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Abstract
This paper applies chaos theory to administrative and organizational issues. Three goals
are addressed: first, the use of chaos theory to model social dynamics is justified; second,
" organizational theory is defined from a chaos perspective; and finally, the mathematics of
chaos is applied to a simple issue of information theory to demoustrate how new

perspectives of social dynamics can be gained.
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The Mathematical Modeling of Chaotic Social Structures

Recent research literature has seen numerous debaies between advocates of statistical
modeling, who argue in favor of the general predictability of human behavior, and aGvo-
cates of the descriptive or naturalistic research, who argue that human behavior is essen-
tially non-deterministic. The roots of these arguments have been brewing for many years

-in sociological and organizational theory, however. Sociologists have long argued that so-

ciety, rather than being static and deterministic, is defined by lti-channeled causative in-
teractions among sentient beings—interactions driven by communication and purposive be-
havior rather than physical contact (see, for example, Buckley, 1967). From this, organi-
zational analysts have derived theories of systems interaction (Forrester, 1969, 1971;
Corwin, 1987, Hoy & Miskel, 1987), contingency (Glassman, 1973; Fiedler, 1973),
uncertainty (Cohen, March & Olsen, 1972), and dialectic (Benson, 1977). These organi-
zational theories have debated issues of positivism (explanation based on regularity and
causality; Hall, 1987), voluntarism (individuals are totally autonomous and free-willed;
Burrell & Morgan, 1979), and structuralism versus individualism (structural stability or
individual purposiveness; Pfeffer, 1982).

A potential new component of these debates, called chaos theory, has evolved over the
past few years. Several have recognized its potential for describing social systems, but
have failed to explore that possibility. Notable among the advocates is Lee J. Cronbach,
who has suggested that “[m]etaphors and mathematical analyses flow from the study of
chaos. The work will suggest analogies to almost any human scientist.” (1988, p. 47)
Cziko has proposed that “[d]evelopments in the field of physics [chaos] also have iropor-
tant implications for arguments concerning the predictability of human behavior....It thus
appears only a matter of time before chaos is applied also to problems of human behavior
and education.” (1989, pp. 18-19)

This paper addresses three goals. First, the use of chaos theory to model social
dynamics is justified; second, organizational theory is defined from a chaos perspective;
and finally, the mathematics of chaos is applied to a simple issue of information theory to
demonstrate how new perspectives of social dynamics can be gained.

Chaos Theory

Chaos theory describes the way systems change over time. It proposes that systems
governed by physical laws can undergo “transitions to a highly irregular form of behav-
jor....” and that although “chaotic behavior appears random, it is governed by strict math-
ematical conditions.” (Peterson, 1988). The technical usage of the terin chaos is different
from its common usage in that the scientific concept implies order in the midst of disorder.
Predictability and unpredictability exist together in the same set of formulas. The equations
used to model change over time imply cause-effect relations, but small perturbations in the
system can lead to major changes in final outcomes. Relationships that appear, initially, to
exhibit linearity quickly devolve into non-linearity. Increases in variable X may create one-
to-one increases in variable Y until a critical value is obtained, at which point a small further
increase in X causes significant, non-linear changes inY.

According to chaos theory, systemic state of being is sensitive to initial conditions. The
phenomenon is best observed in weather forecasting, where minor fluctuations in meteoro-
logical conditions can create big changes in tomorrow’s weather. This is known as the
butterfly effect, which asserts, only somewhat facetiously, that the flapping of a butterily’s
wings in Tokyo can cause thunderstorms over midwestemn United States; (Lorenz, 1964).
It is for this reason scientists have concluded that weather is ultimately unpredictable—at
least in a micro sense.

In the macro sense, there is order within chaos, Chaotic structures settie into steady
states much as do pendulums; both exhibit regular, or more preciscly, finite behavior.
Chaotic systems, however, exhibit the additional characteristic known as non-periodic be-
havior. In simple terms, chaotic behavior is constrained in scope yet it never quite repeats
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itself. The worid is not going to wake up tomorrow to snow in the morning and
temperatures of 14C° in the afternoon, yet nor will tomorrow’s weather be a precise
dupiicate of today’s—it will vary in at least some subtle details. Mathematically, the force
that pulls a system into regular behavior is called an attractor; in chaos, the force that pulls
a system into a chaotic steady state is called a strange attractor (Ruelle and Takens, 1971).
The strange attractor defines the difference between a chaotic state and a random one.
Thus far, chaos theory has been limited to investigations of physical phenomena, and

herein lies a dilemma for advocates of the social application of chaos theory. Sociological

history is replete with examples of pitiable but popular efforts to apply physical law to so-
cial events. The social physics movement of the 17th century, for example, viewed society
as a static, closed system whose component paxts are in equilibrium. The organic move-
ment of the 19th century, which evolved out of Darwin and Spencer (Social Darwinism),
proposed that society mimics the harmoniously interacting subsystems of a living body.
The error of such movements lies in their failure t: address the interactive and purposive
nature of the human condition.

The applicability of chaos to social systems must be predicated upon an explication of
the diff crences between physical and social interaction. Two such ditferences are pertinent.
First, human linkages are symbolic rather than tangible. A physical object transmits energy
through physical contact, as when one billiard ball transmits motion to another. One hu-
man influences another through communication, including the various forrss of language
expression, genetic transmission, mores, expectations, and fads. Such interactions are
transient and are often effected at some distance. The second and more important differ-
ence is related to the first. Social systems are purposive——interaction is driven by the
cognitive process of decision-making and by motives, interests and sentiments.

Maclver (1964) elaborates on the nature of social interaction in his discussion of two
major elements of the “causal nexus.” The first element is the social-psychological, or
“teleological nexus ... a mode of determination that is peculiar to beings endowed with
conscicusness, beings who are to some degree aware of what they are doing and who a1®
in a sense purposive in doing it.” (Maclver, 1964, pp. 14-15) The second is social—-the:
result of “a great many individual or group actions directed to quite other means but to-
gether conswiring to bring them about....We include here ... the standards, customs a:.i
cultural patterns th:t men everywhere follow.... These [larger] patterns emerge ... fromn the
conjuncture of diverse activities directed to less comprehensive and more immediate
means.” (pp. 20-21)

Maclver points ty two seemingly inconsistent but complementary sides of the social
system. On the one side, humans are directed by individual goals—a somewhat atoinistic
view of society. On the other side, humans conspire to cooperate, to act as one. The first
is telrological; thar is, it is concurned with final causation. Final causation projects forward
into time: curreni behavior is motivated (consciously or otherwise) by desired future out-
come. Du-win’s theory is teleclogical. The second is concemed with efficient, or physi-
cal, causation. Behavior is dependent upon events that have preceded and is consequently
unintended. Social systems, according to Maclver, are a product of the dynamic interaction
of these forces.

Descriptive researchers have tended to focus on teleological causation or human purpo-
siveness rather than on the dynamic interaction of teleology and efficient causation. The
teleological focus fails to explain certain systemic patterns of development. Scientists are
beginning to ask broad questions such as, “Why do all leaves have basically the same
shape?” The answers are not to be found in final causation; rather, they are to be found
with such efficient causal agencies as gravity and its universal effect on systemic develop-
ment (a magnificently literary argument of this point can be found in Thompson, 1959).
The same can be said of social research. There is an unavoidable sameness and constancy
about social structures that teleology fail to explain. Tribal behavior in New Guiana is re-
flected in many ways by community life in the United States. Family life is an amazingly
stable phenomenon. Maclver argues that it is efficient causation, such things as mores,
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customs and even the physical structure of the human hody, which generates this univer-
sality of form in human behavior. Teleology alone is msué'me nt to describe social dynam-
ics. Teleology explains diversity but efficient causation describes commonality. Social
systems are the product of both forces.

It is such irsteraction that creates a chaotic system. Chaos is & science of the evolving,
dynamic behavior of whole systems. It presumes teleological pressure that is restrained by

-dissipative forces (broadly—-rather than slavithly—to be represented as efficient causa-
tion), the product of which is bounded variety.

A further point about purposive behavior is pertinent. Some have suggested that pur-
posive behavior ranifests as nothing more than decisions based “on a variety of inconsis-
tent and ill-defined prefsrences.” According to this model (knnwn as the “garbage-can”
modelofadministmﬁon),humandecisionsmmadc“onthebasisofasimplcsetofuial-
and-error procedures, the residue of leaming from the accidents of past experier:ces, imita-
tions, and the inventions born of necessity.” (Cohen, March and Olsen, 1972, p.3) Chaos

corroborates this position, advocating that causation is the result of seemingly
whimsical evolutions of interaction fpcmnms. The garhage can theory, like chaos theory,
suggests that decisions evolve out of the happenstance coilahorations that occur at a particu-
lar juncture in time. There appears to be, then, a certain randomness of non-linearity about
purposiveness that compromises its effect on the future. Interestingly, nonlinearity is a key
component of chaos theory.

The ultimate question, however, is not whether human purposiveness influences social
structure but whether purposiveness detenministically controls it. If one answers
affirmatively to the latier question, then the medeling ability of chaos theory is
compromised. If we can predeteamine how events will evolve, if we can establish lincar
causal relationships between our behuviors and their cutctmes no matter how complicated
the causal network, thea sociz] chaos does not exist. Realism, however, must dictate the
contrary view. Puzposive causation is ok fnsar in its impact, it is marked by loosely
coupled interactivns (Glassman, 1973), cavsal irbalances (as when a given stimulus has
no effect until it reaches a certin critical level; Buckiey, 1967, p. 67), the anarchy of
coincidence, sensitive dspendence on initial conditions, and mutual interaction of
component parts. Purposiveness influences but it does not control, and thai influence is
subjugated o shiftini’inmcﬁwn panerns. Without restraint. purposiveness would lead o
random, unbounded bohavior. With restraint—-and we return agaia o Ma:Iver’s
arhiuqznt-»«smial systen s exhibit bounded diversity. In other words, social dynamics are
chaotic.

Mutherpatical Model of Chaos -

The remainder of this paper will first develop a mathematicul nxodzd of chaos, and will
then demonstras how that mocel can be applied w0 sccial systems. The mathematical
model that will be plored was developed w its potendal by May (1976) and used o
model biological population fluctuations. The equation is & denrminisdc. logists equation
that demonstrates sorne amazingly cooplex behaviots. It makes the simple assumptions
that populaticns are seasor ¥ and generations do not overiap. This later, of course, does
not describe soany events in social sysiens whose interactions tend 1o be overlapping and
continuous; even so, the equadon will serve nicely to demonsirate key principles (others
have also used logistic equations to mndel social events; see, for example, Forrester, 1969
and 1971; for discussion of Forrester’s methodology, see Rivorifield, 1986).

The formwls represents a teedback or recursive system and is written in the form
Xy 1=Kxn(1-Xy). JUsets & given biclogical entity’s population {say the popuiation of Gypsy
Moths) to a fractional variable ©. ‘The equation predicts population growth within a subse-
quent cycle (x,,1) based on the size of the immediately preceding population (x,); that is,
the result of each calcutation is fed back into the squation for subsequent calculation. The
parameter k represents any of & nurber of hoicgical constraints, such as birth rate.

b
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The formula is more intuitive when written in the form, x,,,; = kxp, - kx: The firsk of

the two terms in this form of the equation, kx,, is a first order term which represents birth
rates within the po ion of interest. The second of the two terms is a nonlinear,
%raﬁc term. When x is small, its effect is negligible; for example, when x is .01, X7 is
.0001. As x increases, however, the quadratic term, being negative, places increasingly

- greater restraints on the first term. This second term represeats the population death rate.
If x is sufficiently smali, the given population will rise steadily for k greater than 1 and will
drop steadily for k less than 1. If x is large, then population growth is dominated by the
second term, or the death rate.

With a given value of k and a starting point xg, the evolution of the population. is fully
determined. Were xq to be .03 and k to be 1.5, population evolution could be represented
by Figure 1. Note that a steady state, or balance between birth and death rates, is achieved
at a population size of .3333.

Insert Figure 1 about here

For any k < 3.0, such steady state will be achieved; however, at k = 3.”. a new nuuh-
ematical phenomena is observed. Population size no longer achieves a steadly state; rather it
becomes unstable. Atk = 3.2, steady state is again achieved, but it fluctuates between
two values, .799 and .514, as shown in Figure 2. This is known as a period-2 cycle. As
k further increases, the population again destabilizes, then atk = 3.5, it achieves a period-4
steady state. Further increases in k take the population through subsequent period dou-
blings, each of shorter duration than the previous one. At k = 3.57, there are an infinite
number of periods and fixed points, and the system has reached a chaotic state.

 Insert Figure 2 about here

Period doubling is better illustrated by plotting given values of k against their corre-
sponding points of stability in what is called a bifurcation diagram. Such a diagram is illus-
trated in Figure 3. Note that bifurcations occur atk = 3.2 and again at k = 3.5, as de-
scribed in the previous paragraph. Were this to be continued for additional values of k, the
cascade of period doubling would continue, and the bifurcation diagram would look like
that represented in Figure 4. Careful examination of this figure reveals the initial bifurca-
tions and the rapid cascade into chaos. An interesting phenomenon is indicated by the
clear, vertical bands. At these points, brief pericds of stability emerge which quickly
evolve again into chaos. At k = 4.0, the system dies; the population destroys itself com-
piewly by overburdening the supporting environmeit.

Insert Figure 3 about here

Insert Figure 4 about here

Application in Social Sciences
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Figure 4 models not only the growth of biological populations but social interactions as
well. Ilustration of this assertion refers to classical information theory. Information the-

* ory postulates that social structures are organized by cot 2. g voovauaication linkages
among humans in much the same way that bridges are f~incd .. orderly linkages among
steel beams. Specifically, an organized state is created when communication linkages are
constrained. The corollary of this is that disorganized states exist when communication

- linkages are unrestrained. A manufacturing concern organizes by channeling lines of
communication—opening some lines and closing others. Families axe structured around,
among other things, the constraiat of sexual interaction. Eowever, constraint reduces the
amount of information that a social system can generate, and excessive constraint—an or-
ganization with a limited number of linkages—is predictable and dull. This can be prob-
lematic. Unless the organization possesses at least as much information (more accurately,
variety, or freedom to select among alternatives) as is found in its environment, it will be
unable to adequately process environmental demands (Buckley, 1967, p. 89).

Organization, then, can be illustrated as a continuum stretching between a perfectly dis-
organized state (absolute entropy) aid a perfectly organized state (absolute negative en-
tropy). Open systems lie somewhere in the middle of this continuum; they deliberately in-

_ troduce variety to maintain a dynamic state.

For illustrative purposes, attention is focused on situations in which something of a re-
lationship exists between degree of organization and energic input. Energic input is defined
as effort expended to achieve a given organized state. Such effort is usually transtnitted as
information, but its function is to decrease, rather than incresse, variety. For example, a
supervisor must expend effort to reduce non-productivity among workers or to reduce the
effect of informal group collaboration on organizational function. There are, of course, cir-
cumstances in which organization is a natural state of affairs and little energic input is re-
quired; indeed energic input is required to avoid variety reduction. For instance, isolated
tribes of Indians in the Baja must expend significant energy to find wives (introduce genetic
variety) because of strict taboos against ever the remotest forms of incest (Owens, 1965).
The conclusions proffered by this paper arguably apply to this latter type of pheniomenon,
but I have chosen not to focus on it.

If, in the logistic formula developed above, we let k equal the energic input required to
create organization and x egjual the degree of organization, a chaotic model of social sys-
tems can be derived. As with the evolution of population growth, certain levels of energic
input generate an organization that evolves predictably o a steady state while increased en-
exgy leads to bifurcation and destabilization. For example, close supervision of linc work-
ers generates initially a greater degree of aitention to operational detail. Once the icvel of
supervision passcs a certain point, however, alternate behaviors n..nifest, such as resis-

‘tance. Alternate states, like resistance and compliance, coexist, and social factions can
casily slip froos one state to another. Were supervisory preisure increased even further,
each of the alternate states would again bifurcate. Resistance, for example, may evolve into
organized and passive activity. Eventually, were the pressuce to continue its increase, a
scemingly infinite, unpredictable variety of stares would be possible, and the process could
eventually lead 1o the alteration of the system.

Several concepts need explication the first of which is the concept of steady state.
Steady state in social systems and in chaotic physical systems is somewhat different from
steady state in the classical sense. Mechanica! equilibrium is not implied; sociologists have
expended a great deal of energy over the past 50 years or so dispelling that notion (see, for
example, Buckley, 1967) and I certainly agree. Systems in equilibrium are linear and pre-
dictable; Galileo's pendulum is an appropriate metaphor. Social steady stares, like chaotic
steady states in physics, are non-periodic but finive in scope. If certain behaviors of a so0-
cial system were quantifiably monitored over time and plotted on a graph (¢.g., a thres di-
mensional plot of average intensity of worker attitudes about supervision, predominant na-
nure of worker behavior, and level of supervision), the resultant lines would not settle into a
repetitive partem as they would if one plotted a pendulum’s velocity against its position.

ERIC



Rather the plotted lines would swirl and loop on the graph. More importantly, however,
the lines will remain within a finite area (the area of the graph) rather than fly off into infin-
ity. Organizational behavior represeried by these lines is finite, constrained by forces such
as role expectations, mores, and human capability. Steady state, then, refers to the finite
nature of human activity. It is relatively constant over time and situation and allows gen-
erally predictable organizational behavior free of significant disruption.

- Steady states are also non-periodic. Referring again to the three dimensional graph of
organizational behavior described in the previous paragraph, no two lines or swirls will
overlap, and magnification of any given line will reveal that it is composed of successively
smaller lines. By extension, human behavior never quite repeats itself. Behavior that ap-
pears repetitive is, upon close examination, different in some subtle way from anything that

Social behavior may at times appear cyclical, but that is never quite the case.
Human behavior, both individualistic and social, is infinitely varied.

The force that binds the system (i.e., creates the steady state) is the strange attractor. It
is an autractor bécause it limits behavior just as gravity limits the behavior of a pendulurm, it
is strnage because the behavior, though constrained, is non-periodic. An attractor is a
metaphorical basin or magnet which attracts behavior. The analogy can easily be extended
to Maciver’s concept of social nexus. Maclver’s purposive behavior is, in the terminology
of chacss, non-periodic, while his social nexus is referred to in chaos as strange attractor.
Perhaps the closest analogy in current organizational theory is the notion of “culture,” de-
fined as “a pattem of basic assumptions ... that has worked well enough to be considered
valid and, therefore, to be taught to new members as the correct way to perceive, think, and
feel in relation *o ... problems.” (Schein, 1985, p. 9)

The concept of scaling is required to put these concepts into perspective. Scaling is not
evident in May’s bifurcation diagram, but in other types of representations, parti y
those of Mandelbrot, (1983) it is well illustrated. Any given phenomenon is reproduced
imperfect'y and in miniature by a number of sub-phenomena, and each of these sub-phe-
nomenon is again replicated in miniature, and so on ad infinatum (at least mathematically).
Thus organizational steady state is composed of a number of smaller steady states and each
of these is composed of even smaller steady states. To represent steady state as a series of
points (k < 3.0) is technically inaccurate. The steady states represented by those seemingly
static points are actually small eddies of chaos. Graphically, they look like the turbulent
region right of k = 3.0 on a much smaller scale. They a * are bound by the same strange
attractor, and each is composed of smaller chaotic states. They are quite dynamic, with
movement both within the chaotic state and along the line of the graph.

With bifurcation, steady states begin to destabilize—behavior within the group fluctu-
ates more vigorously. As pressure increases, so does social turbulence. The chaos of
steady state is manifested on a grander scale. It is chaos of such magnirude that one or
more alternate steady state may evolve. If steady state is ted as a basin, an orbit
that astracts behavior, then the state of social chaos modeled to the right of k = 3.0 repre-
sents behavior that has moved to the periphery of the basin and which may very well jump
to another basin (strange attractor). A classic analysis by George Brager of sociologist
Lewis Coser’s (1956) assertions about group behavior is illustrative. Coser proposed that
conflict inflicted by external sources tends to coalesce the group under attack. Brager
(1969) studied the behavior of employees in a social a%ency which was under public attack
because of the agency’s alleged extremist views. He ound, contrary to Coser, that the ex-
ternal pressure caused dissention within the ranks of the agency. His hypotheses dealt
specifically with level of commitment to ideal and level of dissention (his findings were
generally supportive), but along the way he spoke of bifurcation (dual reaction of adminis-
rration and dual reaction of individuals) and of changing sentiments (administration’s first
respoase to ¢ ¢ crisis was to defend its values; it subsequently shifted to a defensive posi-
6.2 of comproraise). Such clues indicate that a chaotic model of organizational dynamics
over time = ould have offered a different, if not more interesting, perspective of what tran-
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spired in this social agency. Chaotic modeling would certainly have supported Brager and
contradicted Coser.

It is incorrect to assume across the board that degree of organization increases linearly
in relationship to degree of energic input. While the organization is experiencing steady
states, the assertion is more or less true. However, once bifurcation begins, the cascade of

iod doubling (i.c., the appearance of alternate, transient states) transpires at an increas-

- ingly furious rate. Michael Feigenbaum (1978) found that a period-2 cycle is 4.6692016...
times longer than a period 4 cycle; a period-4 cycle bears the same relationship to a period-8
cycle, and so forth, The point here is not in the mathematical rigor bui in the fact that pe-
riod doubling, once it begins, occurs at progressively smaller intervals of time or energic
input. In the example regarding supervision, it would seem that employes become increas-
ingly sensitive to supervision once a critical level is exceeded and react with increasing ra-
pidity to elevations in the level of energic input

Information theory suggests that “randomness,” or the ability to select among choices,
is necessary for System survival. An organization must possess at least as much informa-
tion as it must deal with from its environment (Buckley, 1976, p. 88-89). Information is-
sues from unconstrained linkages within the organization. Using the metaphor explored by
this paper, information evolves out of chaos, a prccess which, contrary to information the-
ory, is not random. Verification of the necessity yroposal has come from several chaoti-
cians. Medical researchers, for example, have cuncluded that chaos is integral to human
survival. Ary Goldberg Fas found that some de.gree of chaos contributes to the healthy
functioning of the heart by allowing it to adjus: to environmental contingencies, and that a
regular heartbeat may signal impending prohiems (see Taubes, 1989). Gleich (1987, pp.
193-4)) summarizes:

Nonlinear feedback regulates motion, making it more robust. In a linear
system, a perturbation has a constant effect. In the presence of nonlinearity,
a perturbation can feed on itself until it dies away and the system retumns
automatically to a stable state....biological systems use their nonlinearity as
a defense against noise.
It is a simple step from this to the conclusion that chaos is necessary for the survival of the
social system—the analogies are obvious.

Earlier in this discussion bands of stability (indicated by white horizontal strips in
Figure 4) were noted within the chaotic region. It is difficult to document this as a mathe-
matical phenomenon related solely to the given level of energic input. The difficult comes
not in imagining that such bands of stability would evolve—they may, for example, repre-
sent temporary cease-fires, brief breathers, temporary alliances, or futile efforts to “getit
back together.” What is difficult to imagine is a blind linkage to mathematics rather than to
pmme behavior. It is more appropriate to assert that these bands model a statistical
probability rath_r than a mathematical invariant.

This, however, raises question about the utility of mathematical modeling of social be-
havior. It is not suggested that these models precisely replicate behavior; rather, they are
stylistic representations. This is true not only of social systems, but of models of physical
system as well. The problem is environmental noise (such as purposive behavior).
Libchaber (1982), who has experimented with turbulent fluids, was concerned about the
effect of bumps and vibrations on his experimental apparztus. Noise in social systems is
even more pervasive. Noise contributes to unpredictability in chaotic structures; one cannot
predict where, when or the degree to which noise will strike. Consequently, although be-
havior is ultimately bound by the strange attractor, one cannot predict the impact that noise
will have on the system. Thus chaotic models are caricatures, but they are proving to be
extremely useful caricatures. Scientists are using them to test theories that have failed to
yield to linear techniques (Peterson, 1988, p. 148). Benoit Mandelbrot (1983) has used
stylized representations to more accurately understand such things as static in telephone
transmission and stock market evolution. Chaotic inodeling will not bring precision to
measures of social dynamics. However, it can measure-—albeit stylistically—aspects of

ERIC | 10



social systems that have been previously unmeasured thus significantly improving our un-
derstanding of human dynamics.

Figure 5 provides an alternate representation of the continuum from disorganized to or-
ganized states typically proposed by information theory. The notion of continuum is aban-
doned in this representation, for once the restrictions on flow of information reaches a criti-
cal point and the chaotic region is entered, a variety of organizational states are manifested.

~Figure 5, instead, allows for a range of behaviors across various energic levels. If infor-
mation linkages could indeed be restrained to the degree suggested by informational the-
ory’s straight line continuum, then linear growth to absolute organization could be pre-
dicted. This thesis argues that they cannot be so structured.

Insert Figure S about here

Information theory concludes that increased structuring of systematic communication
linkages reduces its generated information to the point that it becomes non-viable. Chaos
theory indicates instead that pressure to reduce communication dramatically increases the
amount of information produced by the system; that is, it increases the amount of chaos.
Nonetheless, non-viability threatens both the system envisioned by information theory and
that envisioned by chaos. The difference, however, is that one envisions a quiet death
while the latter projects alteration related to turbulent activity.

Summarization

The introduction to this paper referred to debates among organizational theorists about
positivism, voluntarism, and structuralism. One camp in these debates argues, to one de-
gree or another, the stability or structural nature of organizations, while the other argues the
transient, purposive nature of organization. At the tum of this century, for example, pro-
cess models of society—the major product of the Chicago School—emphasized the tran-
sient, fluid nature of stability. Small (1908, pp. 619-620), an advocate of this model,
asserted that ““... social structures and functions are ... results of ... previous associational
process; but they no sooner pass out of the fluid state, into a relatively stable condition,
than they become in turn causes of subsequent stages of the associational process ...” . By
the middle of this century, the functionalist model championed by Parsons advocated the
interaction of stability and pressure to change (Parsons and Smeiser, 1956), with the em-
phasis on stability. More recently, systems theory has proposed a homeostatic model in
which the interaction of maintenance and adaptive structures cause constant but non-
disruptive adaptation (see, for example, Hoy and Miskel, 1987).

Chaos theory adds yet another perspective to our understanding of the relat onship be-
tween purposiveness and stability. Specifically, it addresses the nature of organization, the
nature of change, and the nature of social cause-effect.

Several observations about the nature of organization can be derived from the study of
chaos. First the concept of equilibrium is rejected in favor of steady state, defined as non-
periodic but finite behavior. Steady state suggests an interactive relationship between pur-
posive, teleological behavior and social stability. Purposiveness serves to define the non-
repetitive, dynamic nature of organization, « compromise the stodginess of stability.
Stability (or strange attractor), on the other hand, serves to restrain the effect of purposive-
ness, to insure that behavior remains within - ortnin bounds.

Second, organization must be understood in reference to scaling. Scaling suggests that
a given organization is a chaotic entity composed of lesser chaotic entities, each of which
are in turn composed of chaotic eatities within chaotic etities. Each lesser entity is a rough
replication, on pertinent organizational dimensions (iechuology, values, culture, structure,
etc.), of the chaotic states from which it is derived. "This is true because lesser systems are
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bound not only by their own internal strange attractors, but, as part of a larger chaotic state,
are also constrained and shaped by the larger attractor.

Third, chaos is crucial to the survival of the organization. Because chaotic systems
function nonlinearly, A chaotic strcture can absorb perturbation or invasion and neutralize
its impact on the system. Were system dynamics linear, perturbation would have an effect
similar to the chain reaction obtained by placing 1000 ping-pong balls on the spring arms of

- 1000 mouse traps and launching a loose ball into the mix. The slightest bump against a lin-
ear, interactive system can be devastating. Nonlinear systems, on the other hand, use
feedback to turn a perturbation in on itself until the perturbation dies away. Chaos gives a
system the flexibility it needs to deal with a contingent environment. For example, schools
tend to absorb and neutralize the infusion of new ideas and personnel, and retum quickly to
the steady state that existed prior to the intrusion. Organizational informal groups tend to
neutralize change sought by administrators.

The issue of ch: nge is an important one in chaos. It was just argued that chaos pro-
vides a system the ability to resist perturbation or change, a fact which increases its surviv-
ability. A system that fails to change, however, is unviable. Chaos balances the seeming
incongruity of change and stability. It prevents devastating, linear change, yet is itself the
jmage of change. Paradoxically it uses change to control change. The image of a stick

bation) thrown into a swirling stream is appropriate. The stick, rather than *“parting
waters,” becomes caught up in the stream’s chaotic agenda.

I do nct, by this, suggest a non-evolving strange attractor. While the seeming incon-
gruity of ctability-promoting change may strain the imagination, the incongruity of an un-
changing stability strains credulity. A social system modifies its strange attractor over time;
periodically it also jumps from one strange attractor to another. The first of these assertions
has not been developed in \ais paper, but it would be absurd to deny. Thesu':nnn‘%e attractor,
while exerting 1 significant influence over purposive behavior, must itself be influenced by
purposiveness. Stability evolves to deal with contingency, to bring order to purposiveness;
thus as purposiveness pushes social structures into unique situations, stability must further
evolve to deal with the new conditions.

Attractor adjustment, however, does little more than elaborate the existing structure.
Attractor shifts, on the other hand, are truly structure changing. This phenomena was sug-
gested by the mathematical model developed withir: :he body of this paper. A shift across
attractors was recently observed on a rather dratnatic -cale in eastem Europe. One also ob-
scrvedslﬁftsbetweensu-angeamcmind:cmrmouofthesixﬁesandinmeconservativc
movement of the eighties. In education, shifts have been observed with the excellence

vanced his theories of gravity and motion, and Einstein advanced his theory of relativity.
Such shifts mark rather precipitous changes in a system’s basic direction.

The final major derivative of this paper deals with cause-cffect. It has been asserted
that non-linear, chaotic structures absorb cause or perturbation, constraining its effect
within bounds established by the strange attractor. This is not to say that effect is pre-
dictable. A perturbation can cause any of an infinite variety of behaviors within the con-
fines imposed by the strange attractor. Further the intensity of cause and of effect need not
be linearly related; as Lorenz noted, the flapping of a butterfly’s wings in Tokyo may con-
ceivably cause thunderstorms over Texas.

1he chaotic view of cause-effect naturally questions the efficacy of traditional statistical
analysis which seeks probabalistic relationships and causalities araong variable. Chaos of-
fers something of a cifferent perspective of causality, a perspective of systemic wholes and
of change over time, thus care should be exercised in comparing the two analytical ap-
proaches. It should be noted that the formulas used to model chaos, like those used by sta-
tistical research, are deterministic. It is the nonlinear component of chacs rather than -~ .
tsrminism that is at variance with traditional research, thus it is not incongruous to finu de-
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terministic relationships when one focuses on a teuporally static view of phenomena.
Furthez, attention is drawn to the darker bands in the chaotic regions of Figure 4. These
bands indicate that certain behaviors are visited more frequently than others, a fact which
may contribute to the observations of traditional research.
A final observation about causality refers again to attractor shifts or precipitous change
in social structure. Such events may be caused by increased energic input or through hap-
- penstance events. The effect of energic input from internal sources was modeled by the
formula developed by this paper. Energic force can likewise be exerted by the interaction
of two or more systems, as has occurred with the interaction of technology and social life
(television, for example, has undoubtable been a major influence on what is known as the
sexual revolution). Attractor shifts may also occur more casually, the incidental result of a
trajectory embarked upon. Thus, as the poem says, the loss of a nail in the horse’s hoof
led to the loss of the kingdom. It is difficult ro say whether the racial equality movement of
the 1960s received major impetus from the dynamism of John Kennedy or evolved out of a
rather innocuous Supreme Court case in the 1930s which forbade Missouri from refusing
to let a black attend the University of Missouri Law Schooi (Missouri ex rel, Gaines v.
% 1 238); the latter, however, may very well have been more influential than gener-
ly it
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Mathematical Modeling
Figure 1. Evolution to a steady state when x =.03 and k = 1.5,
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Mathematical Modeling
Figure 2. Period-2 steady state when x = .03 and k = 3.2,
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Mathematical Modeling

Figure 3. Bifurcation of population size (x) in biological systems across increasing values
of k.
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Mathematical Modeling

Figure 4. Bifurcation and chaotic range between k = 3.5 and k = 4.0. Notg: From
] (p. 61) by John Briggs and F. David Peat, 1989, New York: Harper &
Row. Copyright 1989 by John Briggs and F. David Peat. Adopted by permission.
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Figure 5. Model of the chaotic evolution of organized social systems.
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