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The mastermind approach to CNS drug therapy:
translational prediction of human brain
distribution, target site kinetics, and therapeutic
effects
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Abstract

Despite enormous advances in CNS research, CNS disorders remain the world’s leading cause of disability. This

accounts for more hospitalizations and prolonged care than almost all other diseases combined, and indicates a

high unmet need for good CNS drugs and drug therapies.

Following dosing, not only the chemical properties of the drug and blood–brain barrier (BBB) transport, but also

many other processes will ultimately determine brain target site kinetics and consequently the CNS effects. The rate

and extent of all these processes are regulated dynamically, and thus condition dependent. Therefore,

heterogenious conditions such as species, gender, genetic background, tissue, age, diet, disease, drug treatment

etc., result in considerable inter-individual and intra-individual variation, often encountered in CNS drug therapy.

For effective therapy, drugs should access the CNS “at the right place, at the right time, and at the right

concentration”. To improve CNS therapies and drug development, details of inter-species and inter-condition

variations are needed to enable target site pharmacokinetics and associated CNS effects to be translated between

species and between disease states. Specifically, such studies need to include information about unbound drug

concentrations which drive the effects. To date the only technique that can obtain unbound drug concentrations in

brain is microdialysis. This (minimally) invasive technique cannot be readily applied to humans, and we need to rely

on translational approaches to predict human brain distribution, target site kinetics, and therapeutic effects of CNS

drugs.

In this review the term “Mastermind approach” is introduced, for strategic and systematic CNS drug research using

advanced preclinical experimental designs and mathematical modeling. In this way, knowledge can be obtained

about the contributions and variability of individual processes on the causal path between drug dosing and CNS

effect in animals that can be translated to the human situation. On the basis of a few advanced preclinical

microdialysis based investigations it will be shown that the “Mastermind approach” has a high potential for the

prediction of human CNS drug effects.
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Introduction
Central nervous system (CNS) disorders are currently

estimated to affect hundreds of millions of people world-

wide [1]. While established treatments are currently

available for most CNS disorders, significant unmet med-

ical needs still remain. This is partly because currently

available drugs merely treat symptoms rather than cure

the disease, and may also elicit unwanted side effects.

The attrition rate in CNS drug development is high and

there is a need for revised approaches to improve CNS

drug development and therapies.

It is often thought that the blood–brain barrier (BBB)

hampers the adequate distribution of CNS drugs into

the brain resulting in a lack of effects [2-4]. However,

this cannot be the sole reason because other factors be-

sides BBB transport determine the concentration-time

profile (pharmacokinetics, PK) of the unbound drug at

the brain target site [5]. Other important factors are

plasma pharmacokinetics, plasma protein binding, cere-

bral blood flow, effective brain capillary surface area,

blood-cerebrospinal fluid-barrier (BCSFB) transport,

intracerebral distribution, CSF turnover, extracellular fluid

(ECF) bulk flow, extra-intracellular exchange, brain tissue

binding, and drug metabolism [5]. These factors are con-

trolled by many processes, each of which has a specific in-

fluence [6], thereby playing a more or less important role

in delivering the CNS drug to the right place, at the right

time, and at the right concentration.

Apart from the multiple processes on the causal path be-

tween drug dosing and response, inter- and intra-individual

variability in the contribution of each process to the ultim-

ate CNS effect (pharmacodynamics, PD) need to be identi-

fied. This variability is caused by dissimilarities in genetic

background, species, tissue, age, diet, disease, and drug

treatment (heterogeneity) and associated differences in rate

and extent of the individual processes on the causal chain

between drug dosing and CNS effects. This explains why

the same dose in different conditions may result in different

CNS effects.

Investigations of the PK-PD relationship of a CNS drug

should therefore be designed such that the contribution of

a particular process is identified (for example by systematic-

ally influencing the process), and that information is

obtained on time-dependency and on the unbound plasma

and target tissue drug concentrations that drive the effect.

To that end, advanced mathematical modeling is a pre-

requisite to learn about the contributions of individual

processes in drug PK-PD relationships. This approach is

here introduced as the “Mastermind approach”.

Noninvasive imaging techniques like positron emission

tomography (PET), nuclear magnetic resonance (NMR) or

(functional) magnetic resonance imaging ((f)MRI) are

powerful methods to obtain information on transporter

functionality [7,8], and target occupation [9,10]. These

techniques may improve understanding of the influence of

drug action on brain functionality in health and disease

[11,12]. However, additional information is also needed

about the unbound drug concentrations in the brain. In

humans, at best, cerebrospinal fluid (CSF) concentrations

can be obtained as a surrogate for brain target site

concentrations [13-16], but the value of this surrogate is

questionable [17]. To date, brain microdialysis is the only

technique to obtain quantitative and time-resolution data

on unbound extracellular drug concentrations in the

brain (brain ECF) [18]. Although minimally invasive,

microdialysis is a technique that can be applied in human

brain only under highly restricted conditions [18-20]. Thus,

we should pursue preclinical studies to learn about CNS

target site distribution of drugs. This review will discuss the

physiological factors involved in brain distribution and

CNS effects, and the variability in these factors caused by

heterogeneity. Furthermore it will provide examples of

Mastermind approaches using microdialysis for quantitative

assessment of 1) intracerebral distribution for drugs with

different physico-chemical properties, 2) preclinical CNS

target site concentrations following different routes of ad-

ministration, 3) prediction of human CNS target site

concentrations and CNS effects.

Physiological factors in intracerebral distribution, drug

target site kinetics, and CNS drug effects

The anatomy of the CNS is complex and can grossly be

divided into four main compartments [21-25]: the brain

extracellular fluid (brain ECF) compartment, brain intra-

cellular compartment, and the ventricular and lumbar

CSF compartments. Transport of drugs into, within and

out of the brain is governed by the blood–brain barriers,

the anatomy of the brain parenchyma and fluid spaces,

physiological processes, and drug-specific properties

[26-32]. In combination, they determine the concentrations

of a drug within a specific region of the CNS, including the

unbound concentration at the target site that drives the ef-

fect (Figure 1). The players in drug exchange are briefly

presented here.

Unbound concentrations in plasma

Only the unbound (free) drug is able to pass through

membranes, and it is the unbound concentration in plasma

that drives transport into the brain. Then, the unbound con-

centration at the CNS target site drives the interaction with

the target and therewith the CNS effect (unbound drug

hypothesis) [33-35]. In specific cases when the brain acts as

a sink, total plasma concentrations may be relevant. Also, if

a BBB transporter affinity and capacity is significantly larger

than that for plasma proteins, “stripping” occurs and clear-

ance can be based on the total plasma concentration.

Unbound drug concentration is crucial for our

understanding of drug transport and target interaction
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[36]. Often, the “unbound fraction” and “unbound con-

centration” are used interchangeably which leads to

confusion: the “unbound fraction” is calculated from

the ratio of unbound to total concentration [37-39].

So, it is the unbound concentration profile (kinetics)

of the drug that should ultimately be taken into ac-

count to understand drug effects.

Transport across the brain barriers

The blood–brain barrier (BBB) and the blood-CSF-bar-

rier (BCSFB) govern drug transfer into and out of the

brain [40-44]. These barriers are comparable in many

ways, but also have their specific characteristics [45-47].

The BBB consists of cerebrovascular endothelial cells

while the BCSFB consists of choroid plexus epithelial
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Figure 1 Schematic presentation of the major compartments of the mammalian brain and routes for drug exchange; extracellular fluid

(ECF), brain cells, lateral ventricular CSF, cisterna magna CSF and lumbar CSF, passive transport (black arrows) and active transport

(white arrows), as well as metabolism and CSF turnover. Drug targets may be present at different sites within the brain.
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Figure 2 Factors affecting the pharmacokinetics and pharmacodynamics of a drug. The effects of a drug are determined on one hand by

its physico-chemical/molecular characteristics and on the other hand by the properties of the biological systems involved.
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cells. Together with the BBB and BCSFB transport

characteristics and surface areas, the drug characteristics

(lipophilicity, size, shape, charge, affinity for a transporter

etc., Figure 2) determine the actual transport rate and ex-

tent. Recent investigations have indicated that the basal and

apical membranes of the BCSFB have extensive infoldings

and microvilli, respectively, suggesting that the BCSFB sur-

face area, maybe the same order of magnitude as for the

BBB [48].

There are a number of basic modes for compounds to

move across brain barrier membranes [5,49,50]:

� Simple diffusion is a passive process driven by the

concentration gradient, from high to low

concentrations. The rate of diffusion is proportional

to the concentration difference between

compartments of the diffusing molecule. At

equilibrium the concentration of the diffusing

molecules are equal at both sides of the membrane.

This mode of transport is size-dependent and

permeability limited [51]. For hydrophilic drugs, not

able to diffuse through lipophilic membranes,

movement through the space between neighbouring

barrier cells (paracellular transport) is restricted by

the presence of tight junctions. [28,50].

� Facilitated diffusion is also a passive process from

high to low concentrations but requires a helper

molecule [52-54]. The rate of diffusion is limited by

the availability of the helper molecules and at

equilibrium the concentration of the diffusing

molecules are equal on both sides of the membrane.

Once all the helper molecules are saturated,

increasing the concentration of diffusing molecules

will only increase a waiting line for the helper

molecules and will not increase rate of transport

further. Facilitated transport is subject to

competitive inhibition by substrate analogs and

contributes to transport at the BBB of substances

such as monocarboxyates, hexoses, amines, amino

acids, nucleosides, glutathione, and small peptides.

� Fluid phase (vesicular) transport [55,56] includes

bulk flow endocytosis (pinocytosis), adsorptive-

mediated endocytosis, and receptor-mediated

endocytosis [57,58]. Pinocytosis is the non-specific

uptake of extracellular fluids. It is temperature and

energy dependent, non-competitive, and non-

saturable. Under physiological conditions, it occurs

to a very limited degree in cerebral endothelial cells.

Adsorptive-mediated endocytosis involves

endocytosis in vesicles of charged substances by a

non-specific mechanism [59,60]. Receptor-mediated

transcytosis uses vesicles formed upon binding of

large macromolecules to specific receptors [61]. At

the BBB, transport of vesicles occurs only in

direction from blood to brain. Vesicles may be

subject to degradation within the cell, otherwise

they are able to deliver their content to the

abluminal side and into the brain.

� Active transport occurs by the action of membrane

transport proteins for which transported molecules

have a specific binding site. It requires energy and

can transport substrates against a concentration

gradient. Active transport is temperature sensitive

and can become saturated. It can also be influenced

by competitive and noncompetitive inhibitors and

by interference with transporter protein

phosphorylation by protein kinases. Transport

proteins may have an important impact on drug

development [62]. Transport systems [63] are

directional (influx and/or efflux), and serve to

maintain brain homeostasis for endogenous

compounds. However, in numerous cases drugs may

also be ligands for these transporters [64-70]. As a

consequence, efflux transporters at the BBB have

gained enormous attention over the last decade.

Their presence accounts for the fact that many

drugs, despite their lipophilic character favorable for

passive transport, have a relatively poor brain

distribution because they are substrates. The best

known efflux transporters are P-glycoprotein (P-gp,

or officially ABCB1 [71,72]), the multidrug

resistance-related proteins (MRP’s, or officially

ABCC’s [73]) and the breast cancer resistance

protein (BCRP, or officially ABCG2 [74]), which all

belong to the ABC transporter family [75].

Cerebral blood flow and effective capillary surface area

For drugs with high BBB permeation such that entry to

the brain via the BBB capillaries is rapid, cerebral blood

flow becomes rate-limiting. Cerebral blood flow can be

influenced by changes in linear flow rate or by changes

in the number of perfused capillaries. When the linear

velocity of blood flow is increased, influx of highly per-

meable drugs across the BBB will increase (and vice

versa), while BBB transport of slightly-to-virtually imper-

meable drugs will essentially be unchanged. Variations in

the total number of the perfused capillaries in the brain

(“effective perfusion”) will in theory affect BBB transport

of all drugs [76,77].

CSF turnover and ECF bulk flow

CSF is produced by the choroid plexus [78] in the

ventricles and leaves the CNS by re-absorption back into

blood via the arachnoid villi in the subarachnoid space.

CSF turnover [79] may reduce CSF drug concentrations

[80]. The slower the permeation of a drug into the CSF,

the more influence CSF turnover will have on the CSF

concentration relative to its plasma concentration. Also,
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because of the relatively slow rate of CSF turnover in rela-

tion to trans-capillary transport, brain ECF concentrations

will equilibrate more rapidly with plasma concentrations

than with CSF. Furthermore, there is bulk flow of extracel-

lular fluid into the CSF [42,81] that could counteract any

molecular diffusion that might occur from the CSF into

brain tissue through the ependymal linings of the ventricles

[82].

Extra-intracellular exchange and brain tissue binding

Drugs may have their preference for extracellular or

intracellular space, and may be subjected to nonspecific

binding to brain tissue components [83]. Drug distribu-

tion between brain cells and extracellular space does not

only occur by simple diffusion: active transport may also

occur at brain cell membranes [68,84]. Distribution be-

tween extra- and intracellular compartments is very im-

portant for exposure of unbound drug concentrations at

the target site (Figure 1) [85]. It can be seen that it is im-

portant to know the location of the target in order to

optimize concentration profiles and drug effects.

Drug metabolism

Brain distribution may also be influenced by metabolism of

the drug. This may occur at the level of the BBB and

BCSFB, serving as “enzymatic barriers” to drug influx

into brain, and also in the ependymal cells lining the

CSF ventricles potentially influencing intracerebral

distribution [86-89]. In brain blood vessels and

closely-surrounding cell types, enzymes like cytochrome

P450 haemoproteins, several cytochrome P450-dependent

monooxygenases, NADPH-cytochrome P450 reductase, ep-

oxide hydrolase, and also conjugating enzymes such as

UDP-glucuronosyltransferase and α-class glutathione S-

transferase have been detected. Several enzymes involved

in hepatic drug metabolism have been found in brain

microvessels and the choroid plexus. In the choroid

plexus, very high activities (similar to those in the liver)

have been found for UDP-glucuronosyltransferase and ep-

oxide hydrolase, and several cytochrome P450 isoenzymes

are also relatively high. Relatively high values of α and μ

classes of glutathione S-transferase and glutathione perox-

idase have been found in both the BBB and BCSFB.

Target interaction

The association and dissociation kinetics of a drug at the

target (target interaction) is another factor to be taken into

account for the relationship between drug concentration

and CNS effect. Such interaction is not always instantan-

eous. For example, the opioid buprenorphine has slow

kinetics for both receptor association and receptor dissoci-

ation. Such information was crucial to predict that rever-

sal of respiratory depression caused by opioids could be

achieved by the antagonist naloxone if naloxone is

administered as a continuous infusion [90].

Signal transduction and homeostatic processes

It is frequently assumed that pharmacological responses

depend solely on the extent of drug binding to its recep-

tor (occupational theory). However, when observing tol-

erance, sensitization, dependence, and abstinence, it is

clear that pharmacological responses in vivo can be

subjected to modulation by homeostatic mechanisms.

Thus, an integrative physiological approach is needed to

understand concentration-effect relationships [91].

Conclusion
Transport of drugs into the brain, within the brain and

to the brain target site, and the resulting CNS effect are

determined by many factors. Having information on just

one of these factors in isolation is insufficient to predict

target site distribution, let alone CNS drug effects.

Heterogeneity as a source of variability in brain

distribution and CNS effects

Heterogeneity

Mammals mostly share the same biological processes,

which form the basis for interspecies extrapolation in

drug development. However, problems arise with vari-

able rates and extents in the processes on the causal

path between drug administration and CNS effects.

Below, examples of the impact of heterogeneity are

addressed.

Genetic background

Genetic polymorphisms exist in the human MDR1 (P-gp)

gene and may have clinical consequences [92,93]. In the

clinical response to antidepressants, genetic factors in

particular, are considered to contribute to variability.

Variants affect the function of genes involved in both

drug concentrations and CNS effects. Genetic variants

affecting the metabolism of antidepressants may change

pharmacokinetic factors, polymorphisms can affect re-

ceptor function, while signal transduction molecules

may alter the pharmacodynamics [94]. A specific ex-

ample is the effect of nicotine on heart rate. As much

as 30% of the variance in the acceleration of heart rate

was due to additive genetic sources, as determined in a

study using a monozygotic and dizygotic twin popula-

tion [95].

Species differences

Species differences occur in P-gp functionalities, also at

the level of the BBB [7]. It was found that rhesus mon-

key P-gp is much closer to human P-gp than to beagle

dog P-gp [96]. Also, the effects of inhibitors on P-gp

functionality appear to be species dependent [97]. In vivo
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studies using PET imaging have also reported species

differences in P-gp functionality [7].

Effect of gender

Sex hormones all influence the function and pathophysi-

ology of the cerebral circulation [98]. Estrogen has nu-

merous effects on dopamine neurotransmission, and

because the incidence of Parkinson’s disease is lower in

women than in men its possible use to either slow the

progression or reduce the risk of Parkinson’s disease has

been considered [99]. In schizophrenic patients, gender

differences have been found in the pituitary secretion of

prolactin, growth hormone, and thyroid-stimulating hor-

mone in response to neuroleptic drug treatment [100].

Also, differences exist between female and male sensitiv-

ities to anesthesia and opioids [101].

Effect of age

Many studies indicate the importance of age in PK and/or

PD. Age seems to affect P-gp functionality at the BBB

[102], which may have consequences for brain efflux of

P-gp substrates. Some of the properties of glucocorticoid

receptors change with age [103]. Binding to the NMDA

binding site by L-glutamate and/or antagonists, decreases

with increasing age in the cerebral cortex and hippocam-

pus, regions that are important for memory processing

[104]. Important changes starting at mid-life in neuro-

anatomy, neurochemistry and endogenous pain inhibition

may be associated with alterations in pain sensitivity

[105]. Another example is impaired neurotransmission

that may be responsible for at least some of the behav-

ioral abnormalities associated with aging [106].

Effect of diet

Mulder et al. [107] have shown that the combination of

a high-fat diet and APOe4 knockout conditions in mice

resulted in a loss of BBB functionality. This leads to an

increase BBB permeability, resulting in increased IgG

staining and increased fluorescein distribution in the

brain. Also, red wine polyphenolic contents influence

Alzheimer’s disease-type neuropathology and cognitive

deterioration, in a component-specific manner [108].

Disease states

In the rat pilocarpine model of epilepsy, increased brain

concentration of the active metabolite of oxcarbazepine

was observed following seizures together with inhibition of

BBB efflux transport, but without changes in plasma

concentrations. This indicated that a distributional process

is changed at the level of the BBB in epileptic conditions

[109]. Changes in BBB permeability during electrically-

induced seizures in human have also been observed [110].

A change in P-gp expression at the BBB has been reported

in humans with the human immunodeficiency virus [111].

Tunblad et al. reported the impact of meningitis on mor-

phine distribution in piglet brain, indicating decreased BBB

functionality [112]. Also, after subcutaneous infusion of

rotenone in rats, changes in BBB permeability for fluores-

cein occur as a result of induced peripheral inflammation

but without any biomarkers for Parkinson’s disease [113].

In contrast, the unilateral brain infusion of rotenone did in-

duce biomarkers for Parkinson’s disease, but no changes

in BBB permeability for fluorescein and the large neu-

tral amino acid transporter-mediated BBB transport of

L-DOPA [114].

Drug treatment

Cleton et al. [115] found changes in the relationship be-

tween long-term treatment effects of midazolam and its

concentration-EEG effect which, however, were unre-

lated to changes in benzodiazepine receptor function.

Other examples are the alterations in striatal neuropep-

tide mRNA produced by repeated administration of

L-DOPA, ropinirole or bromocriptine which appeared to

correlate with dyskinesia induction in MPTP-treated

marmosets [116], the tolerance to diazepam after chronic

use [117], and the onset of hyperalgesia by opioid treatment

[118].

Heterogeneity results in variability

Heterogeneity in genetic background, species, gender,

tissue, age, diet, (pathologic) conditions, drug treatment,

are underlying the variability in rate and extent of indi-

vidual processes. This explains why the same dose in dif-

ferent subjects may result in different effects. It is

therefore surprising that, in most cases, the dose-effect

or at best the plasma-effect relationships continue to be

used for extrapolation.

Need for quantitative and integral [“mastermind”]

approaches

Heterogeneity

As has been shown, there are many factors that play a

role in the PK-PD relationships of CNS drugs. The rates

and extents of the multiple processes on the causal path

between drug dosing and CNS can be highly diverse.

Therefore, data obtained in a particular condition are

not necessarily predictive of that in another condition.

But, as living mammals mostly share the same biological

processes, knowledge of rate and extent of individual

processes provide the foundation for interspecies ex-

trapolation in drug development [119-122].

Translation from animal to human, the mastermind

approach

Because in the body (biological system) multiple processes

as are working concurrently, there is a need for integrated

in vivo experiments. This means that the experiments
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should obtain data on multiple processes as much as pos-

sible from the same subject, in a time-dependent and

quantitative manner. This also means that we have to ad-

dress heterogeneity of the rates and extents of physio-

logical processes on the causal path between drug

administration and CNS effects and have to use study

designs in which individual processes can be challenged.

This can be done, for example, by changing plasma pro-

tein binding [123,124], inhibition of a particular efflux

transporter [125], blocking particular receptors [126,127],

or by induction of a pathological state [113,128] and enab-

ling us to learn about the contribution of individual

processes in CNS target site kinetics [17] and dynamics

[129,130].

Here is the place to introduce the term “Mastermind

approach” as an allegory. In the game “Mastermind”

there are pins with different colors, and different positions

in which part of the colors can be positioned. By systemat-

ically and strategically varying the position and colors of the

pins the “code” can be ultimately deciphered. With each

colors representing a particular mechanism, the code

represents a particular PK-PD relationship. Of course, the

dose-effect relationship of CNS drugs includes many more

variables than the number of differently colored pins in the

Mastermind game, and this is the reason that we just can-

not interpret the data solely by “eye-ball analysis” and need

to use advanced mathematical modeling [30,31,129-132]. In

doing so, we need to make a strict distinction between the

properties of drugs and the properties of biological systems

to predict drug behavior under different conditions.

The physiologically-based pharmacokinetic (PBPK) mod-

eling approach has provided the basis for interspecies ex-

trapolation, has focused on quantitative modeling of mass

transport into and out of physiological compartments, and

has made highly significant contributions to knowledge of

systems and the fates of drugs [133]. It has not, however,

specifically taken into account the distinction between the

bound and unbound drug. With the introduction of the

microdialysis technique, information on unbound drug

concentrations has become available and is providing the

next step in physiologically-based modeling. Below, stud-

ies are presented that explicitly show the value of know-

ledge of unbound drug concentrations, as obtained by

intracerebral microdialysis.

Applications of the mastermind approach

Impact of drug properties on intracerebral distribution

For prediction of CNS drug action, it is important to

have information of unbound drug concentrations at its

CNS target site in humans. However, this is limited by

the inaccessibility of the human brain for sampling.

Moreover, it is often difficult to quantify human CNS

drug effects indicating that effects in humans should be

predicted by other approaches. As a surrogate for the

concentrations of unbound drug at target sites, CSF

concentrations are often used and considered appropri-

ate [16,83], however, a generally applicable relationship

between CSF and brain ECF concentrations is question-

able [5,15,17,134]. Therefore, it is of interest to investi-

gate the relationship between the two, for different

drugs and under different conditions, to discover what

general principles exist. In our laboratory such studies

were performed for acetaminophen [135] and quinidine

whose physico-chemical properties are shown in Table 1.

Experiments in rats were performed using intravenous

drug administration and concurrent sampling of blood

and collection of microdialysis fluid from probes located

in brain striatum ECF, lateral ventricle CSF, and cisterna

magna CSF (Figure 3).

� Acetaminophen:

For acetaminophen the resulting unbound concentration-

time profiles in plasma, brain ECF and CSF in lateral

ventricle and cisterna magna are presented in Figure 4

[135], and indicate rapid equilibration with plasma concen-

tration. However, brain ECF concentrations are on average

4-fold higher than CSF concentrations, with average brain-

to-plasma [AUC0-240] ratios of 1.2, 0.30 and 0.35 for brain

ECF, lateral ventricle CSF and cisterna magna CSF, respect-

ively. This shows that even for a compound with only pas-

sive transport into, within and out of the brain, differences

exist between brain ECF and the CSF pharmacokin-

etics. A physiologically-based pharmacokinetic model

was developed [135]. This model included the cen-

tral (plasma) and peripheral tissue compartments

and, for the brain, the brain intracellular space

(brain ICS), brain extracellular fluid (brain ECF), lat-

eral ventricle CSF, cisterna magna CSF and also sub-

arachnoid space CSF (CSF SAS) was included. The

latter is important with regard to prediction of lum-

bar CSF concentrations in human, as lumbar CSF is

part of the SAS CSF that can be distinctively different

from ventricular or cisterna magna CSF (as predicted for

acetaminophen by this model [135]). This physiologically-

based pharmacokinetic model was turned into a human

model, by replacing the rat physiological parameters by

those in human (Table 2). The resulting model was used

to predict plasma and CSF concentrations in human,

and the plasma and SAS CSF concentrations of acet-

aminophen predicted by the model could be compared

to actual data obtained in human by Bannwarth et al.

[137]. The model successfully predicted the available

human plasma and SAS CSF data (Figure 5). This gives

us confidence in the method for prediction of human

brain ECF concentrations, as best possible reflection of

target site concentrations.
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� Quinidine:

The same experimental setup was used for quinidine,

a paradigm lipophilic compound and P-gp substrate.

To investigate the specific contribution of P-gp-mediated

transport, quinidine was administered at two different

intravenous dosages, both with and without co-administration

of tariquidar as P-gp transport inhibitor [Westerhout J,

Smeets J, Danhof M, De Lange ECM: The impact of P-gp

functionality on non-steady state relationships between CSF

and brain extracellular fluid. J Pharmacokin Pharmacodyn,

submitted]. Figure 6 shows the resulting kinetics of un-

bound quinidine in plasma, brain ECF, lateral ventricle

CSF and cisterna magna CSF. Apart from the unexpected

finding that brain ECF concentrations of quinidine were

higher than the unbound quinidine concentrations in

plasma (indicating an active influx that has not been iden-

tified before), substantial lower concentrations in brain

ECF (striatum) compared to lateral ventricle and cisterna

magna CSF were found for both the 10 and 20 mg/kg dose

(Figure 6 a,b). Upon co-administration of tariquidar, plasma

concentrations remained similar, while brain concentrations

for all compartments were substantially increased. Interest-

ingly, now the brain ECF (striatum) concentrations were

higher than those in the CSF compartments (Figure 6 c,d).

These data clearly show that the relationship between brain

ECF and CSF concentrations is influenced by P-gp-mediated

transport. It underscores the importance for more

Table 1 Physico-chemical properties of acetaminophen and quinidine

Compound MW PSA logP logD
[7.4]

pKa1
[Acid]

pKa2
[Acid]

pKa1
[Base]

pKa1
[Base]

Ionized at physiological
pH

Substrate
for

Acetaminophen 151 49,3 0,25 0,23 10,2 0% [neutral] -

Quinidine 324 45,6 2,29 1,4 4,2 8 99.8% [positive] Pgp

MW=molecular weight, PSA = polar surface area, Log P =measure of lipophilicity determined as log of partition of un-ionised compound over octanol/water, Log

D[7.4] = measure of lipophilicity at physiological pH, determined as log of distribution of the compound over octanol/ buffer pH = 7.4.

Figure 3 Longitudinal section of the rat brain (From: Paxinos and Watson [136]) with the positions of the microdialysis probes

indicated. From left to right: probe position in striatum, lateral ventricle CSF and cisterna magna CSF, respectively.
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mechanistic insights into the processes that govern

CNS drug concentrations at different sites in the brain.

Impact of route of administration on brain target site

kinetics and CNS effects

The effects of therapeutic agents following oral administra-

tion are often limited due to active first-pass clearance by

the liver and restricted BBB transport. Apart from rapid

uptake of compounds from the systemic circulation,

intranasal administration may provide the only direct route

for non-invasive delivery of therapeutics into the CNS

[138-140]. Intranasal administration could enhance the

CNS target site bioavailability and therewith provide a more

selective effect of CNS drugs [49,141,142]. However, the

immediate need is for quantitative information on both the

rate and extent of delivery in relation to the action of

nasally-administered drugs.

� Advanced mathematical PK model on remoxipride

distribution in brain:

The recently-developed minimum-stress and freely-

moving rat model for intranasal drug administration

[143], was used together with serial sampling of plasma

and brain microdialysate. The dopamine D2 receptor an-

tagonist, remoxipride, was administered at three differ-

ent doses via the intranasal or intravenous route. An

advanced pharmacokinetic model was developed using

the data obtained after intravenous dosing. For good
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Figure 4 Brain distribution of acetaminophen in the rat. a) Data obtained for acetaminophen in the rat following an intravenous dose of

15 mg/kg, administered by constant-rate infusion for 10 minutes. The data are presented as the average (geometric mean ± SEM) of the observed

unbound acetaminophen concentration-time profiles in plasma (black, n = 10), striatum ECF (ST, blue, n = 10), CSF in lateral ventricle (LV, green,

n = 14), and CSF in cisterna magna (CM, red, n = 8). The data show that brain ECF (striatum) concentrations are comparable to those in plasma

and significantly higher than those in both the lateral ventricle and the cisterna magna CSF compartments. b) The physiologically-based

pharmacokinetic model for the rat developed on the basis of the data obtained for acetaminophen as shown in a). This model describes the

obtained data adequately, and predicts the CSF acetaminophen concentrations in the third and fourth ventricle (lumped as TFV) as well as in the

subarachnoid space (SAS), the latter being most representative of the lumbar CSF concentrations [135]. Denotations: In the model clearance

(CL, volume/time), and ECF bulk or CSF flow (Q, volume/time) are indicated. Numbering indicates exchange between different compartments: 12

from plasma to peripheral compartment; 21 from peripheral to plasma compartment; 13 from plasma to brain ECF compartment; 31 from brain

ECF to plasma compartment; 14 from plasma to CSFLV compartment; 41 from CSFLV to plasma compartment; 15 from plasma to CSFTFV
compartment; 51 from CSFTFV to plasma compartment; 16 from plasma to CSFCM compartment; and 61 from CSFCM to plasma compartment.

Table 2 Values of rat and human physiological

parameters

Physiological parameter Rat value Human value

Brain ECF volume 290 μl 240 ml

Total CSF volume 300 μl 140 ml

Brain ECF flow 0.2 μl/min 0.2 ml/min

CSF flow 2.2 μl/min 0.4 ml/min

Lateral ventricle volume 50 μl 25 ml

Cisterna magna volume 17 μl 7.5 ml

Subarachnoid space volume 180 μl 90 ml
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prediction of the intranasal data, the model had to be

extended with two absorption compartments, one for

absorption from the nose into the systemic circulation,

and one for absorption from the nose direct to the brain.

The final model gave a good prediction on all observed

data [144]. Figure 7 shows the actual observed data

points for plasma and brain ECF concentrations in the

rat following intranasal and intravenous administration

of remoxipride (open circles). In addition, in Figure 7

the results of the so called “visual predictive check

(VPC)” are displayed, as the prediction of the median

concentration predictions of the model (black line), and

the 90% prediction intervals (grey area). The VPC

indicated that the model well described the observed

data.

The absorption process could be described in terms

of rates and extent (bioavailability). About 75% of the

intranasal dose was directly absorbed into the brain.

Unexpectedly, the direct nose-to-brain absorption did

not turn out to be a rapid route per se. For

remoxipride, the rate was slow, explaining prolonged

brain ECF exposure after intranasal compared to

intravenous administration. This is the first time that

both rate and extent of delivery have been identified

quantitatively and is of utmost importance for opti-

mizing direct nose-to-brain delivery, by varying drug

properties and formulation [144].

� Advanced mathematical PK-PD model on

remoxipride brain distribution and effects:

The advanced pharmacokinetic model on remoxipride

brain distribution following intranasal and intravenous

dosing was further developed to a PK-PD model. To that

end, the plasma levels of the pituitary hormone prolac-

tin, obtained in the same rats, were used as a biomarker

of D2 receptor antagonism [145-147]. Furthermore, base-

line variations in plasma prolactin concentrations were

investigated [148]. Also, the prolactin response was

measured following double low dosing of remoxipride at

different time intervals to get information on the synthesis

of prolactin in the pituitary lactotrophs [149,150]. The final

PK-PD model consisted of 1) a pharmacokinetic model for

plasma and unbound brain remoxipride concentrations, 2)

a pool model for prolactin synthesis and storage, and its re-

lease into- and elimination from plasma, 3) a positive feed-

back of prolactin plasma concentrations on prolactin

synthesis, and 4) the brain unbound concentrations of

remoxipride for the inhibition of the D2 receptor, and

resulting stimulation of prolactin release into plasma.

In conclusion, this mastermind approach allowed the

explicit separation and quantitation of systemic and dir-

ect nose-to-brain transport after intranasal administra-

tion of remoxipride in the rat, and showed that the brain

unbound concentrations could be directly linked to the

a b

Figure 5 Observed and predicted distribution of acetaminophen in human brain. a) The human physiologically-based pharmacokinetic

model which equals the rat physiologically-based pharmacokinetic model, but includes human instead of rat physiological parameters. (For the

denotations in the model see Figure 4b). b) Acetaminophen concentrations in human plasma and brain. Data points represent observed data in

human for plasma (black diamonds) and lumbar CSF (orange circles) by Bannwarth et al. [137]. Lines represent predictions of human plasma

concentrations (black line), human lumbar CSF concentrations (orange line, and human brain ECF concentrations (blue line) by the “humanized”

preclinical physiologically-based PK model [135].
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effect. The model included parameters for the under-

lying processes of synthesis, storage and release of the

pituitary hormone, and the positive feedback of its syn-

thesis by prolactin plasma levels. The latter was in

contradiction to a previous report [148]. An important

finding was that indeed the brain unbound remoxipride

concentrations were indistinguishable from target site

concentrations to drive the release of prolactin into

plasma. Such mechanistic information should be useful to

extrapolate/predict the effects of remoxipride in humans.

Prediction of human target site kinetics and associated

drug effects

Quantification of drug- and biological system specific

parameters in translational mathematical models provides

the opportunity to re-scale the animal model up to humans

[129-131,151-153]. Allometric scaling of drug pharma-

cokinetic properties and the biological system-specific

parameters have been used in previous translational

investigations to predict drug effects in humans with a

reasonable degree of success, [154,155]. Compared to

pharmacokinetic properties, pharmacodynamic properties

are more difficult to scale [156], since they are not often

related to bodyweight (e.g. receptor occupancy, transduc-

tion, maximal effect, etc.). However, this information can

be obtained from in vitro bioassays [157]. For many drugs

and endogenous compounds, clinical information is readily

available in literature [158-161]. This provides the oppor-

tunity to replace rat biological system parameters by

human values, and to provide an extrapolation step from

rat to human. At an early stage in drug development, such

information can be used for simulation and to provide pre-

liminary insight on the clinical applicability of a drug.

To test the predictive value of the preclinical PK-PD

model of remoxipride [144,147], allometric scaling and

literature data [162] were used to tune the preclinical

PK-PD model, from rat systems to that of human [147].

Human data on remoxipride and prolactin plasma
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Figure 6 Brain distribution of quinidine in the rat [Westerhout J, Smeets J, Danhof M, De Lange ECM: The impact of P-gp functionality

on non-steady state relationships between CSF and brain extracellular fluid. J Pharmacokin Pharmacodyn, submitted]. Average

(geometric mean ±SEM) unbound quinidine concentration-time profiles following: a) 10 mg/kg, with co-administration of vehicle (-); b) 20 mg/

kg, with co-administration of vehicle (-); c) 10 mg/kg with co-administration of 15 mg/kg tariquidar (+), and d) 20 mg/kg with co-administration

of 15 mg/kg tariquidar (+). Black, blue, green and red symbols represent plasma, brain ECF, lateral ventricle CSF and cisterna magna CSF,

respectively. Open symbols indicate data obtained without (-) and closed symbols represent data obtained with (+) the P-gp blocker tariquidar,

respectively. The data show substantially lower concentrations in brain ECF (striatum) compared to lateral ventricle and cisterna magna CSF

concentrations for both the 10 and 20 mg/kg dose (a, b). Upon co-administration of tariquidar, the brain ECF (striatum) concentrations were

higher than those in the CSF compartments (c, d). These data show that the relationship between brain ECF and CSF concentrations is influenced

by P-gp-mediated transport.
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concentrations were used, being obtained following

double intravenous administration of remoxipride at dif-

ferent time intervals [149]. The translational PK-PD

model successfully predicted the remoxipride plasma

kinetics in humans (Figure 8) as well as system prolactin

response in humans, indicating that positive feedback on

prolactin synthesis and allometric scaling thereof could

be a new feature in describing complex homeostatic

processes [147].

Conclusions
Drug properties and biological system properties to-

gether determine intracerebral distribution of drugs and

subsequent CNS effects. The fact that rate as well as

extent of the biological processes are dynamically

regulated and therefore may be condition dependent,

explains the high intra and inter-individual variability

encountered in CNS drug effects. We also need to

understand the sources of variability in CNS drug

effects to be able to improve drug development and

therapies. Moreover, as these processes are working

concurrently, and together determine the final CNS ef-

fect, they cannot only be studied in isolation, indicat-

ing the need for integrated in vivo experiments.

In these experiments data on plasma PK, brain distri-

bution and CNS effects of a drug should be obtained

from the same setting as much as possible. In addition,

time-dependency should be explicitly included, and in-

formation should be obtained on the unbound drug.

Then, the contribution of a certain process in the PK-PD

relationship can be deduced, either by changing experi-

mental conditions in a controlled manner (e.g. blocking

of an active transport process, or irreversible binding of

part of particular receptors), or by performing the same

experiment for a different drug, and the use of advanced

mathematical modeling. This approach is here introduced

as the “Mastermind approach”. Examples given of this

approach show that data from preclinical translational

models in principle are able to predict human CNS

drug distribution, target site kinetics, and CNS drug

effects.
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