N87-29134

The Massively Parallel Processor (MPP) was delivered to NASA Goddard in May 1983, by Goodyear Aerospace Corporation following four years of development. MPP is the product of a research and technology program designed to evaluate the application of a computer architecture containing thousands of processing elements (PE's), all operating concurrently, to the computational requirements of the sensors of the next decade.

Major applications of the MPP are in the area of image processing (where operands are often small integers) from very high spatial resolution passive image sensors, signal processing of RADAR data, and numerical modeling simulations of climate.

At the heart of the MPP is a custom integrated circuit chip containing 8 PE's. 2112 of these chips have been combined with commercial memory and control chips to pack into 18 square feet of floor space the capability to perform 400 million floating point operations per second and 6 billion fixed point operations per second. The system can be programmed in assembly language or a high level language, Parallel Pascal, which is an extension of standard Pascal. Research is underway to develop techniques and programing tools to better expose the power of the massive parallelism.

Because the MPP is a one-of-a-kind system and is not a commercial product supported by the field engineering wing of the manufacturer's organization, NASA has assumed responsibility for providing all spare printed circuit boards, spare component parts, diagnostic software, and an onsite maintenance engineer. Spares exist for only 11% of the printed circuit board assemblies so hardware failures must often be traced to the failed component while users wait. This situation has proved workable, though ocassionally tenuous when several failures occur close together in time.

The MPP is being developed as a national resource around which will grow a diverse community of science and applications users requiring its unique parallel processing capabilities. Their work will help determine the practical computational limits of the MPP's parallel architecture. A Space Science and Applications Notice (AN) titled "Computational Investigations Utilizing the Massively Parallel Processor" was issued in December 1984. It announced an ongoing opportunity to carry out computational investigations exploiting the unique characteristics of the MPP. Despite the fact that no funding was offered, forty proposals were received. Their topics were spread almost evenly across the categories of signal and image processing, earth sciences, physics, and computer science. Those investigators whose proposals are accepted will form the first MPP working group. Their experiences and recommendations will play a large factor in motivating future enhancements to the current system and in justifying future NASA efforts in parallel processor development.
COMPUTER SCIENCE / DATA SYSTEMS
CODE 635
NASA/GSFC
JIM FISCHER
OVERV IEW
BACKGROUND AND STATUS
ARCHITECTURE AND PROGRAMMING
hardware reliability
APPLICATIONS - TODAY
development as a national resource
FOR PARALLEL ALGORITHM RESEARCH
BACKGROUND
THE MPP IS A 2-DIMENSIONAL ARRAY CONSISTING OF 16,384
(128×128) SIMPLE PROCESSORS.
THE MPP IS THE RESULT OF A NASA R \& D PROGRAM TO DEVELOP
A HIGH SPEED IMAGE PROCESSING COMPUTER.
THE INITIAL CONCEPT AND DESIGN OF THE MPP WAS DEVELOPED
AT THE GODDARD SPACE FLIGHT CENTER.
gOODYEAR AEROSPACE CORPORATION DEVELOPED THE MPP SYSTEM
under contract.

Access to Supercomputers
via Hybrid LAX
Future network
PROGRAMMING THE MPP

-	USE ASSEMBLY LANGUAGE
-	USE HIGH LEVEL LANGUAGE
	PARALLEL PASCAL
$-\quad$	USE PRE-PACKAGED ROUTINES
	REQUEST VIA MENUS
$-\quad$ (ACTIVE AREA OF RESEARCH)	

FOR TIGHT CONTROL
OF HAROWARE
FOR TRANSPARENT USE
FOR BEST ALGORITHM
MAPPING TO HARDWARE
PARALLEL PASCAL (AN EXTENSION OF STANDARD PASCAL)

STATUS
WORKING
WORKING
WORKING
WORKING
WORKING
WORKING
WORKING
ADV DEBUG
ADV DEBUG
ADV DEBUG
INSTITUTION

- GSFC/630
GSFC/630/611
GSFC/630/USDA
GSFC/680/PENN ST
GSFC/630
GSFC/630
GSFC/630
GSFC/630
DOD/G00DYEAR
GSFC/630

AVOOL - SNOI LVOI 7dd ddW

Abstract

isOdata clustering alg SINGLE LAYER FLUID MODEL MAXIMUM LIKELIHOOD CLASSIFIER LARGE IMAGE ROTATION \& WARPING CONNECTED COMPONENTS LABELING TEXTURAL FEATURE EXTRACTION SIR-B SAR SIGNAL PROCESSING NUMBER FACTORING COMPUTATIONAL ENGINE RESEARCH

TYPE OF WORK

STATUS
DEBUG
DESIGN
DESIGN

INSTITUTION
GSFC/CORNELL
GSFC/CORNELL
GSFC/630
GSFC/611
GSFC/630
GSFC/GOODYEAR GSFC/GOODVAR
GSFC/681
GSFC/62ø

IMAGE DEBLURRING
HILLSLOPE HYDROLOGICAL MODEL
timing summary

u
un
n
a
$\begin{array}{lll}\text { 岂 } & \text { 岂 } & \sum \\ \infty & \underline{\Sigma} \\ \infty & \underline{\infty} & 1 \\ & & m\end{array}$

SXH ε
$\begin{array}{ccc}\text { w } & \text { w } & \text { w } \\ \text { 㜽 } \\ m & \text { 㜽 } & \text { m } \\ 1 & 1 & 1 \\ \sim & \sim & \sim\end{array}$

15 MIN

ISODATA CLUSTERING
MAXIMUM LIKELIHOOD
CLASSIFICATION
＇CLASSY＇CLUSTERING
$(128 \times 128$ ESTIMATE）
CONTEXTUAL CLASSIFIER
SYNTHETIC APERTURE RADAR
ISEASAT＇IMAGE GENERATION

ADVANCE STATE-OF-THE-ART
IN CONCURRENT PROCESSING
-IMAGE ANALYSIS \& INFORMATION EXTRACTION
-SIGNAL PROCESSING \& KALMAN FILTERING
-ATMOSPHERIC \& OCEANOGRAPHIC MODELING -BASIC PHYSICAL, MATHEMATICAL, \& COMPUTER
SCIENCES RESEARCH
A MATIMAMAL
RESOURCE
-DEMONSTRATE THE MPP'S UNIQUE SCIENTIFIC
APPLICATIONS CAPABILITIES
-FACILITATE RESEARCH PROJECTS THAT
ARE REASONABLE ONLY BY USING MPP
-EVALUATE THE MPP SYSTEM HARDWARE
\& SOFTWARE FOR GENERAL USER
AVAILABILITY

- RECOMMEND FUTURE ENHANCEMENTS
(SOFTWARE \& HARDWARE) NEEDED FOR
GENERAL SCIENTIFIC USE
COMPUTATIONAL INVESTIGATONS EXPLOITING THE
unIQue CHARACTERISTICS OF THE MPP
SIGNED DECEMBER 20.1984, BY DR. EDELSON
MORE THAN $2 \emptyset \emptyset 0$ DISTRIBUTED NATIONALLY
OVERVIEW OF PROPOSALS RECEIVED
40 PROPOSALS RECEIVED

$$
\begin{array}{ll}
\text { PRINCIPLE CATEGORIES: } & 7-\text { SIGNAL/IMAGE PROCESSING } \\
& 8-\text { EARTH SCIENCES } \\
10-\text { PHYSICS } \\
& 15-\text { COMPUTER SCIENCE }
\end{array}
$$

SIGNAL/IMAGE PROCESSING
MANGO
NRL
YIN
GSFC/682
KLINGLESMITH
GSFC/684
HEAP
GSFC/681
BUCY
USC
TILTON
GSFC/636
Synthetic Aperture Radar Processing Improvements
Reconstruction of Coded-Aperture X-Ray Images
Comet Halley Large-Scale image Analysis
Auto Detect and Classify galaxies on Deep-Sky Pictures
Fixed Point optimal Nonlinear Phase Demodulation
Use Spatial info for Accurate information extraction
EARTH SCIENCES

GHIL
UCLA
OZGA
USDA CARMICHAEL
IOWA
O'BRIEN CARMICHAEL
IOWA
O'BRIEN FLORIDA STATE WHIPPLE
UCSD

RAMAPRIYAN
GSFC/636 Auto Techniques to Detect Geological Fracture Patterns

Near-Real-Time Processing of Global Positioning
Magnetospheric Interactive Model Using Current Sheets
Compare W/Other Supercomputers for Landsat Data Proc
Kalman Filtering and Boolean Delay Equations
and

Numerical Modeling Wind-Driven Indian Ocean Circ.
 Tropospheric Trace Gas Modeling
 Troospheric Trace Gas Modeling

Satellite Data for Precision Orbit Determination
determination T
PHYS ICS

Particle Simulation of Plasmas	STOREY STANF ORD
Problems in Condensed Matter Physics and Chemistry	$\begin{aligned} & \text { SULLIVAN } \\ & \text { NBS } \end{aligned}$
Simulations of Beam Plasma Interactions	LIN SW RESEARCH INST
Dynamics of Collisionless Stellar Systems	WHITE SPACE TELESCOPE INST
Wave Scattering by Arbitrarily Shaped Targets	tobocman CASE WESTERN RES U
Adapting a Navier-Stokes Code	$\underset{\substack{\text { GROSCH } \\ \text { ICASE }}}{ }$
Free-Electron Laser Design Studies	VON LAVEN KMS FUSION
Numerical Calculations of Charged Particle Transport	EARL MARYLAND

COMPUTER SCIENCE

GRAPHICS APPLICATIONS
Simulate Applicative Programming Storage Architecture
Sorting and Signal Processing Algorithms
Stochastic and Reaction－diffusion Cellular Automata
FORTH，An Interactive Language for Controlling the mpp
Diagrammatic Information Processing in neural Arrays

[^0]SNOILVחO to SWヨISAS $\forall \forall \exists N 17$ ‘XヨาdWOJ to NOIINTOS
I
reasonable to perform
reduce future system size and cost

[^0]: Space Plasma Graphics Animation
 generate Topographic Maps from Spacecraft Imagery
 Animated Models of Space \＆Earth Sciences Data辟

