I and the velocity anisotropy
of the satellite populations. There is reason to be optimistic, as
the Gaia satellite will provide proper motion data on all the dwarf
galaxies that surround the Milky Way and M31, as well as many
hundreds of thousands of halo stars. The analysis that we have
carried out here indicates that proper motions are important if we
wish to increase the accuracy of our estimates, as well as under-
stand the dynamical nature of objects like Leo I. While we are
not yet able to exploit the proper motions, Gaia will allow us to
do so.
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