
The Master-Slave Paradigm with Heterogeneous Processors

Olivier Beaumont, Arnaud Legrand and Yves Robert
LIP, UMR CNRS–ENS Lyon–INRIA 5668

Ecole Normale Suprieure de Lyon
69364 Lyon Cedex 07, France

e-mail: Firstname.Lastname@ens-lyon.fr

Abstract

In this paper, we revisit the master-slave tasking
paradigm in the context of heterogeneous processors.
We assume that communications take place in exclusive
mode. We present a polynomial algorithm that gives the
optimal solution when a single communication is needed
before the execution of the tasks on the slave processors.
When communications are required both before and
after the task processing, we show that the problem is at
least as difficult as a problem whose complexity is open.
In this case, we present a guaranteed approximation
algorithm. Finally, we present asymptotically optimal
algorithms when communications are required before
the processing of each task, or both before and after the
processing of each task.

Key words: heterogeneous processors, master-
slave tasking, communication, matching, complexity.

1 Introduction

Master-slave tasking is a simple yet widely used tech-
nique to execute independent tasks under the centralized
supervision of a control processor. In the standard im-
plementation of master-slave, the tasks are executed by
identical processors (the slaves). We revisit the master-
slave paradigm in the framework of heterogeneous com-
puting resources: slave processors have different com-
putation speeds. We present several scenarios to model
the communication pattern between the master and the
slaves. In all cases, such communications will take place
in exclusive mode on a dedicated hardware resource
(such as a serial bus).

To give a single motivation, this framework applies
to any Monte Carlo simulation where large numbers
of identical and independent simulations are run for

different values of the random number generator seed.
Monte Carlo simulations are widely used in various ar-
eas such as cellular microphysiology [14], reactor simu-
lations [15] or protein conformations [13].

The rest of the paper is organized as follows. In Sec-
tion 2 we state four different variants of the master-slave
problem: (i) with communications only before the dis-
patching of the tasks, (ii) with communications both be-
fore and after the processing of the tasks, (iii) with com-
munication before each task processing and (iv) with
communication both before and after each task process-
ing. We give in Section 3 a polynomial time algorithm
that solves the first problem. The second problem seems
intrinsically more difficult and we prove in Section 4
that it is at least as difficult as a problem whose com-
plexity is open; we also prove a guaranteed approxima-
tion algorithm for the second problem in Section 4. We
present asymptotically optimal algorithms when com-
munications are required before each task (third prob-
lem) in Section 5, and when communications are re-
quired both before and after each task (fourth problem)
in Section 6. We briefly survey related work in Sec-
tion 7. Finally, we give some remarks and conclusions
in Section 8.

2 Problem statement

The target architectural platform is represented in
Figure 1. The master M and the p slaves P1; P2; : : : ; Pp
communicate through a shared medium, typically a bus,
that can be accessed only in exclusive mode. At a given
time-step, at most one processor can communicate with
the master, either to receive data from the master or to
send results back to the master.

We assume that there is a pool of independent tasks to
be processed by the p slaves. All tasks are of same-size,
i.e. they represent the same amount of processing. Tasks
are considered to be atomic (execution cannot be pre-
empted once initiated). Processors are heterogeneous;

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE

P1 P2 Pp

M

Figure 1. The target master-slave architec-
ture.

more precisely, slave Pi requires ti units of time to pro-
cess a single task. We say that ti is the “cycle-time” of
processor Pi. Each Pi will execute ci tasks (where ci is
to be determined) from the pool. Regardless of the hy-
potheses concerning communication costs, there are two
(related) optimization problems:

MinTime(C) Given a total number of tasks C, deter-
mine the best allocation of tasks to slaves, i.e. the
allocation C = fc1; c2; : : : ; cpg s.t.

Pp
i=1 ci = C

and which minimizes the total execution time.

MaxTasks(T) Given a time bound T , determine the
best allocation of tasks to slaves, i.e. the alloca-
tion C = fc1; c2; : : : ; cpg s.t. all processors com-
plete their execution within T units of time andPp

i=1 ci = C is maximized.

In the paper, we concentrate on solving the second
problem MaxTasks(T). Given the solution to this prob-
lem, we find a solution to MinTime(C) by using binary
search on T , calling MaxTasks(T) several times, and re-
turning the smallest value of T for which the answer is
at least C.

We now state some specific hypotheses for the com-
munication costs. For each modeling of these com-
munication costs, we analytically formulate the Max-
Tasks(T) problem.

2.1 Without any communication cost

Assume first that there is no communication cost at
all. It is not difficult to solve both previous problems us-
ing a greedy algorithm. The solution of problem Max-

Tasks(T) is straightforward: we let ci =
j
T
ti

k
for all i,

1 � i � p, which obviously defines the optimal solu-
tion.

2.2 With an initial scattering of data

The formulation of this problem is taken from An-
donie et al. [1], who study the implementation of dis-

tributed backpropagation neural networks on hetero-
geneous networks of workstations, using the PVM li-
brary [7]. The training of the neural network is divided
into computational phases. At each phase, the train-
ing pattern is distributed among the slaves, which are
different-speed processors. Before executing any task,
each slave must receive some data file from the master
processor. Because the communication medium is ex-
clusive, it it not relevant to distinguish whether the data
file is the same for all slaves (then the master executes a
broadcast operation) or whether it is different (then the
master executes a scatter operation): we only assume
that each slave must receive the same amount of data,
and that each reception costs tcom units of time. In the
model of Andonie et al. [1], there is no communication
cost paid to send the results back to the master. In gen-
eral, when the slaves compute “yes/no” results, the cost
of returning the results may well be neglected in front
of the cost of the initial scatter and/or of the computa-
tions. Note that we deal with another model, including
communication costs both before and after the tasks, in
Section 2.3.

Due to the constraint on the communication medium,
the p messages will be sent one after the other. Obvi-
ously, it cannot hurt to send the messages as soon as
possible, i.e. at time steps 0, tcom, 2tcom, . . . , (p�1)tcom.
The problem is then to determine the ordering of the p
messages, i.e. the permutation � of f1; 2; : : : ; pg such
that slave Pi receives the message at time �(i)tcom. We
are ready to state the optimization problem analytically:

MaxTasks1(T) Given a time bound T , determine the
best allocation of tasks to slaves, i.e. a permutation �
and an allocation C = fc1; c2; : : : ; cpg s.t. all processors
complete their execution within T units of time and the
total number of tasks is maximized:

max

pX
i=1

ci j � ; 8i 2 [1; p] : �(i)tcom + citi � T

!

2.3 With initial and final communications

As pointed out above, it is natural to assume that after
the processing of their tasks, slave processors will send
some data back to the master. Because this message may
well have a different size than the message initially sent
by the master, we model this situation by using two com-
munication costs, t1com for the messages sent by the mas-
ter to the slaves, and t2com for the messages sent by the
slaves to the master.

As above, we look for a permutation �1 which deter-
mines the ordering of the initial messages from the host:
the host sends data to slave Pi at time �1(i)t

1
com. But

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE

we also look for a second permutation �2 which deter-
mines the ordering of the final messages sent back to the
host: given a time bound T , slave Pi sends data back
to the host at time T � �2(i)t

2
com. This formulation is

without any loss of generality: some slave processor Pi
might send its message earlier than this bound, but we
can always shift the communication pattern as stated,
i.e. delay some messages. We are ready to state the op-
timization problem analytically:

MaxTasks2(T) Given a time bound T , determine the
best allocation of tasks to slaves, i.e. two permutations
�1 and �2, and an allocation C = fc1; c2; : : : ; cpg s.t.
all processors complete their execution within T units
of time and the total number of tasks is maximized:

max
� pX
i=1

ci j �1; �2; 8i 2 [1; p] :

�1(i)t
1
com + citi + �2(i)t

2
com � T

�
2.4 With communications before each task

processing

We also consider the case when communications are
required between the master and the slave before the
processing of each task. In this third model, we con-
sider that the cost of such a communication is tcom. This
model is quite natural: some specific input data may well
have to be propagated from the master to the slave be-
fore computation can start.

We look for three functions fstartcomm; fstartcomp and
fproc: fstartcomm(i) represents the time-step at which the
communication required by task iwill begin; fstartcomp(i)
represents the time-step at which the processing of
task i will begin on processor fproc(i). The functions
fstartcomm; fstartcomp and fproc must fulfill the following
conditions:

� 8i � 1; fstartcomm(i + 1) � fstartcomm(i) � tcom,
which states that communications take place in ex-
clusive mode.

� 8i � i; fstartcomp(i) � fstartcomm(i) + tcom, which
states that the processing of task i cannot start be-
fore the end of the communication required by task
i.

� 81 � i < j; if fproc(i) = fproc(j) = k; then
fstartcomp(j) � fstartcomp(i) + tk, which states that
tasks are processed sequentially on each processor
k.

� 81 � i < j; if fproc(i) = fproc(j) = k, then

[fstartcomm(j); fstartcomm(j) + tcom] \

[fstartcomp(i); fstartcomp(i) + tk] = ;;

which states that communications and computa-
tions cannot be overlapped on processor k.

This formulation is quite general. Note that each pro-
cessor can perform several communications before pro-
cessing the corresponding tasks. We are ready to state
the optimization problem analytically:

MaxTasks3(T) Given a time bound T , determine the
best allocation of tasks to slaves, i.e. three functions
fstartcomm, fstartcomp and fproc satisfying all the conditions
stated above, s.t. all processors complete their execution
within T units of time and the total number of tasks is
maximized:

max
�
N j 8i � N; fstartcomp(i) + tfproc(i) � T

�
2.5 With communications both before and af-

ter each task processing

It is natural to assume that after the processing of
each task, slave processors will send some data back to
the master. As previously, we model this situation by
using two different communication costs, t1com for the
messages sent by the master to the slaves, and t2com for
the messages sent by the slaves to the master.

We look for four functions
f1startcomm; f2startcomm; fstartcomp and fproc: f1startcomm(i)
represents the time-step at which the communication
from the host required before task i will begin (just
as fstartcomm(i) in the previous section); similarly,
f2startcomm(i) represents the time-step at which the
communication back to the host after task i will begin;
finally, fstartcomp and fproc(i) are defined as before:
fstartcomp(i) represents the time-step at which the pro-
cessing of task i will begin on processor fproc(i). The
functions f1startcomm, f2startcomm, fstartcomp and fproc have to
fulfill the following conditions:

� 8i � 1; 8j � 1; 8(k; l) 2 f1; 2g; if k 6= l or i 6=
j then

[fkstartcomm(i); f
k
startcomm(i) + tkcom] \

[f lstartcomm(j); f
l
startcomm(j) + tjcom] = ;;

which states that communications take place in ex-
clusive mode.

� 8i � 1; fstartcomp(i) � fstartcomm(i) + t1com, which
states that the processing of task i cannot start be-
fore the end of the communication from the host
required by task i.

� 8i � 1; fstartcomp(i)+tfproc(i) � f2startcomm(i), which
states that the communication back to the host re-
quired after task i cannot start before the end of the
processing of task i.

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE

� 81 � i < j; if fproc(i) = fproc(j) = k;
fstartcomp(j) � fstartcomp(i) + tk, which states that
tasks are processed sequentially on each processor
k.

� 81 � i < j; if fproc(i) = fproc(j) = k; then

[f1startcomm(j); f
1
startcomm(j) + tcom] \

[fstartcomp(i); fstartcomp(i) + tk] = ; and

[f2startcomm(i); f
2
startcomm(i) + tcom] \

[fstartcomp(j); fstartcomp(j) + tk] = ;;

which states that communications and computa-
tions cannot be overlapped on processor k.

Again, this formulation is quite general. Note that
each processor can perform several communications
from the host before processing the corresponding tasks,
as well as delaying several communications back to the
host. We are ready to state the optimization problem an-
alytically:

MaxTasks4(T) Given a time bound T , determine the
best allocation of tasks to slaves, i.e. four functions
f1startcomm, f2startcomm, fstartcomp and fproc satisfying all the
conditions stated above, s.t. all processors complete
their execution within T units of time and the total num-
ber of tasks is maximized:

max
�
N j 8i � N; f2startcomm(i) + t2com � T

�
3 Solution with an initial scattering of data

3.1 Restricted search

To (partially) solve the MaxTasks1(T) problem of
Section 2.2, Andonie et al. [1] restrict the search to al-
locations where the fastest processors start computing
first. They use a dynamic programming algorithm to
solve the optimization problem MinTime(C). With our
setting for problem MaxTasks1(T), this amount to sort
the cycle-times as t1 � t2 � : : : � tp and to let �(i) = i
for 1 � i � p. The intuition is that fastest processors
execute tasks more rapidly than the others, hence they
should work longer.

However, the intuition is misleading in some cases.
Assume for instance two slave processors (p = 2) with
t1 = 5 and t2 = 9 and let tcom = 1. For the time bound
T = 28, it is better to start the slow processor P2 first:
P2 can then execute three tasks: tcom + 3t2 = 28 � T ;
the fast processor, although started at time-step 2tcom =
2, can execute five tasks: 2tcom + 5t1 = 27 � T . If we
start the fast processor first, it cannot execute more than
5 tasks, while the second processor can execute only 2.

P2

P1

Pn Sn

S2

S1

Figure 2. Bipartite graph for MaxTasks1(T).

3.2 Matching techniques

The optimal solution to the MaxTasks1(T) problem
can be found using a weighted-matching algorithm. The
idea is to draw a complete bipartite graph with 2p ver-
tices, as shown in Figure 2. Vertices on the left represent
processors, while vertices on the right represent possible
values for the permutation �. The edge from vertex Pi
to vertex Sj is weighted with the maximum number of

tasks that Pi can execute if �(i) = j, namely
j
T�jtcom

ti

k
.

Extracting a matching from the graph enables to assign a
different value of � for each processor, thereby guaran-
teeing that � is indeed a permutation. In fact, there is a
one-to-one correspondence between matchings and per-
mutations. Because the total weight of a given matching
is the total number of tasks that can be executed for the
corresponding choice of the permutation, our problem
reduces to finding the maximum weighted matching in
the bipartite graph. Efficient (polynomial) algorithms
exist to solve this problem, see [8, 16]. To conclude this
section, we formally state our result:

Proposition 1 The optimal solution to the Max-
Tasks1(T) problem with initial messages can be found
in time of order O(p3) with p processors using the above
weighted-matching algorithm.

4 Solution with initial and final communi-
cations

The solution to the MaxTasks2(T) problem with ini-
tial and final messages turns out to be surprisingly dif-
ficult. In fact, we do not know of any polynomial algo-
rithm for the general case. We present an efficient guar-
anteed approximation using matching techniques, as ex-

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE

plained in Section 4.1. In Section 4.2, we give some
remarks about the complexity of MaxTasks2(T).

4.1 Matching techniques

F1

F2

Fp

P1

P2

Pp

S1

S2

Sp

Figure 3. Bipartite graph with initial and
final communications.

To take both permutations �1 and �2 into account, we
build a bipartite graph G = (V;E) with 3p vertices (i.e.
jV j = 3p), as shown Figure 3. The p leftmost vertices
Fi correspond to the first permutation �1, the p center
vertices Pi correspond to processors, and the p right-
most vertices Si correspond to the second permutation
�2. Rather than a matching, we extract a 2-factor from
the graph [8, 16]: more precisely, we select a subset E0

of 2p edges so that in the graph G = (V;E0) each ver-
tex Fi or Si is exactly of degree 1, and each vertex Pi
is exactly of degree 2. The complexity of extracting 2-
factor from the graph with 3p vertices is of order O(p3)
again, since we can solve independently the maximum
weighted matching in both bipartite graphs with 2p ver-
tices (on the left-hand size and on the right-hand size in
Figure 3) in time of order O(p3).

The problem is that edge weights cannot be deter-
mined fully accurately; the inequality �1(i)t1com + citi+
�2(i)t

2
com � T translates into

ci �

�
T � �1(i)t

1
com � �2(i)t

2
com

ti

�
;

and we need to know both �1(i) and �2(i) to compute
ci. Instead, we use the approximation�

T=2� �1(i)t
1
com

ti

�
+

�
T=2� �2(i)t

2
com

ti

�
:

This approximation enables us to weight the edges
as follows: the edge between Fj and Pi is weighted

as
j
T=2�jt1com

ti

k
while the edge between Pi and Sk is

weighted as
j
T=2�kt2com

ti

k
.

Theorem 1 The previous approximation leads to tasks
allocations that differs at most by p from the optimal
solution.

The proof of this theorem is detailed in [3].

4.2 Some remarks about the complexity of
MaxTasks2(T)

We have not found any polynomial algorithm for the
general case, and we have not been able to prove the
NP-completeness of MaxTasks2(T). Nevertheless, we
can formulate a few remarks about the intrinsic diffi-
culty of MaxTasks2(T). First, an exhaustive search of
all possible permutations would have a complexity of
order O((p!)2), which is impossible in practice as soon
as p � 9. Moreover, the problem seems to be diffi-
cult even for very simple instances of MaxTasks2(T),
as shown in [3]. Indeed, let us consider the following
open (polynomial vs. NP-complete) problem in combi-
natorial optimization (see [10]):

Permutation Sums:
Instance: Let a1 � a2 � : : : � ap be p positive inte-
gers satisfying

Pp
i=1 ai = p(p+ 1).

Question: Do there exist two permutations �1 and �2
of f1; 2; : : : ; ng such that

8i 2 [1; p] : �1(i) + �2(i) = ai:

In [3], it is shown that if Permutation Sums is
proved to be NP-complete then MaxTasks2(T) is also
NP-complete and if MaxTasks2(T) can be solved in
polynomial time, then it proves that Permutation Sums
can also be solved in polynomial time. Thus, we can
expect that the general instance of MaxTasks2(T) is in-
trinsically difficult.

5 Solution with communications before
each task

In this section, we present an asymptotically optimal
algorithm for MaxTasks3(T): when T becomes large,
the ratio of the number of tasks processed by this algo-
rithm over the number of tasks executed by the optimal
solution tends to one.

5.1 Theoretical bounds

In order to prove the asymptotic optimality of our al-
gorithm, we need to determine the optimal number of
tasks that can be performed if the cost of a communi-
cation between the master and the slave is tcom and the
cycle times of slaves processors are t1 � t2 � : : : �
tp. Consider a valid communication and computation
scheme, i.e. three functions fstartcomm, fstartcomp and fproc

satisfying the conditions given in Section 2.4. Let T be
the time bound and let N denote the maximal number of

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE

P4

processors

P3

P2

P1

time

4 7 10 120 16 19 23

Figure 4. Example when
Pp

i=1
tcom

tcom+ti
� 1.

tasks that can be processed within T units of time:

N = maxfn; 8i � n; fstartcomp(i) + Tfproc(i) � Tg:

In order to determine the optimal number of tasks
that can be performed during T time steps, we need
to distinguish two different cases, according to the
value of

Pp
i=1

tcom
tcom+ti

. Indeed, it turns out that the
communication network is not the limiting resource ifPp

i=1
tcom

tcom+ti
� 1, but it becomes the limiting resource

otherwise.

5.2 Solution of MaxTasks3(T) if
Pp

i=1
tcom

tcom+ti
� 1

To solve MaxTasks3(T), we propose an algorithm
that consists in determining a pattern for communica-
tions and computations, that will be reproduced period-
ically throughout the execution. Let �i = tcom + ti, for
1 � i � p, denote the overall cost of the processing of
a task on slave Pi, since we cannot overlap communi-
cations and computations. Let T pattern be the least com-
mon multiple of these p values �i: T pattern determines the
length of the pattern. Let �pattern

i = T pattern

�i
be the number

of tasks processed by processor Pi during the execution
of the pattern. To formally build the pattern, we need
some complicated notations. First we define time-steps
and processors within the pattern, using three new func-
tions f pattern

startcomm, f pattern
startcomp and f pattern

proc which we define as
follows (initially �pattern

0 = 0):
Determine which processor executes task number i:

81 � i �

pX
k=1

�pattern
k :

f pattern
proc (i) = min

(
j j i >

j�1X
k=0

�pattern
k

)
:

Determine the beginning of the communication and
of the computation for task number i:
f pattern

startcomm(i) = 1 +
Pj�1

k=0 �
pattern
k (tcom + tk)+

(i� 1�
Pj�1

k=0 �
pattern
k)tcom;

f
pattern
startcomp(i) = 1 +

Pj
k=0 �

pattern
k tcom +

Pj�1
k=0 �

pattern
k tk

+ (i� 1�
Pj�1

k=0 �
pattern
k)tj :

We are now able to define the functions
fstartcomm(n); fstartcomp(n) and fproc(n) correspond-
ing to our algorithm and easily check that these
functions satisfy all the conditions stated in Section 2.4.

5.3 Solution of MaxTasks3(T) if
Pp

i=1
tcom

tcom+ti
> 1

To solve MaxTasks3(T) when
Pp

i=1
tcom

tcom+ti
> 1, we

slightly modify the algorithm proposed in previous sec-
tion. Indeed, in this case, the network is the limiting
resource. The algorithm consists in determining a com-
munication and computation pattern so that the commu-
nication network is always in use. Some slower proces-
sors will be kept idle at some periods, or even will never
be used.

First of all we sort the cycle-times of the slave pro-
cessors and assume that t1 � t2 � ::: � tp. Let �i be
defined as previously and let

pmax = max

(
k j

kX
i=1

tcom

tcom + ti
� 1

)
:

pmax is the index of the last processor whose computa-
tion power will be fully used in the pattern.

Let T pattern be the least common multiple of tcom and
of the �i, 1 � i � pmax. Moreover, define �pattern

i as
follows:

8 1 � i � pmax; �pattern
i =

T pattern

�i
;

�
pattern
pmax+1

=
T pattern � tcom

Ppmax

i=1 �pattern
i

tcom

and let

�pattern
i = 0; 8 i > pmax + 1:

We see that processor number pmax+1 is not used fully,
while following processors are not used at all.

With these notations, we define f pattern
startcomm, f pattern

startcomp

and f pattern
proc as in the previous section. Again, the only

difference is that slaves Pi, i > pmax + 1 are kept idle
all the time, while slave Ppmax+1 is kept idle during the
last

�
T pattern � �pattern

pmax+1
�pmax+1

�
time steps.

We extend the definition of f pattern
startcomm; f

pattern
startcomp and

f pattern
proc to fstartcomm; fstartcomp and fproc exactly as be-

fore. Again, one can easily check that the functions
fstartcomm; fstartcomp and fproc satisfy all the conditions
stated in Section 2.4.

The following theorem states the asymptotic opti-
mally of the algorithms defined in Section 5.2 and 5.3.

Theorem 2 Let Nopt(T) be the optimal number of tasks
that can be executed within T time-steps. Let N(T) be

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE

processors

P1

time

P3

P4

P2

P5

0

idle

idle

95 1108060503520 120

Figure 5. Example when
Pp

i=1
tcom

tcom+ti
> 1.

the number of tasks executed by the algorithm of Sec-
tion 5.2 if

Pp
i=1

tcom
tcom+ti

� 1, and by the algorithm of

Section 5.3 if
Pp

i=1
tcom

tcom+ti
> 1. Then

lim
T!1

N(T)

Nopt(T)
= 1:

More details on the algorithm and on the proof of this
theorem can be found in [3].

6 Solution with communications both be-
fore and after each task

In this section, we present an asymptotically opti-
mal algorithm for MaxTasks4(T). The algorithm is very
similar to the one presented in Section5, so we only out-
line the sketch of the algorithm, and describe it through
an example, without detailing the proofs.

As previously, we define a pattern for communica-
tions and computations, that will be reproduced periodi-
cally. The pattern consists in two main phases:

� The first phase consists in both backward and for-
ward communications between the master and the
slaves,

� The second phase consists in task processing by the
slaves.

Let t1com be the communication cost for the messages
from the master to the slaves, t2com the communication
cost for the messages from the slaves to the master, ti,
1 � i � p the cycle times of the slaves, and T the time
bound. Basically, the pattern of communications and
computations is the same as those defined in Section 5,
with tcom = t1com+t2com. Of course, the first pattern is not
executed entirely, since no backward communication is
required between the slaves and the master at the begin-
ning of the execution. Similarly, the processing of tasks
during the last pattern may be useless, since correspond-
ing backward messages from the slaves to the master
may well not have been completed.

Nevertheless, this does not impact the asymptotic op-
timality of this algorithm:

P4

processors

P3

P2

P1

time

0

Figure 6. Execution with the greedy algo-
rithm.

Theorem 3 Let Nopt(T) be the optimal number of tasks
that can be executed within T time-steps, and let N(T)
be the number of tasks executed by our algorithm. Then

lim
T!1

N(T)

Nopt(T)
= 1:

6.1 Comparison with a greedy algorithm

In this section, we compare the results obtained with
the algorithm presented in Sections 5.2 and 5.3 against
the results obtained with a greedy algorithm, which
works as follows: at each time step, if k slaves with re-
spective cycle times ti1 � ti2 � : : : � tik are waiting
for a communication from the master, and if the commu-
nication network is free during the next tcom time steps,
then a communication is performed between the master
and the fastest slave Pi1 . In Figure 6, we display the
solution obtained with tcom = 1 and p = 4 slave proces-
sors with t1 = 2, t2 = 3, t3 = 3 and t4 = 5. These
results are to be compared with those obtained by our
algorithm (here, we have

Pp
i=1

tcom
tcom+ti

= 1), and dis-
played in Figure 4.

The greedy algorithm also leads to a periodic alloca-
tion (the time period is 9); it is able to process 8 tasks
every 9 time steps but neither the computing ressources
nor the communication medium are saturated. Our al-
gorithm is able to process 12 tasks every 12 time steps,
thus leading to an improvement of order 9

8 .

7 Related work

To the best of our knowledge, the most related work
is presented in the paper of Andonie et al [1] which we
have already quoted in Section 3.

Several theoretical papers deal with complexity re-
sults for parallel machine problems with a server, estab-
lishing complexity (NP-completeness) results [9, 11, 5]
and providing guaranteed approximations [12]. Be-
fore processing, each job must be loaded on a machine,
which takes a certain setup time. All these setups have to
be done by a single server which can handle at most one

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE

job at a time. Our first problem (with initial messages
only) is a very special instance of this class of server
problems.

Our second problem (with initial and final messages)
is a special instance of the job-shop scheduling problem
(see problem SS18 in [6]) where each job consists of
only three tasks, the first and last of which having to be
executed by the two machines dedicated to communica-
tions. Because this instance is very specific, we do not
know its complexity (polynomial versus NP-complete).

Generally speaking, note that our four problems dif-
fer from those studied in the literature with a server and
start-up times in that (i) all tasks are identical and inde-
pendent, and (ii) communication times (the counterpart
of the set-up times) are identical too. The difficulty lies
solely in the heterogeneity of the computing resources.

8 Conclusion

In this paper, we have shown that deriving efficient
algorithms for the master-slave paradigm, in the frame-
work of heterogeneous computing resources and com-
munication links used in exclusive mode, turns out to
be surprisingly difficult. More precisely, we have de-
signed an optimal polynomial algorithm in the case of
an initial scattering of data and provided a guaranteed
polynomial approximation algorithm in the case of ini-
tial and final communications. We conjecture this last
problem to be intrinsically difficult even on (intuitively)
simple instances. Finally, we have presented asymptot-
ically optimal algorithms for the case where each task
processing must be preceded (and possibly followed) by
a communication from (back to) the master.

The different variants of the master-slave problem
that we have addressed in this paper seem quite repre-
sentative of a large class of regular problems that ex-
hibit a simple solution in the context of homogeneous
processors but turn out to raise several algorithmic diffi-
culties in the context of heterogeneous resources [2, 4].
Data decomposition, scheduling heuristics, load balanc-
ing, were known to be hard problems in the context of
classical parallel architectures. They become extremely
difficult in the context of heterogeneous clusters, not to
speak about metacomputing platforms.

References

[1] R. Andonie, A. Chronopoulos, D. Grosu, and
H. Galmeanu. Distributed backpropagation neural net-
works on a PVM heterogeneous system. In Paral-
lel and Distributed Computing and Systems Conference
(PDCS’98), pages 555–560. IASTED Press, 1998.

[2] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert.
Matrix-matrix multiplication on heterogeneous plat-

forms. In 2000 International Conference on Parallel
Processing (ICPP’2000). IEEE Computer Society Press,
2000.

[3] O. Beaumont, A. Legrand, and Y. Robert. The master-
slave paradigm with heterogeneous processors. Tech-
nical Report RR-2001-13, LIP, ENS Lyon, Mar. 2001.
Available at www.ens-lyon.fr/LIP/.

[4] P. Boulet, J. Dongarra, F. Rastello, Y. Robert, and
F. Vivien. Algorithmic issues on heterogeneous com-
puting platforms. Parallel Processing Letters, 9(2):197–
213, 1999.

[5] P. Brucker, C. Dhaenens-Flipo, S. Knust, S. Kravchenko,
and F. Werner. Complexity results for parallel machine
problems with a single server. Technical Report Reihe P,
No. 219, Fachbereich Mathematik Informatik, Universitt
Osnabrck, 2000.

[6] M. R. Garey and D. S. Johnson. Computers and In-
tractability, a Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, 1991.

[7] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM Parallel Virtual
Machine: A Users’Guide and Tutorial for Networked
Parallel Computing. The MIT Press, 1996.

[8] M. Gondran and M. Minoux. Graphs and Algorithms.
John Wiley & Sons, 1984.

[9] N. Hall, C. Potts, and C. Sriskandarajah. Parallel ma-
chine scheduling with a common server. Discrete Ap-
plied Mathematics, 102:223–243, 2000.

[10] S. Hedetniemi. Open Problems in Combinato-
rial Optimization. World Wide Web document,
URL: http://www.cs.clemson.edu/˜hedet/
algorithms.html.

[11] S. Kravchenko and F. Werner. Parallel machine schedul-
ing problems with a single server. Mathematical Com-
putational Modelling, 26:1–11, 1997.

[12] H. Lee and M. Guignard. A hybrid bounding procedure
for the workload allocation problem on parallel unre-
lated machines with setups. Journal of the Operational
Research Society, 47:1247–1261, 1996.

[13] K. Soman, R. Fraczkiewicz, C. Mumenthaler, B. von
Freyberg, and T. S. W. Braun. FANTOM - (Fast Newton
- Raphson Torsion Angle Minimizer). World Wide Web
document, URL: http://www.scsb.utmb.edu/
fantom/fm_home.html. a program for ”the calcu-
lation of conformations of linear and cyclic polypeptides
and proteins with low conformational energies includ-
ing distance and dihedral angle constraints from nuclear
magnetic resonance experiments or for modeling pur-
poses.”.

[14] J. Stiles, T. Bartol, M. Salpeter, and M. Salpeter. Monte
Carlo simulation of neuromuscular transmitter release
using MCell, a general simulator of cellular physiologi-
cal processes. Computational Neuroscience, pages 279–
284, 1998.

[15] J. Watts and S. Taylor. A practical approach to dynamic
load balancing. IEEE Transactions on Parallel and Dis-
tributed Systems, 9(3):235–248, 1998.

[16] D. West. Introduction to Graph Theory. Prentice Hall,
1996.

Proceedings of the 2001 IEEE International Conference on Cluster Computing (CLUSTER�01)
0-7695-1116-3/02 $17.00 © 2002 � IEEE

