
Undefined 1 (2010) 1–10 1
IOS Press

The Mastro System for Ontology-based
Data Access

Diego Calvanese a Giuseppe De Giacomo b Domenico Lembo b Maurizio Lenzerini b

Antonella Poggi b Mariano Rodriguez-Muro a Riccardo Rosati b Marco Ruzzi b and
Domenico Fabio Savo b

a Free University of Bozen-Bolzano, Piazza Domenicani 3, I-39100, Bolzano, Italy
Email: lastname@inf.unibz.it
b Sapienza Universita di Roma,Via Ariosto 25, I-00185, Roma, Italy
Email: lastname@dis.uniroma1.it

Abstract. In this paper we present Mastro, a java tool for ontology-based data access (OBDA) developed at the
University of Rome “La Sapienza” and at the Free University of Bozen-Bolzano. Mastro manages OBDA systems
in which the ontology is specified in DL-LiteA,id , a logic of the DL-Lite family of tractable Description Logics
specifically tailored to ontology-based data access, and is connected to external JDBC enabled data management
systems through semantic mappings that associate SQL queries over the external data to the elements of the
ontology. Advanced forms of integrity constraints, which turned out to be very useful in practical applications,
are also enabled over the ontologies. Optimized algorithms for answering expressive queries are provided, as well
as features for intensional reasoning and consistency checking. Mastro provides a proprietary API, an OWLAPI
compatible interface, and a plugin for the Protégé 4 ontology editor. It has been successfully used in several projects
carried out in collaboration with important organizations, on which we briefly comment in this paper.

Keywords: Ontology-based data access, Description Logics, Reasoning over ontologies

1. Introduction

In this paper we present Mastro, a tool
for ontology-based data access developed at the
University of Rome “La Sapienza” and at the
Free University of Bozen-Bolzanp. Ontology-based
data access (OBDA) refers to a setting in which
ontologies are used as a high-level, conceptual view
over data repositories, allowing users to access
data without the need to know how they are ac-
tually organized and where they are stored (cf.
Figure 1).

The OBDA approach turns out to be very use-
ful in all those scenarios in which accessing data in
a unified and coherent way is difficult, which may
happen for several reasons: Databases may have
undergone several manipulations during the years,
often for optimizing applications using them, and

Source

Query

Source

OntologyConceptual
Layer

Data
Layer

Fig. 1. Ontology-based Data Access

may have lost their original design; they may have
been distributed or replicated without a coherent
design, so that the information turns out to be
dispersed over several independent (maybe hetero-
geneous) data sources; data in such sources tend

0000-0000/10/$00.00 c© 2010 – IOS Press and the authors. All rights reserved

2 D. Calvanese et al. / The Mastro System for Ontology-based Data Access

therefore to be redundant and mutually inconsis-
tent; etc.

Through Mastro it is possible to design and
manage OBDA systems, i.e., systems in which
an ontology is connected to external data sources
through mappings. As in data integration sys-
tems [24], we use mappings to specify the seman-
tic correspondence between a unified view of the
domain (called global schema in data integration
terminology) and the data stored at the sources.
The distinguishing feature of the OBDA approach,
however, is the fact that the global unified view
is given in terms of a conceptualization of the do-
main of interest, constructed independently from
the representation adopted for the data stored at
the sources. This choice provides several advan-
tages: it allows for a declarative approach to data
access and integration and provides a specification
of the domain that is system independent; it real-
izes logical/physical independence of the informa-
tion system, which is therefore more accessible to
non-experts of the underlying databases; the con-
ceptual approach to data access does not impose
to fully integrate the data sources at once, as often
happens in data integration mediator-based sys-
tem, but the design can be carried out in an incre-
mental way; the conceptual model available on the
top of the system provides a common ground for
the documentation of the data stores and can be
seen as a formal specification for mediator design.
Mastro has a solid theoretical basis [6,9,8,27,

4]. The ontologies it manages are specified in DL-
LiteA,id , a logic of the DL-Lite family of tractable
Description Logics (DLs), which are specifically
tailored to the management and querying of on-
tologies in which the instance level, i.e., the data,
largely dominates the intensional level. From the
point of view of expressive power, DL-LiteA,id

captures all basic constructs of the languages for
ontologies and for conceptual modeling. Further-
more, it allows for specifying advanced forms of
identification constraints [10]. Other general forms
of constraints are also expressible, under a partic-
ular semantic approximation [8]. We notice that
all such constraints turned out to be very useful
in practical experiences we conducted with Mas-
tro [1,31], and that such constructs are not part
of OWL2, the current W3C standard language for
specifying ontologies.

The mapping mechanism adopted by Mas-
tro [27] allows for solving the so-called impedance

mismatch problem, arising from the fact that,
while the data sources store values, the instances
of concepts in the ontology are objects. Answer-
ing unions of conjunctive queries in OBDA sys-
tems managed by Mastro can be done through
a very efficient technique (that is in AC0 with
respect to data complexity, i.e., the complexity
measured only w.r.t. the extensional level) that
reduces this task to standard SQL query evalua-
tion [9,27]. Also, it has been shown that even very
slight extensions of the expressive abilities of our
system lead beyond this complexity bound [6,5].
However, more expressive queries, essentially all
FOL queries expressible over the ontology, can be
answered via a similar SQL encoding, under a suit-
able semantic approximation [8].

Mastro is developed in Java and can be con-
nected to any data management system allowing
for a JDBC connection, e.g., a relational DBMS.
In those cases in which several sources need to be
accessed, possibly specified in non-relational form,
Mastro can be coupled with an external rela-
tional data federation tool1, which wraps sources
and represents them as if they were a single (vir-
tual) relational database.

Mastro comes with its proprietary API, but is
equipped also with an OWLAPI compatible inter-
face that has been developed for interaction with
OWLAPI compliant applications. In particular,
such an interface has been exploited to implement
the Mastro plugin for the Protégé 4 ontology ed-
itor2. Mastro is currently available for download
at http://www.dis.uniroma1.it/~quonto/.

The rest of the paper is organized as follows.
In Section 2, we briefly describe the framework
of ontology-based data access. In Section 3, we
provide an in-depth description of the main mod-
ules in which Mastro is organized, briefly de-
scribing the procedures and algorithms they real-
ize. In Section 4, we report on three main use cases
in which Mastro has been successfully experi-
mented. In Section 5, we comment on other similar
approaches and tools. In Section 6, we conclude
the paper.

1E.g., IBM WebSphere Application Server (http:
//www.ibm.com/software/webservers/appserv/was/),

Oracle Data Service Integrator (http://www.oracle.com/
products/middleware/odi/data-service-integrator.

html).
2http://protege.stanford.edu/

D. Calvanese et al. / The Mastro System for Ontology-based Data Access 3

2. Ontology-based data access

In OBDA, the aims it to give users access to a
data source or a collection thereof, by means of a
high-level conceptual view specified as an ontol-
ogy. The ontology is usually formalized in Descrip-
tion Logics (DLs) [2], which are logics that allow
one to represent the domain of interest in terms of
concepts, denoting sets of objects, roles, denoting
binary relations between objects, and attributes,
denoting relationships between objects and values
from predefined domains (such as strings, integers,
etc.). A DL knowledge base K = 〈T ,A〉 is tradi-
tionally constituted by a TBox T , representing in-
tensional knowledge, and an ABox A representing
extensional knowledge.
Mastro is able to deal with DL TBoxes that

are expressed in DL-LiteA,id , a member of the DL-
Lite family of lightweight DLs [9]. In such DLs,
a good tradeoff is achieved between the expres-
sive power of the TBox language used to cap-
ture the domain semantics, and the computational
complexity of inference, in particular when such
a complexity is measured w.r.t. the size of the
data stored in databases. We don’t specify here
the formal syntax and semantics of DL-LiteA,id ,
for which we refer to [9,7], but state only that
this logic essentially captures standard concep-
tual modeling formalisms, such as UML Class Di-
agrams and Entity-Relationship Schemas. Indeed,
DL-LiteA,id distinguishes at the semantic level be-
tween abstract objects and domain values, and al-
lows one to express in a TBox the following kinds
of logical assertions: (i) inclusion assertions be-
tween concepts (that include projections of roles
on one of their components), expressing ISA, typ-
ing of relations, and mandatory participation to
relations or attributes; by using a negated concept
one can also express disjointness; (ii) inclusion as-
sertions between roles and attributes, to express
ISA and disjointness of (binary) relations; and
(iii) functionality assertions, and complex forms of
identification constraints. An ABox instead, con-
tains assertions about specific individuals or val-
ues, such as the fact that an individual is an in-
stance of a class, that two individuals are related
by a role, or that an attribute relates an individual
to some value.

In OBDA, the extensional level is not repre-
sented directly by an ABox, but rather by a
database that is connected to the TBox by means

of suitable mapping assertions. Such mapping as-
sertions have the form Φ ; Ψ, where Φ is an ar-
bitrary SQL query over the underlying database,
and Ψ is a conjunction of atoms whose predicates
are the concepts, roles, and attributes of the TBox.
Intuitively, such a mapping assertion specifies that
the tuples returned by the SQL query Φ are used
to generate the facts that instantiate the concepts,
roles, and attributes in Ψ. Notice that, due to
the fact that Ψ is a conjunction of atoms (as op-
posed to a query, possibly with existentially quan-
tified variables), such mappings can be considered
as a form of global-as-view (GAV) mapping [24]
(cf. also Section 5.2). In order to overcome the so-
called impedance mismatch between the database,
storing values, and the ontology, maintaining ab-
stract objects, the mapping assertions are used to
specify how to construct abstract objects from the
tuples of values retrieved from the database. This
is done by allowing one to use function symbols in
the atoms in Ψ: together with the values retrieved
by Φ, such function symbols generate so called ob-
ject terms, which constitute the object identifiers
for the instances of the ontology [27].

The semantics of DLs is given in terms of stan-
dard first-order interpretations. Traditional inten-
sional reasoning tasks w.r.t. a given TBox are class
satisfiability, i.e., checking whether for some model
of the TBox a given concept has a non-empty
extension, and class subsumption, i.e., checking
whether the extension of one class is contained in
the extension of another class in every model of
the TBox. As for the OBDA setting, let us denote
with 〈T ,M,D〉 a TBox T connected by means
of mappings M to a database D. The models of
〈T ,M,D〉 are those interpretations of T that sat-
isfy the assertions in T and that are consistent
with the tuples retrieved by M from D (see [27]
for the formal details). In this setting, satisfiabil-
ity amounts to checking whether 〈T ,M,D〉 ad-
mits at least one model. Queries over the TBox
are unions of conjunctive queries (UCQs), i.e.,
unions of select-project-join SQL queries, and in
the OBDA setting they are interpreted according
to the certain answer semantics [24,27]: the certain
answers to a query Q over 〈T ,M,D〉 are those
tuples that are in the answer to Q for every model
of 〈T ,M,D〉. Satisfiability can be reduced easily
to query answering, and for the logics of the DL-
Lite family it has been shown that this latter infer-
ence task can be carried out efficiently in the size

4 D. Calvanese et al. / The Mastro System for Ontology-based Data Access

QuOnto

Mapping Processor

Datasource Manager

EQL Processor

Consistency Checker

Data
SourceClient

MASTRO

Fig. 2. Mastro basic architecture

of the data, by relying on query evaluation per-
formed by the underlying relational database. We
refer to Section 3.1 for a brief description of this
technique as carried out by Mastro, and to [9]
for more formal details.

3. Architecture of Mastro

In this section, we describe the general archi-
tecture of Mastro, as well as some of the im-
portant aspects of the modules that constitute
the system, which are shown in Figure 2. Each
such module provides basic functionalities that
concur to realize the services that Mastro of-
fers. Among the main services we recall intensional
reasoning support, consistency checking, conjunc-
tive query answering, and epistemic query answer-
ing, all performed over DL-LiteA,id ontologies con-
nected through mappings to external data sources.
We start our discussion by introducing the core
modules of Mastro, i.e., those supporting inten-
sional reasoning and conjunctive query answering.
We then continue with a description of the ad-
vanced modules, i.e., those supporting epistemic
query answering and expressive constraint man-
agement, as well as checking consistency of the
system with respect to such constraints. We con-
clude the section with a description of the inter-
faces that are available for accessing Mastro’s
functionalities.

3.1. The core modules

The core of Mastro consists of three mod-
ules: the QuOnto module, the Mapping Proces-
sor module, and the Datasource Manager module.

As for design-time tasks, such modules provide the
basic features for ontology and mapping specifica-
tion and management. In particular DL-LiteA,id

TBoxes and mappings, both specified according
to proprietary XML syntax, are taken as input,
parsed, and stored respectively by the QuOnto
module and by the mapping processor. As for run-
time tasks, focusing on conjunctive query answer-
ing, these modules implement the reformulation,
unfolding, and execution steps of the query an-
swering procedure, respectively.

QuOnto module. QuOnto is a reasoner for
DL-LiteA,id that provides intentional reasoning
services, i.e., class satisfiability, class subsumption,
etc., as well as reformulation of UCQs. In short,
the reformulation process takes as input a UCQ
Q expressed over a DL-LiteA,id ontology, in fact
over a TBox T , and returns a set Qr of CQs, again
expressed over T , that represents the perfect re-
formulation of Q with respect to T , i.e., the evalu-
ation of Qr over any DL-LiteA,id ABox A (seen as
a database) returns the certain answers to Q with
respect to the ontology 〈T ,A〉. The reformulation
engine implemented in QuOnto is based on the
PerfectRef algorithm presented in [9], adapted to
natively deal with OWL constructs captured by
DL-LiteA,id and not explicitly considered in [9], as
for example the use of qualified existential restric-
tions in the right-hand side of concept inclusions
(see [15] for details). Also, the reformulation is en-
hanced with optimizations that allow for reducing
the number of queries it generates.

Mapping Processor module. Since Mastro does
not explicitly manage ABoxes, but rather accesses
data stored in external systems via mappings, the
set of queries Qr is not evaluated over an ABox,
but rather processed according to the mappings
to obtain a query that can be evaluated over the
data sources. Indeed, Qr is phrased in terms of
classes and properties of the TBox T and to ob-
tain a query expressed in terms of the alphabet
of the sources, it is necessary to perform a further
rewriting step dependent on the mapping, which,
roughly, substitutes the TBox predicates occurring
in Qr with their definition provided by the map-
ping assertions. Such a process is called query un-
folding and is carried out by the Mapping Pro-
cessor. Generally speaking, query unfolding is a
quite straightforward procedure, widely applied in
data integration applications. In Mastro, how-

D. Calvanese et al. / The Mastro System for Ontology-based Data Access 5

ever, query unfolding is complicated by the fact
that mappings are more complex than those usu-
ally adopted in data integration, and by the fact
that function symbols occurring in mapping asser-
tions must be taken into account (see Section 2).
To deal with such aspects, the Mapping Processor
implements the partial evaluation-based unfolding
technique from [27], which we briefly summarize
in the following: (i) we first “split” the mapping
assertions in such a way that each assertion has
exactly one ontology predicate in the head; (ii) we
associate an auxiliary predicate to each SQL query
in the body of mapping assertions; (iii) we trans-
form each mapping assertion into a logic program
clause, whose head coincides with the head of the
mapping assertion, and the body is an atom ex-
pressed in terms of the auxiliary predicate associ-
ated to the SQL query in the mapping assertion;
(iv) we next compute the partial evaluation of Qr

with respect to the logic program gathering all
clauses constructed in the previous step, i.e., a new
set of conjunctive queries phrased only in terms of
the auxiliary predicates3; and, last, (v) we trans-
late the partial evaluation into an SQL query over
the sources, by replacing each auxiliary predicate
with the associated SQL view. The use of partial
evaluations and auxiliary predicates gives us the
flexibility to work on the unfolding process at an
abstract level, independently from the type of data
sources and the specific form of the views that we
associate to the auxiliary predicates. Further de-
tails on the technique can be found in [27,31].

Datasource Manager module. This module is re-
sponsible for maintaining the connections to the
data sources, for coordinating query execution,
and for management of database resources such
as pointer maintenance and transaction manage-
ment. The most relevant feature of this module
is the ability to parallelize query execution to im-
prove query answering performance. This feature
is a key feature that allows for fast query pro-
cessing even in the case where a very big num-
ber of queries is generated by the reformulation-
unfolding process. Depending on the system con-
figuration, several execution threads are spawned
and queries are assigned to the different execu-

3The term partial evaluation is due to the connection
of this technique with the optimization technique from the

logic programming literature that carries the same name.

...

JDBC Result 1

JDBC Result 2

Result wrapper

...
...

SQL Group

SQL GroupEx
ec

ut
io

n

...

SQL Group

SQL GroupEx
ec

ut
io

n

...

Fig. 3. Parallel query execution management

tion threads (see Figure 3). Each thread manages
a group of queries, which are executed sequentially
within the thread itself. When the processing of
any of these queries terminates, the result set as-
sociated to the answer is forwarded to a result set
wrapper that is returned to the client and that
keeps receiving the results of subsequent queries.

3.2. Advanced functionalities

Built on top of the core functionalities, the
Mastro system offers access to the features of two
advanced modules that allow for epistemic query
answering and expressive constraint management,
and consistency check, respectively.

EQL Processor module. This module provides
the ability to specify and execute epistemic queries,
specifically so-called EQL queries [8] expressed
over DL-LiteA,id ontologies. Roughly speaking, an
EQL query is an SQL query specified over vir-
tual relations expressed as UCQs over the ontology
(called inner queries). Answering an EQL query
consists in computing the extension of the vir-
tual relations, each containing the certain answers
of the corresponding inner query with respect to
the ontology, the mapping and the source data,
and evaluating the SQL query over such relations.
This actually corresponds to putting each inner
query under the scope of an epistemic operator
(see [8] for details). Rather than computing the
extension of the virtual relations, the EQL Pro-
cessor exploits the reformulation service offered by
the QuOnto module, and the unfolding service
provided by the Mapping Processor module, in or-
der to rewrite each inner query into an SQL query
over the sources, thus transforming the entire EQL
query into an SQL query over the sources. Such
a query is then sent to the Datasource Manager,
which is in charge of evaluating it. EQL queries

6 D. Calvanese et al. / The Mastro System for Ontology-based Data Access

are extremely useful when the expressive power of
CQs is not enough. For example, they allow for ex-
pressing negation and comparison in queries. Also,
through EQL queries it is possible to specify pow-
erful integrity constraints over the ontology (as
shown in [14]), which go beyond the expressivity
of the DLs of the DL-Lite family.

Consistency Checker module. This module al-
lows Mastro to verify whether an OBDA system
it manages is satisfiable, i.e., it admits at least
one model. By virtue of the characteristics of DL-
LiteA,id , such a check can be reduced to answer-
ing suitable queries posed over the ontology, each
one associated to a TBox assertion or to an in-
tegrity constraint that can be violated by data at
the sources. The Consistency Checker therefore re-
lies on the services for query answering provided
by the core modules and the EQL Processor we de-
scribed above. Indeed, apart from basic features,
which enable for checking the violation of function-
alities or exclusion dependencies (i.e., inclusions
with negation in their right-hand side), the Consis-
tency Checker allows one to verify consistency of
very expressive constraints (i.e., identification and
EQL constraints), which is reduced to answering
EQL queries over the ontology. The Consistency
Checker can also localize data that violate TBox
assertions and/or constraints over the ontology. It
can indeed generate those queries (UCQs or EQL)
whose answers return data that give rise to incon-
sistencies.

3.3. Interfaces

Mastro’s functionalities can be accessed in
three ways: through a proprietary API, through an
OWLAPI compatible interface, and by means of a
plugin for the Protégé 4 ontology editor. In partic-
ular, Mastro’s proprietary API is the one that is
used to integrate all the modules that compose the
system. This API is also used for the implemen-
tation of specific procedures required during the
deployment of the tool in application scenarios, as
the ones described in Section 4. The API also pro-
vides parser facilities for loading ontologies with
mappings using Mastro’s own XML syntax and
allows for accessing all the functionalities offered
by the system.

The OWLAPI compatible interface is built on
top of Mastro’s API. This public interface allows

MASTRO

MastroOWLReasoner

Mastro-Plugin Protege 4

OWLAPI

Native API

Fig. 4. Mastro interfaces

for a straightforward integration of Mastro with
OWLAPI4-OBDALib5 applications. The main ac-
cess point of this API is the so-called MastroOWL-
Reasoner, an implementation of the OWLRea-
soner interface from the OWLAPI, and of the
OBDAReasoner interface, which is part of the
OBDALib. Through functionalities provided by
the OWLReasoner interface, clients have access
to Mastro’s services associated with traditional
OWL reasoners, i.e., concept subsumption, satis-
fiability, etc. Through the OBDAReasoner inter-
face, clients can access Mastro’s OBDA related
functionalities, i.e., specification of ontology with
mappings, conjunctive query answering, etc.

In order to provide its functionalities, the
OWLAPI compatibility layer relies on an OWL
to DL-LiteA,id translator module which is able to
process OWL 2 ontologies represented by means
of OWLAPI objects and produce DL-LiteA,id on-
tologies represented by Mastro’s internal API
objects. OWL 2 is an expressive language, hence
it may happen that some OWL 2 axioms cannot
be translated into corresponding DL-LiteA,id ex-
pressions. In such cases the module produces a
syntactic approximation in DL-LiteA,id .

Last but not least, Mastro can also be accessed
by means of a Protégé 4 plugin. This plugin is built
on top of the MastroOWLReasoner (cf. Figure 4)
and exposes all functionalities of Mastro, allow-
ing for the use of the facilities offered by Protégé
for ontology editing and by the OBDA Plugin for
Protégé [28] for editing of mappings towards ex-
ternal data sources. The Mastro plugin extends
Protégé with new features to express assertions
that are not part of the OWL 2 language but that
are supported by Mastro, such as identification
and EQL constraints.

4http://owlapi.sourceforge.net/
5http://obda.inf.unibz.it/

D. Calvanese et al. / The Mastro System for Ontology-based Data Access 7

4. The system at work: experiences on real cases

In order to demonstrate the usefulness of OBDA
and the feasibility and efficiency of the Mastro
system, we are experimenting the system in three
real world applications, on which we report now.

SELEX Sistemi Integrati. We first report on the
case study conduced with Mastro at SELEX Sis-
temi Integrati (SELEX-SI), a Finmeccanica Com-
pany that is world leader in the provision of inte-
grated defence and air traffic critical systems. In
such a case study we considered Configuration and
Data Management (C&DM) in SELEX-SI and fo-
cused on a significative portion of the data manip-
ulated in this context [1].

C&DM is a technical management model that is
central to all SELEX-SI activities since it governs
the entire products’ life cycle. We mainly focused
on the data concerning the design and the produc-
tion of components that are used to realize com-
plex systems, physical deployment of such com-
ponents, and analysis of their obsolescence. Cur-
rently, such data are stored in various, partially
overlapping sources, and managed by five differ-
ent systems under diverse data models (relational,
XML-based, etc.). We used Mastro to integrate
such data, in such a way that relevant queries con-
nected to important C&DM informational needs
could be automatically processed by Mastro. We
used the external data federation tool Websphere
Federation Server6 to present to Mastro all the
data sources as if they were a single relational
database. At the end of the federation process, we
produced a relational schema with around 50 re-
lational tables, with an average of 15 attributes
each, managed by Websphere.

After the federation step described above, we
designed the C&DM domain in terms of a DL-
LiteA,id TBox. On the basis of our analysis, we
produced an ontology that models concepts con-
cerning the design and the production of compo-
nents that are used to realize complex systems,
and several aspects concerning the physical de-
ployment of such components and the analysis of
their obsolescence, considering also possible sub-
stitutions. In some relevant cases, according to the
requirements of the domain experts, it was neces-

6http://www-306.ibm.com/software/data/

integration/federation_server/.

sary to model at the ontology level information on
the provenance of the data. Then, we defined spe-
cific ontology elements to represent the data source
from which the information is retrieved. This al-
lowed for the specification of queries comparing in-
formation stored in different sources. The overall
DL-LiteA,id ontology for C&DM contains around
40 concepts, 30 roles, and 50 attributes.

We also defined around 100 mapping assertions
connecting the source and the ontology. Finally,
we tested a set of significative queries for C&DM
at SELEX-SI, and demonstrated the usefulness of
Mastro to easily access information in all cases
where a user would query separately each data
source, and manually combine the single answers.

Monte dei Paschi di Siena. The usefulness of
the Mastro system goes beyond data integration
applications, and embraces data quality manage-
ment, as we demonstrated through the experimen-
tation of OBDA carried out in a joint project with
Banca Monte dei Paschi di Siena (MPS)7, Free
University of Bozen-Bolzano, and Sapienza Uni-
versità di Roma. In such a project we used Mas-
tro for accessing a set of data sources from the
actual MPS data repository by means of an ontol-
ogy and focused on querying such an ontology to
find out inconsistent data [31].

In our case study we focused on the data ex-
ploited by MPS personnel for risk estimation in
the process of granting credit to bank customers.
A 15 million tuple database, stored in 12 relational
tables managed by the IBM DB2 RDBMS, has
been used as data source collection in the exper-
imentation. Such data sources are managed by a
specific application. The application is in charge
of guaranteeing data integrity (in fact, the un-
derlying database does not force constraints on
data). Not only this application performs various
updates, but an automatic procedure is executed
on a daily basis to examine the data collected in
the database so as to identify connections between
customers that are relevant for the credit rating
calculus. By both looking at these sources, and in-
terviewing domain experts, we designed an ontol-
ogy representing the conceptual model of the do-
main, and the mapping between the ontology and

7MPS is one of the main banks, and the head company
of the third banking group in Italy (see http://english.

mps.it/).

8 D. Calvanese et al. / The Mastro System for Ontology-based Data Access

the sources. The resulting OBDA system is ex-
pressed in terms of approximately 600 DL-LiteA,id

axioms over 79 concepts and 33 roles, and 200
mapping assertions.

The experimentations confirmed the importance
of several distinguished features of our system,
namely, the possibility to specify identification
constraints and epistemic constraints, which have
been used extensively to model important busi-
ness rules. Checking that such rules are satisfied
by data retrieved from the sources through map-
pings has been the main objective of the project.
With respect to this, we highlight two kinds of
data quality problems that we were able to detect,
one related to unexpected incompletenesses in the
data sources, and the other one related to incon-
sistencies in the data.

Our work has also pointed out the importance
of the ontology itself, as a precious documenta-
tion tool for the organization. Indeed, the ontol-
ogy developed in our project is adopted in MPS
as a specification of the relevant concepts in the
organization. At present we are still working with
MPS in order to extend the work to cover the core
domain of the MPS information system, with the
idea that the ontology-based approach could re-
sult in a basic step for the future IT architecture
evolution.

Network inventory systems. Finally, we briefly
mention an ongoing experimentation we are car-
rying out in the telecommunication context, and
specifically on the domain of network inventory
systems The OBDA system we have realized in
this case study is formed by a DL-LiteA,id TBox
constructed over 112 concepts, 84 roles and con-
taining around 100 identification constraints and
EQL constraints. The data source is a 3 million
tuple database, stored in 45 relational tables man-
aged by the Oracle 10g RDBMS. The mapping
layer is formed by 348 mapping assertions.

According to the idea that the quality of the
data stored in the sources can be measured in
terms of the amount of data respecting the con-
straints implied by the domain description of-
fered by the ontology, we laid down the basis of
a methodology for using Mastro for data qual-
ity management. The last two experiences we have
mentioned, have revealed how the same ontology
can be used both for querying data and for check-

ing the quality of data sources. The different ob-
jectives in the two cases only partially influence
the design of the mapping, whereas the ontology
design turns out to be an independent task. An-
other important lesson concerns the mapping gen-
eration: according to our experiences, due to the
complexity of extracting the right semantics of the
source tables, the bulk of the work in mapping
specification has to be essentially carried out man-
ually.

5. Comparison with other approaches and tools

To the best of our knowledge, Mastro is the
only system currently available for ontology-based
data access. In particular it is the only system
allowing both for specification and reasoning on
an ontology, and for mapping it to external data
sources. It follows that, from a general perspec-
tive, it is not possible to compare Mastro with
other tools providing exactly the same functional-
ities. A comparison with other systems, however,
can be carried out by considering separately the
main features provided by Mastro. In particular
we will consider (i) the Mastro features for on-
tology definition and reasoning, and compare the
reasoning engine of Mastro with other ontology
reasoners, and (ii) the Mastro features for data
source access by means of mappings, and compare
Mastro with tools for data integration.

5.1. Tools for ontology definition and reasoning

As we explained before, the core reasoning en-
gine of Mastro is based on QuOnto, a reasoner
for DL-LiteA,id . Differently from QuOnto, other
well-known DL reasoners such as Racer [19], Pel-
let [32], and Fact++ [20] are essentially focused
on standard ontology reasoning services (instance
checking, ontology satisfiability, concept subsump-
tion, etc.). Although some features for ABox query
processing have been provided by such tools, and
several optimization have been carried out, such
systems are not able to deal with ontologies with
very large ABoxes (e.g., with several millions of
membership assertions) as the ones we considered
in our experimentations. This is mainly due to the
inherent computational complexity of answering
queries in the expressive DL languages supported
by the above mentioned systems.

D. Calvanese et al. / The Mastro System for Ontology-based Data Access 9

We mention some other DL-Lite based ap-

proaches and reasoners. In [21] an approach

to query answering alternative to the one of

QuOnto is presented. Besides a (less complex)

query rewriting step, such an approach requires to

also extend the ABox (stored in a database man-

aged by a RDBMS) with the aim of reducing the

amount of rewritten queries produced by the re-

formulation step. Indeed, in QuOnto the size of

the rewriting may be exponential with respect to

the size of the original query. However, the draw-

back of such an approach combining query rewrit-

ing with ABox extension, is that it cannot be ap-

plied to data sources that are outside the control

of the system, thus preventing its use in many

practical cases. In such cases one might adopt an

approach that requires to materialize the exter-

nal data sources in a local repository, over which

data manipulations can be performed. This, how-

ever, has the drawback of having to reflect the

data updates occurring at the sources on the local

copy. Nevertheless, the idea in [21] is interesting

and results given by a first experimentation are

encouraging.

Another approach, purely intensional as the

one provided by QuOnto, aiming at optimizing

the reformulation step, has been implemented in

the Requiem prototype reasoner [26]. Requiem

makes use of a rewriting algorithm different from

the one used in QuOnto, which reduces the num-

ber of queries in the final reformulation, and is able

to deal natively with the qualified existential con-

struct8. However, it currently supports neither any

of the advanced features, such as identification or

epistemic constraint management, nor mappings

to external databases.

The OWLGres prototype [33], which allows for

TBox specification in DL-Lite, uses the Post-

greSQL DBMS for the storage of the ABox, and

provides conjunctive query processing. The algo-

rithm for query answering implemented in OWL-

Gres, however, is not complete with respect to the

computation of the certain answers to user queries.

More details on the comparison between OWL-

Gres and QuOnto can be found in [15].

8This feature has been recently implemented in QuOnto

and is currently under testing.

5.2. Tools for data integration

None of the above mentioned systems provides
mechanism for connecting an ontology to external
independent data sources with powerful mappings.
With respect to this feature, the approaches and
tools that are closer to Mastro are those devel-
oped in the context of data integration. Several
major software vendors (Oracle, IBM, Microsoft,
etc.) provide nowadays products for information
integration: such tools can be seen as a collection
of wrappers allowing the users to access a variety
of data sources and to see such sources as if they
were a single database. However, no real semantic
integration is carried out, and such systems have
to be considered as data federation tools rather
than semantic data integration tools. From the re-
search point of view, semantic data integration [24]
has been studied deeply in the last two decades,
producing a number of interesting results. In par-
ticular, the approaches can be classified accord-
ing to the form they adopt for the mapping that
connects the global reconciled view to the data
sources. Two main formalisms have been proposed
for the mappings representation [24]: the global-
as-view (GAV) approach, in which entities of the
global schema are defined by means of queries over
the source schema, and the local-as-view (LAV)
approach, in which source entities are defned by
means of queries over the global schema. We no-
tice that currently Mastro adopts a particular
forma of GAV mapping. Examples of GAV sys-
tems are TSIMMIS (The Stanford-IBM Manager
of Multiple Information Sources) [12], and Gar-
lic [34]. Their architecture is essentially a hierar-
chy of data source wrappers and mediators. The
latter are modules whose basic tasks consists in
putting together the data returned by the wrap-
pers into the final answers to users’ queries. The
mapping mechanisms provided by such systems
can be considered a first form of GAV mapping
implemented in a purely procedural way. LAV pro-
posals, instead, have been based on a more declar-
ative approach. Information Manifold [25], Info-
Master [17], and Picsel [18] are notable exam-
ples. Such systems implement query answering by
means of query rewriting algorithms, such as the
inverse rules, the bucket, or the MiniCon [29] al-
gorithms.

Despite the intensive research described so far,
only few efforts have been dedicated to the study

10 D. Calvanese et al. / The Mastro System for Ontology-based Data Access

of data integration through ontologies. Indeed, all
the systems mentioned above suffer from some
weaknesses from the modeling perspective, mainly
due to the limited expressive expressive power of
the languages provided to model the global schema
of the integration system. In this direction, Mas-
tro aims at overcoming this limitation by provid-
ing the best expressive power allowed while pre-
serving tractability of reasoning and of the inte-
gration tasks.

6. Conclusions

In this paper we presented Mastro, a system
for ontology-based data access, which provides a
comprehensive solution to such a problem by of-
fering features both for specifying and reasoning
on an ontology, and for mapping external data
sources to it. Efficient algorithms for advanced
forms of query answering are implemented, which
enable effective data access. Experiences on real
cases yielded very encouraging results, showing
the applicability of the Mastro approach to real-
world problems.
Mastro can be extended in several directions.

In particular, we plan to extend the system with
respect to the following aspects:

(i) Enriching the ontology representation and
reasoning layer with inconsistency tolerant capa-
bilities: indeed, when integrating different data
sources under the same ontology, it may happen
that the reconciled data do not satisfy the ontol-
ogy. In such cases, repairing the data could be in-
convenient, or not possible at all. However, it is
possible and important to exploit techniques for
consistent query answering [3,13] in order to make
Mastro able to support meaningful query an-
swering even in the presence of inconsistent data.
Theoretical results at the basis of the approach we
want to implement can be found in [22,23].

(ii) Allowing for more expressive forms of map-
pings: LAV mappings could be adopted for those
settings in which source data may be incomplete
with respect to the ontology used to access the
sources underlying the system.

(iii) Implementing “write-also” capabilities: most
of the studies carried out in information integra-
tion, and the systems proposed to solve the in-
tegration problem are mainly oriented towards
a read-only approach. This means that the data

flows from the sources to the global ontology only.
However, several studies have been carried out
on the update problem [16,11,35], attempting to
reflect over the sources an update expressed in
terms of the global ontology. We already carried
out some experiments in this direction and plan to
extend Mastro in order to support such features.

(iv) finally, we are currently working to opti-
mize the reformulation step in QuOnto, following
the line of research of [30,26], in order to reduce
the number of queries produced: this aspect may
have a crucial impact on the performance of the
whole system.

References

[1] A. Amoroso, G. Esposito, D. Lembo, P. Urbano, and
R. Vertucci. Ontology-based data integration with

Mastro-i for configuration and data management at

SELEX Sistemi Integrati. In Proc. of the 16th Ital.
Conf. on Database Systems (SEBD 2008), pages 81–

92, 2008.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,
and P. F. Patel-Schneider, editors. The Description

Logic Handbook: Theory, Implementation and Appli-
cations. Cambridge University Press, 2003.

[3] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability

and complexity of query answering over inconsistent
and incomplete databases. In Proc. of the 22nd ACM

SIGACT SIGMOD SIGART Symp. on Principles of

Database Systems (PODS 2003), pages 260–271, 2003.
[4] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenz-

erini, A. Poggi, M. Rodŕıguez-Muro, and R. Rosati.

Ontologies and databases: The DL-Lite approach. In
Semantic Technologies for Informations Systems – 5th

Int. Reasoning Web Summer School (RW 2009), vol-

ume 5689 of LNCS, pages 255–356. Springer, 2009.
[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenz-

erini, A. Poggi, R. Rosati, and M. Ruzzi. Data in-
tegration through DL-LiteA ontologies. In K.-D.

Schewe and B. Thalheim, editors, Revised Selected Pa-

pers of the 3rd Int. Workshop on Semantics in Data
and Knowledge Bases (SDKB 2008), volume 4925 of

LNCS, pages 26–47. Springer, 2008.
[6] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenz-

erini, and R. Rosati. Data complexity of query an-

swering in description logics. In Proc. of the 10th Int.

Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2006), pages 260–270, 2006.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenz-
erini, and R. Rosati. Can OWL model football leagues?
In Proc. of the 3rd Int. Workshop on OWL: Experi-

ences and Directions (OWLED 2007), volume 258 of
CEUR, http://ceur-ws.org/, 2007.

[8] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenz-

erini, and R. Rosati. EQL-Lite: Effective first-order
query processing in description logics. In Proc. of the

D. Calvanese et al. / The Mastro System for Ontology-based Data Access 11

20th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2007), pages 274–279, 2007.

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenz-

erini, and R. Rosati. Tractable reasoning and effi-
cient query answering in description logics: The DL-

Lite family. J. of Automated Reasoning, 39(3):385–
429, 2007.

[10] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenz-

erini, and R. Rosati. Path-based identification con-
straints in description logics. In Proc. of the 11th Int.

Conf. on the Principles of Knowledge Representation

and Reasoning (KR 2008), pages 231–241, 2008.
[11] D. Calvanese, E. Kharlamov, W. Nutt, and

D. Zheleznyakov. Updating ABoxes in DL-Lite. In

Proc. of the 4th Alberto Mendelzon Int. Workshop
on Foundations of Data Management (AMW 2010),

volume 619 of CEUR, http://ceur-ws.org/, pages

3.1–3.12, 2010.
[12] S. S. Chawathe, H. Garcia-Molina, J. Hammer,

K. Ireland, Y. Papakonstantinou, J. D. Ullman, and

J. Widom. The TSIMMIS project: Integration of
heterogeneous information sources. In Proc. of the

10th Meeting of the Information Processing Society of
Japan (IPSJ’94), pages 7–18, 1994.

[13] J. Chomicki. Consistent query answering: Five easy

pieces. In Proc. of the 11th Int. Conf. on Database
Theory (ICDT 2007), volume 4353 of LNCS, pages

1–17. Springer, 2007.

[14] C. Corona, E. Di Pasquale, A. Poggi, M. Ruzzi, and
D. F. Savo. When OWL met DL-Lite In Proc. of

the 5th Workshop on Semantic Web Applications and

Perspectives (SWAP 2008), 2008.
[15] C. Corona, M. Ruzzi, and D. F. Savo. Filling the

gap between OWL 2 QL and QuOnto: ROWLKit. In

Proc. of the 22nd Int. Workshop on Description Logic
(DL 2009), volume 477 of CEUR, http://ceur-ws.

org/, 2009.
[16] G. De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati.

On the update of description logic ontologies at the in-

stance level. In Proc. of the 21st Nat. Conf. on Artifi-
cial Intelligence (AAAI 2006), pages 1271–1276, 2006.

[17] M. R. Genereseth, A. M. Keller, and O. M. Duschka.

Infomaster: An information integration system. In
Proc. of the ACM SIGMOD Int. Conf. on Manage-

ment of Data, pages 539–542, 1997.

[18] F. Goasdoue, V. Lattes, and M.-C. Rousset. The use
of CARIN language and algorithms for information in-

tegration: The Picsel system. Int. J. of Cooperative

Information Systems, 9(4):383–401, 2000.
[19] V. Haarslev and R. Möller. RACER system descrip-

tion. In Proc. of the Int. Joint Conf. on Automated
Reasoning (IJCAR 2001), volume 2083 of LNAI, pages

701–705. Springer, 2001.

[20] I. Horrocks. The FaCT system. In Proc. of the
7th Int. Conf. on Automated Reasoning with Analytic

Tableaux and Related Methods (TABLEAUX’98), vol-

ume 1397 of LNAI, pages 307–312. Springer, 1998.
[21] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and

M. Zakharyaschev. The combined approach to query

answering in DL-Lite. In Proc. of the 12th Int. Conf.
on the Principles of Knowledge Representation and

Reasoning (KR 2010), 2010.

[22] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and
D. F. Savo. Inconsistency-tolerant semantics for de-

scription logics. In Proc. of the 4th Int. Conf. on Web
Reasoning and Rule Systems (RR 2010), 2010.

[23] D. Lembo and M. Ruzzi. Consistent query answer-

ing over description logic ontologies. In Proc. of the
1st Int. Conf. on Web Reasoning and Rule Systems

(RR 2007), 2007.

[24] M. Lenzerini. Data integration: A theoretical perspec-
tive. In Proc. of the 21st ACM SIGACT SIGMOD

SIGART Symp. on Principles of Database Systems

(PODS 2002), pages 233–246, 2002.
[25] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Query-

ing heterogenous information sources using source de-

scriptions. In Proc. of the 22nd Int. Conf. on Very
Large Data Bases (VLDB’96), 1996.

[26] H. Pérez-Urbina, B. Motik, and I. Horrocks. A com-
parison of query rewriting techniques for DL-lite. In

Proc. of the 22nd Int. Workshop on Description Logic

(DL 2009), volume 477 of CEUR, http://ceur-ws.

org/, 2009.

[27] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,

M. Lenzerini, and R. Rosati. Linking data to ontolo-
gies. J. on Data Semantics, X:133–173, 2008.

[28] A. Poggi, M. Rodŕıguez-Muro, and M. Ruzzi.

Ontology-based database access with DIG-Mastro and
the OBDA Plugin for Protégé. In Proc. of the 4th

Int. Workshop on OWL: Experiences and Directions

(OWLED 2008 DC), 2008.
[29] R. Pottinger and A. Y. Halevy. MiniCon: A scalable al-

gorithm for answering queries using views. Very Large
Database J., 10(2–3):182–198, 2001.

[30] R. Rosati and A. Almatelli. Improving query answer-

ing over DL-Lite ontologies. In Proc. of the 12th Int.
Conf. on the Principles of Knowledge Representation

and Reasoning (KR 2010), 2010.

[31] D. F. Savo, D. Lembo, M. Lenzerini, A. Poggi,
M. Rodŕıguez-Muro, V. Romagnoli, M. Ruzzi, and

G. Stella. Mastro at work: Experiences on ontology-

based data access. In Proc. of the 23rd Int. Work-
shop on Description Logic (DL 2010), volume 573 of

CEUR, http://ceur-ws.org/, pages 20–31, 2010.

[32] E. Sirin and B. Parsia. Pellet: An OWL DL rea-
soner. In Proc. of the 17th Int. Workshop on De-

scription Logic (DL 2004), volume 104 of CEUR,
http://ceur-ws.org/, 2004.

[33] M. Stocker and M. Smith. Owlgres: A scalable OWL

reasoner. In Proc. of the 5th Int. Workshop on OWL:
Experiences and Directions (OWLED 2008), volume

432 of CEUR, http://ceur-ws.org/, 2008.
[34] M. Tork Roth, M. Arya, L. M. Haas, M. J. Carey,

W. F. Cody, R. Fagin, P. M. Schwarz, J. T. II, and

E. L. Wimmers. The Garlic project. In Proc. of the

ACM SIGMOD Int. Conf. on Management of Data,
page 557, 1996.

[35] D. Zheleznyakov, D. Calvanese, E. Kharlamov, and
W. Nutt. Updating TBoxes in DL-Lite. In Proc. of the
23rd Int. Workshop on Description Logic (DL 2010),

volume 573 of CEUR, http://ceur-ws.org/, pages

102–113, 2010.

