
BIOINFORMATICS Vol. 17 no. 2 2001
Pages 137–148

The massively parallel genetic algorithm for RNA
folding: MIMD implementation and population
variation
Bruce A. Shapiro 1,∗, Jin Chu Wu 2, David Bengali 1 and
Mark J. Potts 3,4

1Image Processing Section, Laboratory of Experimental and Computational Biology,
Division of Basic Sciences, National Cancer Institute, Frederick Cancer Research
and Development Center, National Institutes of Health, Bldg 469, Rm 150, Frederick,
MD 21702, USA, 2Science Applications International Corporation at Frederick,
LECB, NCI-FCRDC, Frederick, MD 21702, USA and 3SGI Inc., 12200-G Plum
Orchard Drive, Silver Spring, MD 20904, USA

Received on June 13, 2000; revised and accepted on October 11, 2000

ABSTRACT
A massively parallel Genetic Algorithm (GA) has been ap-
plied to RNA sequence folding on three different computer
architectures. The GA, an evolution-like algorithm that is
applied to a large population of RNA structures based on
a pool of helical stems derived from an RNA sequence,
evolves this population in parallel. The algorithm was origi-
nally designed and developed for a 16 384 processor SIMD
(Single Instruction Multiple Data) MasPar MP-2. More re-
cently it has been adapted to a 64 processor MIMD (Mul-
tiple Instruction Multiple Data) SGI ORIGIN 2000, and a
512 processor MIMD CRAY T3E. The MIMD version of the
algorithm raises issues concerning RNA structure data-
layout and processor communication. In addition, the ef-
fects of population variation on the predicted results are
discussed. Also presented are the scaling properties of the
algorithm from the perspective of the number of physical
processors utilized and the number of virtual processors
(RNA structures) operated upon.
Contact: bshapiro@ncifcrf.gov; jcwu@ncifcrf.gov;
bengalid@ncifcrf.gov; mark.potts@ieee.org

INTRODUCTION
The Genetic Algorithm (GA) is a non-deterministic opti-
mization procedure (Holland, 1975). It was derived from
the concept of biological evolution using operations based
on the survival of the fittest, crossover, mutation, and se-
lection to mimic the genetic process. Genetic Algorithms
have been applied in a wide variety of fields in science
and engineering (Goldberg, 1989; Holland, 1992; Mietti-

∗To whom correspondence should be addressed.
4Current address: HPC Applications Inc., 10080 Old Frederick Road,
Ellicott City, MD 21042, USA.

nen et al., 1999) and they have been developed for RNA
sequence folding (Shapiro and Navetta, 1994; Gultyaev et
al., 1995; Shapiro and Wu, 1996, 1997; Wu and Shapiro,
1999).

As described in the literature (Goldberg, 1989), the
original GAs used a fixed binary-string representation for
the population of objects that evolved towards fitness.
However, our GA for RNA molecular folding works
differently. It is an evolution-like process applied in
parallel to a large number of RNA structures that are
built from a pool of helical stems which are generated
from an RNA sequence. This parallel paradigm has
been implemented on several different supercomputer
architectures.

The GA was originally developed on the massively
parallel architecture of a MasPar MP-2, a SIMD (Single
Instruction Multiple Data) supercomputer with 16 384
physical processors. Recently, this parallel-RNA-folding
paradigm has been adapted to MIMD (Multiple Instruc-
tion Multiple Data) parallel supercomputers, namely a 64
processor SGI ORIGIN 2000 and a 512 processor CRAY
T3E. It should be noted that even though the number of
processors available on these MIMD machines is substan-
tially smaller than on the MasPar, their processor speeds
are considerably faster. This adaptation has also made it
possible to run the GA on a single or dual processor SGI
OCTANE with the shmem (shared memory) library.

The GA is briefly described in the following section.
The implementations of our GA on a SIMD machine
and on a MIMD machine are then presented. Next
the issues related to population effects are discussed,
then visualization procedures associated with the GA are
examined, leading to the final conclusion section.

137

B.A.Shapiro et al.

THE MASSIVELY PARALLEL GENETIC
ALGORITHM FOR RNA FOLDING
RNA sequence and structure
An RNA sequence consists of four different nucleotides:
adenine (A), cytosine (C), guanine (G), and uracil (U).
These nucleotides can form relatively stable base pairs,
such as C and G, A and U, G and U, and vice versa.
Other combinations are possible, but with less stability.
A contiguous series of these base pairs can form a stem,
which is described by a three-tuple which includes its 5′
start position, the 3′ stop position, and the number of base
pairs in the stem. A fully zipped stem is defined as a
stem in which maximal complementarity exists amongst
its bases, i.e. a larger stem could not be generated using
standard complementary base pairs. Partially zipped stems
are stems in which some of the complementary base
pairs at the ends are opened. The ends of stems may
be free strands or may form loops which are considered
to contain un-paired nucleotides. The RNA loops are
classified as being a bulge loop, hairpin loop, internal loop,
or multibranch loop, depending on their morphological
structure.

A structure derived from an RNA sequence is a config-
uration of stems, strands, and loops generated from the
sequence. It can consist of either secondary or tertiary
structural elements. The secondary structure of an RNA
sequence is a two-dimensional structure, and can be
represented by a tree. Thus, it can be uniquely described
by a table of stems. The tertiary structure of an RNA
sequence consists of interactions between the secondary
structural elements. Some of these interactions form
structures called pseudoknots, which are created by the
interactions between a loop and a free strand or a loop
and a loop (Shapiro and Wu, 1997). The size of an RNA
structure is usually defined as the number of stems in the
structure.

The fitness of an RNA structure is determined by
computing the change in Gibbs free energy for the
formation of that structure relative to a fully single
stranded molecule. It is the sum of the stem energies
and the loop energies. The negative stem energies tend to
stabilize an RNA structure, and the positive loop energies
tend to destabilize the structure. The free energy of an
RNA stem is a combination of the hydrogen bond energies
between base pairs and the stacking energies formed by
the stacking of one base pair on another. The free energy
of pseudoknot structures is dependent on the size and
base content of the stems constituting the pseudoknot,
the structure and size of the related loops connecting
the stems, and the structures at the junctions between
the stems and loops. All stem energies, pseudoknot stem
energies, loop energies, and eventually the entire RNA
structure energy are computed by the use of various energy

rules (Freier et al., 1986; Abrahams et al., 1990; Walter et
al., 1994; Matthews et al., 1999).

The massively parallel genetic algorithm
The goal of RNA folding is to fold an RNA sequence
into a biologically functional structure, that is stable
with an optimal or suboptimal free energy. The non-
deterministic GA has been adapted to folding RNA
sequences and, in addition, has incorporated the ability
to form simple pseudoknots in a natural way. In our GA,
a large population of RNA structures is laid out over an
extensive number of computer processors such that each
processor holds one RNA structure. These processors are
arranged in a rectangular configuration that is toroidally
wrapped in both the x- and y-directions. This means, for
example, that a processor to the north of a processor sitting
on the northernmost border of the rectangle is located
on the southernmost border. All RNA structures are
evolved in parallel, one generation at a time (an iteration
constitutes one generation) through a three-step procedure
consisting of the three basic operators: selection, mutation
and crossover, using the stems generated from a given
RNA sequence. Minimal free energy is used as a criterion
to improve the population of structures across all the
processors.

Before starting the evolution process, the GA generates
a stem pool consisting of all fully (or partially) zipped
stems from the given RNA sequence, and stores this
pool across all the processors. For a long RNA sequence,
the stem pool can become quite large. For this reason,
unzipping is usually limited to one or two base pairs
at each end. At the start of the evolution process,
the GA initializes a structure on each processor by
stochastically picking stems from the stem pool. These
stems are geometrically compatible and are subject to
some restrictions (see below). A set of small, different
structures are therefore formed on the set of processors
simultaneously.

Then, the GA goes through the selection, mutation,
and crossover processes to evolve RNA structures on
all processors in parallel at each generation. First, the
selection operator is applied. On each processor, the GA
selects two RNA structures, P1 and P2, to be parent
structures. This selection is done from the set of nine
structures including the structure on the processor itself
and the structures on its eight-neighbor processors. This
choice of parents is made by using a ranked rule biased
towards structures with better free energies.

Next, the mutation operator is applied. On each proces-
sor, the GA picks stems randomly from the stem pool to
form two child-structures, C1 and C2. The same criteria
for picking stems that are used during the GA initializa-
tion process are applied during this operation. The number
of stems that are selected from the stem pool at each gen-

138

Genetic algorithm for RNA folding

eration is in accordance with an annealing mutation oper-
ator (Shapiro and Wu, 1996). This operator allows a fairly
large number of mutations to take place across all of the
processors at the very beginning of the evolution-like pro-
cess and reduces the total number of mutations at each
generation as the size of the structures increases. Thus, the
operator cools down the mutation process slowly as the
GA proceeds (Press et al., 1992). Usually, the longer the
RNA sequence, the larger the stem pool generated from
the sequence. Thus, our annealing mutation operator treats
different length RNA sequences appropriately, producing
more mutations for longer sequences.

After the mutation operator is applied, the crossover
operator is used. On each processor, the GA performs
a crossover operation between (P1, P2) and (C1, C2),
distributing stems from P1 and P2 into C1 and C2 to
complete the two new structures. During crossover, the
same conditions for choosing stems that were used in
the initialization procedure and in the mutation process
are applied. Finally, the GA chooses the resultant child
structure with the better free energy to become the new
structure in the processor for the next generation. Thus,
at the end of each generation, the GA produces new
structures on all processors in parallel.

As the GA proceeds, after each generation there is a dis-
tribution of free energies over all the processors. Because
of the annealing mutation operator, after hundreds of gen-
erations (depending on the length of the sequence), the dis-
tribution of free energies of structures over all the proces-
sors can converge. That is, the annealing mutation opera-
tor generates a statistical consensus of the free energies of
the RNA structures over all the processors. This implies
that as the generations proceed, more and more processors
most likely contain the same RNA structure. The anneal-
ing mutation operator is very important for running the GA
on long RNA sequences that are thousands of nucleotides
in length as opposed to hundreds. Without the operator,
no clear result can be obtained because of the large di-
versity of the population induced by the non-deterministic
process. When a relative error that is computed from the
weighted average of free energies obtains a value less than
a specified uncertainty, the GA is said to have converged
and thus is terminated. The structure that most processors
possess is considered to be the solution structure that the
GA has generated for the particular run. Since the GA is
a non-deterministic process, statistics must be compiled
for the stems contained in the GA’s resultant structures for
20–50 runs.

The Boltzmann filter
During the initialization of the RNA structures, or during
the mutation process, or the crossover process, stems are
picked either randomly from the stem pool (initialization
and mutation) or from the existing parent-structures

(crossover), and an attempt is made to enter them into a
new RNA structure. The stems picked must not geomet-
rically conflict with the new RNA structure by containing
overlapping nucleotides. Furthermore, a filtering pro-
cess (Wu and Shapiro, 1999), based on the Boltzmann
probability distribution in conjunction with Metropolis’
stochastic relaxation algorithm may be applied. In this
case, the acceptance or rejection of a stem into a new
RNA structure is dependent on the change in free energy
of the new RNA structure due to the addition of this stem.

The Boltzmann filter works as follows. In addition
to passing the geometric conflict test, a stem making a
structure more stable (decreasing the free energy of the
structure) is accepted without any condition. However, a
stem, making a structure less stable (increasing the free
energy of the structure), is accepted or rejected based
on the Boltzmann transition probability (the ratio of the
Boltzmann probability of being in the new structure to the
Boltzmann probability of being in the old structure). The
decision is made by generating a random floating point
number uniformly distributed in the interval [0, 1) and
comparing it with the Boltzmann transition probability. If
the random number is less than the transition probability,
the stem is accepted; otherwise, the stem is rejected.
Therefore, for stems that do not geometrically conflict
with a structure, their acceptance or rejection is not deter-
mined on an equal-probability basis. Thus, the Boltzmann
filter may reduce the probability of the evolution of
structures to structures which are stereochemically and
thermodynamically locally unstable, and may facilitate
the folding pathways of RNA sequences to be closer
to those supported by the energy rules adopted from
experiments. While searching for a local minima of free
energies, the folding pathway guided by the Boltzmann
filter can go uphill or downhill. Hence, the bias imposed
by the energy rules may be reduced.

Indeed, statistically, the Boltzmann filter may signifi-
cantly reduce the total number of positive stems (the GA’s
output stems), especially those occurring at lower rates. It
also may increase the number of true-positive stems (stems
output by the GA that match the phylogenetically or bio-
chemically determined structure of the RNA sequence),
and may substantially raise the appearance rates of these
true-positive stems.

The random number generator
The non-deterministic GA assumes that the folding of an
RNA sequence is a process driven by the stochastic char-
acteristics of the molecule. In the evolution-like-process,
random numbers, including floating-point numbers be-
tween [0, 1), integers, and Boolean values, are needed.
Random numbers are required, for example, while picking
stems from the stem pool; while determining which struc-
ture is chosen to be the next structure on a processor in the

139

B.A.Shapiro et al.

selection process; while determining how many mutations
are allowed by the annealing mutation operator; while
determining how to distribute stems from the two parent
structures to the two child structures in the crossover
process; and while computing a probability to determine
whether to accept or reject a stem in the Boltzmann filter.
Therefore, the process of generating random numbers in
the GA is very important.

An initial random number seed is either explicitly
specified or is determined from a set of varying values
obtained from some system parameters. If it is explicitly
specified, the pattern for generating succeeding random
integers and random floating-point numbers will remain
the same. Hence, the subsequent performance and the
result of the GA using these random integers and floating-
point numbers can be fixed. In this way, it is very easy
to keep track of a GA run and reproduce a GA run when
necessary.

THE GA ON A SIMD MACHINE (MASPAR MP-2)
Computer system and configuration
The MasPar MP-2, on which our GA was originally de-
veloped, is a massively parallel SIMD (single instruction
multiple data) architecture computer. It consists of a front
end UNIX workstation and a Data Parallel Unit (DPU).
The DPU consists of an Array Control Unit (ACU) and
a processor array with 16 384 Processor Elements (PEs).
Each PE has 64 kb of local memory for an aggregate total
of 1 Gb. The processor array as a whole is wired as a two-
dimensional mesh with toroidal wraparound. The ACU is
a RISC processor, and does all bookkeeping such as open-
ing a file, etc. and issues instructions serially (single in-
struction) to the 16 384 PEs which execute the instructions
in parallel on each PEs local data (multiple data).

Communication between the PEs is accomplished by
a form of message passing. This is facilitated by two
interprocessor communication modes: X-Net and router.
The X-Net is based upon a two-dimensional view of the
processor array permitting uniform communications in
any one of eight different directions from or to a given
PE. The router, however, is based on a one-dimensional
view of the processor array and is more general, per-
mitting communication between arbitrary PEs. X-Net
communication, when applicable, is faster than router
communications. X-net message passing is used by the
selection process since interprocessor communication
occurs uniformly between a PE and its eight nearest
neighbors (see below). The router, on the other hand, is
used during stem pool initialization, and while picking
stems from the pool. This is because the stem pool is
distributed across the PEs’ memory by layers and there-
fore random stem picking necessitates communication
between a PE and any other PE.

Since the GA was originally developed on the architec-
ture of the MasPar the population used in the GA was set at
16 384 RNA structures, which was uniformly distributed
over the 16 384 processors—one processor containing one
structure, as shown in Figure 1.

The selection process
The selection process occurs at every generation. On each
processor, two parent RNA structures are selected from
the nine available structures by using a ranked rule as
discussed previously. The nine RNA structures include the
structure on the processor itself and the eight structures
around it. If either of the two parent structures is chosen
from a processor other than that representing the center of
the neighborhood, the structures must be communicated
to the given processor. This is done by using the X-Net
communication mechanism. Moreover, these actions take
place on all 16 384 processors in parallel, making the
selection process highly efficient.

The random number generator
At the very beginning of a GA run, a pre-specified or
generated RNG seed, produces 16 384 random integers—
one for each processor PE. Then, on each PE, this random
integer acts as a seed to generate a series of uniformly
distributed random floating-point numbers on the interval
[0, 1) for subsequent usage.

THE GA ON A MIMD MACHINE (ORIGIN 2000
AND T3E)
Computer system
The SGI ORIGIN 2000 is a scalable SMP (symmetric
multi-processor) computer that may consist of up to
512 physical processors. Unlike the MasPar, no specific
processor on the ORIGIN does the bookkeeping such as
opening a file, etc. Because the Origin 2000 is a paral-
lel MIMD-architecture supercomputer, each processor
executes its own instructions (multiple instructions) on
its local data (multiple data) and uses special software
instructions to synchronize execution across the physical
processors when necessary.

The SGI ORIGIN 2000 has logically shared but phys-
ically distributed memory. To pass information between
processors on the interconnect network, explicit calls to
the shared memory data passing, ‘shmem’, library func-
tions are used. This explicit message passing, as opposed
to shared memory references, is used to achieve the ex-
treme scalability desired for the GA as well as a relative
ease of portability. In addition, the ‘shmem’ library is used
instead of something like the MPI (message passing in-
terface) library to achieve better performance for the very
small data exchanges inherent in the algorithm.

140

Genetic algorithm for RNA folding

PE

PE

PE

PE

PEPEPEPE

PE

PE

PE

PEPEPEPEPE

Fig. 1. The 16 384 PEs, on the MasPar MP-2 supercomputer, are wired as a two-dimensional mesh with toroidal wraparound. A population of
16 384 RNA structures in the GA is uniformly configured over the processors—one processor holds one structure. Around the above central
processor are schematically drawn nine RNA structures, among which a selection process with respect to this processor takes place. Notice
that these selection processes are occurring on all 16 384 processors in parallel at each generation of the GA.

Configuration
For performance purposes a one-to-one mapping of pro-
cesses to physical processors is used. Thus, an N -process
GA execution is allowed to use N physical processors on
the machine. This number is much less than the popula-
tion number, i.e. the number of RNA structures evolved in
the GA. To mimic the GA paradigm that is implemented
on the MasPar, a large number of RNA structures must
be configured on this small number of physical proces-
sors. Hence, each physical processor’s local memory must
be divided into many locations, and each such location
holds one RNA structure. Each of these memory locations
and the associated code within each of the N processes to
manipulate these locations on each physical processor is
called a virtual processor. The data structure of the virtual
processors on each physical processor is an array of RNA
structures. For comparison, the MasPar may be viewed as
having one virtual processor per physical processor.

To insure good performance for the algorithm, it is crit-

ical that the communication between the virtual proces-
sors be performed as efficiently as possible during opera-
tions such as selection. The least efficient communication
is that which occurs between two virtual processors that
are located on two different physical processors compared
to those located on the same physical processor. Thus, a
goal is to minimize the amount of communication that
occurs between physical processors. This can be accom-
plished by minimizing the perimeter of the virtual proces-
sors on each physical processor. It is assumed that the to-
tal number of both the physical processors and the virtual
processors are powers of 2 for digital simplicity. As a re-
sult, the best configuration must be as square as possible,
that is, either a square or a rectangle in which the length
of one side is to be exactly twice as long as the length of
the other side. Thus, if 16 physical processors are used,
they may have, for example, 2048, 4096, 8192, etc., vir-
tual processors across them. An example is illustrated in
Figure 2.

141

B.A.Shapiro et al.

|--------------> X
| VPX: 0 1 62 63 64 65 126 127
|
| VPPPX: 0 1 62 63 0 1 62 63
|VPY VPPPY
| |---|---|------------|---|---| |---|---|------------|---|---|
| 0 0 | | | | | | | | | | | |
V |---|---|------------|---|---| |---|---|------------|---|---|

1 1 | | | | | | | | | | | |
Y |---|---|------------|---|---| |---|---|------------|---|---|

. . | | | | | | | | | | | |

. . | | | 0 | | | | | | 1 | | |

. . | | | | | | | | | | | |
|---|---|------------|---|---| |---|---|------------|---|---|

30 30 | | | | | | | | | | | |
|---|---|------------|---|---| |---|---|------------|---|---|

31 31 | | | | | | | | | | | |
|---|---|------------|---|---| |---|---|------------|---|---|

|---|---|------------|---|---| |---|---|------------|---|---|
32 0 | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|
33 1 | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|
. . | | | | | | | | | | | |
. . | | | 2 | | | | | | 3 | | |
. . | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|
62 30 | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|
63 31 | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|

|---|---|------------|---|---| |---|---|------------|---|---|
64 0 | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|
65 1 | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|
. . | | | | | | | | | | | |
. . | | | 4 | | | | | | 5 | | |
. . | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|
94 30 | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|
95 31 | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|

|---|---|------------|---|---| |---|---|------------|---|---|
96 0 | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|
97 1 | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|
. . | | | | | | | | | | | |
. . | | | 6 | | | | | | 7 | | |
. . | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|
126 30 | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|
127 31 | | | | | | | | | | | |

|---|---|------------|---|---| |---|---|------------|---|---|

Fig. 2. The configuration of 16 384 virtual processors, (128 in
the x-direction, VPX, and 128 in the y-direction, VPY) over
eight physical processors. In this example, each physical processor
possesses 2048 virtual processors (64 in the x-direction, VPPPX,
and 32 the y-direction, VPPPY). It also illustrates the eight
neighbors of each virtual processor, that may be located on other
physical processors.

The selection process
In the selection process, each virtual processor commu-
nicates with its eight neighbors. As is indicated in Fig-
ure 2, some of these neighbors may be located on different
physical processors. For example, in this figure, the east-
ern neighbor of the 63rd virtual processor on the zeroth
physical processor is the zeroth virtual processor on the
first physical processor; and its northeastern neighbor, due
to toroidal wraparound, is the 1984th virtual processor on
the 7th physical processor.

The GA on the CRAY T3E
The CRAY T3E, like the Origin 2000, is also a MIMD su-
percomputer with a distributed memory. Communication

between different physical processors is also supported by
the functions in the ‘shmem’ library. Essentially identical
GA code can be run on both an Origin 2000 and a CRAY
T3E. Given a specific RNG seed, a specific sequence, and
the same physical and virtual processor configurations, the
RNA folding results of the GA on the CRAY T3E and on
the Origin 2000 are identical.

By comparison, at the time of the tests, the speed of
a CPU of the CRAY T3E was 450 MHz while that
of the Origin 2000 was 250 MHz. Given the cache
friendly nature of the GA and identical code, the average
run times for the GA on both machines using the
3′ UTR (untranslated region) of the Satellite Tobacco
Necrosis Virus STNV-2 RNA with 619 nucleotides and
three H-type pseudoknots (Danthinne et al., 1991), as
an example, were almost identical, namely about 1.3 s
per generation. These runs utilized 16 physical processors
and 16 384 virtual processors. This is about 3.0–3.5 times
faster than the same sequence run on the 16 384 processor
MasPar MP-2.

The T3E can be configured to contain more than
512 physical processors. Given this large capacity and
the scalability of the GA it is possible to run the
algorithm with populations in the millions. Computational
experiments with these extremely high populations may
lead to interesting results concerning structural accuracy
and determinism (see below). Such experiments will be
attempted shortly.

EFFECTS OF ALTERING THE POPULATION
SIZE, PHYSICAL PROCESSOR NUMBER, AND
VIRTUAL PROCESSOR NUMBER
As was mentioned previously, an important advantage of
the MIMD implementation of the GA is the ability not
only to obtain higher speeds by easily scaling a run to
more physical processors, but also to vary the number of
virtual processors and therefore the GAs population size.
Two areas must be considered when examining the effects
of such changes, namely, the impact of these variations
on the efficiency of the algorithm and their effects on the
accuracy of the algorithm. Both of these categories were
studied for the GA’s folding of the Potato Spindle Tuber
Viroid (PSTVd) (Keese et al., 1988) (359 nucleotides in
length) and for the folding of the non-coding region of
the polioviruses 1, 2, and 3 (Skinner et al., 1989; Currey
and Shapiro, 1997) (742 nucleotides in length). The trends
shown below apply to other sequences tested but for the
sake of brevity, results for PSTV and polio are presented in
detail. The following employ measurements made on the
SGI ORIGIN 2000, but virtually identical results should
be expected on the CRAY T3E.

142

Genetic algorithm for RNA folding

Fig. 3. Mean number of generations required until convergence of
the GA as a function of population size. Mean was calculated over
20 runs. Error bars for data points are as indicated. Polio 3 is not
shown for 2 K population (see the text for an explanation).

Efficiency
Efficiency may be measured either in the real time neces-
sary to complete the folding of a molecule or in the number
of iterations of the algorithm needed to do so. Measure-
ments of the latter are more significant since they are inde-
pendent of the level of available computing resources, but
both quantities were analyzed when considering the per-
formance of the algorithm. As is evident from Figure 3,
the average number of generations until convergence of
the population (convergence as defined above) seems to
increase with population size. Error bars in all the plots
indicate the standard error of the mean plotted value for
20 samples at each population size. The generation of the
first appearance within the population of the solution to
which the GA eventually converged in each run is plot-
ted in Figure 4. The increasing trend is still present. Note
the deviation of values at population 2048 from the in-
creasing trends in both plots. At population 2048, in fact,
polio 3 never fully converged within 1500 generations,
the chosen cutoff point. Perhaps because of the relatively
high level of population-wide mutations allowed within
the GA (Shapiro and Wu, 1996) for extremely low pop-
ulation sizes, populations �2048 maintain a high level of
diversity. Alterations to the minimum number of mutations
allowed for small populations may improve the conver-
gence properties, but may impact on the search of confor-
mational space. In addition, the convergence properties of
the two sequences are affected by the existence of meta-
stable states. This will be discussed more fully later.

Measurements of the average wall-clock time required
per generation of the GA were evaluated by increasing
the number of virtual processors per physical processor
(identified as VPPPT). This ratio was increased both by
varying the number of virtual processors (VPT) from 2048
to 131 072 (2–128 K by powers of 2) while fixing the

Fig. 4. Mean generation at which a solution first appeared for
PSTVd and polio 3 as a function of population size. Mean was
calculated over 20 runs of the GA. Error bar for data points are
indicated.

number of physical processors at a constant value of 8,
and by varying the number of physical processors (PPT)
from 1 to 16 (by powers of 2) while fixing the number
of virtual processors constant at 16 384. The approaches,
as evident from Figure 5, did not lead to identical
results. When PPT is held constant, increasing VPPPT
simply increases the load per physical processor, and the
time per generation appears to scale nearly perfectly as
O(n) for n = VPPPT. That is, R2 = 0.9999 (PSTVd)
or 0.9995 (polio 3) for a linear regression with the
y-intercept fixed at 0. When PPT is varied, however,
communication and synchronization between physical
processors is also altered and this affects the elapsed wall-
clock time per generation, and time no longer scales as
linearly (R2 = 0.9527 for PSTVd and 0.9850 for polio 3).
In addition, the apparent slope, (time/generation)/(virtual
processors/physical processor) differs from that at a
constant number of physical processors. Evidence of the
significance of inter-processor issues can be seen in the
fact that for a given ratio of virtual processors per physical
processor, the time per generation is always greater for the
larger number of physical processors.

Accuracy
A more significant aspect of the ability to vary the size
of the GA population is the accuracy and fitness of the
solutions as a function of that population size. For the
purposes of this analysis, fitness was measured both from
a thermodynamic standpoint and, more significantly, from
a structural standpoint.

Free energy. Although it is known that biologically
active structural configurations at times do not constitute
a global minimum free-energy structure, biological evi-
dence supports the theory that the change in free energy
for the formation of the ‘correct’ structure of a particular

143

B.A.Shapiro et al.

Fig. 5. Measurements of average wall-clock time per generation
of the GA. Plots for 20 runs of PSTVd and polio 3 are shown.
Almost perfect linear scaling is apparent for the case of varying
the number of virtual processors per physical processor. When
this is done by decreasing the number of physical processors
in use, a slight non-linearity appears presumably reflecting the
increased communication costs. It should be noted that the timing
measurements were done with an under-subscribed system, i.e.
fewer than 64 processes in total were running. Thus, it was not
necessary to consider issues such as swapping.

sequence will usually lie within the minimum 10% of all
possible values of �G (free energy) for structures com-
patible with that sequence, as calculated under a specific
energy rule set. In fact, many current approaches to RNA
structure prediction are based entirely on determining an
ensemble of possible structures with free energy nearest
to the calculated minimum. Thus, it is reasonable to
compare thermodynamic fitness of solutions generated at
each population size when analyzing the performance of
the algorithm. The plots of the average free energy of the
GA convergence solutions versus population size shown
in Figure 6 indicate that increasing the population of the
GA increases the efficacy of the algorithm in locating a
highly thermodynamically fit structure.

Structural accuracy. The primary measure of the com-
parative accuracy of the GA at varying population sizes
is its ability to predict structures that are correct based
on previous biochemical and biophysical experiments
and on phylogenetic analyses. Our observation is that
increasing the number of virtual processors utilized by
the GA increases the similarity of the GAs solutions
to proven structures. The GAs convergence solutions
were compared to proven structures for PSTVd (Keese
et al., 1988) and poliovirus (Skinner et al., 1989) both
directly, calculating the percentage of known stems
that were positively predicted by the GA, and via a
structure/sequence-based fuzzy matching algorithm that
calculates the frequency of occurrence, among an ensem-

Fig. 6. Plots illustrating the improvements in thermodynamic
stability as a function of population size for foldings of polio 3 (top)
and PSTVd (bottom). The optimal computed free energy for PSTVd
is −148.8 Kcal/mol and −239.3 Kcal/mol for polio 3. It should
be noted however, that improved stability does not necessarily
correspond to improved ‘correctness’.

ble of solutions, of each of those known stems or of viable
alternatives to known stems (Wu and Shapiro, 2001).
The structural fitness measures plotted in Figure 7 were
derived by calculating the average percentage occurrence
of known correct stems (or their viable alternatives)
among 20 GA solutions at each population size (fuzzy)
and by calculating the percentage of known stems that
passed the 55% frequency threshold in solutions (direct).
Whereas folds of the UTR of polioviruses 1, 2 and 3 using
16 384 population elements failed to predict a number
of known stems, and therefore required a consensus
solution to be developed from the folds of all three
sequences (Currey and Shapiro, 1997), folds of poliovirus
1 at 65 536 population elements correctly identified all
but two of the known stems, and folds of poliovirus 3
at 65 536 population elements correctly identified every
known stem but one in the Skinner model (Skinner et
al., 1989). For PSTVd (the entire native-state structure
of which is known) both measures of fitness indicated a
similar increase. At 131 072 population elements, folds of
polio 3 deviate from these trends. For an explanation, see
the section on determinism below.

A difficulty in the utilization of stochastic algorithms
such as the GA for problems such as RNA folding
simulation that constitute walks on fitness landscapes
that may be highly rugged (Rook et al., 1998), is the
existence of local minima in which the population may
become trapped. In the case of biomolecular structural
configurations, high activation energy barriers may exist
between two local minima on a particular landscape.

144

Genetic algorithm for RNA folding

Accuracy

so
lu

ti
o

n
 a

cc
u

ra
cy

population (thousands)

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
0 50 100 150

polio 3, direct

polio 3, fuzzy

pstvd, direct

pstvd, fuzzy

Fig. 7. Accuracy of solutions as a function of population size for
PSTVd and polio 3. Accuracy was determined by two different
methods, one involving a fuzzy match procedure and the other by
a direct comparison.

In the case of PSTVd, such a situation is known from
experimental evidence to exist; that is, while the native
state of the molecule consists of a highly stable rod-
like configuration, the folding pathway of the molecule
includes a necessary transition through a highly bifurcated
‘metastable’ state (Riesner, 1990; Riesner et al., 1979).
Experiments indicate that the kinetic time constant for
this highly favorable local minimum is relatively high and
that the transition to the native-state is difficult (Riesner et
al., 1979). Simulating the folding of PSTVd with a larger
population allows for a larger simultaneous sampling
space and increases the probability that the kinetic barrier
will be overcome. Thus, lower populations are more likely
to remain trapped in this ‘metastable’ state, while higher
populations are generally able to transition through the
state to the native configuration. This fact hints at the
possible utility of lower, ‘less-effective’ population sizes
for identifying significant local minima that appear to exist
as stages in the folding pathway as simulated at higher
population sizes.

It should be noted that the circularity of PSTVd was
simulated by embedding the left-hand terminal hairpin
to eliminate the 5′ − 3′ gap, as in experiments detailed
in Gultyaev et al. (1998). In addition, during the folding
of PSTVd, two ‘pseudostems,’ i.e. stems composed of two
actual single stems surrounding a 1×1 or 2×2 symmetric
internal loop across which stabilizing coaxial stacking
will occur, were included in the standard stem pool con-
sisting of approximately 5000 (for PSTVd) single stems
from which structural elements are randomly chosen for
mutation into growing structures. The component stems
of each pseudostem underwent the mutation process
independently of one another and were treated as separate
single stems once placed in a structure.

Determinism. Increase in the number of virtual proces-
sors operated on by the GA increased the determinism of
the GA in predicting RNA structure. Such an increase in
determinism was indicated by increased structural homol-
ogy among the members of a set of solutions at a given
population size as compared to that among members of a
set of solutions at any lower population size. Specifically,
at higher populations, more stems occurred with high fre-
quencies among a given set of solutions while fewer stems
occurred with low frequencies, and the average frequency
of any stem within the ensemble of solutions increased.
This can be observed visually in the difference in height
between the stemtrace (Kasprzak and Shapiro, 1999) plots
as seen in Figure 8, in which each horizontal band, color
coded by frequency, represents a stem, and the height of
each plot corresponds directly to the number of stems in
the particular solution set represented by the plot. The de-
viation of PSTVd from these increasing trends at lower
populations (<8 K) may be explained as the metastable
local minimum, and an optimal population size for pre-
dicting this state appears to exist at 4 K, at which a peak
exists in the measures of algorithmic determinism. As the
population increases above 4 K, however, the algorithm
appears to be able to explore the landscape beyond the lo-
cal minimum and to move toward an additional peak in
determinism.

Note that the thermodynamic fitness at 128 K (131 072)
for polio 3 jumps significantly (by 8 kcal, a jump larger
than all but that between 2 and 4 K) while the determinism
suddenly falls off. This phenomenon is very similar to that
which occurs with PSTVd at the 8 K population size, and,
combined with the decrease in accuracy of the solution
at 128 K, suggests strongly that, on the structure/fitness
landscape defined by the particular energy rule set used,
the ‘correct’ structure represents a local minimum only,
and when the population is increased to 128 K, the GA
once again (as with PSTVd) samples a large enough por-
tion of the conformational space to explore the landscape
beyond the correct local minimum and moves toward an
‘incorrect’ global minimum. Theoretically, continuing
the increase in the population size would drive the GA
to another peak in determinism (as with PSTVd) as it
locates a more thermodynamically fit structure (although
it would be less structurally correct). Perhaps measures
of determinism that locate peaks such as the PSTVd
peak at 4 K (where the metastable structure appears most
strongly), the PSTVd peak that occurs as the linear state is
approached, and the polio peak at 65 K (where all but one
Skinner stem is located with very high frequency) would
be useful tools in determining which GA solutions are
most likely biologically functional. Again, this stresses
the point that the biologically functional state may not
be the optimal energy state, but, may be associated with
states that are arrived at because of strong kinetic barriers.

145

B.A.Shapiro et al.

Fig. 8. Stemtrace plots showing the effects of population variation on 20 runs of polio 3 (left side) and PSTVd (right side). Each column
represents 20 runs of the GA for populations of 2, 4, 8, 16, 32, 64 and 128 K elements. The height of each column is indicative of the relative
diversity of results of the runs (taller columns indicating higher diversity). Constancy of color indicates the relative degree of determinism
for the runs. Deviations from the downward trend in column heights can be explained by the population entering into metastable states as
discussed in the text.

One final observation was made in regard to the effect
of population variation on determinism. Lower population
sizes can give an indication of what will occur at

higher population sizes. For example, as the population
is increased and the solution ensembles migrate from a
consensus solution at one determinism peak to that at

146

Genetic algorithm for RNA folding

another, structures or structural elements contained in the
higher population (and with higher fitness) will occur
in increasing ratios to the entire solution ensemble size.
Thus, a ‘preview’ of the solution that will appear at the
next determinism peak may occur in increasing proportion
as the population sizes increase.

The changing structure sets in solution ensembles as
population size is increased often parallel the dominant
subpopulations during a single run at a higher population
size. For example, a 4 K run of PSTVd shows a deter-
minism peak corresponding to a predicted metastable
structure and a 128 K run shows a determinism peak
indicating the linear PSTVd structure. Intermediate
population sizes show an increasing proportion of linear
structures to metastable structures as the population is
increased. Similarly, in a single run that converges to the
linear state, examining transient dominant subpopulations
indicates that the metastable structure forms first and
then transitions to the linear structure. Thus, comparing
solution ensembles as the population size is increased can
therefore give an approximation of the transitions that
would occur within single runs at a higher population size,
but with a substantially decreased quantity of required
data analysis.

VISUALIZATION
A visualization component is also available with the
MIMD version of the algorithm. This permits the color
presentations of the fitness of the molecules in the proces-
sors, the number of pseudoknots found in a processor, as
well as trace plots that permit the real time surveillance of
the formation and/or disappearance of stems in structures.
An additional aid is the interactive query capability that
permits the display of energy and structural characteristics
of any individual structure by a mouse click on the
pixel representing that structure. Secondary structure
displays can also be visualized in real time with the aid of
STRUCTURELAB (Shapiro and Kasprzak, 1996).

CONCLUSION
An adaptation of the massively parallel GA for RNA fold-
ing to a scalable parallel paradigm has been presented.
This scalable design permits the running of the algorithm
on a single processor SGI OCTANE as well as a 512
processor SGI ORIGIN 2000 or a 2048 processor CRAY
T3E. It conceptually follows the original design of the
algorithm on a SIMD MasPar MP-2 supercomputer. Vari-
ations are possible with respect to the number of physical
processors as well as the number of virtual processors
(population size) involved in a computation. The transition
from the SIMD paradigm to the MIMD paradigm mainly
involved issues of processor (population) layout, as well
as the impact of population variation on the results of runs.

In summary, the increase (relative to the SIMD imple-
mentation of the GA) in the number of virtual processors
is enabled by the larger memory and faster processors on
the MIMD machines. This in turn permits more efficiency
per processor (less interprocessor communication per vir-
tual processor). While an increase in the number of vir-
tual processors per physical processor employed by the
GA led to an apparent decrease in efficiency, this nega-
tive impact was matched and outweighed by an increase
in both the determinism of the algorithm and the accuracy
of the structural predictions it produced. In addition, when
the algorithm becomes more highly deterministic, it then
becomes possible to arrive at a statistically significant so-
lution with relatively few runs of the algorithm, illustrating
another benefit of the scalable MIMD architecture.

Varying the population size also has the added advan-
tage of capturing the folding pathways of the molecule in
metastable states, some of which have been shown to be
significant for biological functionality. This was particu-
larly illustrated in the folding of PSTVd. Further studies
involving this phenomenon are now underway.

ACKNOWLEDGEMENTS
The authors thank Brian Furtaw and Lawrence Bertoldi
of SGI Inc., for their efforts in the development of the
GA visualizer; Wojciech Kasprzak from SAIC at NCI-
FCRDC for his continued support in the development
of STRUCTURELAB. We would also like to thank
John Owens from the Laboratory of Experimental and
Computational Biology, NCI for his help in making some
of the figures.

REFERENCES
Abrahams,J.P., van den Berg,M., van Batenburg,E. and Pleij,C.

(1990) Prediction of RNA secondary structure, including pseudo-
knotting, by computer simulation. Nucleic Acids Res., 18, 3035–
3044.

Currey,K.M. and Shapiro,B.A. (1997) Secondary structure com-
puter prediction of the poliovirus 5′ non-coding region is im-
proved by a genetic algorithm. Comput. Appl. Biosci., 13, 1–12.

Danthinne,X., Seurinck,J., van Montagu,M., Pleij,C.W.A. and van
Emmelo,J. (1991) Structural similarities between the RNAs of
two satellites of tobacco necrosis virus. Virology, 185, 605–614.

Freier,S., Kierzek,R., Jaeger,J., Sugimoto,N., Caruthers,M., Neil-
son,T. and Turner,D. (1986) Improved free-energy parameters for
predictions of RNA duplex stability. Proc. Natl Acad. Sci. USA,
83, 9373–9377.

Goldberg,D.E. (1989) Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, Reading, MA.

Gultyaev,A.P., van Batenburg,F.H.D. and Pleij,C.W.A. (1995) The
computer simulation of RNA folding pathways using a genetic
algorithm. J. Mol. Biol., 250, 37–51.

Gultyaev,A.P., van Batenburg,F.H.D. and Pleij,C.W.A. (1998) Dy-
namic competition between alternative structures in viroid RNAs

147

B.A.Shapiro et al.

simulated by an RNA folding algorithm. J. Mol. Biol., 276, 43–
55.

Holland,J.H. (1975) Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, MI.

Holland,J.H. (1992) Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology, Control,
and Artificial Intelligence (Complex A). MIT Press, Cambridge,
MA.

Kasprzak,W. and Shapiro,B.A. (1999) Stem trace: an interactive
visual tool for RNA structure analysis. Bioinformatics, 15, 16–
31.

Keese,P., Visvader,J.E. and Symons,R.H. (1988) Sequence vari-
ability in plant viroid RNAs. In Domingo,E., J.,J.H. and
Ahlquist,P. (eds), RNA Genetics. CRC Press, Boca Raton, FL,
3, pp. 71–98.

Matthews,D.H., Sabina,J., Zuker,M. and Turner,D.H. (1999) Ex-
panded sequence dependence of thermodynamic parameters im-
proves prediction of RNA secondary structure. J. Mol. Biol., 288,
911–940.

Miettinen,K., Neittaanmaki,P. and Periaux,J. (eds) (1999) Evolu-
tionary Algorithms in Engineering and Computer Science: Re-
cent Advances in Genetic Algorithms, Evolution Strategies, Evo-
lutionary Programming, Genetic Programming, and Industrial
Applications. Wiley, New York.

Press,W.H., Teukolsky,S.A., Vetterling,W.T. and Flannery,B.P.
(1992) Numerical Recipes in FORTRAN The Art of Scientific
Computing. 2nd edn, Cambridge University Press, New York, pp.
436–438.

Riesner,D. (1990) Structure of viroids and their replicative inter-
mediates are thermodynamic domains also functional domains?
Sem. Virol., 1, 83–99.

Riesner,D., Henco,K., Rokohl,U., Klotz,G., Kleinschmidt,A.K.,
Gross,H.J., Domdey,H., Jank,P. and Sanger,H.L. (1979)

Structure and structure formation of viroids. J. Mol. Biol., 133,
85–115.

Rook,M.S., Treiber,D.K. and Williamson,J.R. (1998) Fast folding
mutants of the tetrahymena group I ribozyme reveal a rugged
folding energy landscape. J. Mol. Biol., 281, 609–620.

Shapiro,B.A. and Navetta,J. (1994) A massively parallel genetic al-
gorithm for RNA secondary structure prediction. J. Supercom-
put., 8, 195–207.

Shapiro,B.A. and Kasprzak,W. (1996) Structurelab: a heteroge-
neous bioinformatics system for RNA structure analysis. J. Mol.
Graphics, 14, 194–205.

Shapiro,B.A. and Wu,J.C. (1996) An annealing mutation operator in
the genetic algorithms for RNA folding. Comput. Appl. Biosci.,
12, 171–180.

Shapiro,B.A. and Wu,J.C. (1997) Predicting RNA H-Type pseu-
doknots with the massively parallel genetic algorithm. Comput.
Appl. Biosci., 13, 459–471.

Skinner,M.A., Racanaiello,V.R., Dunn,G., Cooper,J., Minor,P.D.
and Almond,J.W. (1989) New model for the secondary structure
of the 5′ non-coding RNA of poliovirus is supported by
biochemical and genetic data that also show that RNA secondary
structure is important for neurovirulence. J. Mol. Biol., 207, 379–
392.

Walter,A., Turner,D., Kim,J., Lyttle,M., Muller,P., Mathews,D.
and Zuker,M. (1994) Coaxial stacking of helixes enhances
binding of oligoribonucleotides and improves predictions of
RNA folding. Proc. Natl Acad. Sci. USA, 91, 9218–9222.

Wu,J.C. and Shapiro,B.A. (1999) A Boltzmann filter improves RNA
folding pathway in a massively parallel genetic algorithm. J.
Biomol. Struct. Dyn., 17, 581–595.

Wu,J.C. and Shapiro,B.A. (2001) Fuzzy matching of RNA stems. In
preparation.

148

