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Abstract

This paper applies chaos theory to administrative and organizational issues. Mime goals

are addressed: first, the use of chaos theory to model social dynamics is justified; second,

organizational theory is defined from a chaos perspective; and finally, the mathematics of

chaos is applied to a simple issue of information theory to demonstrate how new

perspectives of social dynamics can be gained.
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The Mathematical Modeling of Chaotic Social Structures

Recent research literature has seen numerous debates between advocates of statistical

modeling, who argue in favor of the general predictability of human behavior, and wive-

cates of the descriptive or naturalistic research, who argue that human behavior is essen-

tially non-deterministic. The roots of these arguments have been brewing for many years

--in sociological and organizational theory, however. Sociologists have long argued that so-

ciety, rather than being static and deterministic, is defined by muld-channeled causative in-

teractions among sentient beingsinteractions driven by communication and purposive be-

havior rather than physical contact (see, for example, Buckley, 1967). From this, organi-

zational analysts have derived theories of systems interaction (Forrester, 1969, 1971;

Corwin, 1987, Hoy & Miskcl, 1987), contingency (Glassman, 1973; Fiedler, 1973),

uncertainty (Cohen, March & Olsen, 1972), and dialectic (Benson, 1977). These organi-

zational theories have debated issues of positivism (explanation based on regularity and

causality; Hall, 1987), voluntarism (individuals are totally autonomous and free-willed;

Burrell & Morgan, 1979), and structuralism versus individualism (sructural stability or

individual purposiveness; Pfeffer, 1982).
A potential new component of these debates, called chaos theory, has evolved over the

past few years. Several have tecognized its potential for describing social systems, but

have failed to explore that possibility. Notable among the advocates is Lee J. Cronbach,

who has suggested that "[m]etaphors and mathematical analyses flow from the study of

chaos. The work will suggest analogies to almost any human scientist." (1988, p. 47)

Cziko has proposed that "[d]evelopments in the field of physics [chaos] also have impor-

tant implications for arguments concerning the predictability of human behavior....It thus

appears only a matter of time before chaos is applied also to problems of human behavior

and education." (1989, pp. 18-19)
This paper addresses three goals. First, the use of chaos theory to model social

dynamics is justified; second, organizational theory is defined from a chaos perspective;

and finally, the mathematics of chaos is applied to a simple issue of information theory to

demonstrate how new perspectives of scx.ial dynamics can be gained.

Chaos Theory
Chaos theory describes the way systems change over time. It proposes that systems

governed by physical laws can undergo "transitions to a highly irregular form of behav-

ior...." and that although "chaotic behavior appears random, it is governed by strict math-

ematical conditions." (Peterson, 1988). The technical usage of the term chaos is different

from its common usage in that the scientific concept implies circle: in the midsi of disorder.

Predictability and unpredictability exist together in the same set of formulas. The equations

used to model change over time imply cause-effect relations, but small perturbations in the

system can lead to major changes in final outcomes. Relationships that appear, initially, to

exhibit linearity quickly devolve into non-linearity. Increases in variable X may create one-

to-one increases in variable Y until a critical value is obtained, at which point a small further

increase in X causes significant, non-linear changes in Y.

According to chaos theory, systemic state of being is sensitive to initial conditions. The

phenomenon is best observed in weather forecasting, where minor fluctuations in meteoro-

logical conditions can create big changes in tomorrow's weather. This is known as the

butterfly effect, which asserts, only somewhat facetiously, that the flapping of a butterfly's

wings in Tokyo can cause thunderstorms over midwestern United States; (Lorenz, 1964).

It is for this reason scientists have concluded that weather is ultimately unpredictableat

least in a micro sense.
In the macro sense, there is order within chaos. Chaotic stnictures settle into steady

states much as do pendulums; both exhibit regular, or more precisely, finite behavior.

Chaotic systems, however, exhibit the additional characteristic known as non-periodic be-

havior. In simple terms, chaotic behavior is constrained in scope yet it never quite repeats
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Mathematical Model

itself. The world is not going to wake up tomorrow to snow in the morning and
temperatures of 140* in the afternoon, yet nor will tomorrow's weather be a precise
duplicate of today'sit will vary in at least some subtle details. Mathematically, the fate
that pulls a system into iegular behavior is called an attractor, in chaos, the force that pulls
a system into a chaotic steady state is called a strange attractor (Ruelle and Takens, 1971).
The strange attractor defines the difference between a chaotic state and a random one.

Thus far, chaos theory has been limited to investigations of physical phenomena and
herein lies a dilemma for advocates of the social application of chaos theory. Sociological
histoty is replete with examples of pitiable but popular effotts to apply physical law to so-
cial events. The social physics movement of the 17th century, for example, viewed society
as a static, closed system whose component parts are in equilibrium. The organic move-
ment of the 19th cennny, which evolved out of Darwin and Spencer (Social Darwinism),
proposed that society mimics the harmoniously interacting subsystems of a living body.
The error of such movements lies in their failure to address the interactive and purposive
nature of the human condition.

The applicability of chaos to social systems must be predicated upon an explication of
the difftrences between physical and social interaction. Two such differences are pertinent.
First, human linkages ate symbolic rather than tangible. A physical object transmits energy
through physical contact, as when one billiard ball transmits motion to another. One hu-
man influences another through communication, including the various for= of language
expression, genetic transmission, mores, expectations, and fads. Such interactions are
transient and are often effected at some distance. The second and more important differ-
ence is related to the first. Social systems are purposiveintexaction is driven by the
cognitive process of decision-maldng and by motives, interests and sentiments.

Mather (1964) elaborates on the nature of social interaction in his discussion of two
major elements of the "causal nexus." The first element is the social-psychological, or
"teleological nexus ... a mode of determination that is peculiar to beings endowed with
consciousness, beings who are to some degree aware of what they are doing and who ai
in a sense purposive in doing it." (MacIver, 1964, pp. 14-15) The second is socialthi
result of "a great many individual or group actions directed to quite other means but to-
gether consoiring to bring them about...We include here ... the srandards, customs a;:.Li

cultural patterns tivat men everywhere follow....These [larger] patterns emerge ... &IN n tht

conjuncture of diverse activities directed to less comprehensive and more immediate
means." (pp. 20-21)

Mather points 11.`i two seemingly inconsistent but complementary sides of the social
system. On the one side, humans are directed by individual goalsa somewhat atolnistic
view of society. On the other side, humans conspire to cooperate, to act as one. The first
is teleological; that is, !tt. is conuaned with final causation. Final causation pmjects forward
into timc =rent behavior is motivated (consciously or otherwise) by desired future out-
come. Dk...-win's theory is teleelogical. The sevond is concerned with efficient, or physi-
cal, causation. Behavior is dependent upon events that have preceded and is consequently
unintended. Social systems, according to Mather, are a product of the dynamic interaction
of these forces.

Descriptive Tesearchers have tended to focus on teleological causation or human purpo-
siveness rather than on the dynamic interaction of teleology and efficient causation. The
teleological focus fails to explain certain systemic patterns of development Scientists are
beginning to ask broad questions such as, "Why do all leaves have basically the same
shape?" The answers are not to be found in fmal causation; rather, they are to be found
with such efficient causal agencies as gravity and its universal effect on systemic develop-
ment (a magnificently literary argument of this point can be found in Thompson, 1959).
The same can be said of social research. There is an unavoidable sameness and constancy
about social structures that teleology fail to explain. Tribal behavior in New Guiana is re-
flected in many ways by community life in the United States. Family life is an amazingly
stable phenomenon. Mather argues that it is efficient causation, such things as mores,
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customs and even the physical structure of the hure_on body, which generates this univer-

sality of form in human behavior. Teleology alone is insufficient to describe social dynam-

ics. Teleology explains diversity but efficient causation describes commonality. Social

systems are the product of both forces.
It is such interaction that creates a chaotic system. Chaos is a science of the evolving,

dynamic behavior of whole systems. It presumes teleological pressure that is restrained by

-dissipative forces (broadlyrather than slaviehlyto be represented as efficient causa-

tion), the product of which is bounded variety.

A further point about purposive behavior Ls pertinent. Some have suggested that pur-

posive behavior manifests as nothing more than decisions based "on a variety of inconsis-

tent arid ill-defmed preferences." According to this model (known as the "garbage-can"

model of administration), human decisions are made "on the basis of a simple set of trial-

and-enor procechres, the residue of learning from the accidents of past experiences, imita-

tions, and the inventions born of necessity.' (Cohen, March and Olsen, 1972, t.t.3) Chaos

theory corroborates this position, advocating that causation is the result of seemingly

whimsical evolutions of interaction patterns. The garbage can theory, like chaos theory,

suggests that decisions evolve out of the happenstance collaborations that oceur at a particu-

lar juncture in time. There appears to be, then, a cestain randomness ornon-linearity about

purposiveness that compromises its effect on the future. Intesetstingly, nonlinearity is a key

component of chaos theory.
The ultimate question, hutsevezt is not whether human purposiveness influences social

structuie but whether purposiveness dettanrinietically controls it. If one answers

affirmatively to the latzr question, then the modeling ability of chaos theory is

compromised. If we can predetemaine hos events will evolve, if we can establish linear

causal relationships between our behsvion and their outcomes no matter how complicated

the causal network, then social chaos does not exist. Realism, however, must dictate the

contrary view. .Putposive causation is not Linear in its impact; it is marked by loosely

coupled interacions (Glassman, 1973), causal imbalances (as when a given stimulus has

no effect until it reaches a certain critics! levet Buckley, 19.67, p. 67), the anarchy of

coincidence, sensitive dependence on initial conditions, and mutual interaction of

component parts. Purposiveness influences but it does not control, and that infieence is

subjugated to stifting 'intesection patterns. Without restraint. puzposiveness would lead to

random, unboteadtai behavior. With restraint-4nd we return again so MatIver's

argumentsocial systole; exhibit boundesi divettsity. In other words, social dynamics are

chaotic.

Altahemstical Model of Chaos

Theremaindev of this plaper Aill first develop a mathemasical model of chaos, and will

then demons/este how that model can be applied to axial systems. The mathematical

model that will be explored was developed to its potential by May (1976) and used to

model biological population flucmations. The equation Ls a deterministic. lees& equation

that demonstrates some amazingly complex behaviors. It, makes the simple assumptions

that populations ate seascr 11 and generations do not overlap. This latter, of course, does

not describe many events in social systems whose interactions tend to be overlapping and

continuous; even so, the eqsetion will serve nicely Ds demonstrate key principles (others

have also used logistic equations to modd social events; see, for example, Forrester, 1969

and 1971; for discession of Forrester's methodology, see Bloomfield, 1986).

The formula represents a feedback or recursive system and is written in the form

x1=lotn(1-xm). It sets it given biological entity's population (say the population of Gypsy

Moths) to a fractional variable s. The equation gedicts population gmwth within a subse-

quent cycle (x.+1) based (xi the size of the immediately preceding population (xn); that Ls,

the result of each actdation is feel bay& into the quation for subsequent calculation. The

parameter k repnesents any of et number of ttioktgical constraints, such as birth rate,
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The formula is more intuitive when written in the form, xn+i k4. The th7fir of

the two terms in this form of the equation, k;: is a first order term which represents tirth

rates within the population of interest. The second of the two terms is a nonlinear,

quadratic term. When x is small, its effect is negligible; for example, when x is .01, x.7 is

.0001. As x increases, however, the quadratic term, being negative, places increasingly

maw restraints on the first term. This second term represents the population death ritte.

If x is sufficiently small, the given population will rise steadily for k greater than 7. ond will

drop steadily for k less than 1. If x is large, then population growth is dominated by the

second term, or the death rate.
With a given value of k and a starting point xo, the evolution of the population is fully

determined. Were xo to be .03 and k to be 1.5, population evolution could be represented

by Figure 1. Note that a steady state, or balance between birth and death rates, is achiemi

at a population size of .3333.

Insert Figure 1 about here
40

For any k < 3.0, such steady state will be achieved; however, at k = 3.r` a new mash-

ematical phenomena is observed. Population size no longer achieves a steauy state; rather h

becomes unstable. At k = 3.2, steady state is again achieved, but it fluctuates between

two values, .799 and .514, as shown in Figure 2. This is known as a period-2 cycle. As

k further increases, the population again destabilizes, then at k 3.5, it achieves a period-4

steacly state. Further increases in k take the population through subsequent period dou-

blings, each of shorter duration than the previous one. At k 32 3.57, there are an infinite

number of periods and fixed points, and the system has reached a chaotic state.

Insert Figure 2 about here

,..111

Period doubling is better illustrated by plotting given values of k against their corre-

sponding points of stability in what is called a bifurcation diagram. Such a diagram is illus-

trated in Figure 3. Note that bifurcations occur at k - 3.2 and again at k 2= 3.5, as de-

scribed in the previous paragraph. Wert this to be continued for additional values of k, the

cascade of period doubling would continue, and the bifurcation diagram would look like

that represented in Figure 4. Careful examination of this figure reveals the initial bifurca-

tions and the rapid cascade into chaos. An interesting phenomenon is indicated by the

clear, vertical bands. At these points, brief periods of stability emerge which quickly

evolve again into chaos. At k ut 4.0, the system dies; the population destroys itself com-

pletely by overburdening the supporting environment.

Insert Fig= 3 about here

Insert Figure 4 about here

Application in Social Sciences
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Figure 4 models not only the growth of biological populations but social interactions as

well. Illustration of this assertion refers to classical information theory. Information the-

ory postulates that social structures are organized by cot g enoraunication linkages

among humans in much the same way that bridges are fssurd n crderly linkages among

steel beams. Specifically, an organized state is created when communication linkages are

constrained. The corollary of this is that disorganized states exist when communication

linkages are unrestrained. A manufacturing concern organizes by channeling lines of
communicationopening some lines and closing others. Families are structured around,

among other things, the constraint of sexual interaction. However, constraint reduces the

amount of information that a social system can generate, and excessive constraintan or-
ganization with a limited number of linkagesis predictable and dull. This can be prob-

lematic. Unless the organization possesses at least as much information (more accurately,

variety, or freedom to select among alternatives) as is found in its environment, it will be

unable to adequately process envisonmental demands (Buckley, 1967, p. 89).

Organization, then, can be illustrated as a continuum stretching between a perfectly dis-

organizoxl state (absolute entropy) and a perfectly organized state (absolute negative en-

tropy). Open systems lie somewhere in the middle of this continuum they deliberately in-

maduce variety to maintain a dynamic state.
For illustrative purposes, attention is focused on situations in which something of a re-

lationship exists between degree of organization and energic input. Energic input is defined

as effbrt expended to achieve a given oipnized state. Such effort is usually transmitted as

information, but its function is to decrease, rather than inert 'ase, variety. For example, a

supervisor must expend effort to reduce non-productivity among workers or to reduce the

effect of informal group collaboration on organizttional function. There are, of course, cir-

cumstances in which organization is a natural state of affairs and little energic input is re-

quited; indeed energic input is required to avoid variety reduction. For instance, isolated

tribes of Indians in the Baja must expend significant energy to find wives (introduce genetic

variety) because of strict taboos against even the remotest forms of incest (Owens, 1965).

The conclusions proffered by this paper arguably apply to this latter type of phenomenon,

but I have chosen not to focus on it.
If, in the logistic formula developed above, we let k equal the energic input required to

create organization and x equal the degree of organization, a chaotic model of social sys-

tems can be derived. As with the evolution of population growth, certain levels of energic

input migrate an organization that evolves predictably to a steady state while increesed en-

ergy leads to bifurcation and destabiliaation. For example, close supervision of line work-

ers generates initially a greaterdegree of attention to operational detail. Once the level of

supervision passes a certain point, however, alternate behaviors neiifest, such as resis-

tance. Alternate states, like resistance and compliance, coexist, and social factions cat

easily slip Ltom one state to another. Were supervisory preasure increased even further,

each of the alternate states would again bifurcate. Resistance, for example, may evolve into

organized and pusive activity. Eventually, were the mom to continue its increase, a

seemingly infinite, unpredictable variety of states would be possible, and the mocess could

eventually lead to the alteration of the system.
Several concepts need explication the first of which is the concept of steady state.

Steady state in social systems and in chaotic physical systems is somewhat different from

steady state in the classical sense. Mechanical equilibrium is not implied; sociologists have

expended a great dcal of energy over the past 50 years or so dispelling that notion (see, for

example, Buckley, 1967) and I certainly agree. Systems in equilibrium are linear and pre-

dictable; Galileo's pendulum is an appropriatemetaphcr. Social steady states, like chaotic

steady states in physics, are non-perialie but finite in scope. If certain behaviors of a so-

cial system were quantifiably monitored over time and plotted on a graph (e.g., a three di-

mensional plot of average intensity of worker attitudes about supervision, predominant na-

ture of worker behavior, and level of supervision), the resultant lines would not settle into a

repetitive pattern as they would if one plotted a pendulum's velocity against its position.
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Rather the plotted lines would swirl and loop on the graph. More importantly, however,

the lines will remain within a finite atea (the area of the graph) rather than fly off into infin-

ity. Organizational behavior represented by.these lines is finite, constrained by forces such

as role expectations, mores, and human capability. Steady state, then, refers to the finite

nature of human activity. It is relatively constant over time and situation and allows gen-

erally predictable organizational behavior free of significant disruption.

Steady states are also non-periodic. Referring again to the Mite dimensional graphof

organizational behavior &scribed in the previous paragraph, no two lines or swirls will

overlap, and magnification of any given line will reveal that it is composed of successively

smaller line& By extension, human behavior never quite repeats itself. Behavior that ap-

pears repetitive is, upon close examination, different in some subtle way from anything that

precede& Social behavior may at times appear cyclical, but that is never quite the case.

Human behavior, both individualistic and social, is infmitely varied.

The fotre that binds the system (i.e., creates the steady state) is the strange attractor. It

is an attractor because it limits behavior just as gravity limits the behavior of a pendulum; it

is strange because the behavior, though constrained, is non-periodic. An attractor is a

metaphorical basin or magnet which attracts behavior. The analogy can easily be extended

to Maciver's concept of social nexus. MacIver's purposive behavior is, in the termhiology

of chacs, non-periodic, while his social nexus is referred to in chaos as strange attractor.

Perhaps the closest analogy in current organizational theory is the notion of "culture," de-

fined as "a pattern of basic assumptions ... that has worked well enough to be considered

valid and, therefore, to be taught to new members as the correct way to perceive, think, and

feel in relation to ... problems." (Schein, 1985, p. 9)

The concept of scaling is required to put these concepts into perspective. Scaling is not

evident in May's bifurcation diagram, but in other types of representations, particularly

those of Mandelbrot, (1983) it is well illustrated. Any given phenomenon is repmduced

imperfectly and in miniature by a number of sub-phenomena, and each of these sub-phe-

nomenon is again replicated in miniatine, and so on ad infmatum (at least mathematically).

Thus organiz.ational steady state is composed of a number of smaller steady states and each

of these is composed of even smaller steady states. To represent steady state as a series of

points (k < 3.0) is technically inaccurate. The steady states represented by those seemingly

static points are acmally small eddies of chaos. Graphically, they look like the turbulent .

region right of los 3.0 on a much smaller scale. They a are bound by the same strange

attractor, and each is composed of smaller chaotic states. They are quite dynamic, with

movement both within the chaotic state and along the line of the graph.

With bifurcation, steady states begin to destabilizebehavior within the group fluctu-

ates more vigorously. As pressure increases, so does social turbulence. The chaos of

steady state is manifested on a grander scale. It is chaos of such magnitude that one or

more alternate steady state may evolve. If steady state is represented as a basin, an orbit

that attracts behavior, then the state of social chaos modeled to the right of k = 3.0 repre-

sents behavior that has moved to the periphery of the basin and which may very well jump

to another basin (strange attractor). A classic analysis by George Brager of sociologist.

Lewis Coser's (1956) assertions about group behavior is illustrative. Coser proposed that

conflict inflicted by external sources tends to coalesce the group under attack. Brager

(1969) studied the behavior of employees in a social agency which was under public attack

because of the agency's alleged extremist views. He found, contrary to Coscr, that the ex-

ternal pressure caused dissention within the ranks of the agency. His hypotheses dealt

specifically with level of commitment to ideal and level of dissention (his findings were

generally supportive), but along the way he spoke of bifurcation (dual reaction of adminis-

tration and dual reaction of individuals) and of changing sentiments (administration's first

response to L' e crisis was to defend its values; it subsequently shiftoi to a defensive posi-

of compromise). Such clues indicate that a chaotic model of ozganizational dynamics

over timt mid have offered a different, if not more interesting, perspective of what tran-

9
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spired in this social agency. Chaotic modeling would certainly have supported Brager and

contradicted Coser.
It is incorrect to assume actoss the board that degree of organization increases linearly

in relationship to degree of energic input. While the organization is experiencing steady

states, the assertion is more or less true. However, once bifurcation begins, the cascade of

period doubling (i.e., the appearance of alternate, transient states) transpires at an increas-

mgly furious rate. Michael Feigenbaum (1978) found that a period-2 cycle is 4.6692016...
times longer than a period 4 cycle; a period-4 cycle bears the same relationship to a period-8

cycle, and so forth. The point here is not in the mathematical rigor but in the fact that pe-

riod doubling, once it begins, occurs at progressively smaller intervals of time or energic

input. In the example regarding supervision, it would seem thatemployes become increas-

ingly sensitive to supervision once a critical level is exceeded and react with increasing ra-

pidity to elevations m the level of energic input
Information theory suggests that "randomness," or the ability to select among choices,

is necessary for system survival. An organization must possess at least as much informa-

tion as it must deal with from its environment (Buckley, 1976, p. 88-89). Information is-

sues from unconstrained linkages within the orgarization. Using the metaphor explored by

this paper, information evolves out of chaos, a prccess which, contrary to information the-

ory, is not random. Verification of the necessity woposal has come from several chaoti-
cians. Medical researchers, for example, have concluded that chaos is integral to human

survivaL Ary Goldberg Pas found that some dogree of chaos contributes to the healthy

functionbig of the heart by allowing it to adjusc to environmental contingencies, and that a

regular heartbeat may signal impending problems (see Taubes, 1989). Gleich (1987, pp.

1934)) summarizes:
Nonlinear feedback regulates motiori making it more robust. In a linear

system, a perturbation has a constant effect In the presence of nonlinearity,
a perturbation can feed on itself until it dies away and the system returns
automatically to a stable state....biobgical systems use their nonlinearity as

a defense against noise.
It is a simple step from this to the conclusion that chaos is necessary for the survival of the

social systemthe analogies are obvious.
Earlier in this discussion bands of stability (indicated by white horizontal strips in

Figure 4) were noted within the chaotic region. It is difficult to document this as a mathe-

matical phenomeaon related solely to the given level of energic input. The difficult comes

not in imagining that such bands of stability would evolvethey may, for example, repre-

sent temporary cease-fires, brief breathers, temporary alliances, or futile efforts to "get it

back together." What is difficult to imagine is a blind linkage to mathematics rather than to

purposive behavior. It is more appropriate to assert that these bands model a statistical

probability rath,s than a mathematical invariant.
This, however, raises question about the utility of mathematical modeling of social be-

havior. It is not suggested that these models precisely replicate behavior; rather, they are

stylistic representations. This is true not only of social systems, but of models of physical

system as well. The problem is environmental noise (such as purposive behavior).

Libchaber (1982), who has experimented with turbulent fluids, was concerned about the

effect of bumps and vibrations on his experimental apparatus. Noise in social systems is

even more pervasive. Noise contributes to unpredictability in chaotic structures; one cannot

predict where, when or the degree to which noise will strike. Consequently, although be-
havior is ultimately bound by the strange attractor, one cannot predict the impact that noise

will have on the system. Thus chaotic models are caricatures, but they are proving to be
extremely useful caricature& Scientists are using them to test theories that have failed to

yield to linear techniques (Peterson, 1988, p. 148). Benoit Mandelbrot (1983) has used

stylized repiesentations to more accurately understand such &blip as static in telaphone

transmission and stock market evolution. Chaotic modeling will not bring precision to

measures of social dynamics. However, it can measurealbeit stylisticallyaspects of
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social systems that have been previously unmeasured thus significantly improving our un-
derstanding of human dynamics.

Figure 5 provides an alternate representation of the continuum from disorganized to or-
ganized states typically proposed by information theory. The notion of continuum is aban-
doned in this repreFentation, for once the restrictions on flow of information reaches a criti-
cal point and the chaotic region is entered, a variety of organizational states are manifested.
Figure 5, instead, allows for a range of behaviors across various energic levels. If infor-
mation linkages could indeed be restrained to the degree suggested by informational the-
ory's straight line continuum, then linear growth to absolute organization could be pre-
dicted This thesis argues that they cannot be so structured.

Insert Figure 5 about here
1111.1.1M1.

Information theory concludes that increased structuring of systematic communication
linkages reduces its generated informadon to the point that it becomes non-viable. Chaos
theory indicates instead that pressure to reduce communication dramatically increases the
amount of information produced by the system; that is, it increases the amount of chaos.
Nonetheless, non-viability threatens both the system envisioned by information theory and
that envisioned by chaos. The difference, however, is that one envisions a quiet death
while the latter projects alteration related to turbulent activity.

Summarization
The introduction to this paper referred to debates among organizational theorists about

positivism, voluntarism, and structuralism One camp in these debates argues, to one de-
gree or another, the stability or structural nature of organizations, while the otherargues the
transient, purposive nature of organization. At the turn of this century, for example, pro-
cess models of societythe major product of the Chicago Schoolemphasized the tran-
sient, fiuid nature of stability. Small (1905, pp. 619-620), an advocate of this model,
asserted that "... social structures and functions are ... results of ... previous associational
process; but they no sooner pass out of the fluid state, into a relatively stable condition,
than they become in turn Ames of subsequent stages of the associational proem ..." . By
the middle of this century, the functionalist model championed by Parsons advocated the
interaction of stability and pressure to change (Parsons and Smelser, 1956), with the em-
phasis on stability. More recently, systems theory has proposed a homeostatic model in
which the interaction of maintenance and adaptive structures cause constant but non-
disruptive adaptation (see, for example, Hoy and Miskel, 1987).

Chaos theory adds yet another perspective to our understanding of the relati onship be-
tween purposiveness and stability. Specifically, it addresses the nature of organization, the
nature of change, and the nature of social cause-effect

Several observations about the nature of organization can be derived from the study of
chaos. First the concept of equilibrium is rejected in favor of steady state, dermed as non-
periodic but finite behavior. Steady state suggests an interactive relationship between pur-
posive, teleological behavior and social stability. Purposiveness serves to define the non-
repetitive, dynamic nature of organization, Lo compromise the stodginess of stability.
Stability (or strange attractor), on the other hand, serves to restrain the effect of purposi-m-
ness, to insure that behavior remains within artin bounds.

Second, organizadon must be understood in reference to scaling. Scaling suggests that
a given organization is a chaotic entity composed of lesser chaotic entities, each of which
are in turn composed of chaotic entities within chaotic e.qities. Each lesser entity is a rough
replication, on pertinent organizational dimensions (teehbology, valuea, culture, structure,
etc.), of the chaotic states from which it is derived This is true because lesser systems are
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bound not only by their own internal strange attractors, but, as part of a larger chaotic state,

are also constrained and shaped by the larger attractor.
Third, chaos is crucial to the survival of the organization. Because chaotic systems

function nonlinearly, a chaotic stmcture can absorb perturbation or invasion and neutralize

its impact on the system. Were syutem dynamics linear, perturbation wouldhave an effect

similar to the chain !faction obtained by placing 10(X) ping-pong balls on the spring tunas of

1000 mouse traps and launching a loose ball into the mix. The slightest bump against a lin-

ear, interactive system can be devastating. Nonlinear systems, on the other hand, use

feedback to turn a perturbation in on itself until the perturbation dies away. Chaos gives a

system the flexibility it needs to deal with a contingent environment. For example, schools

tend to absorb and neutralize the infusion of new ideas and personnel, and return quickly to

the steady state that existed prior to the intruion. Organizational informal groups ;end to

neutralize change sought by administrators.
The issue of chr nge is an imponant one in chaos. It was just argued that chaos pro-

vides a system the ability to resist perturbation or change, a fact which increases its surviv-

ability. A system that fails to change, however, is unviable. Chaos balances the seeming

incongruity of change and stability. It prevents devastating, linear change, yet is itself the

hnage of change. Paradoxically it uses change to control change. The image of a stick

bation) thrown into a swirling stream is appropriate. The stick, rather than "parting

waters," becomes caught up in the stream's chaotic agenda.

I do not, by this, suggest a non-evolving strange attractor. While the seeming incon-

gmity of :tability-promoting change may strain the imagination, the incongruity of an un-

changing stability strains credulity. A social system inodifies its strange attractor over time;

periodically it also jumps from one strange attractor to another. The first of these assertions

has not been developed in 'ais paper, but it would be absurd to deny. The strange atusctor,

while exerting a significant influence over purposive behavior, must itself be influenced by

purposiveness. Stability evolves to deal with contingency, to bring order to purposiveness;

thus as purposiveness pushes social Structures into unique situations, stability must further

evolve to deal with the new conditions.
Attractor adjustment, however, does little more than elaborate the existing structure.

Attractor shifts, on the other hand, are truly structure changing. This phenomena was sug-

gested by the mathematical model developed within te body of this paper. A shift across

attractors was recently observed on a rather dramatt !pale in eastern Europe. One also ob-

served shifts between strange attractors in the turmou of the sixties and in the conservative

movement of the eighties. In education, shifts have been observed with the excellence

movement of thc eighties, the Sputnik crisis of the late fifties, and the concern about the

underprivileged in the sixties. Kuhn (1970) observed attractor shifts when he described

precipitous historical evolutions in scientific knowledge, as occurred when Newton ad-

vanced his theories of gavity and motion, and Einstein advanced his theory of relativity.

Such shifts mark rather precipitous changes in a system's basic direction.

The final major derivative of this paper deals with cause-effect It has been asserted

that non-linear, chaotic structures absorb cause or penurbatiOn, constraining its effect

within bounds established by the strange attractor. This is not to say that effect is pre-

dictable. A perturbation can cause any of an infinite variety of behaviors within the con-

fines imposed by the strange attractor. Further the intensity of cause and of effect need not

be linearly related; as Lorenz noted, the flapping of a bnnerfly's wings in Tokyo may con-

ceivably cause thunderstorms over Texas.

1he chaotic view of cause-effect naturally questions the efficacy of traditional statistical

analysis which seeks probabalistic relationships and causalities among variable. Chaos of-

fers something of a 6fierent perspective of causality, a perspective of systemic wholes and

of change over time, thus care should be exercised in comparing the two analytical ap-

proaches. It should be noted that the formulas used to model chaos, like those used by sta-

tistical research, are deterministic. It is the nonlinear component of chaos rather than 17

t:rminism that is at variance with traditional research, thus it is not incongruous to fin4 de-
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tertninistic rtlationships when one focuses on a temporally static view of phenomena.

Furthm, attention is drawn to the darker bands in the chaotic Tegions of Figure 4. These

bands indicate that cettain behaviors are visited more frequently than others, a fact which

may contribute to the observations of traditional research.
A final observation about causality refers again to attractor shifts or precipitous change

in social structure. Such events may be caused by increased energic input or through hap-

penstance events. The effect ofenergic input from internal sources was modeled by the

formula developed by this paper. Energic force can likewise be exerted by the interaction

of two or more systems, as has occurred with the interaction of technology and social life

(television, for example, has undoubtable been a major influence on what is known as the

sexual revolution). Attractor shifts may also occur more casually, the incidental result of a

trajectory embarked upon. Thus, as the poem says, the loss of a nail in the horse's hoof

led to the loss of the kingdom. It is difficult to say whether the racial equality movement of

the 1960s received major impetus from the dynamism of John Kennedy or evolved out of a

rather innocuous Supreme Court case in the 1930s which forbade Missouri from tefusing

to let a black attend the University of Missouri Law Schooi (Missouri sa zk Qin=
Canada, 1938); the latter, however, may very well have been more influential than gener-

ally credited.
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Figure 1. Evolution to a steady state when x = .03 and k = 1.5.
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Figure 2. Period-2 steady state when x = .03 and k = 3.2.
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Figure 3. Bifurcation of population size (x) in biological systems across increasing values
of k.

20

17



0.9

0.8

0.7

06

0.5

0.4

Mathematical Mo (Ian

0.3 t I

1.5 1.75 2 2.5 2.75 2.9 2.95 3.2 3.5

k



Mathematical Modeling

Figure 4. Bifurcation and chaotic range between k = 3.5 and k = 4.0. Note: From
Turbulent Mirrors (p. 61) by John Briggs and F. David Peat, 1989, New York: Harper &
Row. Copyright 1989 by John Briggs and F. David Peat. Adopted by permission.
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Figure 5. Model of the chaotic evolution of organized social systems.
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