The Mathematics of Behavior

Mathematical thinking provides a clear, crisp way of defining problems. Our whole technology is based on it. What is less appreciated is that mathematical thinking can also be applied to problems in the social and behavioral sciences. This book illustrates how mathematics can be employed for understanding human and animal behavior, using examples in psychology, sociology, economics, ecology, and even marriage counseling.

Earl Hunt is Professor Emeritus of Psychology at the University of Washington in Seattle. He has written many articles and chapters in contributed volumes and is the past editor of *Cognitive Psychology* and *Journal of Experimental Psychology*. His books include *Concept Learning: An Information Processing Problem, Experiments in Induction, Artificial Intelligence,* and *Will We Be Smart Enough?*, which won the William James Book Award from the American Psychological Association in 1996. His most recent book is *Thoughts on Thought*. Cambridge University Press 978-0-521-85012-4 - The Mathematics of Behavior Earl Hunt Frontmatter <u>More information</u>

The Mathematics of Behavior

EARL HUNT

University of Washington, Seattle

Cambridge University Press 978-0-521-85012-4 - The Mathematics of Behavior Earl Hunt Frontmatter <u>More information</u>

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521850124

© Cambridge University Press 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Hunt, Earl B. The mathematics of behavior/Earl Hunt p. cm. Includes bibliographical references and index. ISBN 0-521-85012-6 (hardcover) – ISBN 0-521-61522-4 (pbk.) 1. Psychology – Mathematical models. 2. Social sciences – Mathematical models. I. Title. BF39.H86 2006 150.1'51-dc22 2005030591

ISBN-13 978-0-521-85012-4 hardback ISBN-10 0-521-85012-6 hardback

ISBN-13 978-0-521-61522-8 paperback ISBN-10 0-521-61522-4 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Cambridge University Press 978-0-521-85012-4 - The Mathematics of Behavior Earl Hunt Frontmatter More information

Contents

Preface		
 INTRODUCTION 1.1. What's in the Book? 1.2. Some Examples of Formal and Informal Thinking 1.3. A Bit of History 1.4. How Big Is the Earth? Eratosthenes' Solution 1.5. A Critique of Eratosthenes 1.6. Applications of Mathematics to Social and Behavioral Issues 1.7. Statistics 	1 1 2 4 5 12 14 16	
 APPLYING PROBABILITY THEORY TO PROBLEMS IN SOCIOLOGY AND PSYCHOLOGY 2.1. Introduction 2.2. Defining Probability and Probability Measures 2.3. How Closely Connected Are We? 2.4. Conscious and Unconscious Memories 2.5. Some Final Comments Appendix 2A. The Basis for Kolmogorov's Axioms Appendix 2B. Some Important Properties of Probability Measures 	18 19 23 27 32 32 32	
 FROM PHYSICS TO PERCEPTION 3.1. The Psychophysical Problem 3.2. Weber's Law 3.3. Fechner's Law 3.4. Stevens's Scaling Technique: Deriving the Psychophysical Function from Magnitude Estimation 3.5. Judging Complex Objects 3.6. A Comment on Measurement 	42 42 44 47 53 61 65	

v

Cambridge University Press
978-0-521-85012-4 - The Mathematics of Behavior
Earl Hunt
Frontmatter
Moreinformation

vi		Con	tents
4	WHI	EN SYSTEMS EVOLVE OVER TIME	67
	4.1.	Systems of Variables	67
	4.2.	Differences and Differentiation	68
	4.3.	Exponential Growth and Decay	70
	4.4.	Numerical Analysis: The Transmission of Jokes and Colds	76
	4.5.	Questions about Modeling	81
	4.6. 4.7.	Making Love, Not War: The Gottman-Murray Model	86
		of Marital Interactions	96
	4.8.	Concluding Comments on Modeling Simple Systems	101
		endix 4A. A Proof of the Exponential Growth Equation	103
5	NON	N-LINEAR AND CHAOTIC SYSTEMS	104
	5.1.	Continuous Change and Sudden Jumps	104
	5.2.	The Lotka-Volterra Model of Predator and Prey	
		Interactions	106
	5.3.	The Logistic Equation: Introduction and Behavior When	
		<i>k</i> <1	111
	5.4.	Non-zero Asymptotes and Cycles as k Increases	116
	5.5.		121
	5.6.		123
	5.7.	Closing Comments on Chaos	130
6	DEF	INING RATIONALITY	132
	6.1.	Axiomatic Reasoning	132
	6.2.	Decision Making under Risk	133
	6.3.	The Concept of Utility	135
	6.4.	Von Neumann and Morgenstern's Axiomatic	
		Approach to Decision Making	139
	6.5.	The Utility of Money	143
	6.6.	A Summary of the Argument	148
	6.7.	, 0	151
	6.8.	The Problem of Voting	158
	6.9.	Definition and Notation	161
	6.10.	Arrow's Axioms: The Restrictions on Social	1()
	6 11	Welfare Functions	162
	0.11.	Illustration of the Definitions and Concepts for the	164
	612	Three-Person Society A Proof of Arrow's Theorem	164 166
		Commentary on the Implications of Arrow's Theorem	173
		Summary Comments and Questions About Axiomatic	175
	0.17.	Reasoning	174

Contents

Cambridge University Press 978-0-521-85012-4 - The Mathematics of Behavior Earl Hunt Frontmatter More information

7	HOW TO EVALUATE EVIDENCE	176
	7.1. The Legacy of Reverend Bayes	176
	7.2. Bayes' Theorem	178
	7.3. Some Numerical Examples	180
	7.4. Calculating the Odds	184
	7.5. Some Examples of Signal Detection	185
	7.6. A Mathematical Formulation of the Signal	107
	Detection Problem	187
	7.7. The Decision Analyst's Problem	191
	7.8. A Numerical Example of ROC Analysis	199 203
	7.9. Establishing a Criterion 7.10. Examples	203
	7.11. Four Challenge Problems	213
0	-	210
8	MULTIDIMENSIONAL SCALING	
	8.1. The Basic Idea	216
	8.2. Steps and Technique	219
	8.3. Extensions to Non-geometric Data	222
	8.4. Extending the Idea to Conceptual Classes	223 227
	8.5. Generalizations of Semantic Space Models8.6. Qualifications on the Semantic Space Model	227
0	-	
9	THE MATHEMATICAL MODELS BEHIND	221
	PSYCHOLOGICAL TESTING	231
	9.1. Introduction	231
	9.2. A Brief Review of Correlation and Covariance	234
	9.3. Predicting One Variable from Another: Linear	240
	Regression	240
	9.4. The Single Factor Model: The Case of General Intelligence	244
	9.5. Multifactor Theories of Intelligence and Personality	249
	9.6. Geometric and Graphic Interpretations	254
	9.7. What Sort of Results Are Obtained?	255
	Appendix 9A. A Matrix Algebra Presentation of	
	Factor Analysis	256
10	HOW TO KNOW YOU ASKED A GOOD QUESTION	259
	10.1. The Problem	259
	10.1. An Illustrative Case: Vocabulary Testing	260
	10.3. The Basics of Item Response Theory	262
	10.4. Standardization: Estimating Item and Person	_0_
	Parameters Simultaneously	265
	10.5. The Application Phase: Adaptive Testing	267
	10.6. More Complicated IRT Models	269

vii

Cambridge University Press
978-0-521-85012-4 - The Mathematics of Behavior
Earl Hunt
Frontmatter
Moreinformation

viii			Contents
	10.7.		
	Anno	Issues and Social Relevance	272 274
		endix 10A. The Adaptive Testing Algorithm endix 10B. An Exercise in Adaptive Testing	274
11	• •	CONSTRUCTION OF COMPLEXITY	277
	11.1.	Some Grand Themes	277
	11.2.	The Problem of Complexity	278
	11.3.	Cellular Automata Can Create Complicated	
		Constructions	281
	11.4.		•••
	11 -	a Simple Market Economy	283
	11.5.	Residential Segregation, Genocide, and the Usefulness of the Police	289
	11.6.	Is This a New Kind of Science?	209
12		NECTIONISM	297
12			
	12.1. 12.2.	The Brain and the Mind	297 299
	12.2.	1	303
	12.3.		307
	12.5.	*	309
	12.6.	Simulating a Phenomenon in Visual Recognition:	
		The Interactive Activation Model	311
	12.7.	0 11 0	313
	12.8.	0 11 0	
	10.0	Algorithm	319
	12.9.	The Auto-associator A Final Word	321 324
10			
13	L'EN	VOI	325
References			328
Index of Names			333
Index of Subjects			337

Cambridge University Press 978-0-521-85012-4 - The Mathematics of Behavior Earl Hunt Frontmatter <u>More information</u>

Preface

Many, many years ago, when I was a graduate student at Yale University, I attended Professor Robert Abelson's seminar on mathematical psychology. This was in the late 1950s, just as mathematical techniques were beginning to hit psychology. Subsequently I met Professor Jacob Marschak, an economist whose work on the economics of information was seminal in the field. After I received my doctorate in 1960 I had the great opportunity to work with Marschak's group at the University of California, Los Angeles. Marschak set a gold standard for the use of mathematics to support clear, precise thinking. It is now almost 50 years later, near the end of my own career, and I have yet to meet someone whose logic was so clear. I have had the opportunity to see some people come close to Marschak's standard, both in my own discipline of psychology and in other fields. This book is an attempt to let future students see how our understanding of behaviors, by both humans and non-humans, can be enhanced by mathematical analysis.

Is such a goal realistic today? Many people have deplored the alleged decline in mathematical training among today's college students. I do not think that that is fair. On an absolute level, students at the major universities arrive far better trained than they were 50 years ago. High school courses in the calculus are common today; they were rare even 25 years ago. It is true that on a comparative basis American students have slipped compared to their peers abroad, but on an absolute basis the better students in all countries are simply better prepared than they used to be. I have set my sights accordingly. This book should be easily accessible to anyone who has a basic understanding of the calculus, and most of the book will not even require that. It will require the ability (the willingness?) to follow a mathematical argument. I hope that the effort will be rewarded. Curious about the mathematics of love? Or how unprejudiced people can produce a segregated society? Read on!

Cambridge University Press 978-0-521-85012-4 - The Mathematics of Behavior Earl Hunt Frontmatter <u>More information</u>

х

Preface

And to those of you on college and university faculties, consider teaching a course that covers topics like this; mathematics used to analyze important issues in our day, or important issues in the history of science. Don't restrict it to your own discipline; think broadly. I hope you find this book helpful, but if you don't, get some readings and teach the course anyway. I have been fortunate to teach such a course in the University of Washington Honors Program for the past several years, and the discussions among students pursuing majors from philosophy to biology and engineering have been informative and enjoyable.

No one prepares a book without a great deal of support. I have had it. I thank the Honors Program and, most especially, the students in my classes, for letting me lead the course. I also thank the Psychology Department for letting me lead a predecessor of this course, focusing somewhat more on psychology. Cambridge University Press provided assistance in book preparation that was far superior to that of any other press with which I have ever worked. I thank Regina Paleski for production editing assistance, and I particularly thank Phyllis Berk for a superb job of copyediting a difficult manuscript. I also thank the editor, Philip Laughlin, for his assistance, and in particular for his obtaining very high-quality editorial reviews. Naturally, the people who wrote them are thanked, too! The final review, by Professor Jerome Busemeyer of the University of Indiana, was a model of constructive criticism.

Every author closes with thanks to family ... or at least, he should. My wife, Mary Lou Hunt, has supported me in this and all my scholarly work. I could not accomplish any efforts without her loving aid and assistance.

Earl Hunt Bellevue, Washington, and Hood Canal, Washington February 2006