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Abstract

Evidence in probabilistic reasoning may be ‘hard’ or ‘soft’, that is, it may be of yes/no
form, or it may involve a strength of belief, in the unit interval [0, 1]. Reasoning with soft,
[0, 1]-valued evidence is important in many situations but may lead to different, confusing
interpretations. This paper intends to bring more mathematical and conceptual clarity to
the field by shifting the existing focus from specification of soft evidence to accomodation
of soft evidence. There are two main approaches, known as Jeffrey’s rule and Pearl’s
method; they give different outcomes on soft evidence. This paper argues that they can
be understood as correction and as improvement. It describes these two approaches as
different ways of updating with soft evidence, highlighting their differences, similarities
and applications. This account is based on a novel channel-based approach to Bayesian
probability. Proper understanding of these two update mechanisms is highly relevant for
inference, decision tools and probabilistic programming languages.

1. Introduction

Logical statements in a probabilistic setting are usually interpreted as events, that is, as
subsets E ⊆ Ω of an underlying sample space Ω of possible worlds, or equivalently as
characteristic functions Ω → {0, 1}. One typically computes the probability Pr(E) of an
event E, possibly in conditional form Pr(E | D) where D is also an event. Events form
the basic statements in probabilistic inference, where they can be used as evidence or
observation. Here we shall use a more general interpretation of logical statements, namely
as functions Ω→ [0, 1] to the unit interval [0, 1]. They are sometimes called fuzzy events or
fuzzy predicates, but we simply call them predicates.

The above description Ω→ {0, 1} of events/evidence is standard. It is sometimes called
hard or certain or sharp evidence, in contrast to soft, uncertain, unsharp, or fuzzy evidence
Ω → [0, 1]. In most textbooks on Bayesian probability (see e.g. Barber, 2012; Bernardo &
Smith, 2000; Jensen & Nielsen, 2007; Koller & Friedman, 2009; Pearl, 1988), soft evidence
is missing or is only a marginal topic. For instance, in Barber’s textbook (2012, §3.2) it
is discussed only briefly, namely as: “In soft or uncertain evidence, the evidence variable
is in more than one state, with the strength of our belief about each state being given by
probabilities.” The topic gets relatively much attention in Darwiche’s book (2009, §3.6-3.7)
with a description: “Hard evidence is information to the effect that some event has occurred
... Soft evidence, on the other hand, is not conclusive: we may get an unreliable testimony
that event β occurred, which may increase our belief in β but not to the point where we
would consider it certain.”
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Typically, soft evidence deals with statements like: I saw the object in the dark and
I am only 70% sure that its color is red. Or: my elder neighboor has hearing problems
and is only 60% certain that my alarm rang. As said, we interpret such evidence as fuzzy
predicates, with a degree of truth in [0, 1]. Somewhat confusingly, these statements may
also be interpreted as a state of affairs, that is as a probability distribution with a convex
combination of 0.7 red and 0.3 non-red. It seems fair to say that there is no widely accepted
perspective on how to interpret and reason with such soft evidence, and in particular on
how to update with soft evidence. The mathematics of such updating is the main topic of
this paper, which, in the words of Diaconis and Zabell (1983), is called: the mathematics
of changing one’s mind.

In fact, there are two main approaches to soft updating, that is, to updating with
soft evidence. They are most clearly distinguished by Chan and Darwiche (2005), but see
also Darwiche (2009), Diaconis and Zabell (1982), Valtorta, Kim, and Vomlel (2002).

1. One can use Jeffrey’s rule, see Jeffrey (1983) and also Halpern (2003) and Shafer
(1981). It interprets softness as a probability distribution that represents a new state
of affairs that differs from what is predicted, and that one needs to adjust, adapt or
correct to. Adjusting to 70% probability of seeing red involves a convex combination
of point updates: one takes 0.7 times the belief revision for red plus 0.3 times the re-
vision for not-red. This approach focuses on adjustment/correction to a new state of
affairs. Phrases associated with this approach are ‘probability kinematics’ due to Jef-
frey (1983), ‘radical probabilism’ due to Skyrms (1996), or dealing with ‘surprises’
stemming from Dietrich, List, and Bradley (2016) or with ‘unanticipated knowledge’
from Diaconis and Zabell (1983).

2. One can also use Pearl’s method of virtual evidence, see Pearl (1988, 1990). This
approach is described operationally: extend a Bayesian network with an auxiliary
node, so that soft evidence can be emulated in terms of hard evidence on this additional
node, and so that the usual inference methods can be applied. We shall see that
extending a Bayesian network with such a node corresponds to using a fuzzy predicate
to capture the soft evidence. This approach factors in the soft evidence, following
the basic idea: posterior ∝ prior · likelihood . It involves improvement instead of
correction.

This paper takes a fresh mathematical perspective on a problem that exists already for
a long time in probabilistic reasoning, going back to Jeffrey (1983) and Pearl (1990). This
work builds on a novel approach to Bayesian probability theory, based on programming
language semantics and ultimately on category theory, started by Giry (1982), see Jacobs
(2018b) for a modern overview. This approach clearly separates (fuzzy) predicates (ev-
idence) from probability distributions (states). It is therefor well-prepared to deal with
softness/uncertainty, either as fuzzy predicate or as state of affairs. In our general refor-
mulation, Pearl’s rule uses a predicate as soft evidence and involves backward inference via
predicate transformation (see Definition 4.2), in a known manner, see the work of Jacobs
and Zanasi (2016, 2019). The main (novel) mathematical observation of this paper is that
Jeffrey’s rule is captured via a state (distribution) as soft evidence and via state tranfor-
mation with the Bayesian inversion (‘dagger’) of the channel at hand, introduced by Clerc,
Dahlqvist, Danos, and Garnier (2017), see Definition 5.2.
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One fundamental problem is that the terminology in this area is confusing and is not used
consistently by various authors; see Mrad, Delcroix, Piechowiak, Leicester, and Abid (2015)
for a good overview of the different terminologies and their meaning (and of the literature
on this topic). It uses the terminology ‘likelihood evidence’ or ‘uncertain evidence’ as
‘evidence with certainty’ for what we call a predicate; it also uses ‘soft evidence’ as ‘evidence
of uncertainty’ for a probability distribution. We shall build on the distinction between
predicates and states, since both notions are mathematically well-defined (see below); we
shall use evidence and probability distribution as alternative names for predicate and state.
The adjectives soft, uncertain, fuzzy will be used here only in an informal sense, without
making a distinction between them. This leads to the following table.

Here
predicate
evidence

state
probability distribution

(Mrad et al., 2015)
likelihood evidence
uncertain evidence

evidence with uncertainty

soft evidence
evidence of uncertainty

In accordance with this table, we shall say that Pearl’s update rule is evidence-based and
Jeffrey’s rule is state-based.

The literature on soft updating, see esp. Chan and Darwiche (2005) and Darwiche (2009)
(and references given there), focuses on the way in which softness is specified. Quoting Chan
and Darwiche (2005): “The difference between Jeffrey’s rule and Pearl’s method is in the
way uncertain evidence is specified. Jeffrey requires uncertain evidence to be specified in
terms of the effect it has on beliefs once accepted, which is a function of both evidence
strength and beliefs held before the evidence is obtained. Pearl, on the other hand, requires
uncertain evidence to be specified in terms of its strength only.” This paper shifts the
emphasis from specification of softness to accomodation of softness, that is, to the precise
update rules, see Definition 4.2 and 5.2, using both predicates and states to capture softness.
In the end, after Lemma 6.2, we demonstrate that specification in terms of the update effect
only works in the deterministic case. It is thus not a method that can be used in general.

Some more technical background: within the compositional programming language per-
spective, a Bayesian network is a (directed acyclic) graph in the Kleisli category of the dis-
tribution monad D — or the Giry monad G for continuous probability theory — see Fong
(2012). The maps in these Kleisli categories are also called channels; they carry lots of
useful algebraic structure that forms the basis for a compositional approach to probability.
Along these channels one can do state transformation and predicate transformation, like in
programming language semantics. These transformations are of direct relevance in Bayesian
inference as shown by Jacobs and Zanasi (2016, 2019), giving rise, for instance, to a new
inference algorithm (see Jacobs, 2018a). This paper builds on this ‘channel-based’ approach
to give a novel precise account of Jeffrey’s and Pearl’s update rules. However, no familiarity
with category theory is assumed and all the relevant concepts are introduced here.

The paper starts by elaborating a standard Bayesian example of a disease, with a prior
probability, and a test for the disease that has a certain sensitivity; the question is: what can
we infer about the disease if we are 80% sure the test comes out positive? We illustrate how
to compute the different outcomes of Jeffrey and Pearl (12% versus 3% disease probability).
We postpone the mathematical analysis and first go into reflective mode in Section 3.
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Figure 1: A Bayesian network for testing for a disease, on the left, and an extension of
this network with a certainty node, where the relevant probability is a parameter
r ∈ [0, 1].

There we consider the question how to understand and when to use Jeffrey’s or Pearl’s
approach. This leads to a terminological table (3). The mathematics itself is precise and
clear, see from Section 4 onwards, but it often remains unclear when to use which approach.
Our terminology of ‘adjusting to a new state of affairs’ (Jeffrey) versus ‘factoring in new
evidence’ (Pearl) is meant to provide some guidance, but we are the first to admit that this
remains vague — see also Example 6.4, originally introduced by Dietrich et al. (2016), where
both approaches are used, for different reasons. Section 3 briefly mentions some further
perspectives. For instance, if you perform Jeffrey’s updating of your belief with what you
can predict you learn nothing new; if you do Pearl’s updating with no information (a uniform
likelihood), you learn nothing new. Both make sense, but they are clearly different. This
reflective section is meant chiefly to generate further discussion on this fundamental and
intriguing topic, but not to provide a decision mechanism for the ‘right’ form of updating.

In Section 4 the mathematical analysis starts. First, background information is given
about states, predicates, updating, channels, and transformation along channels. This
allows us to identify Pearl’s rule as backward inference. Section 5 first explains the Bayesian
inversion of a channel and then uses this construction to capture Jeffrey’s rule. Subsequently,
Section 6 reviews some standard examples from the literature in terms of the new channel-
based framework, and then shows how the earlier methods focused on specification of soft
evidence — also known as “all things considered” and “nothing else considered” in the
words of Goldszmidt and Pearl (1996) — fit naturally in the new framework.

2. A simple Illustration

Consider a simple Bayesian network involving a test for a disease, as on the left in Figure 1.
There is an a priori disease probability of 1%. The test has a sensitivity as given by the
table on the lower-left in the figure: in presence of the disease, written as d, the likelihood
of a positive test outcome is 90%; in absence of the disease, there is still a chance of 5%
that the test comes out positive.
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In this situation we can compute the predicted positive-test likelihood Pr(t) via the law
of total probability, as:

Pr(t) = Pr(t | d) · Pr(d) + Pr(t | d⊥) · Pr(d⊥)

= 9
10 ·

1
100 + 1

20 ·
99
100 = 117

2000 ∼ 6%.

The probability of the disease d, given a positive test t, is computed via Bayes’ rule:

Pr(d | t) =
Pr(t | d) · Pr(d)

Pr(t)
=

9/10 · 1/100
117/2000

=
18

117
∼ 15%

Similarly one obtains the conditional probability Pr(d | t⊥) =
1/1000

1883/2000 = 2
1883 ∼ 0.1% of the

disease given a negative test t⊥.
This paper focuses on soft evidence. It arises for instance in a situation where the test

outcome is observed in the dark, and that there is, say, only 80% certainty when the test is
positive (and 20% certainty when it is negative).

There are two ways in the literature for handling soft evidence, called Jeffrey’s rule and
Pearl’s method for virtual evidence. Jeffrey’s rule says that we should take the convex
combination, with factors 0.8 and 0.2 = 1 − 0.8, of the “point updates”, for the point
evidence t and t⊥. Thus one takes the convex combination of the above outcomes Pr(d | t)
and Pr(d | t⊥), resulting in the probability:

0.8 · Pr(d | t) + 0.2 · Pr(d | t⊥) ∼ 12%. (1)

Thus, the certainties — 80% for a positive test and thus 20% for a negative test — are used
as weights for the two corresponding conditional probabilities Pr(d | t) and Pr(d | t⊥). This
makes sense.

In contrast, Pearl’s rule involves extending the Bayesian network with an additional
binary node for ‘certainty’, as on the right in Figure 1. One can then compute the probability
of the disease if the test is positive with 80% certainty in the usual Bayesian way — by
taking r = 0.8 in the lower-right table in Figure 1:

Pr(d | c) = Pr(d | t) · Pr(t | c) + Pr(d | t⊥) · Pr(t⊥ | c) = 148
4702 ∼ 3%. (2)

This approach also makes sense. But its outcome differs substantially from Jeffrey’s outcome
of 12% in (1). Which rule is the right one here: Jeffrey’s or Pearl’s?

In order to get a better picture we now take the soft evidence probability for a positive
test as a parameter r ∈ [0, 1]. Thus the number r represents the certainty of a positive test.
The resulting a posteriori disease probabilities are plotted in Figure 2, on the left for the a
priori disease probability of 1%, and on the right for the higher prior of 10%. We see that
the two lines coincide at the extremes, for r = 0 and r = 1, corresponding to 100% certainty
of a negative test and 100% certainty of a positive test. Inbetween these extremes, when
0 < r < 1, the outcomes differ. Thus, making a distinction between the use of a Jeffrey’s
and Pearl’s rule really only makes sense for soft evidence.

We also see that Jeffrey’s rule yields a straight line. This is because it is defined by the
linear (convex) function:

r 7−→ r · Pr(d | t) + (1− r) · Pr(d | t⊥).
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Figure 2: Probabilities obtained by applying both Jeffrey’s rule (JR) and Pearl’s rule (PR)
to the disease-test network of Figure 1. The plot on the left captures the outcomes
for an a priori disease probability of 1%, whereas the plot on the right uses 10%
instead.

Pearl’s rule gives a non-linear outcome, according to the familiar formula: posterior ∝
prior · likelihood .

A final observation is that both rules do take the prior into account: the range of
outcomes is quite different on the left and on the right.

3. Some Observations about Jeffrey’s and Pearl’s Rules

Before focusing on a mathematical analysis we like to make some remarks about the delicate
question which form of updating — Jeffrey’s or Pearl’s — is the ‘right’ one. It is an
important issue, for instance in the implementation of inference tools, see the overview
of Mrad et al. (2015), or decision support systems, since as we have seen in the previous
section, the two approaches give radically different outcomes.

The question ‘which rule is the right one’ may be refined to: under which circumstances
should we use which rule, with which interpretation of softness?

Here we propose the following intuitive explanation of the two approaches, applied to
the disease-test example from the previous section, where, recall, we had 80% certainty
about a postive test outcome.

• Jeffrey’s approach is state-based and uses the 80% positive-test certainty as a probabil-
ity distribution (state), for which we shall use the following notation: 0.8|t〉+0.2|t⊥ 〉.
This means that we interpret it as a given state of affairs in which the test has a
positive outcome t with a likelihood of 80% and a negative test outcome t⊥ with 20%
probability. When we see this state of affairs as a new situation — a ‘surprise’ as
suggested by Dietrich et al. (2016) — and we wish to adjust, adapt or correct to this
state of affairs, we use Jeffrey’s rule as a form of backtracking.

• Pearl’s approach is evidence-based: the 80% certainty is used as uncertain evidence
that is factored in, via a suitable multiplication with the prior information (plus nor-
malisation). The evidence is not treated as surprising, but as additional information
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that is smoothly taken into account, in the regular Bayesian manner. This can be
described either via an extra variable, or via a predicate, see Section 4.

The suggestion here is that Jeffrey’s rule is for correction and Pearl’s rule for improvement.
The following table summarises the terminology.

rule uncertainty via form of updating

Jeffrey’s
state of affairs

proability distribution

state-based
adjusting to
correction

Pearl’s
predicate
evidence

evidence-based
factoring in
improvement

(3)

The remainder of this section contains some general observations and questions for further
research.

1. From a mathematical perspective, Pearl’s update rule is most well-behaved. In partic-
ular, iterated applications of the constructive rule commute, see Proposition 4.3 (3),
whereas multiple usages of Jeffrey’s rule do not commute. This is in line with the idea
that the Jeffrey’s approach involves abrupt adjustments/adaptations.

2. Pearl’s rule makes classical use of Bayesian networks, as is illustrated via the additional
binary node in Figure 1, on the right. In inference in such networks one factors in the
evidence by propagating it through the network — and then marginalising.

3. In certain (other) cases one may explicitly wish to have an alternative rule for up-
dating. For instance, Valtorta et al. (2002) describe a model of multi-agent systems,
each with their own knowledge represented via a local Bayesian network. It is explic-
itly required that: “The mechanism for integrating the view of the other agents on a
shared variable is to replace the agent’s current belief in this variable with that of the
communicating agent.” Such replacements are obtained via Jeffrey’s rule.

4. One can try to think of experimental verifications of the rules of Jeffrey/Pearl. A
frequentist approach involves computing ratio’s via counting and seems to support
Jeffrey’s form of updating. After all, Jeffrey’s rule involves taking a convex sum of
updates with individual point observations.

5. If probabilistic updating is seen as a mathematical model (or approximation) of
cognitive priming, see e.g. Griffiths, Kemp, and Tenenbaum (2008), then the non-
commutativity of iterated applications of Jeffrey’s rule may be seen as a good thing.
Indeed, the human mind is sensitive to the order in which it receives evidence, that is,
in which it is being primed. This ‘order effect’ of priming can be illustrated in simple
examples. The author’s favourite one is: what image arises in your mind from the
following two sequences of sentences?
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Alice is pregnant; Bob visits Alice
versus

Bob visits Alice; Alice is pregnant.

Maybe cognitive psychologists can provide more clarity about wether Jeffrey’s or
Pearl’s rule works best in their field, see also the suggested connection to the work
of Hohwy (2013) in Section 7.

6. If probabilistic updating is seen as a form of learning — in an informal sense, not as
parameter/structure learning — then one can ask what is the best model for handling
evidence: correction of existing knowledge, as in the Jeffrey’s approach, or improve-
ment of existing knowledge, as in Pearl’s approach. The question also comes up by
comparing Propositions 4.3 (2) and 5.3 (1). They can be read informally as follows.

(a) Pearl’s improvement-based rule says: if you update (improve) your belief with
no information (a uniform likelihood), you learn nothing new.

(b) Jeffrey’s correction-based rule says: when you update (correct) your belief with
what you already know, you learn nothing new.

Both readings make sense and connect the informal reading (improvenment versus
correction) to mathematical facts.

7. One might think that the distinction Jeffrey/Pearl is related to whether or not the
base rate (prior distribution) is taken into account in probabilistic reasoning. As
shown by Tversky and Kahneman (1982), people are not very good at doing so. But
the outcomes of both rules do depend on the prior, see the (vertical scales of the) two
plots in Figure 2.

8. In the end, one can imagine using a combination of Jeffrey’s rule (JR) and a Pearl’s
rule (PR), via a convex sum

s · JR + (1− s) · PR

The number s ∈ [0, 1] then captures the novelty of the evidence. Very speculatively,
it may be related to the degree to which the evidence’s effect is absorbed (in one’s
brain).

4. Channel-based Probabilistic Reasoning

This section lays the foundation for our mathematical description of soft updating, using ei-
ther Pearl’s or Jeffrey’s rule. Traditionally in probabilistic logic events are used as evidence.
Such events form subsets E ⊆ X of the sample space X; they correspond to characteris-
tic functions 1E : X → {0, 1}, defined by 1E(x) = 1 iff x ∈ E. As is well-known, these
events (subsets) form a Boolean algebra. In order to deal with softness we use more general
‘fuzzy’ predicates, of the form p : X → [0, 1], sending each element x ∈ X to a probability
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p(x) ∈ [0, 1], representing the strength of belief. Such a predicate is called ‘likelihood evi-
dence’ by Mrad et al. (2015) or a ‘fuzzy event’ by Zadeh (1968) where p(x) described the
‘grade of membership’. These predicates do not form a Boolean algebra, but what is called
an effect module, (see e.g. Jacobs, 2015, 2018b).

Below we sketch a reformulation of the basics of probabilistic reasoning, in order to sys-
tematically accomodate soft/uncertain/fuzzy evidence. This reformulation uses basic math-
ematical concepts like distribution (state), fuzzy predicate, channel, conditioning, state- and
predicate-transformation. These concepts stem from the area of program semantics where a
distinction between predicate-transformer and state-transformer semantics is common (see
e.g. Dijkstra & Scholten, 1990; Kozen, 1985). For a more extensive introduction of these
concepts in probabilistic reasoning we refer to Jacobs and Zanasi (2019), and to Jacobs
(2018b) and Panangaden (2009) for more general probabilistic semantics. We shall use the
Bayesian network from Section 2 to illustrate the abstract concepts that we introduce below.

4.1 Distributions / States

In this context, we use the words ‘distribution’ and ‘state’ interchangeably, for what is more
precisely called a discrete probability distribution, or also a monomial. A distribution on
a set, or sample space, X is a formal convex combination of elements of X, written as
r1|x1 〉 + · · · + rn|xn 〉 with xi ∈ X and ri ∈ [0, 1] satisfying

∑

i ri = 1. For instance, the
prior disease distribution in Section 2 can be written as 1

100 |d〉+
99
100 |d

⊥ 〉. This looks a bit
heavy for a distribution over a two-element set {d, d⊥}, but this works better for multiple
elements, see e.g. Example 6.1. The ket notation | − 〉 is syntactic sugar that separates
probabilities ri and elements xi.

We shall write D(X) for the set of distributions (or states) on a set X. We do not
require that X is finite itself, but D(X) contains only finite distributions. A distribution
∑

i ri|xi 〉 ∈ D(X) may equivalently be described via a probability mass function ω : X →
[0, 1] with finite support {x | ω(x) 6= 0} and with

∑

x ω(x) = 1. We shall freely switch
back-and-forth between formal convex sums and probability mass functions.

4.2 Channels

A channel from a set X to a set Y is probabilistic computation taking an element x ∈ X as
input and producing a distribution on Y , indicating the probability of each output y ∈ Y .
Thus, a channel is a function c : X → D(Y ). We often write it as c : X → Y , with a
special arrow →. A channel formalises a conditional probability Pr(y | x) as an actual
function x 7→ Pr(y | x). A channel thus captures an arrow in a Bayesian network, namely
as a stochastic matrix, or equivalently as a conditional probability table. For instance, the
sensitivity table in Figure 1 can be described as a channel:

{d, d⊥} ◦s // {t, t⊥} with

{

s(d) = 9
10 |t〉+

1
10 |t

⊥ 〉

s(d⊥) = 1
20 |t〉+

19
20 |t

⊥ 〉.
(4)

This channel s represents the arrow
✞

✝

☎

✆disease →
✄

✂

�

✁test in Figure 1 as a probabilistic function
{d, d⊥} → {t, t⊥}. Channels provide a compositional semantics for Bayesian networks,
see Jacobs and Zanasi (2019) for more details.
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Given a channel c : X → Y one can transform a state ω ∈ D(X) on X into a state
c ≫ ω ∈ D(Y ) on Y . This corresponds to prediction. Concretely, we can describe state
transformation as below, first in mass function form, and then as convex formal sum:

(

c≫ ω
)

(y) =
∑

x
ω(x) · c(x)(y) that is c≫ ω =

∑

y

(
∑

x
ω(x) · c(x)(y)

)
∣

∣y
〉

.

For instance, the predicted test probability Pr(t) = 117
2000 in Figure 1 can be obtained via

state transformation as:

s≫
(

1
100 |d〉+

99
100 |d

⊥ 〉
)

=
(

1
100 · s(d)(t) +

99
100 · s(d

⊥)(t)
)

|t〉+
(

1
100 · s(d)(t

⊥) + 99
100 · s(d

⊥)(t⊥)
)

|t⊥ 〉

=
(

1
100 ·

9
10 + 99

100 ·
1
20

)

|t〉+
(

1
100 ·

99
100 + 99

100 ·
19
20

)

|t⊥ 〉

= 117
2000 |t〉+

1883
2000 |t

⊥ 〉.

Given two channels c : X → Y and d : Y → Z we can define their composite d • c : X →
Z as:

(

d • c
)

(x) = d≫ c(x) =
∑

z

(
∑

y
c(x)(y) · d(y)(z)

)∣

∣z
〉

.

There is a ‘Dirac’ identity channel id : X → X for this composition •, with id(x) = 1|x〉.
Moreover, • is associative and behaves well wrt. state transformation: (d • c) ≫ ω =
d ≫ (c ≫ ω). This gives an algebraic, compositional way for computing probabilities —
especially in Bayesian networks.

Later on we shall use that each function f : X → Y can be turned into a ‘deterministic’

channel f̂ : X → Y via f̂(x) = 1|f(x)〉. Then it is easy to see that ĝ • f̂ = ĝ ◦ f .
For instance, the Bayesian network on the right in Figure 1 involves an additional

channel e that captures the certainty of the test evidence (for r = 8
10):

{t, t⊥} ◦e // {c, c⊥} with

{

e(t) = 8
10 |c〉+

2
10 |c

⊥ 〉

e(t⊥) = 2
10 |c〉+

8
10 |c

⊥ 〉.
(5)

We can now compute the predicted certainty Pr(c) = 4702
20000 , either via multiple state trans-

formations, or via a single state transformation of the composed channel e • s : {d, d⊥} →
{c, c⊥}, in:

(e • s)≫
(

1
100 |d〉+

99
100 |d

⊥ 〉
)

= e≫
(

s≫
(

1
100 |d〉+

99
100 |d

⊥ 〉
))

= e≫
(

117
2000 |t〉+

1883
2000 |t

⊥ 〉
)

=
(

117
2000 ·

8
10 + 1883

2000 ·
2
10

)

|c〉+
(

117
2000 ·

2
10 + 1883

2000 ·
8
10

)

|c⊥ 〉

= 4702
20000 |c〉+

15298
20000 |c

⊥ 〉.

4.3 Predicates, Validity and Updating

For a distribution σ ∈ D(X) on X and a predicate p : X → [0, 1] on X we write σ |= p for
the validity of p in σ. It can also be called the expected value, since the definition is:

σ |= p =
∑

x
σ(x) · p(x). (6)

792



The Mathematics of Changing one’s Mind

For an event E ⊆ X the validity σ |= 1E =
∑

x∈E ω(x) is usually written as Pr(E), with
the state σ left implicit. We need a new notation with the state σ explicit, since the state
is not fixed: it changes through state transformation ≫.

If this validity σ |= p is non-zero, we can define the updated, conditioned distribution
σ|p on X as:

σ|p(x) =
σ(x) · p(x)

σ |= p
that is σ|p =

∑

x

σ(x) · p(x)

σ |= p

∣

∣x
〉

. (7)

This updated/revised distribution σ|p is defined quite generally, for fuzzy predicates p. It
allows us to express the usual form of conditional Pr(E | D) for events E,D ⊆ X as
σ|1D

|= 1E .
The result below summarises some basic properties of updating with fuzzy predicates,

including Bayes’ rule (in fuzzy form), see Jacobs (2018b), Jacobs and Zanasi (2019). It uses
conjunction p & q of two fuzzy predicates, defined as pointwise multiplication: (p & q)(x) =
p(x) · q(x). There is an associated truth predicate 1 : X → [0, 1] sending each element to 1,
that is, 1(x) = 1. Then p & 1 = p = 1 & p. Moreover, it uses that a fuzzy predicate p can
be multiplied with a scalar s ∈ [0, 1] to s · p : X → [0, 1], namely via (s · p)(x) = s · p(x).

Lemma 4.1. Let σ be distribution on a set X, and let p, q be predicates on X.

1. Bayes’ rule holds for (fuzzy) predicates:

σ|p |= q =
σ |= p & q

σ |= p
=

(σ|q |= p) · (σ |= q)

σ |= p
.

2. Iterated conditionings commute:

(

σ|p
)

|q = σ|p&q =
(

σ|q
)

|p.

Moreover, conditioning with truth has no effect: σ|1 = σ.

3. Conditioning is does not change when the predicate involved is multiplied with a non-
zero scalar: ω|p = ω|s·p. �

A basic property of updating ω|p is that the validity ω|p |= p is greater than ω |= p.
Thus by changing ω into ω|p the predicate p becomes ‘more true’ (see Jacobs, 2019, for a
proof and more details). That’s why we associate the phrase ‘improvement’ with this form
of updating ω|p, which will be used below for Pearl’s rule.

4.4 Predicate Transformation

We have seen how a state ω ∈ D(X) can be transformed in a forward manner along a channel
c : X → Y , to a state c ≫ ω on the codomain Y of the channel. One can also transform
predicates along a channel, but in opposite direction: given a predicate q : Y → [0, 1], one
obtains a predicate c≪ q : X → [0, 1] on the domain X of the channel via:

(

c≪ q
)

(x) =
∑

y
c(x)(y) · q(y).
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One then easily checks that the validities c ≫ ω |= q and ω |= c ≪ q are the same.
Further there is a compositionality result (d • c) ≪ q = c ≪ (d ≪ q) so that predicate
transformation can be done by following the arrow / channel structure of a Bayesian network
in a step-by-step manner.

4.5 Forward and Backward Inference

We are now combining state transformation, predicate transformation, and conditioning
in order to identify two basic inference patterns, namely forward inference and backward
inference, see Jacobs and Zanasi (2016, 2019). We start from:

a state ω ∈ D(X) on X, and a channel X ◦c // Y.

1. Forward inference with a predicate p : X → [0, 1] is done by updating-and-state-
transformation:

c≫
(

ω|p
)

.

This yields a new distribution on Y .

2. Backward inference with a predicate q : Y → [0, 1] is done by predicate-transformation-
and-updating:

ω|c≪q.

This gives a new distribution on X.

In the literature, see e.g. the textbook of Koller and Friedman (2009), forward inference
is also called prediction or causal reasoning, and backward inference is called evidential
reasoning or explanation.

In this context backward inference plays the more important role. We illustrate it for
the disease-test example from Section 2. Recall the characteristic function 1E : X → [0, 1]
associated with an event/subset E ⊆ X. For an element x ∈ X we simply write 1x : X →
[0, 1] instead of 1{x}.

Let’s write ω = 1
100 |d〉 +

99
100 |d

⊥ 〉 for the prior disease probability from Section 2. Up-
dating it with positive test evidence 1t happens via backward inference as ω|s≪1t , using the
sensitivity channel s from (4). As illustration, we compute it explicitly in several steps:

(s≪ 1t)(d) =
∑

x∈{t,t⊥} s(d)(x) · 1t(x) = s(d)(t) = 9
10

(s≪ 1t)(d
⊥) = s(d⊥)(t) = 1

20

ω |= s≪ 1t =
∑

x∈{d,d⊥} ω(x) · (s≪ 1t)(x) = 1
100 ·

9
10 + 99

100 ·
1
20 = 117

2000

ω|s≪1t =
∑

x∈{d,d⊥}

ω(x) · (s≪ 1t)(x)

ω |= s≪ 1t

∣

∣x
〉

=
1/100 · 9/10
117/2000

|d〉+
99/100 · 1/20
117/2000

|d⊥ 〉 = 117
2000 |d〉+

1883
2000 |d

⊥ 〉.

We see how the probability Pr(d | t) = 117
2000 from Section 2 re-emerges, via a channel-based

computation. In a similar way one can compute Pr(d | c) = 148
4702 via backward inference as:

ω|(e•s)≪1c
= ω|s≪(e≪1c) =

148
4702 |d〉+

4554
4702 |d

⊥ 〉.
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We see that backward inference can be done in a compositional manner, following the graph
structure

✞

✝

☎

✆disease →
✄

✂

�

✁test →
✞

✝

☎

✆
certainty on the right in Figure 1.

4.6 Pearl’s Update Rule

We are now finally in a position to describe Pearl’s rule of virtual evidence, that is. Let’s
write 2 = {0, 1} for a generic two-element set. The crucial observation is that extending
a Bayesian network at node X with virtual evidence of the form X → 2 corresponds to
introducing a fuzzy predicate for updating. This works since D(2) ∼= [0, 1], so that a
table/channel X → 2 to a binary node 2 corresponds to a fuzzy predicate X → [0, 1].
Indeed, the soft evidence described in Section 2 can be captured by a fuzzy predicate
p : {t, t⊥} → [0, 1] with p(t) = 8

10 and p(t⊥) = 2
10 . Pearl’s rule then amounts to backward

reasoning of the form ω|s≪p = 148
4702 |d〉 +

4554
4702 |d

⊥ 〉, as computed above. This works since
p = e≪ 1c.

We now formalise Pearl’s rule in a channel-based setting.

Definition 4.2. Let c : X → Y be a channel with prior σ ∈ D(X). Given a predicate
q : Y → [0, 1] on the channel’s codomain Y , Pearl’s rule uses backward inference to update
the prior σ to the posterior:

σ|c≪q ∈ D(X).

This formulation of Pearl’s rule does not refer to any extension of a Bayesian network
with a binary node. Still, one may consider the channel c : X → Y as a mini-network that
is extended with predicate q, as in:

✄

✂

�

✁X
c
−→

✄

✂

�

✁Y
q
−→

✄

✂

�

✁2 .
We finish this section with some basic properties. They follow easily from Lemma 4.1.

Proposition 4.3. Let ω ∈ D(X) be a distribution and c : X → Y be a channel.

1. Backward inference is invariant under pointwise/scalar multiplication of the evidence
predicate with a non-zero probability s ∈ (0, 1],

ω|c≪(s·p) = ω|c≪p.

2. Backward inference with a non-zero constant (uniform) predicate s ·1 as evidence has
no effect:

ω|c≪(s·1) = ω.

3. Iterated applications of backward inference commute, and satisfy:

ω
∣

∣

c≪p

∣

∣

d≪q
= ω

∣

∣

(c≪p)&(d≪q)
= ω

∣

∣

d≪q

∣

∣

c≪p
. �

5. Bayesian Inversion and Jeffrey’s Update Rule

One way to read Bayes’ rule is as an ‘inversion’ property, turning a conditional probability
Pr(y | x) into Pr(x | y). Since channels correspond to conditional probabilities, such
inversion can be formulated for channels as well, see Clerc et al. (2017) and also Cho and
Jacobs (2019). This inversion is relevant because it allows us to give a precise description
of Jeffrey’s rule.
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5.1 Bayesian Inversion via Updating

Let c : X → Y be a channel, with a prior distribution/state σ ∈ D(X) on its domain.
In this situation, with a certain side-condition fulfilled, we can define an inverted channel
c†σ : Y → X in the opposite direction. This function c†σ : Y → D(X) is defined via backward
inference with point predicates 1y : Y → [0, 1], for y ∈ Y .

c†σ(y) = σ|c≪1y =
∑

x

σ(x) · c(x)(y)

(c≫ σ)(y)

∣

∣x
〉

. (8)

The distribution c†σ(y) ∈ D(X) is the posterior, obtained after observing y ∈ Y , that is,
after updating with point evidence 1y. This definition only makes sense if the transformed
state c≫ σ has full support, that is, if (c≫ σ)(y) 6= 0 for each y ∈ Y .

The dagger notation c†σ for probabilistic computations is used by Clerc et al. (2017);
the subscript σ may be omitted if it is clear from the context. This dagger satisfies some
basic algebraic properties: inverting twice yields the original channel: (c†)† = c. Moreover,
inversion interacts appropriately with channel composition: (d • c)† = c† • d†. The dagger
notation is more common in quantum theory, where unitary computations are reversible,
and has been formalised in terms of dagger categories, see e.g. the textbook of Coecke and
Kissinger (2016).

Given the above definition (8) we see that we have implicitly already computed the
Bayesian inversion s† of the sensitivity channel s : {d, d⊥} → {t, t⊥} from Section 2, namely
via the conditional probabilities Pr(d | t) = 18

117 and Pr(d | t⊥) = 2
1883 . Thus we have:

{t, t⊥} ◦s
†

// {d, d⊥} with

{

s†(t) = 18
117 |d〉+

99
117 |d

⊥ 〉

s†(t⊥) = 2
1883 |d〉+

1881
1883 |d

⊥ 〉.
(9)

5.2 Bayesian Inversion and Inference

In Subsection 4.5 we have described forward and backward inference along a channel. It
turns out that forward becomes backward — and vice-versa — when we use an inverted
channel. This illustrates that the basic notions of inference, transformation and inversion
are mathematically closely related. The proof is obtained by unwrapping the relevant
definitions and is left to the interested reader.

Theorem 5.1. Let c : X → Y be a channel with a state σ ∈ D(X) on its domain, such that
τ = c≫ σ has full support.

1. Given a predicate q on Y , we can express backward inference along c as forward
inference along c† via:

σ|c≪q = c† ≫
(

τ |q
)

.

2. Given a predicate p on X, we can express forward inference along c as backward
inference along c†:

c≫
(

σ|p
)

= τ |c†≪p. �
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5.3 Jeffrey’s Update Rule

At this stage we have prepared the grounds to give a channel-based formulation of Jeffrey’s
rule. It uses the inversion of a channel for backtracking.

Definition 5.2. Let c : X → Y be a channel with prior σ ∈ D(X). Given a state ρ ∈ D(Y )
on the channel’s codomain Y , Jeffrey’s rule involves using state transformation along the
inverted channel c†σ to update the prior σ to the posterior:

c†σ ≫ ρ ∈ D(X).

Indeed, this state transformation is what we have used to compute Jeffrey’s update in
Section 2 as convex combination (1). More explicitly, translating 80% certainty into a state,
and using s† from (9) we get approximately 12% disease likelihood via:

s† ≫
(

8
10 |t〉+

2
10 |t

⊥ 〉
)

=
(

8
10 ·

18
117 + 2

10 ·
2

1883

)

|d〉+
(

8
10 ·

99
117 + 2

10 ·
1881
1883

)

|d⊥ 〉

= 27162
220311 |d〉+

193149
220311 |d

⊥ 〉.

We continue with some properties of Jeffrey’s updating. The translations back-and-
forth between the Pearl’s and Jeffrey’s rules are due to Chan and Darwiche (2005); they
are translated here to the current setting

Proposition 5.3. Let c : X → Y be a channel with a state σ ∈ D(X) on its domain, such
that τ = c≫ σ has full support.

1. Jeffrey’s updating with the predicted state τ = c≫ σ does not have any effect:

c† ≫ τ = σ.

2. Successive Jeffrey updates do not commute: given evidence ρ1, ρ2 ∈ D(Y ), giving

σi = c†σ ≫ ρi ∈ D(X), then, in general,

c†σ1
≫ ρ2 6= c†σ2

≫ ρ1.

3. Jeffrey’s and Pearl’s updating coincide on point evidence:

c†σ ≫ 1|y 〉 = c†σ(y) = σ|c≪1y .

4. Pearl’s updating can be expressed as Jeffrey’s updating, by turning predicate evidence
q : Y → [0, 1] into state evidence τ |q, see again Theorem 5.1 (1).

5. Jeffrey’s updating can also be expressed as Pearl’s updating: for a state ρ ∈ D(Y )

write ρ/τ for the predicate y 7→ ρ(y)
τ(y) , suitably rescaled to [0, 1] if needed; then:

c†σ ≫ ρ = σ|c≪ρ/τ .
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Proof. Only the last point is non-trivial. First we note that τ |= ρ/τ = 1, since ρ is a state:

τ |= ρ/τ =
∑

y τ(y) ·
ρ(y)
τ(y) =

∑

y ρ(y) = 1.

But then, for x ∈ X,

(

c†σ ≫ ρ
)

(x) =
∑

y ρ(y) · c
†
σ(y)(x)

(8)
=

∑

y ρ(y) ·
σ(x) · c(x)(y)

τ(y)

= σ(x) ·
∑

y c(x)(y) · ρ/τ(y)

=
σ(x) · (c≪ ρ/τ)(x)

c≫ σ |= ρ/τ
as just shown

=
σ(x) · (c≪ ρ/τ)(x)

σ |= c≪ ρ/τ
(7)
=

(

σ|c≪ρ/τ

)

(x). �

We conclude this section with a couple of remarks.

Remark 5.4. 1. Proposition 5.3 (1) shows that σ = c†σ ≫ (c ≫ σ). This means that
a state σ can be reconstructed, via Jeffrey’s updating, from what we can predict,
namely from c ≫ σ. At this same time it shows that in Jeffrey’s updating c†σ ≫ ρ
the ‘state of affairs’ ρ that we encounter as evidence replaces the prediction c ≫ σ,
where the inversion c†σ is used for back-tracking. This replacement, of c≫ σ by ρ, is
where the ‘shock’ or ‘surpise’ of Jeffrey’s rule can be located. We also use the terms
‘correction’, ‘adjustment’ and ‘adaptation’ for this process, see Table (3).

2. We briefly come back to the issue whether softness/uncertainty should be represented
as a state or as a predicate. Pragmatically, one can go either way, since each state is
a predicate, and in the other direction a predicate (on a finite) set can be normalised
to a state, and the scaling factor involved does not affect the outcome in conditioning,
see Lemma 4.1 (3).

From a structural, algebraic perspective however, there are significant differences be-
tween states and predicates. For one, they form different mathematical structures:
states are convex sets, whereas predicates are effect modules with a monoid structure
(for conjunction), see e.g. Jacobs (2015, 2018b) for details. This means that they come
with different algebraic operations. For instance, predicates are closed under scalar
multiplication, but states are not. In addition, there are different transformation
operations: states can be transformed forwardly ≫ along a channel, and predicates
backwardly ≪. These operations are mathematically well-behaved: convex combi-
nations of states are preserved by state transformation, whereas the effect module
structure is preserved by predicate transformation. States and predicates are dual to
each other, see e.g. Jacobs (2017, 2018b) for a wider perspective. These structural
differences suffice to keep states and predicates apart in a mathematically precise
manner.

In addition, the mathematical distinction between states and predicates fits the termi-
nological distinction of Table (3): a state of affairs in Jeffrey’s updating corresponds
to a state / probability distribution, whereas (soft) evidence corresponds to a (fuzzy)
predicate. This means that the terminology has a mathematical basis.
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6. Literature Review

This section compares the channel-based explanation of Jeffrey’s/Pearl’s updating of the
previous two sections, together with its informal interpretation of Section 3, to some relevant
material in the literature. It first reviews some examples and then looks at earlier approaches
to soft evidence that focus mainly on how to formulate softness in the first place.

6.1 Examples from the Literature

Example 6.1. First we consider the following question from Halpern (2003, Example 3.10.1).

Suppose that an object is either red (r), blue (b), green (g), or yellow (y).
An agent initially ascribes probability 1/5 to each of red, blue, and green, and
probability 2/5 to yellow. Then the agent gets a quick glimpse of the object
in a dimly lit room. As a result of this glimpse, he believes that the object is
probably a darker color, although he is not sure. He thus ascribes probability
.7 to it being green or blue and probability .3 to it being red or yellow. How
should he update his initial probability measure based on this observation?

The prior probability distribution is in this case σ = 1
5 |r 〉+

1
5 |b〉+

1
5 |g 〉+

2
5 |y 〉. We see that

the colors in this example are partitioned in two combinations, namely ‘green or blue’ and
‘red or yellow’. We capture this via a two-element set {gb, ry}. There is then an obvious
(deterministic) channel:

{r, b, g, y} ◦c // {gb, ry} with



























c(r) = 1|ry 〉

c(b) = 1|gb〉

c(g) = 1|gb〉

c(y) = 1|ry 〉

The above quote does not suggest whether the new information should be used for correc-
tion, or for improvement. Halpern (2003) chooses the first approach. Here we elaborate
both.

The posterior (updated) probability distribution, computed via Jeffrey’s rule, is obtained
by doing state transformation with the inverted channel and the ‘glimpse’ as state of affairs:

c†σ ≫
(

7
10 |gb〉+

3
10 |ry 〉

)

= 1
10 |r 〉+

7
20 |b〉+

7
20 |g 〉+

1
5 |y 〉.

However, one can also translate the ‘glimpse’ into a fuzzy predicate p : {gb, ry} → [0, 1] with
p(gb) = 7

10 and p(ry) = 3
10 . Pearl’s update rule then gives a different outcome:

σ|c≪p = 3
23 |r 〉+

7
23 |b〉+

7
23 |g 〉+

6
23 |y 〉.

This example is an instance of a frequently occurring setting in which Jeffrey’s rule is
formulated — notably by Halpern (2003), to which we refer for details — namely when the
channel involved is deterministic. Consider a function f : X → I, giving a partition of the
set X via subsets Ui = f−1(i) = {x ∈ X | f(x) = i}. This function can be turned into a
‘deterministic’ channel f̂ : X → I, via f̂(x) = 1|f(x)〉.
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Lemma 6.2. Let f : X → I be a function/partition, to be used as deterministic channel,
as just described, together with a prior ω ∈ D(X). Applying Jeffrey’s rule to a new state of
affairs ρ ∈ D(I) gives as posterior:

f̂ †
ω ≫ ρ =

∑

i ρ(i) · ω|1Ui
satisfying f̂ ≫

(

f̂ †
ω ≫ ρ

)

= ρ. (10)

Moreover, wrt. the total variation distance function d one has:

d
(

f̂ †
ω ≫ ρ, ω) =

∧

{d(ω, ω′) | ω′ ∈ D(X) with f̂ ≫ ω′ = ρ}. �

The equation on the left in (10) describes Jeffrey’s update as a convex combination of
updated states ω|1Ui

, conditioned to the partitions Ui, with probabilities ρ(i). The equation
on the right in (10) illustrates the ‘destructive’ character of Jeffrey’s rule: the prediction
after the update is equal to new situation: the original prediction f̂ ≫ ω is simply overridden
by ρ. The equations in this lemma hold because f̂ is a deterministic channel and do not hold
for arbitrary channels. Since many early examples of Jeffrey’s rule involve such partitions
via deterministic channels, where the effect / predicted state f̂ ≫ ω′ of the updated state

ω′ = f̂ †
ω ≫ ρ is equal to the uncertain evidence ρ, i.e. f̂ ≫ ω′ = ρ, the idea emerged that for

Jeffrey’s rule the specification of the evidence ρ must happen in terms of the effect f̂ ≫ ω′.
But, as said, this only works for deterministic channels, not in general. We return to this
point below, in point 1 in Subsection 6.2.

For a general, not-deterministic channel c : X → Y with prior state ω ∈ D(X) and
evidence state ρ ∈ D(Y ) one can prove:

d
(

c†ω ≫ ρ, ω) ≤
∧

ω′∈D(X)

d(ω, ω′) + d(c≫ ω′, ρ).

Example 6.3. We turn to the following Bayesian network.

Pr(burglar)

0.01

✞

✝

☎

✆
burglar

��

✞

✝

☎

✆
earthquake

Pr(earthquake)

0.000001

��✞

✝

☎

✆
alarm

burglar earthquake Pr(alarm)

b e 0.9999

b e⊥ 0.99

b⊥ e 0.99

b⊥ e⊥ 0.0001

The a prori probabilities of a burglary and an earthquake, given in the upper tables, can
be written as probability distributions:

ω = 0.01|b〉+ 0.99|b⊥ 〉 and σ = 0.000001|e〉+ 0.999999|e⊥ 〉.

These two states can be combined to a ‘joint’ product state on the product space {b, b⊥} ×
{e, e⊥}, written as:

σ ⊗ ω = 0.00000001|b, e〉+ 0.00999999|b, e⊥ 〉

+ 0.00000099|b⊥, e〉+ 0.98999901|b⊥, e⊥ 〉.
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The conditional probability table for alarm translates in a straightforward manner into a
channel c from {b, b⊥} × {e, e⊥} to {a, a⊥}, namely as:

c(b, e) = 0.9999|a〉+ 0.0001|a⊥ 〉 c(b, e⊥) = 0.99|a〉+ 0.01|a⊥ 〉

c(b⊥, e) = 0.99|a〉+ 0.01|a⊥ 〉 c(b⊥, e⊥) = 0.0001|a〉+ 0.9999|a⊥ 〉.

The following question is asked by Barber (2012, Example 3.1 and 3.2):

Imagine that we are 70% sure we heard the alarm sounding. What is the prob-
ability of a burglary?

Again it is not clear if we should interpret this situation in terms of improvement (Pearl)
or correction (Jeffrey). The latter seems more natural since there is no ‘surprise’ that needs
correction. Nevertheless, Barber (2012) uses the former.

For Jeffrey’s approach we translate the 70% certainty into a state ρ = 0.7|a〉+0.3|a⊥ 〉.
We can take the Bayesian inversion of the channel c wrt. the product state σ ⊗ ω, giving
c†σ⊗ω : {a, a

⊥} → {b, b⊥} × {e, e⊥}. Jeffreys’ rule c†σ⊗ω ≫ ρ thus gives a distribution on
{b, b⊥} × {e, e⊥}. Taking its first marginal yields the outcome that is computed by Barber
(2012), namely:

0.693|b〉+ 0.307|b⊥ 〉.

For Pearl’s approach we translate the 70% certainty into a predicate p : {a, a⊥} → [0, 1]
with p(a) = 0.7 and p(a⊥) = 0.3. Pearl’s rule (σ ⊗ ω)|c≪p also yields a a distribution on
{b, b⊥} × {e, e⊥}, whose first marginal is:

0.0229|b〉+ 0.9771|b⊥ 〉.

This outcome is obtained by Jacobs and Zanasi (2019). It differs considerably from the
previous one — 69% versus 2% — and demonstrates that it is highly relevant which inter-
pretation — Jeffreys’ or Pearl’s — is chosen.

Example 6.4. We look at one more illustration, introduced by Dietrich et al. (2016), where
we see an interesting combination of Jeffrey’s and Pearl’s rule. The setting is: Ann must
decide about hiring Bob, whose characteristics are described in terms of competence (c
or c⊥) and experience (e or e⊥). The prior is a joint distribution on the product space
{c, c⊥} × {e, e⊥} given as:

ω = 4
10 |c, e〉+

1
10 |c, e

⊥ 〉+ 1
10 |c

⊥, e〉+ 4
10 |c

⊥, e⊥ 〉.

The first marginal of ω is the uniform distribution 1
2 |c〉+

1
2 |c

⊥ 〉. It is the base rate for Bob’s
competence.

We use the two projection functions {c, c⊥}
π1←− {c, c⊥} × {e, e⊥}

π2−→ {e, e⊥} as deter-
ministic channels π̂1 and π̂2.

When Ann would learn that Bob has relevant work experience, given by point evidence
1e, her strategy is to factor this in via Pearl’s rule / backward inference: this gives ω|π̂2≪1e

,
whose first marginal is 4

5 |c〉+
1
5 |c

⊥ 〉. It is then more likely that Bob is competent.
Ann reads Bob’s letter to find out if he actually has relevant experience. We quote Di-

etrich et al. (2016):
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Bob’s answer reveals right from the beginning that his written English is poor.
Ann notices this even before figuring out what Bob says about his work expe-
rience. In response to this unforeseen learnt input, Ann lowers her probability
that Bob is competent from 1

2 to 1
8 . It is natural to model this as an instance

of Jeffrey revision.

Bob’s poor English is a new state of affairs — a surprise — which translates to a competence
state ρ = 1

8 |c〉 +
7
8 |c

⊥ 〉. This is not something that Ann wants to factor in; no, she wants
to adjust to this new situation, so she uses Jeffrey’s rule, giving a new joint state:

ω′ = (π̂1)
†
ω ≫ ρ = 1

10 |c, e〉+
1
40 |c, e

⊥ 〉+ 7
40 |c

⊥, e〉+ 7
10 |c

⊥, e⊥ 〉.

If the letter now tells that Bob has work experience, Ann will factor this in, in this new
situation ω′, giving 4

11 |c〉+
7
11 |c

⊥ 〉 as first marginal of ω′|π̂1≪1e
. The likelihood of Bob being

competent is now lower than in the prior state. This example reconstructs the illustration
of Dietrich et al. (2016) in channel-based form, with the associated formulations of Pearl’s
and Jeffrey’s rules, and produces exactly the same outcomes as in loc. cit.

6.2 All Things, or Nothing Else, Considered

We now take a closer look at the work of Chan and Darwiche (2005) and Darwiche (2009)
where the Jeffrey/Pearl distinction has been described in terms of the way that soft evidence
is described.

1. In this context, Jeffrey’s rule is called “all things considered” by Goldszmidt and
Pearl (1996); briefly, quoting Darwiche (2009, §3.6.1): “One method for describing
soft evidence on event β is by stating the new belief in β after the evidence has been
accomodated.”

We make this more concrete in terms of a probability distribution ω ∈ D(X) which
is somehow updated to a distribution ω′ ∈ D(X). There is an event E ⊆ X whose
“strength” is given as its validity q ∈ [0, 1] in the updated state, that is q = ω′ |= 1E .
This validity in the updated state is thus the way in which softness is specified. This
makes sense from Jeffrey’s perspective, since it involves adjustment/correction. It is
a rather indirect, post hoc way of specifying, but it can be done like this.

We elaborate this situation in the current framework, using the partition-based special
case of Lemma 6.2. The event E ⊆ X forms a two-element partition ofX, consisting of
E and its complement ¬E, so we take as index set I = {1, 2} with function f : X → I
given by f(x) = 1 if x ∈ E and f(x) = 2 if x 6∈ E. The validity q can be understood
as a ‘state of affairs’ distribution σ = q|1〉 + (1 − q)|2〉 on the index set I = {1, 2}.
Then, following the formula in (10) for Jeffrey’s updating with a partition, we get
convex combination:

ω′ = f̂ †
ω ≫ σ = q · ω|1E

+ (1− q) · ω|1¬E
.
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By elaborating the definition of conditioning (7) we get:

ω′(x) =



















q · ω(x)

ω |= 1E
if x ∈ E

(1− q) · ω(x)

ω |= 1¬E
if x ∈ ¬E

This is precisely Eqn. (3.20) of Darwiche (2009).

2. Pearl’s rule is called “nothing else considered”. The strength is now given by a “Bayes
factor” k > 0. Skipping many details, we can turn this factor k into a predicate
p : I → [0, 1] on the index set I = {1, 2}, with p(1) = r and p(2) = r/k. The number
r is some scaling factor that ensures that p’s values are in the unit interval [0, 1]. It
drops out in updating, see Lemma 4.1 (3).

We elaborate the technicalities of Pearl’s approach, using the above partition E,¬E
of X over I = {1, 2}. Then we compute Pearl’s update ω|f̂≪p step-by-step:

(

f̂ ≪ p
)

(x) = p(f(x)) =

{

r if x ∈ E

r/k if x 6∈ E

ω |= f̂ ≪ p =
∑

x∈E r · ω(x) +
∑

x 6∈E
r/k · ω(x)

= r · (ω |= 1E) + r/k · (ω |= 1¬E)

ω|f̂≪p =
∑

x∈E

r · (ω |= 1E)

r · (ω |= 1E) + r/k · (ω |= 1¬E)

∣

∣x
〉

+
∑

x6∈E

r/k · (ω |= 1¬E)

r · (ω |= 1E) + r/k · (ω |= 1¬E)

∣

∣x
〉

.

We can rewrite the latter formal convex sum as probability mass function:

(

ω|f̂≪p

)

(x) =



















k · ω(x)

k · (ω |= 1E) + (ω |= 1¬E)
if x ∈ E

ω(x)

k · (ω |= 1E) + (ω |= 1¬E)
if x ∈ ¬E

This is Eqn. (3.25) of Darwiche (2009).

We conclude that, even though the approaches “all things considered” and “nothing else
considered” take a completely different route to specifying softness, they still fit in the
current general setting.

7. Concluding Remarks

This paper uses hard maths for soft evidence. It provides a systematic account of two dif-
ferent forms of probabilistic updating with soft evidence, namely Jeffrey’s rule and Pearl’s
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method. These two approaches are provided with informal conceptualisations, like: adjust-
ing/adapting to, correction (Jeffrey style), and: factoring in, improvement (Pearl style).
The paper’s technical contribution lies in providing a mathematically precise formulation
of Jeffrey’s and Pearl’s updating, systematically using the concept of channel. This makes
it possible to reformulate several results from the literature, notably of Chan and Darwiche
(2005) and of Darwiche (2009), to add new results, and to describe various (confusing)
examples from a uniform perspective.

In the end we briefly suggest a connection between the channel-based formalism and the
cognitive explanation of perception by Hohwy (2013). We formalise it as follows: a consis-
tent, relevant portion of the human mind may be represented by a probability distribution
σ, forming the internal state at hand. We use a channel c to translate this internal state
into predictions c ≫ σ about the outside world. The confrontation of this prediction with
observation leads to an update of the internal state σ. In the setting of this paper, the
update may happen using Jeffrey’s approach, when σ is adjusted/corrected to c†σ ≫ ρ for
an observed external state ρ. It may also happen according to Pearl, so that σ is improved
to σ|c≪p for external evidence p that is factored in. It remains an intriguing open question,
far beyond the scope of this paper, if this Jeffrey/Pearl distinction between correcting and
improving makes cognitive sense.

Finally, a question that might arise is whether Jeffrey’s/Pearl’s updating can also be
described (and distinguished) in continuous probability. The answer is yes. Pearl’s updating
is essentially conditioning and can be done with continuous probability, see e.g. Jacobs
(2018b). Jeffrey’s approach involves disintegration (or Bayesian inversion), which is a rather
subtle topic in a continuous setting, as illustrated by Clerc et al. (2017) (and the references
there) for more information: daggers of channels may not exist, or may not be determined
uniquely (up to null-sets).
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