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The aim of this thesis is to derive and solve mathematical models for the flow of liquid

in a foam. A primary concern is to investigate how so-called “Marangoni stresses” (i.e.

surface tension gradients), generated for example by the presence of a surfactant, act to

stabilise a foam. We aim to provide the key microscopic components for future foam

modelling.

We begin by describing in detail the influence of surface tension gradients on a general

liquid flow, and various physical mechanisms which can give rise to such gradients. We

apply the models thus devised to an experimental configuration designed to investigate

Marangoni effects.

Next we turn our attention to the flow in the thin liquid films (“lamellae”) which make

up a foam. Our methodology is to simplify the field equations (e.g. the Navier-Stokes

equations for the liquid) and free surface conditions using systematic asymptotic methods.

The models so derived explain the “stiffening” effect of surfactants at free surfaces, which

extends considerably the lifetime of a foam.

Finally, we look at the macroscopic behaviour of foam using an ad-hoc averaging of the

thin film models.



Chapter 1

Introduction

Liquid foams occur in a wide variety of contexts. In everyday life, they form the froth

in a washing-up bowl, and the head on a pint of beer. Practically, they are important,

for example, in dampening explosions, collecting radioactive dust, dyeing materials and

crop spraying. In all these applications, the ability of a foam to spread a small amount of

liquid over a wide area is crucial. Foams are also used in the mineral recovery industry

(the largest industry in the world). Here, it is the foam’s ability to preferentially select

one mineral over another which is important. This process has also been used to separate

proteins. However, the presence of a foam is not always beneficial. For example, in the

brewing industry, the presence of a foam during beer production is undesirable because

it both reduces vessel capacity and lessens the foam potential of the finished product

(see Bamforth [4]). Also, the presence of unwanted foam in a distillation column can

cause substantial problems such as loss of throughput or deterioration in product quality

throught loss of separation efficiency. In any case, it is desirable to understand the bulk

properties of a foam and how they depend on those of its constituents.

1.1 What is a foam?

A foam is a gas-liquid mixture in which the volume fraction of the liquid phase is small.

Foams are broadly divided into ‘wet’ and ‘dry’, depending on the proportion of liquid

contained in them. In a wet foam (where the liquid volume fraction is typically between

10% and 20%) the bubbles are approximately spherical, while in a dry foam (where the

volume fraction of liquid is less than 10%), the bubbles are more polyhedral in shape as

in Figure 1.1. In a dry foam (as shown in a high speed photograph in Figure 1.2), the

thin films forming the faces of the roughly polyhedral bubbles are called lamellae and the

“tubes” of liquid at the junctions of these films are called Plateau borders, named after
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(a) (b)

Figure 1.1: Schematic of (a) a wet foam and (b) a dry foam.

Plateau, following his paper [66] discussing the angle at which three soap films meet. The

vertices where typically four Plateau borders meet are called nodes.

We warn that pictures of foam are often misleading, since they are two-dimensional repre-

sentations of three-dimensional structures. For example, in the photograph in Figure 1.2,

the dark lines are Plateau borders, the lamellae span these dark lines and the nodes are

the junctions of these lines. In the two-dimensional schematics of Figure 1.1, however, the

lines represent the lamellae and the junctions of the lines represent Plateau borders; we

cannot easily depict the nodes in these two dimensional representations. We show three

dimensional schematics of the liquid distribution within a dry foam in Figures 1.3 and

1.4.
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Figure 1.2: High speed photograph of a foam (courtesy of Kui-Hua Sun, Engineering
Department, University of Oxford).
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Lamella
Node

Plateau Border

Figure 1.3: Schematic of liquid within a foam.

Lamella
Plateau Border

Figure 1.4: Close up of a lamella between two Plateau borders.
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1.2 How do foams form?

Foams are formed when a gas and liquid are mixed. There are many ways in which this

can occur, including:

• when a gas passes through a liquid, such as in a distillation column;

• when a gas and liquid are mixed and the gaseous phase is entrained, for example,

when generating bubble bath foam;

• when a gas is released from solution due to a change in pressure, such as upon

opening a bottle of fizzy pop.

Once a foam has been formed, its lifetime is determined by the flow of liquid, and the

subsequent distribution of the various chemical components, through the microstructure.

In general, a foam starts wet and becomes dryer as the liquid drains out of it. For

some systems, this process proceeds until a stable volume fraction is reached after which

the foam can last virtually indefinitely (due to intermolecular interactions). In others,

the foam has a finite lifetime and when it becomes sufficiently dry, the lamellae become

unstable and rupture and eventually the foam collapses.

1.3 Why does a foam persist after it has been formed?

Foam consisting of a pure liquid (e.g. pure water) is relatively short–lived. Since the

curvature of the Plateau borders causes them to have a much lower pressure than the

lamellae, the liquid drains rapidly from the lamellae into the Plateau borders. We call

the effect of this pressure the ‘Plateau border suction’. The lifetime of such a foam may

be extended, however, by the addition of surface-active agents (e.g. washing up liquid)

or volatile components, which generate surface effects that oppose the drainage of liquid

from the lamellae.

1.3.1 Surfactants

A molecule of a surface-active agent (surfactant) is amphiphilic: it has both a hydrophobic

and a hydrophilic part. The hydrophobic part often has an organic structure, while the

hydrophilic part contains a group which either has charges which separate when dissolved

in water or is polar. At sufficiently high bulk concentrations, the surfactant molecules

associate with each other in the bulk and form micelles. These are ‘balls’ of surfactant

molecules arranged in such a way that the hydrophobic ‘tails’ are completely surrounded

by hydrophilic ‘heads’, see Figure 1.5(a).
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Surfactant molecules prefer to be present at an interface, rather than remaining in the

bulk. They arrange themselves so that the tail groups are in contact with the air, while

keeping the head groups within the liquid, see Figure 1.5(b). Adsorption of surfactant

(a)

AIR

FLUID

(b)

Figure 1.5: Surfactant molecules (a) forming a micelle and (b) at a free surface.

in this manner reduces the surface tension of the interface. We must thus consider two

species of surfactant molecules, namely those in the bulk liquid and those residing in the

surface.

Once the bulk concentration reaches the ‘critical micelle concentration’ (CMC), that is,

the concentration at which micelles first form, the surface tension does not change with

concentration. The surfactant molecules form more micelles rather than adsorbing at the

interface. Nonuniform adsorption due, for example, to an expanding surface, can therefore

result in a surface tension gradient.

1.3.2 How does a surface tension gradient affect a liquid flow?

A gradient in surface tension results in a surface shear stress acting on the liquid at the

surface. Viscosity transmits this shear into the liquid and hence the liquid is accelerated

or retarded, depending on the direction of the gradient relative to the bulk liquid flow.

This effect will tend to stabilise foam if the surface shear opposes the Plateau border

suction and conversely, the foam will be destabilised if the surface shear enhances the

Plateau border suction.
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1.3.3 Volatile Components

A foam may also be stabilised if it contains a second, volatile, liquid component which

has a different surface tension from that of the primary liquid (e.g. in a heptane/toluene

mixture). Higher evaporation in one part of the system compared to another can lead

to depletion of the volatile component and hence a surface tension difference between

the two locations. If such a gradient of surface tension exists between the lamella and

Plateau border in a foam, the film may either be stabilised or destabilised, depending

on whether the volatile component has a higher or lower surface tension than the inert

component. In the Chemical Engineering literature, if the volatile component has the

lower surface tension, then the system is known as Marangoni Positive while if it has

the higher tension, then the system is known as Marangoni Negative (see Zuiderweg

and Harmens [82]). Marangoni positive systems readily foam, while Marangoni negative

systems do not foam at all. The former typically occur within distillation columns, where

their persistence is highly undesirable.

1.4 What happens to lamellae when they become

thin?

If a lamella is allowed to drain in a controlled environment, it may become so thin that

molecular forces arising from the interaction of the two free surfaces come into play. If

these forces are repulsive, this culminates in the formation of a stable “black” film of

thickness between 10 and 100 Angstroms.1 A very thin lamella may also be stabilised by

the formation of a solid surface layer, for example, in an ageing washing-up liquid foam.

Stabilisation of lamellae by these mechanisms will not be considered in this thesis. Our

concern is with foam that is fundamentally unstable, but whose lifetime may be extended

considerably by the mechanisms presented in §1.3.1 and §1.3.3.

1.5 How does a lamella rupture?

It is well known that a purely viscous film cannot break in finite time under the action

of a finite force. In practice, films spontaneously rupture when they become sufficently

thin. This may be due to random external fluctuations or to physical effects other than

viscosity and surface tension. Indeed, numerous authors have incorporated attractive

long-range intermolecular forces into thin-film models and thus predicted rupture at a

1One Angstrom is equal to 10−10m.

7



critical thickness. We do not concern ourselves here with the mechanics of the rupture:

we simply take this critical thickness to be a known material property.

1.6 How are foams destroyed in industrial situations

where they are not wanted?

There are two methods that are often used in industrial situations to break down foams.

1. Chemical breakdown: Chemicals that disperse foams are known as antifoams, and

are often oils or highly surface active materials. The choice of suitable antifoam

for a given foaming system is empirical, and an antifoam which works well for one

system may not work for another, similar system.2

2. Mechanical breakdown: Various mechanical methods can also be employed to break-

down foams. These range from the use of beaters (large stirring paddles within

the piece of industrial equipment) to using ultrasound, where the frequency is de-

termined to maximise foam destruction. Other methods include the use of heat

transfer.

Obviously, the method used depends crucially on the constitutive parts in the foam.

Attempting to break down a petrochemical foam using heat could be disastrous, for

example. Also these methods are all potentially costly, and it would be preferable to

avoid producing large quantities of foam in the first place.

1.7 Background material

There is a vast amount of literature on foams, both experimental and theoretical. We

present details of the work which is most relevant to this thesis in the appropriate chapters

that follow. General reviews of foam and its behaviour have been presented by Bikerman

[11], Kraynik [46] and Aubert, Kraynik and Rand [3]. Bikerman’s book focusses on

experimental observations and ad-hoc models for foams. Kraynik’s review includes more

theoretical aspects, while Aubert et al. provides an ‘easy-to-read’ account of foaming

phenomena.

Here, for completeness, we present an overview of some historically important and inter-

esting areas of foam research that we will not have space to touch on in the rest of this

thesis.
2“When a plant has a foaming problem, the antifoam salesman is called, who turns up with a briefcase

full of chemicals. These chemicals are, in turn, introduced to samples of the foam in question. If the

foam is substantially reduced by one chemical, then it is introduced to the foaming solution.”-Darton [18].

8



More exotic foams

There are a variety of non-aqueous and non-volatile systems which foam. For example,

foams form on the top of molten baths of metal (such foams are known as Slag Foams).

It is not clear whether such foams are stabilised by the presence of surface-active impu-

rities or by small differences in temperature between the lamellae and Plateau borders.

Experimental work studying such foams is being undertaken by Nexhip [61].

Geometric work

The characteristic shape of foam bubbles depends on the coarseness of the foam. As noted

earlier, in a wet foam, bubbles are nearly spherical, while in a dry foam, the bubbles are

more polyhedral. Numerous authors have attempted to determine bubble shapes, all

trying to generate ideal cells: ones that tesselate space and minimise surface area.

Two-dimensional foams

As previously mentioned, Plateau [66] studied the joining of three lamellae (experimen-

tally), and concluded that they always meet at 120o. Weaire and Kermode [78, 79] describe

von Neumann’s bubble law which arises from a model to describe the change in area of

a two-dimensional bubble acting under only gas diffusion between bubbles and capillary

forces. The model predicts that bubbles with fewer than six sides shrink in area, whereas

bubbles with more sides grow.

Three-dimensional foams

When four lamellae meet, in three-dimensional space, they always join at an angle of

cos−1(1/3) (see Kraynik [46]). Planar films cannot satisfy this constraint, and so lamellae

must be curved. At the end of the last century, Lord Kelvin [74] created a tetrakaidec-

ahedron; a structure with six planar quadrilateral faces and eight non-planar faces, all

with curved edges, see Figure 1.6. He showed that it both tesselates space and minimises

surface area for a given volume. More recently, Weaire and Phelan [80] found that such

cells were present within a real foam. They also noted, from Matzke [57], that in practice

the commonest films in a foam are pentagonal. They constructed a collection of eight

polygonal bubbles which contains many pentagonal faces, fills space, and also has frac-

tionally less surface than a Kelvin cell. Kraynik and Reinelt [50, 47, 48, 49, 68] carried

out extensive work on the deformation of various theoretical foams. They used a surface

evolver, which computed the minimal surface at each stage of deformation, to find the

shape of a spatially periodic foam when shearing forces are applied.
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Figure 1.6: The Kelvin Cell (courtesy of Andy Kraynik).

Figure 1.7: A random foam structure (courtesy of Andy Kraynik).
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They used this to obtain shear moduli for the foams under consideration, which could

then be used to describe macroscopic properties of the foam. Of course, real foams are

often a random collection of bubbles, of various shapes and sizes, as shown schematically

in Figure 1.7.

Foam flow

The mechanism for foam flow is the slip of each bubble over its neighbours to a correspond-

ing position further along, see Figure 1.8. A critical yield stress is required to make this

Figure 1.8: Schematic of a layer of bubbles moving over the top of another layer.

step. Thereafter, the effective viscosity decreases with shear rate. As noted in Kraynik

[46], foams are macroscopically “multi-phase fluids which are compressible, nonlinear and

viscoelastic” and, typically, foam is consituted as a shear-thinning viscoplastic material.

A foam also exhibits slip at rigid boundaries. This can easily be seen as a macroscopic

description of flow of bubbles over a wetted surface. These properties should be derivable

from the microscopic flows that occur between the lamellae and Plateau borders.

There is a vast amount of work concerning foam flows in oil recovery processes. Here, the

size of the channel in which the foam flows may be only a few bubble diameters across.

Kornev et al. [22, 44], and Shugai [70] have discussed the flow of a foam within a porous

medium. The former performed experiments on bubble trains through a cavity as shown

in Figure 1.9. When the characteristic size of the bubbles was the same size as the inlet,

the bubbles moved through the cavity without disturbing those bubbles around the edge

of the chamber. When the characteristic size of the bubbles was much smaller than the

inlet, the motion of the bubbles in the cavity appeared totally random. A mathematical

study of flow of a bubble train through a porous medium was carried out in Kornev and

Kurdyumov [45].
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Figure 1.9: Schematic of experiment to study a bubble train moving through a cavity.

1.8 Thesis plan

In Chapter 2, we present the basic models that underpin all the work that we carry out

in this thesis. We state the model for an incompressible Newtonian liquid, and we give

details of the boundary conditions at both rigid and free surfaces. We then state the

model for a soluble surfactant and formulate the boundary conditions for a surfactant

adsorbed at a free surface. Finally, we state the model for a volatile component in a

volatile-inert mixture, and discuss the boundary conditions that arise when we allow for

mass transfer across an interface.

In Chapter 3, we present details of an experiment to study how a surfactant affects a

dynamic interface in an easily accessible geometry, that of the overflowing cylinder. We

model both the liquid and the surfactant, and the interaction between the two. We

include the effects of gravity, capillarity, surface tension gradients, inertia and viscosity,

convection and diffusion of the surfactant, and diffusion-controlled adsorption onto the

surface. We have a high Reynolds number and high Péclet number flow and both diffusive

and viscous boundary layers exist at the free surface. A crucial observation is that the

diffusive boundary layer is typically much thinner than the hydrodynamic boundary layer.

We solve the outer problems for the liquid and the surfactant, and then solve the inner

problems close to the free surface, and in the vicinity of the stagnation point.

In Chapter 4, we develop the theory for thin films evolving under the action of Marangoni,

capillary and viscous forces. We derive the distinguished limits of the model, defined as

those regimes in which as many forces as possible balance. We also present other limits

in which two forces balance or one force dominates. We further describe the distribution

of the Marangoni inducing term, whether it is a surfactant or a volatile component.

In Chapter 5, we apply the thin film models derived in Chapter 4 to the problem of liquid
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drainage from a lamella into a Plateau border. This involves decomposing the liquid

domain into a time-dependent lamella, a capillary-static Plateau border and a quasi-

steady transition region between the two. We first illustrate our procedure by considering

the evolution of a pure liquid film, for which an explicit solution to the problem has been

found. We solve the transition region problem to give the flux of liquid flowing from the

lamella into the transition region as a function of lamella thickness, and then, assuming

that the lamella is spatially independent, we are able to find the lamella thickness as

a function of time. We then turn our attention to a lamella stabilised by a well-mixed

surfactant, and we follow the same decomposition of the liquid domain as for the pure

liquid case. Our numerical solutions produce some interesting behaviour, which we explain

by an asymptotic analysis of the governing equations. We repeat the procedure using

parameters for the soluble surfactant CTAB, and for an insoluble pulmonary surfactant.

We present, but do not solve, the model for a lamella stabilised by a volatile component.

Finally, we show that we may make progress and obtain an explicit solution to the problem

if we assume that the system exhibits a constant surface viscosity rather than a Marangoni

stress.

In Chapter 6, we present an ad-hoc model for the flow in a single Plateau border. We use

this building block in a macroscopic model for a foam. We also discuss foam destruction

by a self-generated antifoam and by using hot wires.

In Chapter 7, we round off by presenting the important results from the previous chapters,

and by discussing extensions to our work. We finish by discussing experiments that we

feel would aid the advancement of the theory.

1.9 Statement of Originality

In Chapter 3, §3.4 onwards is original work. In Chapter 4, the identification of the velocity

scalings is original work, as are the models including Marangoni terms. The surfactant and

volatile models are original, except for the models where ǫ2Pe ∼ O(1) and the insoluble

surfactant model. The modelling has been presented in Breward, Darton, Howell and

Ockendon [14]. The work in Chapter 5 is all original, but the work in §5.2 is very similar

to that presented in Howell [38]. With the exception of the presentation of the so-called

Foam Drainage Equation, the work in Chapter 6 is all original.
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Chapter 2

Modelling of liquids, surfactants and

volatile systems

In this chapter, we discuss the modelling of liquids, surfactants and volatile systems.

Our aim is to present the fundamental models for surfactant solutions and mixtures of

volatile and inert liquids flowing beneath a free surface. As noted in the introduction, the

surface tension of such solutions is not necessarily constant, and we describe the interplay

between the surface tension and the concentration field in each case. In general, the bulk

properties (such as density and viscosity) of a surfactant solution also vary with the bulk

concentration; see Pandit and Davidson [64]. Here we only consider the case where such

effects are negligible, and so we can treat the mixture as an incompressible Newtonian

liquid.

In the section that follows, we present an uncontroversial model and boundary conditions

to describe the velocity and pressure within the liquid. However, when we come to

modelling the surfactant, while the field equation (the convection-diffusion equation) is

well-known, the boundary conditions and the relationship between surface tension and

surfactant concentration are less obvious. We present a chemical justification for these

conditions, which, while not rigorous, gives some insight into the processes taking place.

Our faith in the conditions that we arrive at is born out by their ability to fit experimental

data (see Manning-Benson [52]). The model for a volatile component and the associated

boundary conditions are reasonably well established in the paint-drying literature (see

below).

For simplicity, we restrict ourselves to a two-dimensional geometry in this chapter. The

equations generalise to three dimensions in fairly obvious ways, and indeed, in Chapter 3

we employ the axially-symmetric version.
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2.1 Liquid modelling

2.1.1 Field Equations

We employ the incompressible Navier-Stokes equations (see, for example, Ockendon and

Ockendon [62]) to describe the flow of our liquids. Thus u = (u(x, y, t), v(x, y, t)), the

velocity, and p, the pressure in the liquid, satisfy

∇.u = 0, (2.1)

ρ(ut + (u.∇)u) = −∇p+ µ∇2u− ρgj, (2.2)

where ρ is the density, µ is the constant viscosity and g is the acceleration due to grav-

ity (which we assume acts in the −j direction). The first of these equations represents

conservation of mass while the second represents conservation of momentum.

2.1.2 Boundary conditions

At any rigid boundaries, we impose the usual no-slip condition that the liquid in contact

with the boundary must move with the same velocity as the boundary. At a free surface

y = H(x, t), however, the boundary conditions are more complicated than the no-slip

condition, and involve force balances and kinematics. We utilise the unit tangent and

unit normal to the surface, defined by

t =
±1

(1 +H2
x)

1
2

(

1
Hx

)

, n =
±1

(1 +H2
x)

1
2

(

−Hx

1

)

, (2.3)

where we choose the sign of t and n so that the normal points outward from the liquid.

We denote the liquid stress tensor by τ , so for a Newtonian liquid we have

τ =

(

−p+ 2µux µ (uy + vx)
µ (uy + vx) −p+ 2µvy

)

. (2.4)

If σ is the surface tension of the liquid-gas interface, then balancing forces on a small

element of the surface, we obtain the relationships

±σκ = n.τ.n, (2.5)

∂σ

∂s
= t.τ.n, (2.6)

where the (two-dimensional) curvature, κ, is given by

κ =
Hxx

(1 +H2
x)

3
2

, (2.7)

15



and s is arc length. Here, the liquid is on the right of the interface, when viewed along

the direction of s increasing, and we choose the sign in (2.5) to be consistent with the

definition of the normal in (2.3). We break with our usual convention of writing derivatives

as subscripts when we consider ∂
∂s

and ∂
∂n

. This is because s is a useful subscript to

denote surface quantities, and we wish to avoid confusion. Also, we use the quantity s to

denote volatile component later. On substituting for the stress tensor in these boundary

conditions, we find

±σκ = −p+ 2µ
vy − (uy + vx)Hx + uxH

2
x

1 +H2
x

, (2.8)

∂σ

∂s
= µ

(uy + vx)(1 −H2
x) − 2(ux − vy)Hx

1 +H2
x

. (2.9)

We shall refer to these two boundary conditions as the ‘normal force balance’ and the

‘tangential force balance’. The gradient of surface tension in the tangential force balance

is commonly known as a Marangoni stress.

We also require a third condition to locate the free surface. Assuming that there is no

evaporation, we employ the kinematic condition, which may be written as

v = Ht + uHx. (2.10)

We show how the kinematic condition can be modified to take account of evaporation in

§2.3 to follow.

2.2 Surfactants

We have previously mentioned that a surfactant has an affinity for a surface. Here, we

show how to model the transport of surfactant both in the bulk and on the surface. There

are two ways of describing the concentration. We choose to follow the surface chemistry

approach and to think of surfactant concentration as the number of moles of surfactant

in a unit volume (bulk surfactant) or area (surface surfactant). The other approach is to

use the volume fraction of surfactant molecules present in the solution.

As described in the previous chapter, some surfactants contain charged head groups which

dissociate when dissolved in water. Adsorption of surfactant at the free surface results in

the formation of an “electrical double layer”. Such a layer can hinder further transport

of surfactant to the surface. For simplicity, in this thesis we shall henceforth neglect such

effects.
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We assume that the bulk surfactant is transported by convection and diffusion, and that

the concentration is below the critical micelle concentration, so that the dimensional

model for the bulk surfactant concentration, C(x, y, t) reads

Ct + (u.∇)C = ∇. (D(C)∇C) , (2.11)

where D(C) is the diffusivity of the surfactant which can, in general, vary with the

concentration of surfactant. We assume in this thesis, however, that the diffusivity is a

constant.

We assume that the concentration of surface surfactant Γ(x, t) (also known as the sur-

face excess) is also transported by convection and diffusion, but now we also allow for

an interchange of molecules with the bulk. We assume that such an interchange is con-

trolled by diffusion (although the process may also be controlled by activation energies

see Manning-Benson [52] or Chang [15] for a review), and so the flux from the bulk onto

the surface is

j = −D∂C
∂n

. (2.12)

The equation for conservation of surfactant in the surface then reads

Γt +
∂(usΓ)

∂s
−Ds

∂2Γ

∂s2
= j, (2.13)

where us is the surface velocity

us = u.t|y=H(x,t), (2.14)

and Ds is the surface diffusivity. In practice, surface diffusion is often negligible, and we

will neglect it henceforth, although we briefly examine its effects in the case of an insoluble

surfactant in §4.5.6 and §5.5. We call (2.13) the “replenishment condition”. The model

is closed by the constitutive relation for the flux j, which is in general of the form

j = j(C,Γ). (2.15)

The most common such model in the chemistry literature (see Chang [15]) sets the rate of

adsorption of surfactant at the surface to be proportional to the sub-surface concentration,

C(x,H, t), and to the amount of space available at the surface. The rate of desorption is

set proportional to the amount of surfactant on the surface, Γ. Hence we have the relation

j = k1 (C(Γ∞ − Γ) − k2Γ) , (2.16)

where Γ∞ is the “surface saturation concentration”, that is, the largest concentration

of surfactant that can be present at the surface, and k1 and k2 are material parameters.
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Equation (2.13) along with the flux given by (2.16) is known as the Langmuir-Hinshelwood

equation (Chang [15]).

The three boundary conditions (2.12), (2.13) and (2.16) are sufficient to close the model

for C and Γ. They are often simplified further. Often, in practical situations we can

assume that the adsorption process described by (2.16) takes place very rapidly, and thus

k1 is, in some sense, large and (2.16) leads to a thermodynamic relation between Γ and

C known as the Langmuir isotherm (see Adamson [1]),

Γ =
Γ∞C

k2 + C
, (2.17)

which is then coupled with (2.12) and (2.13).

Another simplification occurs if the surfactant is insoluble (as is often the case for pul-

monary surfactant) in which case we can set j → 0 in (2.13) and ignore the problem for

C completely (see Gaver and Grotberg [29], for example).

2.2.1 Effect of surfactant on the surface tension

At a free surface, a surfactant is able to expel its hydrophobic tail from the solution and

this reduces the surface energy of the system. For our purposes, it is necessary to impose

the resulting constitutive relation between the surface tension and the surface concen-

tration. These relations are typically obtained experimentally, but to help explain the

origin of these effects, we present a “chemists’ model”. Our starting block is the modified

Gibbs equation which relates changes in surface tension to the surface concentration and

to changes in bulk concentration (Denbigh [24], Levich [51]),

δσ = −RTΓ
δC

C
, (2.18)

where R is the universal gas constant and T is the temperature.1 Now, assuming thermo-

dynamic equilibrium, we use the Langmuir isotherm (2.17) to relate C to Γ, we let the

infinitesimals tend to zero, and integrate the equation to read

σ∗ − σ = −RT log

(

1 − Γ

Γ∞

)

, (2.19)

where σ∗ is the surface tension of pure water. Equation (2.19) is known as the Frumkin

equation (see Chang [15]). The term σ∗ − σ is sometimes called the “surface pressure”.

1Chemists use the concepts of (a) chemical potential and (b) an ideal-dilute solution to formulate this
relationship. The RT factor in (2.18) arises because, at the surface, the surfactant is assumed to be in
equilibrium with its vapour phase.
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If the concentration of surfactant is above the critical micelle concentration (see §1.3.1),

we must include diffusion of micelles and interplay between the bulk and micellar concen-

trations. Such modelling is beyond the remit of this thesis.

2.3 Volatile and Inert systems

In general a foaming mixture may be formed by mixing any number of chemicals with

differing surface tensions and evaporation rates. In this thesis, we confine our attention to

the simplest case in which we have one volatile and one inert component. We model the

volatile component of an inert-volatile mixture by assuming that it forms a concentration

field within the liquid as a whole. Here, we define the concentration s(x, y, t) to be the mole

fraction of the volatile component, that is, the number of moles of the volatile component

compared to the total number of moles (of both the volatile and inert component) present.

We use this definition of concentration to be consistent with the experimentalists. We

propose that the mass transfer is controlled by convection and diffusion, and the model

reads

∇. (D(s)∇s) = st + (u.∇)s. (2.20)

Again, the diffusion coefficient may vary with the concentration of volatile component,

but in our modelling we will assume that it is constant.

2.3.1 Volatile component at the free surface

We must model two effects at the free surface: the first is evaporation of the volatile, and

the second is the dependence of the surface tension on the concentration s. We assume

that there is negligible adsorption of the volatile at the free surfaces, i.e., Γ ∼ 0, and we

only have to consider the bulk concentration. We consider the liquid evaporating at a

rate e(s) at a surface H(x, t), which moves with velocity Vn. At the surface we conserve

both volatile and inert components:

−Dsn + s (u.n− Vn) = e, (2.21)

Dsn + (1 − s) (u.n − Vn) = 0. (2.22)

We eliminate the terms multiplying the velocities and we obtain

−Dsn = (1 − s)e, (2.23)

which we may re-write as

−D(sy −Hxsx) = (1 − s)e
√

1 +H2
x. (2.24)
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If we eliminate the diffusion terms then we find

u.n − Vn = e. (2.25)

Noting that Vn = Ht/
√

1 +H2
x, and that u.n = (v − uHx)/

√

1 +H2
x, we can we-write

(2.25) as

v = Ht + uHx + e
√

1 +H2
x, (2.26)

which is the kinematic condition re-written to include evaporation.

We denote the surface tension of the inert component by σI and that of the volatile

component by σV . We require our mixture to have these surface tensions when s is zero

or one respectively. However, the precise relationship that the surface tension follows

depends on the two components and how they interact (see Atkins [2] for a discussion of

how the partial pressures of binary mixtures behave). We assume that there is a linear

variation between the two values, and so we have

σ = σI +
(

σV − σI
)

s. (2.27)

2.3.2 Model for evaporation

We must also pose a constitutive relation for how the evaporation rate e varies with the

concentration of volatile component s. Often, in applied mathematics literature, the rate

is taken to be equal to a constant, e.g., Howison et al. [39]. However, this does not

adequately take account of the fact that there is a finite amount of the volatile and that

the evaporation rate must be zero if the chemical potential in the liquid is the same as

in the vapour phase. We call s∗ the relevant concentration which makes the chemical

potentials equal. We introduce a mass transfer coefficient, E0, which is the velocity

associated with the movement of the free surface in the case when there is only volatile

present and the movement is due to evaporation alone. The simplest model that describes

this phenomenon is e = E0(s− s∗), but we assume that the gaseous mole fraction is small

and so work with

e = E0s. (2.28)

2.4 Summary

We have presented the models that underpin the rest of this thesis, with a chemical

justification of several of the conditions. We proceed to the next chapter where we hope

to check that, using the surfactant conditions presented here, we can describe the flow
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of a surfactant solution in an experiment to measure the properties of an expanding free

surface.

We have closed our models by introducing extra chemistry relating to the surfactant or

volatile component. Another approach that is employed by some authors is to suppose

that the effect of a surfactant is to effectively stiffen the surface. Thus they pose a

relationship between the surface tension and the surface velocity. The simplest such model

sets the surface velocity equal to zero (for example, Schwartz and Princen [69]), while more

elaborate, but still phenomenological models propose the use of a “surface viscosity”, i.e.,

the surface layer is treated as a viscous liquid with a different viscosity from the bulk

liquid (for example Dey et al. [27]). In such a case, the surface tension is set to be equal

to the surface viscosity multiplied by the rate of strain of the surface. Another similar

approach is to model the surface as a elastic membrane, with a corresponding “surface

elasticity”. We believe that these effects can be thought of in terms of the surface tension

gradient and hence do not need to be introduced if the chemistry and thermodynamics

of §2.2 is justifiable macroscopically. At appropriate points through this thesis, we shall

discuss our model’s relationship to those in which surface viscosity is used in place of the

Marangoni term.
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Chapter 3

Modelling expanding free surfaces

3.1 Introduction

In Chapter 5 we will explore the way in which surfactant acts to stabilise a foam. A

crucial property of surfactant in this respect is the way in which it resists expansion

of the gas/liquid interface. However, making experimental measurements on such free

surfaces is a difficult task since the lamellae are not only very thin, but are often also

inaccessible. However, some ingenious experiments have been devised whereby expanding

free surfaces can be studied and the effect of surfactant on them determined, the idea

being to verify the boundary conditions proposed in Chapter 2. In these systems, the

presence of surfactants affects the properties of the flow close to the free surfaces.

We turn our attention to two experiments that have been carried out within the Physical

and Theoretical Chemistry Laboratory at Oxford University. The first experiment, using

an overflowing cylinder, will be described in detail below. We shall also briefly describe

the second experiment, which uses a jet of liquid, in Chapter 7. Both these experiments

exhibit surface lifetimes comparable to those in foams.

3.2 The overflowing cylinder

The overflowing cylinder (OFC) is a device to measure the properties of an expanding free

surface. It consists of a glass or metal cylinder (longer than it is wide) mounted with its

axis vertical on a platform designed to minimise externally induced vibrations. Liquid is

forced by a pump up the cylinder at a low flow rate so that, on reaching the top, it flows

outward towards the rim of the cylinder and then smoothly overflows down the outside.

It is then collected and re-circulated (see Figure 3.1). Flow straighteners near the base

of the cylinder aim to ensure that uniform plug flow is achieved at a distance from the

free surface. Using various techniques (including Laser Doppler Anemometry, Neutron
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Figure 3.1: The overflowing cylinder.

Scattering and Ellipsometry), the shape of the top surface, the surface tension, the surface

velocity and the surface concentration of any added surfactant can be determined at

various points on the surface. These techniques are non-invasive, i.e., they do not disturb

the flow (unlike conventional techniques such as the Wilhelmy plate, see Manning-Benson

[52]). The experimental techniques are reviewed in Manning-Benson et al. [52, 54, 55, 56].

We show a close-up of the overflowing cylinder in Figure 3.2. The arrows indicate the

direction of the flow at the bottom of the cylinder, close to the free surface, and in the

wetting film on the outside wall. The free surface at the top of the OFC is continually

expanding, and, when a surfactant is present, surface tension gradients at this surface

may be generated. By taking measurements of these gradients in a controlled system, we

hope to learn about surface shear forces and adsorption of surfactant.
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Figure 3.2: Close-up of the overflowing cylinder.

3.3 Previous work

Several authors have published details of experimental and theoretical work on the over-

flowing cylinder. Bergink-Martens et al. [7, 8, 9] formulated a boundary-layer model for

the flow close to the surface, assuming that the flow at depth was given and that the

surface tension gradient was known. Darton et al. [31] also attempted a boundary-layer

approach in the modelling of their experiments. Gillow [30] formulated inviscid models in

both two-dimensional and axially-symmetric geometries and solved these using analytical

and numerical methods. Manning-Benson has described her recent experiments in the

papers mentioned above.

Jensen [41] has formulated a model in the related area of insoluble surfactants on deep

water and Harper [33, 35] has formulated a model in the related area of a bubble rising

in a dilute solution of soluble surfactant.

Our new contribution is to couple the hydrodynamic problem (incorporating an inviscid

outer flow and a viscous boundary layer at the free surface) with the surfactant problem

via the momentum and mass balances and the continuity of shear and replenishment

boundary conditions.
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3.3.1 Experimental observations

Manning-Benson has carried out a variety of experiments using hexadecyltrimethylam-

monium bromide (CTAB), which is a cationic surfactant, and is shown in Figure 3.3. We

CH3

CH3

CH3

N Br
−+

C

Figure 3.3: Display formula for CTAB.

present some of her experimental results and observations below. The measurements were

restricted to a region within 2–3 cm of centre of the cylinder (whose radius was 4 cm).

We comment that the measurements were made in a line across the free surface, and r

here denotes distance from the centre, measured along this line (i.e. r can be negative).

1. Speed

Figure 3.4 shows surface speed measurements versus the distance r from the axis,

for a number of bulk surfactant concentrations and Figure 3.5 shows the surface

speed for pure water.

Figure 3.4: Surface speed measurements (Vr measured in mm s−1) against distance (r
measured in mm), for a number of bulk concentrations.
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Figure 3.5: Surface speed measurements (Vr measured in mm s−1) against distance (r
measured in mm), for pure water.

We note that:

• with surfactants in the system, the speed of the liquid at the free surface is

markedly faster than the surface speed associated with pure water;

• the surface velocity appears to vary approximately linearly with distance.

We attribute the apparant ‘kink’ in the pure water speed profile in Figure 3.5 to

experimental error. Figure 3.6 shows the change of horizontal speed with distance

away from the surface, at different stations across the cylinder. The concentration

of CTAB is 0.58 mol m−3 in this case. We note that the liquid is accelerated in a

small region close to the top surface of the liquid.

2. Bulk concentration versus surface concentration

Figure 3.7 shows the variation of surface concentration with bulk concentration,

measured under static conditions. The data have been fitted with a Langmuir

isotherm. As mentioned in Chapter 2, there is a timescale associated with the

adsorption onto the surface. We hope that this timescale is much shorter than any

other timescale in the problem, so that the Langmuir isotherm may be employed

under our dynamic conditions.
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Figure 3.6: Horizontal speed (Vr in mm s−1), for a number of depths (h in mm), at
r = 6mm (circles), r = 12mm (triangles) and r = 20mm (upside down triangles).

Figure 3.7: The Langmuir isotherm.
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Figure 3.8: Variation of surface tension (σ in mN m−1) with distance across the cylinder
(r in mm), for various bulk concentrations: (a) 0.1, (b) 0.17, (c) 0.25, (d) 0.31, (e) 0.35,
(f) 0.46, (g) 0.51, (h) 0.58, (i) 0.68, (j) 0.81 mol m−3.

3. Surface Tension

Figure 3.8 shows the surface tension, measured under dynamic conditions, for vari-

ous bulk concentrations (from Manning-Benson [52]). We note that:

• the surface tension varies only slightly across the cylinder and does so roughly

quadratically;

• the surface tension is lowest at the centre of the surface.

We show the variation of surface tension with bulk concentration, measured under

static conditions, in Figure 3.9. Note that, in experiments, it is the bulk concen-

tration of the surfactant solution that is initially known, rather than the surface

concentration. By comparing the data in Figure 3.9 with the surface tension at the

centre of the cylinder in Figure 3.8, we see that the surface tension at the centre

is higher when the measurement is made under dynamic conditions than when the

measurement is made under static conditions.

4. Surface Concentration

Figure 3.10 shows the variation of surface concentration across the cylinder, for

various values of the bulk concentration. We note
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Figure 3.9: Variation of surface tension (σ0 in mN m−1) with bulk concentration (C in
mol m−3) measured under static conditions.

• the concentration appears to be almost constant, and the variation to this

constant appears quadratic;

• the concentration is largest in the centre of the surface;

Using the Langmuir isotherm to convert bulk concentration to surface concentration,

and then comparing this surface concentration to the central values in Figure 3.10,

we can infer that the surface concentration is lower under dynamic conditions than

under static conditions.

5. Other experimental observations

• Experiments were performed using cylinders with different radii (3, 4 and 5

cm). The velocity and concentration profiles were virtually unaffected by these

changes.

• Various flanges were inserted into the cylinder to change the curvature at the

rim. Such changes did not affect the measurements on the surface.

• It was found that, so long as the wetting film on the outside of the cylinder was

sufficiently long, it did not affect the behaviour on the expanding free surface.

Subsequently, all experiments were performed above this critical length.
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Figure 3.10: Variation of surface concentration (Γ in mol m−2) with distance across the
cylinder (r in mm), for various bulk concentrations: 0.1 mol m−3 (black triangles), 0.31
mol m−3 (open circles), 0.58 mol m−3 (black diamonds), 0.81 mol m−3 (open triangles)
and 1.73 mol m−3 (black squares).
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• The flow rate was varied, and above a critical flow rate, the surface velocity

did not change as the flow rate was altered. The experiments were carried out

above this critical flow rate.

• In the case of pure water, the deviation of the free surface from horizontal was

more pronounced than in the surfactant cases, where the deviation was very

small.

3.3.2 Plan

We model both the liquid velocity and the distribution of surfactant, and show that

the model exhibits the qualitative experimental behaviour described above. We then

compare our results for surface tension, surface velocity and surface concentration with

those obtained experimentally.

3.4 Model formulation: velocity distribution

We consider the situation shown in Figure 3.2. We use the axially symmetric form of the

model presented in Chapter 2, and, since all the measurements at the surface are made

in a steady state, we assume that the velocities and the height of the free surface do not

vary with time. The steady axially symmetric Navier-Stokes equations are

ρ (uur + wuz) = −pr + µ

(

1

r
(rur)r −

u

r2
+ uzz

)

, (3.1)

ρ (uwr + wwz) = −pz + µ

(

1

r
(rwr)r + wzz

)

, (3.2)

1

r
(ru)r + wz = 0, (3.3)

where p is the reduced pressure (see Batchelor [6]), and the boundary conditions at free

surface z = H(r) read

σκ = −p+ ρgH + 2µ
wz − (uz + wr)Hr + urH

2
r

1 +H2
r

, (3.4)

σr = µ
(uz + wr)(1 −H2

r ) − 2Hr(ur − wz)
√

1 +H2
r

, (3.5)

w = uHr, (3.6)

where u is the horizontal velocity, w is the vertical velocity, H is the free surface shape,

and r and z are as shown in Figure 3.2. At depth, we assume plug flow,

w → Ud, u→ 0, z → −∞. (3.7)
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and at the cylinder walls we apply the no-slip condition

u = 0, at r = a, (3.8)

where a is the radius of the cylinder. Finally, we assume symmetry about the centre-line

of the cylinder:

u = wr = Hr = 0, at r = 0. (3.9)

We note that (3.7) and (3.8) are inconsistent. In place of (3.7) we should really pose

the condition that the flow straighteners give rise to plug flow at a finite depth in the

cylinder. However, the actual flow through the straighteners is unknown, and is likely to

be much more complicated than just plug flow. Hence, to stay clear of having to address

this flow problem, we assume that the flow straighteners are at “−∞”. Of course, if we

were concerned with flow close to the wall, we would have to deal properly with these

inconsistencies, but we do not bother since we are most interested in the flow at the free

surface, where all the available evidence suggests that the flow at depth is unimportant.

We proceed by nondimensionalising the field equations and boundary conditions (3.1)–

(3.9), setting
u = Udu

′, v = Udv
′,

r = ar′, z = az′,

p = ρU 2
dp

′, σ = γ0 + σ′∆γ,

(3.10)

where γ0 is the (unknown a priori) surface tension of the surfactant solution at the centre

of the cylinder, and ∆γ is the size of the surface tension change across the cylinder (which

we will later relate to the change in surface concentration). The field equations become

(dropping primes)

uur + wuz = −pr +
1

Re

(

1

r
(rur)r −

u

r2
+ uzz

)

, (3.11)

uwr + wwz = −pz +
1

Re

(

1

r
(rwr)r + wzz

)

, (3.12)

1

r
(ru)r + wz = 0, (3.13)

while the boundary conditions are

(

1

CaRe
+

Ma

Re
σ

)

κ = −p+
H

Fr2 +
2

Re

wz − (uz + wr)Hr + urH
2
r

1 +H2
r

, (3.14)

Maσr =
(uz + wr)(1 −H2

r ) − 2Hr(ur − wz)
√

1 +H2
r

, (3.15)
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w = uHr, (3.16)

on z = H, and

w → 1, u→ 0, z → −∞, (3.17)

u = 0, r = 1, (3.18)

u = 0, Hr = 0, r = 0. (3.19)

We have introduced four dimensionless groups describing various force balances: the

Marangoni number Ma, the Reynolds number Re, the capillary number Ca and the Froude

number Fr, given by

Ma =
∆γ

µUd

Re =
ρaUd

µ
Ca =

µUd

γ0

Fr2 =
U 2

d

ga
. (3.20)

The behaviour of the system of equations depends crucially on the size of these groups,

and so we now consider typical physical parameter sizes.

3.4.1 Typical non-dimensional parameter sizes based on flow at

depth

We use the following values, based on the Manning-Benson experiments, in calculating

the sizes of the nondimensional groups:

ρ ∼ 1 × 103 kg m−3,

µ ∼ 1 × 10−3 kg m−1 s−1,

γ0 ∼ 5 × 10−2 N m−1,

∆γ ∼ 2 × 10−3 N m−1,

a = 3 × 10−2–5 × 10−2 m,

Q = flux at depth = 1.6 × 10−5 m3 s−1,

Ud = Q/(πa2) = 3.2 × 10−3 m s−1 when a = 0.04 m,

(3.21)

whence,

Re ∼ 130, Ma ∼ 630, Ca ∼ 6.4 × 10−5, Fr2 ∼ 2.5 × 10−5. (3.22)

We use the size of these parameters to make qualitative statements about the flow.

• Since Re >> 1, the flow is inertia dominated away from the free and fixed surfaces.

• In (3.14), the capillary term 1/(CaRe) ∼ 102, the gravity term 1/Fr2 ∼ 4× 104 and

the viscous term 1/Re ∼ 10−2. Hence the normal force balance is dominated by

33



gravitational forces, and since, from (3.14), Hx ∼ O(Fr2/(CaRe)) = O(3 × 10−3),

the free surface is forced to be flat to lowest order, as seen in the experiments.

Henceforth, we shall assume that the free surface is flat at z = 0, without loss

of generality, and we no longer need to work with the normal force balance. We

consider relaxing this assumption in §3.10.2.

• In (3.15), the Marangoni term Ma ∼ 630 and so we conclude that surface tension

gradients dominate the flow close to the free surface.

3.5 Model formulation: surfactant distribution

We now formulate the convection–diffusion problem for the surfactant. We work with the

axially-symmetric form of the equations and boundary conditions presented in Chapter

2, which read

D

(

1

r
(rCr)r + Czz

)

= uCr + wCz, (3.23)

with boundary conditions at the free surface

Γ =
Γ∞C

k2 + C
, (3.24)

DCz = −1

r
(ruΓ)r. (3.25)

At depth, we assume that the concentration of surfactant is constant,

C → Cb, z → −∞, (3.26)

where Cb is the known concentration of the surfactant solution added to the system. At

the edge of the cylinder there is zero flux:

Cr = 0, r = a, (3.27)

and we assume symmetry about the centre-line, so that

Cr = 0, Γr = 0, r = 0. (3.28)

We nondimensionalise the bulk concentration with its value at depth,

C = CbC
′. (3.29)

However, more care is needed in choosing the most appropriate scaling for the surface

concentration. Experimental observations indicate that Γ varies by a fairly small amount

across the surface, but its value at the axis, Γ∗ say, is unknown a priori. We suppose
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Figure 3.11: Langmuir isotherm showing Υ∗, Γ∗ and the variation of Γ and C at the
surface (in red).

that the sub-surface concentration corresponding to Γ∗ is Υ∗, see Figure 3.11. We nondi-

mensionalise Γ in such a way that the slope of the graph of Γ and C at Γ = Γ∗ is 1. We

therefore set

Γ =
k2Γ∞Cb

(k2 + CbΥ)2
Γ′, (3.30)

where Υ = Υ∗/Cb is the dimensionless value of the subsurface concentration at the centre

of the cylinder (which we emphasise is unknown a priori).

The field equation becomes (dropping primes)

1

r
(rCr)r + Czz = Pe (uCr + wCz) , (3.31)

with boundary conditions at the free surface z = 0

Γ =
(k2 + CbΥ)2C

k2(k2 + CbC)
= λΥ2 + C − λ(C − Υ)2

1 + λC
, (3.32)

SCz = −1

r
(ruΓ)r, (3.33)

while

C → 1 as z → −∞. (3.34)

We introduce three further dimensionless groups: the Péclet number Pe, the replenishment

number S, and λ given by

Pe =
Uda

D
S =

D(1 + λΥ)2

UdΓ∞
λ =

Cb

k2

. (3.35)
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We close the model by specifing the relationship between the surface tension and surface

concentration, which, after the chosen nondimensionalisation, reads

σ∗ − γ0

RTΓ∞
− ∆γ

RTΓ∞
σ = − log

(

1 − λΓ

(1 + λΥ)2

)

, (3.36)

3.5.1 Linearisation

Now we simplify the above problem further by linearising the Langmuir isotherm (3.32)

and the Frumkin equation (3.36). Our aim is to obtain more tractable boundary condi-

tions which still retain the important physical mechanisms of coupling between the bulk

concentration, surface concentration and surface tension.

We use the experimental observation in §3.3.1 that Γ does not vary much across the

cylinder to motivate our linearisation. We shall check a posteriori that this assumption

is correct in §3.9.3.

We linearise (3.32) about the sub-surface centre concentration Υ to obtain

Γ = λΥ2 + C, (3.37)

and from here onwards we work with (3.37) in place of the more complicated (3.32). We

note that this is equivalent to replacing the Langmuir isotherm with the straight line

segment shown in red in Figure 3.11. We substitute Γ into the replenishment condition,

which then reads

SCz = −1

r

(

ru
(

λΥ2 + C
))

r
. (3.38)

Finally, we substitute Γ from (3.32) into (3.36),

σ∗ − γ0

RTΓ∞
− ∆γ

RTΓ∞
σ = − log

(

1

1 + λC

)

. (3.39)

We linearise (3.39) about C = Υ, and we find

σ∗ − γ0

RTΓ∞
− ∆γ

RTΓ∞
σ = − log

(

1

1 + λΥ

)

+
λ

1 + λΥ
(C − Υ), (3.40)

and so, setting

γ0 = σ∗ +RTΓ∞ log

(

1

1 + λΥ

)

, (3.41)

and

∆γ =
RTΓ∞λ

1 + λΥ
, (3.42)

we obtain the simple relation between σ and C

σ = Υ − C. (3.43)
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3.5.2 Nondimensional parameter sizes based on flow at depth

In addition to the values given in §3.4.1, we also use

D ∼ 5 × 10−10 m2 s−1

k2 ∼ 0.127 mol m−3

Γ∞ ∼ 4.26 × 10−6 mol m−2.

(3.44)

To calculate Pe, S and λ, we must choose a value of Cb and use the experimental results

to estimate Υ. For Cb = 0.58 mol m−3, we have Υ = 0.4. Hence we find

Pe ∼ 2.5 × 105, S ∼ 3.7 × 10−2, λ ∼ 4.6. (3.45)

These parameters indicate that convection dominates the problem away from the free

surface.

3.6 Outer (Inviscid) Problem

We first consider the “outer” region where the flow is inviscid to leading order. We expand

the dependent variables in terms of Re−1 and the leading-order outer liquid problem

becomes

u0u0r + w0u0z = −p0r, (3.46)

u0w0r + w0w0z = −p0z, (3.47)

1

r
(ru0)r + w0z = 0. (3.48)

These are the Euler equations for an inviscid flow, which are a singular limit of the

Navier-Stokes equations in which the highest derivatives have been dropped. Thus, the

only boundary conditions that we can apply are the kinematic condition (the normal force

balance has already led to the conclusion that H = 0), the normal velocity condition at

the edge of the cylinder, the matching condition at depth and the symmetry condition

at the axis. The tangential components can only be applied when we consider viscous

boundary layers. The associated boundary conditions therefore read

w0 = 0 on z = 0, (3.49)

w0 ∼ 1 as z → −∞, (3.50)

u0 = 0 on r = 1, (3.51)

u0 = 0 on r = 0. (3.52)

We recast the problem in terms of a stream function ψ, so that u0 = 1
r
ψz, w0 = −1

r
ψr.

Since the flow is clearly irrotational, we arrive at the following model for ψ
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ψrr −
ψr

r
+ ψzz = 0, (3.53)

with

ψ = 0 on z = 0, (3.54)

ψ ∼ −1

2
r2 as z → −∞, (3.55)

ψ = −1

2
on r = 1, (3.56)

ψ = 0 on r = 0. (3.57)

3.6.1 Inviscid solution

To solve the system (3.53)-(3.57), it is useful to make the substitution χ = ψ + 1
2
r2. The

problem becomes

χrr −
χr

r
+ χzz = 0, (3.58)

with

χ =
1

2
r2 on z = 0, (3.59)

χ = 0 on r = 0, (3.60)

χ = 0 on r = 1, (3.61)

χ→ 0 as z → −∞. (3.62)

We can find the solution, for example, by letting z = −z ′ and then peforming a sine

transform, i.e. setting

χ̄(r, k) =

∫ ∞

0

χ(r, z′) sin(kz′)dz′. (3.63)

The equation for χ̄ is

χ̄rr −
χ̄r

r
− k2χ̄ = −k

2
r2, (3.64)

and, after applying the boundary conditions we find the solution is

χ̄ =
r2

2k
− rI1(kr)

2kI1(k)
, (3.65)

where I1 is the modified Bessel function of the first order. So, inverting,

χ =
2

π

∫ ∞

0

sin(kz)

(

r2

2k
− rI1(kr)

2kI1(k)

)

dk, (3.66)

which gives us
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ψ =
r

π

∫ ∞

0

I1(kr) sin(kz)

kI1(k)
dk. (3.67)

Hence, the liquid velocities are given by

u0 =
1

π

∫ ∞

0

I1(kr) cos(kz)

I1(k)
dk, w0 = − 1

π

∫ ∞

0

I0(kr) sin(kz)

I1(k)
dk. (3.68)

The velocity field given by (3.68) is shown in Figure 3.12. For subsequent matching, we

require the velocity at the top surface, say

uout(r) =
1

π

∫ ∞

0

I1(kr)

I1(k)
dk. (3.69)

Near to the origin this has the behaviour

uout(r) ∼
r

2π

∫ ∞

0

k

I1(k)
dk +

r3

16π

∫ ∞

0

k3

I1(k)
dk +O

(

r5
)

, (3.70)

which, on evaluating, becomes

u0(r, 0) ∼ 0.89r + 0.67r3 + . . . . (3.71)

A comparison between the expansion and the exact solution, for r between 0 and 0.5 is

shown in Figure 3.13.

We may also examine the behaviour of the solution near to the rim. Firstly, we substitute

s = kr and then we let r = 1 − ǫr′ and z = ǫz′. Then u becomes

u =
1

π(1 − ǫr′)

∫ ∞

0

I1(s)

I1
(

s
1−ǫr′

) cos

(

ǫz′s

1 − ǫr′

)

ds. (3.72)

To proceed we must split the range of integration since the integrand has different asymp-

totic behaviour when s ∼ O(1) and when s ∼ O(1/ǫ). We choose to split the range of

integration into (0, 1/
√
ǫ), (1/

√
ǫ,∞), although any power of ǫ between zero and one will

do. We also utilise the asymptotic form for I1(s) when s is large:

I1(s) ∼
1√
2πs

es. (3.73)

After some grisly algebra, we find

u ∼ 1

π(1 − ǫr′)

∫ 1/
√

ǫ

0

I1(s)

I1
(

s
1−ǫr′

) cos

(

ǫz′s

1 − ǫr′

)

ds+
e−

√
ǫr′

1−ǫr′
(

r′ cos
√

ǫz′

1−ǫr′ − z′ sin
√

ǫz′

1−ǫr′

)

πǫ
√

1 − ǫr′(r′2 + z′2)
,

(3.74)
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Figure 3.12: Plot showing the inviscid velocity field.
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and, expanding both the integral and the second term in powers of ǫ and then substituting

for the original variables, we find that

u(r, z) ∼ 1 − r

π((1 − r)2 + z2)
. (3.75)

We may also find the form of w in a similar way,

w ∼ − z

π((1 − r)2 + z2)
. (3.76)

The rim may therefore be viewed as a sink, strength 2 (as might have been anticipated

from the boundary conditions).

We note that

• the solution satisfies uz = 0 on z = 0. Thus this condition satisfies the tangential

boundary condition on z = 0 exactly if the Marangoni number is zero (i.e. if there

is no surfactant present). However, when Ma 6= 0, (3.15) is not satisfied and so we

must introduce a viscous boundary layer near z = 0. We consider the boundary

layer problem in §3.8.1.

• the inviscid solution does not satisfy the boundary condition w0 = 0 on r = 1. In

order to satisfy this condition, we should reintroduce the viscous terms close to the

edge. However, since our main interest is in the free surface we hope we will not

need to analyse flow near r = 1 in detail.
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3.7 Outer (surfactant) Problem

In (3.31) the Péclet number, which we recall is large, plays the same role as the Reynolds

number does in the hydrodynamic problem. As in the liquid case, the limit Pe → ∞ is

singular, since Pe multiplies the highest derivative in the system. Thus, again, we will not

be able to satisfy all of the boundary conditions at the free surface and at the edge of the

cylinder with this “outer” solution. We introduce a diffusive boundary layer near z = 0

in §3.8.2. Here, we expand (3.31) in powers of 1/Pe, and we find that to leading-order,

the surfactant concentration satisfies

u0C0r + w0C0z = 0, (3.77)

and so C0 is constant along the streamlines. So, since we have

C0 → 1 as z → −∞, (3.78)

we deduce that the concentration must be C0 = 1 everywhere in the outer region.

3.7.1 Solution to the problem in the limit Ma → 0 and S → ∞

In §3.6.1 we noted that the leading-order outer solution actually satisfies the correct

boundary conditions on z = 0 when Ma = 0. Similarly, the solution C = 1 satisfies the

replenishment condition in the limit S → ∞. Thus in the limit Ma → 0 and S → ∞, we

have u → u0 and w → w0, as given by (3.68) and the solution to the surfactant problem

reads

C0 = 1, Γ0 = 1 + λ, σ = 0. (3.79)

We note that, for example, for Cb = 0.58 mol m−3, we have Γ = 5.57, which corresponds

to a dimensional value of 3.5 × 10−6 mol m−2. This is the value that we would have

expected for the surface concentration if it had been measured under static conditions.

However, if we read off the experimental value of Γ at the centre of the free surface from

Figure 3.10, we find that Γ ∼ 2.75× 10−6 mol m−2. Hence, we conclude that the value of

Γ given by (3.79) is higher than the experimentally observed value.

3.8 Boundary layers at the free surface

When we have nonzero Marangoni and inverse replenishment numbers, the solutions above

fail to satisfy the continuity of shear and the replenishment boundary conditions. We

therefore seek both hydrodynamic and diffusive boundary layers beneath the free surface.

Recall that in the outer solutions described above, the velocity is scaled with Ud and
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lengths all scale with a. However, as indicated in §3.3.1 the behaviour of the surface ve-

locity and concentration is observed experimentally to be independent of both Ud and a.

This motivates us to allow the boundary layer problems to select not only the thicknesses

of the two boundary layers, but also the velocity scaling and the lengthscale of the prob-

lem. We scale the vertical hydrodynamic length and the vertical velocity by ǫ, and the

corresponding diffusive length by δ. We replace the radius, a by L, and the velocity Ud

by U in each of the dimensionless groups (namely Re, Ma, Pe and S). Setting ǫ2Re = 1,

δ2Pe = 1, ǫMa = 1 and S/δ = 1, we have four equations for the four unknowns L, U , ǫ

and δ, and we find that the relevant scalings are

U =

(

DR2T 2C2
b

ρµ

)
1
4

(1 + λΥ)
1
2 ,

L =

(

R2T 2C2
b Γ8

∞
D3ρµk8

2

)
1
4

(1 + λΥ)−
7
2 ,

ǫ =

(

Dµ3k4
2

ρR2T 2Γ4
∞C

2
b

)
1
4

(1 + λΥ)
3
2 ,

δ =

(

D3ρµk4
2

R2T 2C2
b Γ4

∞

)
1
4

(1 + λΥ)
3
2 .

(3.80)

All the scalings contain the (unknown) sub-surface centre concentration, Υ, which will

be determined during the solution of the problem. We note before continuing that, using

Υ = 0.4, which is the nondimensionalised experimental value for Cb = 0.58 mol m−3,

U ∼ 0.3 m s−1, L ∼ 0.01 m, ǫ ∼ 0.018, δ ∼ 4 × 10−4. (3.81)

There are several interesting ratios that we can make from the above scalings. The first

is the ratio of the two boundary layer thicknesses

δ

ǫ
=

(

ρD

µ

) 1
2

= Pr
1
2 , (3.82)

where Pr, the Prandtl number, is a property only of the surfactant-liquid system under

consideration. For example, in an aqueous CTAB solution, Pr
1
2 ∼ 0.022, and indeed we

can expect all systems of practical interest to have Pr << 1. We conclude that the diffusive

boundary layer (known hereafter as DBL) is always much thinner than the hydrodynamic

boundary layer (HBL). We will use this ratio when considering the coupling between the

hydrodynamic and diffusive problems.

The next ratio of interest is V = Ud/U , the ratio of the velocity at depth to the intrinsic

velocity scale. Using Υ = 0.4, we calculate V ∼ 1 × 10−2. Hence our intrinsic velocity
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scale is much larger than the the velocity at depth, as supported by the experimental

evidence.

The final interesting ratio is l = L/a, the ratio of the intrinsic lengthscale to the radius

of the cylinder. Again we use Υ = 0.4, and we find that l = 0.2625. Hence, our intrinsic

length scale is less than the radius of the cylinder and this suggests the presence of an

“inner region” close to the axis of the cylinder (where the experimental measurements are

taken).

3.8.1 The hydrodynamic boundary layer

Now we re-nondimensionalise the equations and boundary conditions using the above

scalings, i.e., scaling r = Lr̂, z = ǫLẑ, u = Uû and w = ǫUŵ. We only consider the

leading-order solution in ǫ and thus simply set ǫ = 0 in the resulting equations, which

then read

ûûr̂ + ŵûẑ = −pr̂ + ûẑẑ, (3.83)

pẑ = 0, (3.84)

1

r̂
(r̂û)r̂ + ŵẑ = 0. (3.85)

From (3.84), the pressure is only a function of r̂ and, if we substitute for a stream function,

ψ̂ so that the conservation of mass equation (3.85) is automatically satisfied (i.e. û = 1
r̂
ψ̂ẑ,

ŵ = −1
r̂
ψ̂r̂ again), then we obtain

ψ̂ẑẑẑ =
1

r̂

[

ψ̂ẑψ̂ẑr̂ − ψ̂r̂ψ̂ẑẑ −
1

r̂
ψ̂2

ẑ

]

+ p′(r̂). (3.86)

Now, matching with the flow at depth gives

ψ̂ ∼ V r̂ẑuout(lr̂) as ẑ → −∞, (3.87)

where uout is the outer velocity found earlier,

uout(t) =
1

π

∫ ∞

0

I1(kt)

I1(k)
dk. (3.88)

Thus,

p′(r̂) = −V 2lr̂uout(lr̂)u
′
out(lr̂). (3.89)

In terms of the stream function, the boundary conditions at the free surface reduce to

ψ̂ = 0 on ẑ = 0, (3.90)
1

r̂
ψ̂ẑẑ = σr̂ on ẑ = 0. (3.91)
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3.8.2 The diffusion boundary layer

In the diffusion boundary layer, height is scaled with δL, and so we set z = δLζ, and then

the leading-order surfactant problem reads

Cζζ = ûCr̂ +
ǫ

δ
ŵCζ , (3.92)

with boundary conditions

−Cζ =
1

r̂

(

r̂û
(

λΥ2 + C
))

r̂
, (3.93)

at the free surface ζ = 0 and

C → 1, ζ → −∞. (3.94)

At first glance it may appear inconsistent to keep in the ǫ/δ term in (3.92), but we note

that ŵ(r̂, ẑ) = ŵ(r̂, δζ/ǫ) = O(δ/ǫ) as δ → 0 so that this term is O(1) as δ → 0.

3.8.3 Coupling between the hydrodynamic and diffusive prob-

lems

The coupling between the hydrodynamic and diffusive problems works both ways. Firstly,

the diffusive problem is driven by the velocity field (û, ŵ). This coupling can be simpli-

fied by using the fact that the ratio of the boundary layer thicknesses is small, i.e., by

expanding (3.92) in the limit as δ/ǫ→ 0. The result of this is that the diffusion problem

only depends on the velocity field evaluated at the free surface:

Cζζ =
1

r̂

[

ψ̂ẑ(r̂, 0)Cr̂ − ψ̂r̂ẑ(r̂, 0)ζCζ

]

, (3.95)

with

Cζ(r̂, 0) = −1

r̂

(

ψ̂ẑ(r̂, 0)
(

λΥ2 + C(r̂, 0)
)

)

r̂
on ζ = 0, (3.96)

C → 1 as ζ → −∞. (3.97)

The concentration C is coupled back to the hydrodynamic problem through the surface

tension, given by (3.43). Thus, the streamfunction ψ satisfies

ψ̂ẑẑẑ =
1

r̂

[

ψ̂ẑψ̂ẑr̂ − ψ̂r̂ψ̂ẑẑ −
1

r̂
ψ̂2

ẑ

]

− lV 2r̂uout(lr̂)u
′
out(lr̂), (3.98)

ψ̂(r̂, 0) = 0, (3.99)
1

r̂
ψ̂ẑẑ(r̂, 0) = −Cr̂(r̂, 0), (3.100)

ψ̂ ∼ V r̂ẑuout(lr̂) as ẑ → −∞. (3.101)

Having solved this system, we may then read off Γ, σ, and γ0. A schematic of the system

and the equations that hold in each region is shown in Figure 3.14.
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ψ̂ẑ(r̂, 0) Cζζ =
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∞
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Figure 3.14: Schematic of the boundary layer structure: g(r̂) = V 2lr̂uout(lr̂)u
′
out(lr̂).
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3.9 Series solutions to both the liquid and surfactant

problems

In the previous section we derived the coupled problems for the stream function and the

surfactant distribution. In general these must be solved numerically, but this does not

appear straightforward and so we do not attempt to do so here. Moreover, it is not clear

what to do at the edges of the cylinder, where the outer velocity becomes infinite. Our

model certainly breaks down near to the rim, where gravity and surface tension probably

play a dominant role, and the flow is extremely complicated. However, we have already

mentioned that the experimental evidence suggests that the details of the behaviour at

the rim appear to have negligible effect on the flow at the centre of the cylinder, and

indeed the velocity and concentration profiles in the regions studied experimentally are

entirely locally determined. Thus, we should hope that our solution depends mostly on

the locally-determined scales L and U rather than the externally specified a and Ud.

As noted above, l and V are both small. We utilise the limit l → 0 in the modelling that

follows. This is analagous to an expansion about the axis and so is also consistent with

the roughly linear behaviour of û and quadratic behaviour of C. We expand our ‘outer’

solution in powers of l2, which, written in inner variables, reads

û ∼ 0.89V lr̂ + 0.69V l3r̂3 + . . . (3.102)

In the limit V → 0, the leading-order inner solution thus sees no flow at depth. Of course,

in general we must also worry about the commutability of the limits l → 0 and V → 0.

We discuss taking another limit in §3.10.2.

Now taking the limit V → 0, we attempt to construct a solution of the form

ψ̂ =
∞
∑

n=1

r̂2nf2n−2(ẑ) C = C∗(ζ) +
∞
∑

n=1

C2n(ζ)r̂2n. (3.103)

Substituting these series into the field equations and boundary conditions, and comparing

terms of order r2n yields the following system of problems:

f ′′′
2n−2 =

n−1
∑

k=0

[

(2n− 2k − 1)f ′
2n−2k−2f

′
2k − (2n− 2k)f2n−2k−2f

′′
2k

]

, (3.104)

with

f2n−2(0) = 0, (3.105)

f ′
2n−2(−∞) = 0, (3.106)

f ′′
2n−2(0) = −C2n(0), (3.107)
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and

C ′′
2n + 2f ′

0(0)ζC ′
2n − 2nf ′

0(0)C2n =

n−2
∑

k=0

(

(2n− 2k)f ′
2k(0)C2n−2k − (2k + 4)ζf ′

2k+2(0)C ′
2n−2k−2

)

− (2n+ 2)ζf ′
2n(0)C∗′, (3.108)

where

−C ′
2n(0) = (2n+ 2)

(

n−1
∑

k=1

f ′
2k(0)C2n−2k + f ′

2n(0)
(

λΥ2 + Υ
)

)

, (3.109)

C2n(−∞) = 0, (3.110)

and C∗ satisfies

C∗′′ + 2ζf ′
0(0)C∗′ = 0, (3.111)

−C∗′(0) = 2f ′(0)
(

λΥ2 + Υ
)

. (3.112)

C∗(−∞) = 1, (3.113)

Our solution procedure is to solve first for C∗ and then to solve iteratively the liquid and

surfactant problems for each n ≥ 1.

3.9.1 The Solution for C∗

The solution to (3.111) and (3.113) is

C∗ = 1 + a1

∫ ζ

−∞
e−Kφ2

dφ, (3.114)

where K = f ′
0(0). We recall that C∗(0) = Υ, and so we have a1 = −2(1−Υ)

√

K
π
. Finally,

we find a relationship between K and Υ using (3.112),

K =
(1 − Υ)2

πΥ2(λΥ + 1)2
. (3.115)

Hence,

C∗ = 1 − 2(1 − Υ)2

πΥ(λΥ + 1)

∫ ζ

−∞
e
− (1−Υ)2φ2

πΥ2(λΥ+1)2 dφ, (3.116)

and plots of this solution, varying Υ, are shown in Figure 3.15 below.

The relationship between Υ andK may be checked against experiments. However, we have

limited data which is consistent between all the experiments, so we check the validity of

this prediction using the data for Cb = 0.58 mol m−3. First, it is useful to redimensionalise
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Figure 3.15: Graph showing C∗(ζ) versus depth ζ for Υ = 0.3, 0.4, 0.5 and 0.6.

the relationship and re-form the velocity, and so, remembering that the dimensional sub-

surface centre concentration is Υ∗, which we may obtain using the graphs of Γ vs r and

Γ vs C, we have

u =
D(k2 + Υ∗)2(Cb − Υ∗)2

Γ2
∞πΥ∗2 r. (3.117)

Using the (consistent) set of data for Cb = 0.58 mol m−3, we have Υ∗ ∼ 0.23 – 0.24 mol

m−3, and u ∼ 2.44r. Using (3.117), we find that u ∼ (2.37 – 2.59)r. We are encouraged

by this agreement between the theory and experiment, but note that we have had to fix

the solution using the measured value of Υ∗, rather than predicting Υ∗ theoretically. This

indeterminacy is going to be a thorn in our side henceforth.

3.9.2 Lowest order liquid problem and solution

We use the condition for K given above, assuming Υ is known, to close the leading order

liquid model, which reads

f ′′′
0 + 2f0f

′′
0 − f ′

0
2

= 0, (3.118)

with boundary conditions

f0(0) = 0, (3.119)

f ′
0(0) =

(1 − Υ)2

πΥ2(λΥ + 1)2
, (3.120)

f ′
0(−∞) = 0. (3.121)
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Figure 3.16: The solution f0 (black) and f ′
0 (red) to (3.118)–(3.121), for Υ = 0.4, λ = 4.57.

There is a one-parameter family of solutions to this problem which is parametrised by

Υ, each solution having a different value of f ′′
0 (0). We show the general shape of the

solution for f0 and f ′
0 in Figure 3.16, given Υ which we choose to be 0.4 (which we have

inferred from the experiments). We note that, with Υ = 0.4, ǫL ∼ 1.87×10−4 m and from

Figure 3.16 we see that the velocity is effectively zero at ẑ = −10. Hence the dimensional

thickness to which the hydrodynamic boundary layer extends is ∼ 1.9 mm. This agrees

well with Figure 3.6.

The shear at the free surface, f ′′
0 (0) is found to be 0.031, when Υ = 0.4. We may compare

this shear with that exhibited in the experiments, using the data in Figure 3.6. We take

the gradients of the r = 12 mm and r = 20 mm plots (using pencil and ruler) and calculate

the equivalent values of f ′′(0) which are f ′′(0) = 0.023 and 0.026 respectively. We again

have good agreement with experiments.

The behaviour of f ′′
0 (0) as Υ is varied is shown in Figure 3.17. It shows that, as the

subsurface centre-concentration increases, the amount of shear at the surface decreases

rapidly. We note that we have not yet appealed to the shear boundary condition (3.107).

Indeed, we shall use this condition to pass information from the leading-order liquid

problem into the surfactant problem for C2. So the flow of information is as shown in

Figure 3.18.
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Figure 3.18: Flowchart showing transfer of information.
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3.9.3 Problem and solution for C2

We consider the model for C2 to see if we can recover the experimentally observed be-

haviour that there is a small deviation to the constant concentration on the surface of the

cylinder, and a small variation to the linear surface velocity profile. The O(r2) concen-

tration problem described in §3.9.1 reads

C ′′
2 + 2KC ′

2 − 2KC2 = −4βζC∗′, (3.122)

with

−C ′
2(0) = 4β(λΥ2 + Υ) + 4KC2(0), (3.123)

C2(−∞) = 0, (3.124)

C2(0) = −f
′′
0 (0)

2
, (3.125)

where β = f ′
2(0). The solution to (3.122), (3.124) and (3.125) is

C2(ζ) = −f
′′
0 (0)

2

(

e−Kζ2

+ 2Kζ

∫ ζ

−∞
e−Kφ2

dφ

)

− 4β(1 − Υ)

3
√
πK

ζe−Kζ . (3.126)

We then use (3.123) to find β, much as we did to find K (c.f. (3.115)):

β = − 3f ′′
0 (0)

√
πK(4K +

√
πK)

8(1 − Υ − 3
√
πK(λΥ2 + Υ))

(3.127)

=
3f ′′

0 (0)(1 − Υ)

16Υ2(λΥ + 1)2

(

1 +
4(1 − Υ)

πΥ(λΥ + 1)

)

. (3.128)

Since we have already found f ′′
0 (0) for Υ = 0.4 in the previous section, we can immedi-

ately predict the variation in concentration at the surface (using (3.125)). The surface

concentration reads

Γ = λΥ2 + Υ − f ′′
0 (0)

2
r̂2, (3.129)

and we redimensionalise this to read

Γd =
Γ∞λ

(1 + λΥ)2

(

λΥ2 + Υ − f ′′
0 (0)

2L2
r2
d

)

. (3.130)

We calculate that the variation from the constant (which we used to fix the value of Υ)

in (3.130) is 3.4 × 10−4r2
d and so, for example, at r = 2 cm, this gives a variation of

1.4 × 10−7 mol m−2. We compare this with the experimental data shown in Figure 3.10,

for Cb = 0.58 mol m−3. We see that the actual variation from the constant at r ∼ 2 cm

is about 1.8 × 10−7 mol m−2 and we are encouraged by this agreement. We note that
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• the smallness of the Γ variation has not resulted from l or V being small, but rather

merely from the solution to the problem;

• our assumption that Γ does not vary much across the surface has been a posteriori

verified.

We are also in a position to check whether the measured surface tension agrees with our

predictions. We recall that

γ0 = σ∗ +RTΓ∞ log

(

1

1 + λΥ

)

, (3.131)

and that

σd = σ∆γ =
RTΓ∞λ

1 + λΥ
(Υ − C) = − RTΓ∞λ

2L2(1 + λΥ)
f ′′

0 (0)r2
d. (3.132)

We calculate (with, as usual, Υ = 0.4) γ0 = 0.059 N m−1 and that, at r = 0.02 m,

σd = 1.05 × 10−3 N m−1. From Figure 3.8, we see that γ0 ∼ 0.06 N m−1 and that

σd ∼ 2× 10−3 N m−1. We are, again, in reasonable agreement with the experiments, and

we note that we have, a posteriori, also verified our assumption that the change in surface

tension across the surface is small.

Using (3.128), we calculate β = 4.6 × 10−3, and we redimensionalise the velocity to give

the velocity on the surface, measured in m s−1,

ud ∼ 2.54rd + 1192r3
d. (3.133)

The size of the second constant here is misleading, since it is measured in m−2 s−1. We

compare this to a best fit curve of the 0.58 mol m−3 data provided by Manning-Benson

[53], in which the velocity in m s−1, reads ud ∼ 2.4rd + 500r3
d. Again, we have reasonable

agreement between the model and the experiment (up to a factor of 2 in this case).

The rest of the terms in the series can be generated in the same way. We do not generate

any more of these terms here, our main conclusion being that, with the crucial proviso

that Υ is fixed from the experiments, all the other experimental results are satisfactorily

predicted by the mathematical model.

3.10 The lack of closure

To recap, to within a constant we have found solutions for the first two terms in the

concentration field and for the leading-order liquid velocity in an expansion close to the
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centre of the cylinder. We have also obtained a relationship for the second term in the

surface velocity expansion. These all appear to give good qualitative agreement with the

experiments, and indeed encouraging quantitative agreement once the free parameter Υ

has been set (using experimental data). However, so far we have uncovered no way to

select the value of Υ mathematically. We consider several possible closure mechanisms

below.

3.10.1 Termination of the series

We could argue that, since there is no flow at depth in our model, we could terminate

the series solution at some n and that this would give us a condition on Υ which would

close the model. We contemplate that if we were to attempt such a termination after the

first terms in the expansion, i.e., we set C2(ẑ) ≡ 0, then we must have f ′′
0 (0) = 0 from

(3.125) and so f0 ≡ 0 and C = 1. If we attempt to set f2 ≡ 0, then we must have β = 0

and so from (3.128) we are forced to conclude that f ′′
0 (0) = 0 or Υ = 1. In either case,

the result is that f0 ≡ 0 and C∗ = 1. We have looked at the next terms in the series, and

found that if we terminate there we are forced into the same conclusion, that f0 ≡ 0 and

C∗ = 1. Since we know that this solution is physically unrealistic, we do not believe that

termination of the series can be used to determine Υ.

We are forced to address the question “what is the behaviour of our expansion as r̂ → ∞?”.

To answer this question, we have to consider the late terms in the series, but this is difficult

because the problem is horridly nonlinear. To illustrate what mechanisms may be at work,

we consider a simple, linear paradigm. We suppose that we are considering a problem

with a finite solution whose “inner” formulation analogous to (3.92)-(3.94) is

Cyy = xCx − yCy, (3.134)

with

−Cy = (xC)x − Cxx, on y = 0, (3.135)

Cx = 0 on x = 0, (3.136)

C → 1 as y → −∞. (3.137)

With x replacing r̂, the x factors in (3.134) and (3.135) represent û, the factor of y in

(3.134) represents ŵ and we simulate the coupling between the hydrodynamics and the

surfactant problem by introducing the −Cxx term in (3.135).
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As in our full problem, there is a solution to this problem which is independent of x,

namely

C∗ = 1 − 1

1 +
√

π
2

∫ y

−∞
e−

η2

2 dη. (3.138)

We seek a series solution which has C∗ as the leading order term, i.e., we set

C = C∗ +
∞
∑

n=0

C2n(y)x2n, (3.139)

and we formulate the problem for C2n which reads

C ′′
2n − yC ′

2n − 2nC2n = 0, (3.140)

C2n(0) =
C ′

2n−2(0) + (2n− 1)C2n−2(0)

2n(2n− 1)
, (3.141)

C2n → 0 as y → −∞. (3.142)

The solution for C2n reads

C2n(y) = α2nS2n(y)

(

I2n −
∫ 0

y

e−
φ2

2

S2n(φ)
dφ

)

, (3.143)

where

S2n(y) =
n
∑

p=0

(2n)!!y2p

(2p)!!(2n− 2p)!!
I2n−2−2q =

∫ 0

−∞

e−
φ2

2

S2n−2−2q(φ)
dφ, (3.144)

α2n =
1

(2n)!

n−1
∏

q=1

(

2n− 1 − 2q +
1

I2n−2−2q

)

C0(0)

I2n

. (3.145)

We are interested in the behaviour of the solution on y = 0, where

C2n(0) =
1

(2n)!

n−1
∏

q=0

(

2n− 1 − 2q +
1

I2n−2−2q

)

C0(0), (3.146)

and so

C(x, 0) ∼ 1

1 +
√

π
2

+C0(0)

[

1 +

(

1

2
+

1

2

√

2

π

)

x2 +
1

4!

(

1 +

√

2

π

)(

3 + 2

√

2

π

)

x4 +. . .

]

.

(3.147)

We note that we have a one-parameter family of solutions, parametrised by C0(0). Thus

C0(0) is analagous to the free parameter Υ in our nonlinear problem.
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In order to match this solution to some “outer” solution we must consider the large x

behaviour of C. We consider the ratio of C2n(0)/C2n−2(0), which simplifies to

C2n(0)

C2n−2(0)
=

(

2n− 1 + 1
I2n−2

)

2n(2n− 1)
, (3.148)

and, for large n, I2n ∼ 1/
√

2n, so in the limit n→ ∞, we have

C2n(0)

C2n−2(0)
∼ 1

2n
. (3.149)

By comparison with the ratio of the late terms in the power series expansion of ex2/2,

we see that C ∼ ex2/2 as x → ∞. Since we wish to match to a finite value of C in

the “outer” problem, we are thus forced to set C0(0) = 0 and hence (3.138) is the only

relevant solution of the inner problem. Thus we see that in this simple problem we can

determine the solution uniquely, but only by looking at late terms in our local expansion,

or by solving on a finite region.

We have looked at other more complicated problems where, for example, we introduce

more velocity terms than just x and y, or by refining the simultation of the coupling

between the hydrodynamic and diffusive problems. In these cases, we also find a one-

parameter family of solutions and we are unable to find a condition which determines this

constant in such a way as to give the solution some x dependence, and still enable us

to match to the outer problem. Hence we conclude that the degenerate diffusion effects

modelled by (3.134) are not responsible for our indeterminacy.

3.10.2 Neglected physical effects

In our modelling, we have made a number of assumptions about the underlying physics

of the system. In this section we discuss several previously neglected mechanisms which

might be necessary to close the model and allow us to predict Υ.

First we consider gravity. Recall that we supposed early on that gravity was strong enough

to keep the top surface flat away from the rim, on the basis of the Froude number. In

our scaled “inner region”, it transpires that the reduced Froude number Fr2/ǫ is typically

O(1). Instinctively, we do not expect gravity to be a determining factor in selecting Υ,

but we discuss incorporating it here so that we can “rule it out”. We perform modified

scalings in the boundary layers to take account of undulations in the free surface (we

set ǫẑ = z − H for example) and we find that the problem for the stream function ψ is

unchanged: the problem for the free surface shape decouples from the rest of the problem.
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The surfactant problem is, however, complicated by the introduction of the free surfaces,

and, for example, we must modify (3.92) to read

(

1 +H2
r̂

)

Cζζ = ûCr̂ +
ǫ

δ
(ŵ − ûHr̂)Cζ . (3.150)

We are still able to employ our series expansions and regrettably, we obtain no extra

information which enables us to close the problem.

We might think that neglecting the flow at depth has caused the indeterminacy, so here

we consider the possibility of including this. We recall the expression for the flow at

depth, written in boundary layer variables (3.102) reads

û ∼ 0.89V lr̂ + 0.69V l3r̂3 + . . . (3.151)

Suppose that we take the (artificial) limit l → 0, V l ∼ O(1) so that we retain the first

term in (3.151) but lose the successive terms. Our leading-order (in r̂) velocity problem

(3.118)-(3.121) must be modified to include a flow at depth. The behaviour of the solution

to the modified problem is qualitatively the same as the solution that we have already

presented, and, obviously, introduces no extra information into the system.

Next we consider surface diffusion. We must rescale r̂ so as to bring in these terms, and

the replenishment boundary condition becomes

−Cζ =
1

r̃
(r̃ûΓ)r̃ +

1

r̃
(r̃Γr̃)r̃ . (3.152)

If we seek our similarity solution again, this boundary condition gives us, at lowest order

in r̃, −C∗′ = 2KΓ0 +2Γ1, i.e. an extra term has been introduced into the problem for C∗

from higher up the expansion. Again, no extra information is introduced that will enable

us to close the problem.

We encounter a similar problem if we attempt to include bulk lateral diffusion into the

problem. The field equation reads

1

r̃
(r̃Cr̃)r̃ + Cζζ =

1

r̃

[

ψ̂ẑ(r̃, 0)Cr̃ − ψ̂r̃ẑ(r̃, 0)ζCζ

]

. (3.153)

This equation and the replenishment boundary condition still admit the series solution,

with, as in the surface diffusion case, the O(r̃2) coefficient from the C expansion being

drawn into the problem for C∗. We gain no extra information that enables us to predict

Υ.
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Finally, we suppose that the system is not in thermodyamic equilibrium, that is, that the

Langmuir isotherm no longer holds. We must then consider the Langmuir-Hinschelwood

equation (from Chapter 2)

1

r̂
(r̂ûΓ)r̂ = k1(C(Γ∞ − Γ) − k2Γ), (3.154)

for the evolution equation describing the transport of surface surfactant. Again, solving

the system of equations using this boundary condition in place of the equilibrium isotherm

fails to provide us with any extra information.

3.10.3 Edge Effects

In the light of the problem described above, we hypothesise that one can only close the

model and predict the value of Υ by including edge effects in the model, even though the

physical evidence seems to contradict this. The leading order outer flow at depth, while

small at the centre of the cylinder, becomes infinite as the corner is approached. Thus the

outer flow may have an effect close to the rim, and this effect may be transmitted back

to the liquid and surfactant close to the axis. An important point to note is that in the

simple, linear problem, if we did solve on a finite domain, it would not matter much what

boundary conditions we actually impose at the edge. In our nonlinear problem, it is also

possible that we need only to apply some matching condition with the outer problem.

However, finding this condition might not be any more tractable than having to resort to

a numerical solution of the full boundary layer equations on a finite r domain. Both these

approaches would require a detailed knowledge of the flow over the rim of the cylinder,

and so we do not attempt such solutions here.

3.11 Conclusions

We have formulated a model that describes the liquid motion and the surfactant distribu-

tion in the overflowing cylinder. We have solved both the liquid and surfactant problems

away from the wall of the cylinder and the free surfaces. In this domain, the surfactant

concentration is uniform and the liquid flows towards a sink at the rim.

We have also examined the structure of the problem close to the free surface. Here, we

found both hydrodynamic and diffusive boundary layers. We noted the following

• The ratio of the two boundary layer thicknesses is the square root of the Prandtl

number. For CTAB in water (and for surfactant systems in general), Pr << 1, and

the diffusive boundary layer is much thinner that the hydrodynamic boundary layer.
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We concluded that the surfactant in the diffusion boundary layer only encounters

the surface velocity.

• The problem selects its own length scale and velocity scale near to the free surface.

The velocity scale is much larger than the pump velocity, and the lengthscale is a

fraction of the cylinder’s radius. We used the length scale to consider flow close to

the centre of the cylinder, and we neglected edge effects in this ‘inner’ region. We

used the ratio of the velocity scales to motivate “dropping” the outer flow from the

model.

• We formulated a series solution for the liquid velocity and surfactant concentrations

in this inner region.

• We found a relationship between the sub-surface centre concentration Υ and the

coefficient of the linear component of the surface velocity, K, which reads

K =
(1 − Υ)2

πΥ2(λΥ + 1)2
. (3.155)

Fixing Υ from experiments, the value of the leading-order surface velocity predicted

by the (redimensionalised) relationship is in good agreement with experiments.

• We compared the surface concentration, surface tension and the surface shear pre-

dicted by our model with the experimental data for C = 0.58 mol m−3, and, having

fixed our solution with the appropriate value of Υ, we found good quantative agree-

ment between the two.

• We were unable to determine the sub-surface centre concentration from our inner

expansion. Adding in extra physics such as surface diffusion in this (or a smaller)

region did not appear to determine Υ.

• We hypothesised that a full numerical solution of the boundary layer equations on a

finite domain based on the radius of the cylinder would be required to determine the

system completely, and that such a calculation would require in depth knowledge

of the flow over the cylinder’s rim. We noted that the conclusion that edge effects

provide closure for the model near to the centre of the cylinder was counter-intuitive.

There are numerous extensions to the work presented in this chapter. Obviously, to

completely describe the flow and surfactant distribution, the full numerical simulation of

(3.86)-(3.91) and (3.92)-(3.94) must be carried out. Also the effects of surface diffusion,

gravity, capillary forces and non-equilibrium adsorption, while small, could be included to
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paint a fuller picture of what is going on. We could also attempt to model the system using

a completely different adsorption isotherm: one that is activation controlled, for example.

Since, once the sub-surface centre concentration has been fixed, the solution is in fair

agreement with experiments, in the next chapter we proceed to apply the (validated)

boundary conditions that we applied in this chapter, to the modelling of thin films in the

presence of surfactants.
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Chapter 4

Models for Marangoni flows in thin

films with two free surfaces

4.1 Introduction

Thin liquid films arise in a large number of industrial and biological situations. For

example, they are present in coating flows, bearing lubrication, and in the lining of the

lungs. A recent review of a number of applications is given in Myers [59]. These films

fall broadly into three types, depending on the number of constrained surfaces that they

have. These are

• films between two solid surfaces, as in classical lubrication theory;

• films on substrates, such as in drop spreading or paint levelling;

• films with two free boundaries, such as those in foams or certain kinds of glass

manufacture.

The stresses involved in moving a viscous liquid over a substrate, or between two solid

surfaces, may demand a high pressure within the liquid. Our interest is in the flow of

liquid between two free surfaces. In this case, even the presence of a small internally

generated surface shear can generate a high pressure. As in the overflowing cylinder, the

surface shear can be generated by the presence of a nonuniformly distributed surfactant,

but it may also result from the presence of a nonuniformly distributed volatile component.

4.1.1 Thin films with two free boundaries

Work in this area has been carried out by a number of previous authors. Often, modelling

is done with specific geometries in mind: those concerning foams are discussed at the start

of Chapter 5. We briefly describe some of the work that is relevant to this thesis below.
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1. Extensional thin layer flows

Howell [36], [37] formulated a number of models for liquid flow under the action of

viscosity, capillarity, inertia and gravity. We shall follow the procedure described

there when we derive our thin film equations later in this chapter.

2. Extensional ultra thin layer flows

Erneux and Davis [28] (E&D) and Ida and Miksis [40] (I&M) formulated models

for ultra thin viscous layers where Van-der-Waals (intermolecular) forces become

important. E&D found a time to film rupture using nonlinear stability analysis:

the time depended on both the Hamaker number (ratio of intermolecular to viscous

forces) and the capillary number. I&M extended this work by performing numerical

simulations of the model to demonstrate film rupture. They concluded that Van-

der-Waals forces and viscous forces dominated the evolution. We shall show how

Van-der-Waals forces may be included into our model in §4.4.3.

3. Surfactants

De Wit, Gallez and Christov [23] considered the rupture of a free film in the pres-

ence of insoluble surfactants. They included Marangoni terms and derived a system

of three coupled nonlinear partial differential equations for the film thickness, ve-

locity (uniform across the film) and the surfactant concentration. In the regime

where inertial, capillary, Marangoni, viscous and Van-der-Waals forces all balance,

they first found that the (linear) stability of the steady state depended on the cap-

illary number and the Van-der-Waals number. They also found that the effect of

the Marangoni number was to increase the time to rupture of the film. They inte-

grated the system numerically to obtain profiles of the velocity, film thickness and

concentration as the film thinned to rupture.

4.1.2 Films on substrates

The remaining literature involves flow over substrates. While the applications are not

strictly relevant to this thesis, we briefly describe some of this work below, with the aim

of illustrating approaches to surfactant and volatile modelling.

Gaver and Grotberg [29] considered the transport of insoluble surfactant, while Halpern

and Grotberg [32] and Jensen and Grotberg [42] considered the transport of soluble surfac-

tant. They derived coupled equations for the film thickness, and surfactant concentrations

(in the insoluble case, they also included a surfactant source). In the first two papers,

they solved their systems numerically to obtain the stream function, film thickness and
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concentration field. The insoluble work highlighted a vortex within the liquid and that the

surface flow was always in the same direction. The soluble work highlighted the presence

of vortices rotating in opposite directions, giving rise to areas of ‘outflow’ and ‘backflow’

on the surface. Jensen and Grotberg’s paper extended the soluble surfactant work to

include non-equilibrium adsorption.

The main sources of (mathematical) literature about thin films containing volatile compo-

nents concern paints. Howison et al. [39] modelled a drying paint layer acting under the

influence of capillary, viscous and Marangoni forces. They formulated a diffusion domi-

nated problem for resin concentration, while allowing solvent to evaporate at a constant

rate E. Wilson [81] obtained an explicit solution to the leading-order film thickness and

resin concentration in the limit of small evaporation, and then repeated the procedure for

larger E. He then modified the evaporation model so that the rate was proportional to

the volatile component. He solved the revised set of equations for the leading order film

thickness and resin concentration in the limit of small E.

A number of the above models and results are summarised in Oron et al. [63].

4.1.3 Plan

We shall model the flow of a thin layer of viscous liquid residing between two free bound-

aries, and acting under viscous, capillary and Marangoni forces. We consider various sizes

of the two important nondimensional parameter groups, the capillary and Marangoni

numbers, and we catalogue the models that emerge in different parameter regimes. We

then extend these models to include gravity, externally imposed pressures and Van-der-

Waals forces. We repeat the procedure to derive models for surfactant concentration

and volatile concentration, using the Péclet number and either repenishment or evapo-

ration numbers to catalogue the models that result. We limit ourselves to considering

two dimensional films for simplicity: generalisation to radially symmetric (or fully three

dimensional) models are an extension to the work presented in this chapter. We shall use

the models that we derive in this chapter in the next chapter when we model the drainage

of foam lamellae.

4.2 Thin film equations for the liquid

Consider the flow of an incompressible liquid between two free surfaces denoted by y =

H(x, t) ± 1
2
h(x, t), as shown in Figure 4.1. The notation is chosen so that H denotes

the centre-line of the film, and h denotes the thickness. With liquid velocity given by
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Figure 4.1: A thin film of liquid between two free surfaces.

u = (u, v), the liquid density, viscosity and pressure given by ρ, µ and p, and the surface

tension on the top and bottom surfaces given by σ± respectively, the flow is governed by

∇.u = 0, (4.1)

ρ (ut + (u.∇)u) = −∇p+ µ∇2u, (4.2)

assuming that gravity is negligible. The boundary conditions on the free surfaces are

±σ±κ± = −p+ µ

(

ux

(

Hx ± 1
2
hx

)2 − (Hx ± 1
2
hx)vx − 2uy(Hx ± 1

2
hx) + 2vy

)

1 +
(

Hx ± 1
2
hx

)2 , (4.3)

±σ±
x = µ

(

(uy + vx)
(

1 −
(

Hx ± 1
2
hx

)2
)

+ 2(Hx ± 1
2
hx) (vy − ux)

)

√

1 +
(

Hx ± 1
2
hx

)2
, (4.4)

and

v = Ht ±
1

2
ht + u(Hx ±

1

2
hx), (4.5)

which represent the normal and tangential force balance at each surface, and the kinematic

condition respectively. We must also specify boundary conditions at the ends of the film

(known hereafter as ‘end conditions’). These depend on the situation under consideration.

For example, in glass sheet stretching, we may fix one end (so that u = 0) and then extend

the other at a fixed speed, i.e., u(l(t), t) = l̇(t), where l is the length of the sheet.
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We assume that the film is long and thin so that a typical lengthscale, L, is much larger

than a typical thickness, ǫL say, where ǫ << 1. We nondimensionalise equations (4.1)-

(4.5) using the low Reynolds number scalings

x = Lx′, y = ǫLy′,

u = Uu′, v = ǫUv′,

p =
µU

L
p′, t = L

U
t′, (4.6)

σ± = γ + σ′±∆γ, H ± 1
2
h = ǫL(H ′ ± 1

2
h′).

As in the previous chapter, we have decomposed the surface tension into a constant

component γ and a variable component σ′±∆γ, where ∆γ is a material property. The

nondimensional equations read (dropping primes)

ux + vy = 0, (4.7)

ǫ2Re(ut + uux + vvy) = −ǫ2px + ǫ2uxx + uyy, (4.8)

ǫ2Re(vt + uvx + vvy) = −py + ǫ2vxx + vyy, (4.9)

with

±
( ǫ

Ca
+ ǫMaσ±

) (Hxx ± 1
2
hxx)

(

1 + ǫ2
(

Hx + 1
2
hx

))
3
2

=

−p+
2ǫ2ux(Hx ± 1

2
hx)

2 − 2ǫ2vx(Hx ± 1
2
hx) − 2uy(Hx ± 1

2
hx) + 2vy

1 + ǫ2(Hx ± 1
2
hx)2

, (4.10)

±ǫMaσ±
x =

(uy + ǫ2vx)(1 − ǫ2(Hx ± 1
2
hx)

2) + 2ǫ2(Hx ± 1
2
hx)(vy − ux)

√

1 + ǫ2(Hx ± 1
2
hx)2

, (4.11)

v = Ht ±
1

2
ht + u(Hx ±

1

2
hx), (4.12)

where we have four nondimensional groups: the Reynolds number, Re, the capillary

number, Ca, the Marangoni number, Ma, and the inverse aspect ratio ǫ, as defined in

(3.20).

Note that we yet to define the velocity scaling U and there are two possible approaches.

One is to choose U such as to balance as many different physical effects as possible. In this

way the most general leading-order equations are obtained and any intermediate regimes

can be identified as subsets of these “distinguished limits”. In our case, it transpires that

there are two distinct distinguished limits in which three physical effects balance.
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Of course, in some cases U may actually be specified externally, for example through the

end conditions or through the constitutive relationship for the surface tension. If so, we

can regard U as given and calculate the resulting sizes of Re, Ca and Ma. Once U has

been selected, the parameters are determined, and we can proceed with the asympotic

analysis of (4.7)-(4.12).

Since we are not yet in a position to consider such external effects, we proceed for the

moment with U unspecified and examine how the dominant balances shift as U varies.

In fact, the character of the leading-order problem depends on the relative size of U

compared with the “natural velocity scales” of the system. These are

• the velocity resulting from a balance between viscous and capillary forces,

Uc =
ǫγ

µ
; (4.13)

• the velocity resulting from a balance between viscous and Marangoni forces,

Um =
∆γ

ǫµ
; (4.14)

• the velocity corresponding to a ‘lubrication’ style flow, that is a flow where the

velocity is not uniform across the film,

Ul =
ǫ3γ

µ
= ǫ2Uc. (4.15)

There are also velocity scales associated with a balance between inertial and viscous effects

(i.e. based on the Reynolds number). Here, we assume that in the cases we are interested

in (in line with the majority of thin film work), Re << 1, and so we do not discuss any

inertial effects.

In classifying the possible regimes, the dimensionless group

T =
∆γ

γǫ2
=

CaMa

ǫ2
=
Um

Uc

(4.16)

is particularly crucial. We note that T = O(ǫ−2) for consistency or it may be smaller,

since the decomposition of the surface tension into a constant component and a variable

component is meaningless if the second term is comparable to or larger than the first. We

present a hierarchy of models, starting with the two distinguished limits, followed by those

in which only two forces balance, and finish with those where only one force dominates

over the other two. We illustrate the methodology involved in deriving all of the models in

this section by formulating thin film equations from (4.7)-(4.12) in the T ∼ O(1) regime,

where Ma ∼ O(ǫ) and Ca ∼ O(ǫ). In this parameter regime, U ∼ Uc ∼ Um, and viscous,

capillary and Marangoni forces all balance.

66



4.3 Reduction to thin film equations

4.3.1 Distinguished Limits: Three forces balancing

There are two distinct limits in which three forces balance, namely where viscous, capil-

lary and Marangoni forces balance and where capillary, Marangoni and lubrication forces

balance.

4.3.1.1 Viscous, capillary and Marangoni effects

In this regime, where T ∼ O(1) and U ∼ Uc ∼ Um, we have Ca ∼ O(ǫ), Ma ∼ O(ǫ). To

obtain a model for the film thickness, we expand the dependent variables as power series

in powers of ǫ. We define C = ǫ/Ca and M = Ma/ǫ. The leading–order problem reduces

to

u0x
+ v0y

= 0, (4.17)

u0yy
= 0, (4.18)

v0yy
= p0y

, (4.19)

with boundary conditions, on y = H0 ± h0

2
,

±C(H0xx
± 1

2
h0xx

) = −p0 + 2v0y
, (4.20)

u0y
= 0, (4.21)

v0 = H0t
± 1

2
h0t

+ u0(H0x
± 1

2
h0x

). (4.22)

Integrating (4.18) and applying (4.21) gives

u0 = u0(x, t), (4.23)

i.e. the longitudinal velocity is uniform across the lamella. Such flows are often termed

“extensional”. Using this solution for u0, (4.17) and (4.22) readily yield

v0 = H0t
+ (u0H0)x − yu0x

, (4.24)

together with a relationship between u0 and h0 which represents conservation of mass

h0t
+ (u0h0)x = 0. (4.25)

From (4.19) and (4.20), the equation for the centre-line is found to be

H0xx
= 0. (4.26)

67



This relationship forces the centre-line to be straight, and hence, without loss of generality,

H0 = 0. Including inertial effects, or a pressure difference across the film, will result in

an equation for H0 which must be solved alongside those for ū and h. We consider the

effect of a pressure difference later in this chapter.

We now also obtain the leading order pressure, p0. Substituting for v0 into (4.19), inte-

grating, and applying (4.20) gives

p0 = −2u0x −
C
2
h0xx. (4.27)

The pressure is therefore generated by a combination of extensional (viscous) and capillary

effects.

To close the model for u0 and h0, we must examine the field equations and boundary

conditions at the next order in the expansion. The relevant parts of the O(ǫ2) problem

are

u1x
+ v1y

= 0, (4.28)

u1yy
= p0x

− u0xx
, (4.29)

±Mσ±
x = u1y

+ v0x
± 2h0x

(v0y
− u0x

) on y = ±1

2
h0. (4.30)

Integrating (4.29) between the upper and lower surfaces yields

(4h0u0x
)x + M

(

σ+ + σ−)

x
+

C
2
h0h0xxx

= 0, (4.31)

which, once the constitutive relations for σ± have been specified, provides a second non-

linear partial differential equation for h0 and u0 which must be solved in conjunction

with (4.25) and with appropriate initial and end-conditions. This system requires two

end-conditions for u and two for h. The factor of 4 in (4.31) is known as the “Trou-

ton viscosity”, see Howell [36]. We postpone discussion of the mathematical structure of

this and all subsequent problems until we have formulated the related problems for the

concentration of the Marangoni-inducing component.

The longitudinal force balance (4.31) includes contributions from the motion of the bulk

liquid and from the surface forces present, and may be integrated once to give

4h0u0x + M
(

σ+ + σ−)+
C
2

(

h0h0xx −
h0

2
x

2

)

= τ(t), (4.32)

where τ(t) is the tension in the film.
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4.3.1.2 Capillary, Marangoni and lubrication effects

In this regime, where T ∼ O(1) and U ∼ ǫ2Uc ∼ ǫ2Um, we have Ma ∼ O(ǫ−1) and

Ca ∼ O(ǫ3). Here, surface forces are strong enough that the longitudinal liquid velocity

can no longer remain uniform across the film, and it becomes parabolic, as in lubrication

theory. To obtain a nontrivial leading-order balance, we must rescale the pressure via

p = p/ǫ2. In contrast with §4.3.1.1, we can obtain all the information we require from the

leading-order expansions. The resulting equations governing the flow are

ht + (ūh)x = 0, (4.33)

M
(

σ+ + σ−)

x
+

C
2
hhxxx = 0. (4.34)

The capillary dominated pressure is given by

P = −C̄
2
hxx, (4.35)

and the liquid velocity is now given by

u = ū+
C̄
4
hxxx

(

h2

12
− y2

)

+
M̄
2

(

σ+ − σ−)

x
y. (4.36)

where C̄ = ǫ3/Ca, M̄ = ǫMa and ū is the cross-sectionally averaged velocity of the flow.

Since capillary and Marangoni forces dominate the flow, the film thickness and velocity are

controlled purely by what is happening at the surface. Given the surface tension gradient,

we solve (4.34) to find h and then (4.33) to find ū. This requires three end-conditions

and an initial condition for h and an end-condition for ū. The velocity u is then given

by (4.36). The increase in pressure within the film is due to the surface tension gradient

exerting a shear at the free surfaces which the liquid must overcome in order to move.

We note that we either get plug flow, in which u = u(x, t) and extensional viscous effects

are important, or a parabolic flow, when extensional viscous effects must necessarily be

negligible. There is no regime in which both effects are present.

4.3.2 Intermediate regimes where two forces balance

4.3.2.1 Capillary and Marangoni

In this parameter regime, where T ∼ O(1) and U << Um ∼ Uc, we have Ma ∼ O(1) and

Ca ∼ O(ǫ2). We find that the liquid velocity is uniform across the lamella, we must scale

the pressure by a factor of 1/ǫ in order to balance surface forces, and we must work to
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O(ǫ) in the field equations and boundary conditions to close the model. We find that the

the resulting equations are identical to (4.33)-(4.35), viz

ht + (uh)x = 0, (4.37)

M
(

σ+ + σ−)

x
+

C
2
hhxxx = 0, (4.38)

p = −C∗

2
hxx, (4.39)

where C∗ = ǫ2/Ca. In this regime, assuming that the constitutive relation for the surface

tension is known, the solution strategy is to solve (4.38) to determine the shape of the

free surfaces, and then to find the liquid velocity u using (4.37). Here, we need three

boundary conditions on h to solve (4.38), and then an initial and boundary condition to

solve (4.37).

4.3.2.2 Capillary and viscous effects

Here we have T << 1, U ∼ Uc >> Um, Ma ∼ O(ǫ2) or less and Ca ∼ O(ǫ). Viscous

forces now enter the problem at O(ǫ2), but the Marangoni component is weak enough so

that it does not affect the leading order model. We have

ht + (uh)x = 0, (4.40)

(4hux)x +
C
2
hhxxx = 0, (4.41)

where the longitudinal force balance is now between viscous and capillary effects. We

require an initial condition and two end conditions for h and two end conditions for u. In

this case, the pressure is generated by both curvature changes and viscous effects

p = −2ux −
C
2
hxx. (4.42)

We note that this model may be used to describe the flow of a pure liquid devoid of any

Marangoni inducing impurities.

4.3.2.3 Marangoni and viscous effects

Here, T >> 1 and U ∼ Um >> Uc and we have Ma ∼ O(ǫ) and Ca ∼ O(1) for example.

We find

ht + (uh)x = 0, (4.43)

(4hux)x + M
(

σ+
x + σ−

x

)

= 0. (4.44)

Given σ, we solve (4.44), with two end conditions for u, to obtain u, and then solve (4.43)

with an initial conditition, to find h. The pressure here is viscous-generated

p = −2ux. (4.45)
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4.3.2.4 Marangoni and lubrication effects

Here, T >> 1 and U ∼ ǫ2Uc, Um >> Uc and for example, we take Ma ∼ O(ǫ−2) and

Ca ∼ O(ǫ3). The longitudinal force balance is dominated by the Marangoni term, while

the liquid velocity becomes nonuniform across the film. We have

ht + (ūh)x = 0, (4.46)

σ+
x + σ−

x = 0, (4.47)

where

u = ū+
C̄
4
hxxx

(

h2

12
− y2

)

. (4.48)

On first inspection, it seems as if we are an equation short. However, (4.47) is really a

condition on the shear-inducing component of the system. For example, in §5.3.3, we

will see that such a restriction informs us that the concentration in part of the film must

be a function of time and not position. We impose this condition on the shear-inducing

component and then we find u from that problem. The thickness h is then found from

(4.46), and an initial condition.

4.3.3 Intermediate regimes where one force dominates

4.3.3.1 Capillary effects

Here, T << 1 and Uc >> Um, U and we have CaMa ∼ O(ǫ3) or less, Ca ∼ O(ǫ2) or less.

In these regimes, the capillary forces outweigh both the viscous and the Marangoni forces,

and we recover the familiar equation of linear capillary–statics

hxxx = 0. (4.49)

This has the obvious solution

h = a(t)x2 + b(t)x+ c(t), (4.50)

where we must find the coefficients by applying end-conditions for h which are appropriate

to the geometry under consideration. We require three end-conditions to fully specify the

solution.

4.3.3.2 Viscous effects

Here, T has any size and U >> Uc, Um and for example, we may take Ma ∼ O(ǫ2) or less,

Ca ∼ O(1) or larger. We find that surface tension forces do not enter the model at either
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leading order or O(ǫ2). In this case we recover the well-known Trouton model for the film

thickness and the extensional velocity:

ht + (uh)x = 0, (4.51)

(4hux)x = 0. (4.52)

This is the model for a thin liquid layer driven entirely by viscous forces. The pressure,

again, decouples from the rest of the problem, and is entirely due to viscous effects,

p = −2ux. (4.53)

We require two end conditions for u to solve (4.52), and then an initial condition for h

to solve (4.51). The general solution to this model has been presented in Pearson [65],

Dewynne et al. [26] (using a partial hodograph transformation), and in Howell [36] (by

transforming to Lagrangian coordinates).

There is no dependence of this model on the constitutive relation for surface tension,

and we note that the system is hyperbolic, and that it can be solved by applying two

boundary conditions for u and an initial condition for h. In the case of sheet stretching,

for example, where one end of the film is assumed fixed, and the other end is pulled so

that the length of the film is known, we apply conditions such as

h(x, 0) = h0(x), (4.54)

u(0, t) = 0, (4.55)

u(l(t), t) = l̇(t), (4.56)

where l is the length of the film.

4.3.3.3 Marangoni effects

Here T >> 1 and Um >> Uc, U and we illustrate these problems by considering the case

where Ca ∼ O(ǫ2) and Ma ∼ O(ǫ−1). In this situation, we must scale the pressure by 1/ǫ

and our leading order field equations become

u0yy = 0, (4.57)

p0y = 0, (4.58)

u0x + v0y = 0, (4.59)

with

v = Ht ±
1

2
ht + u0

(

Hx ±
1

2
hx

)

, (4.60)
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−p = ±C∗
(

Hxx ±
1

2
hxx

)

, (4.61)

u0y = ±M̄σ0
±
x , (4.62)

on y = H ± h/2. We may solve for u0 using (4.57) and (4.62) and we find that

u0 =
M̄
2

(σ+
0 − σ−

0 )xy + ū, (4.63)

and also

M̄(σ+
0 + σ−

0 )x = 0, (4.64)

p0 =
C∗

2
hxx. (4.65)

We also obtain the conservation of mass equation as in all the other cases. As in §4.3.2.4,

(4.64) provides a condition on the shear-inducing component of the system. We solve

(4.64) to give information about the (so-far unspecified) model for Marangoni-inducing

component, and then we solve this problem to give u. Finally, we then solve the mass-

conservation equation using an initial condition for h.

4.3.4 Summary

We have derived the leading-order equations governing the evolution of both the velocity

and the film thickness in a variety of parameter regimes. In Figure 4.2, we show how each

of these models fits into the U , T parameter space,1 and in Figure 4.3 we present a table

of the models. We have set σ+ = σ− = σ here for illustrative purposes. Once U has been

determined, Ca and Ma can be calculated and the appropriate model “lifted” from this

catalogue.

4.4 The effects of gravity, pressure drops across the

film, disjoining pressure, and surface viscosity

In this section we shall show how the thin film equations of §4.2 may be modified to

take account of gravity, pressure drops across the film, disjoining pressure, and surface

viscosity. We shall set Ma ∼ O(ǫ), Ca ∼ O(ǫ) in all the calculations that follow, that is,

we work in the distinguished limit where viscous, capillary and Marangoni forces already

balance, and we choose the size of any extra group so as to generate a new distinguished

limit where four forces balance.

1We note that U is dimensional and that T is nondimensional. It is very convenient to use these two
parameters to describe the models, and so we proceed, even though this is not a true parameter space.
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Figure 4.2: Schematic showing where the models lie in U , T space. The red blocks show
the distinguished limits, the blue blocks show the intermediate regimes where two mech-
anisms balance, and the green blocks show the limits in which one mechanism dominates.
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ht + (ūh)x = 0 ht + (ūh)x = 0
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4.4.1 Gravity

When gravitational forces are included we must introduce a new dimensionless group, the

Stokes number St = ρgL2 cosα/(µU), where α is the angle between the x axis and the

direction of action of gravity2. Following the procedure described earlier, and assuming

that St ∼ O(1), we find that the tangential force balance becomes

(4h0u0x)x +
C
2
h0h0xxx + 2Mσx + Sth0 = 0. (4.66)

Howell [36], §2.5 details the effects of introducing gravity into such thin film models in

the absence of Marangoni forces.

4.4.2 Pressure drops across the film

If we wish to incorporate a difference in pressure across the film, as in the case of a film

between two bubbles of different sizes, or in glass bottle manufacture, we must re-write

boundary condition (4.10) as

± ǫ

Ca
(Hxx±

1

2
hxx) = P±−p+

2ǫ2ux(hx ± 1
2
hx)

2 − 2ǫ2vx(Hx ± 1
2
hx) − 2uy(Hx ± 1

2
hx) + 2vy

1 + ǫ2(Hx ± 1
2
hx)2

,

(4.67)

where P± represents the nondimensional pressure above and below the film. If we allow

the pressure difference, ∆P = P+ −P−, to enter the problem at leading order, we modify

(4.20) to read

±C
(

H0xx ±
1

2
h0xx

)

= P± − p0 + 2v0y on y = H0 ±
h0

2
. (4.68)

We integrate the normal momentum balance and apply the above boundary conditions

which results in the following equation for the centreline

−∆P + 2CH0xx = 0, (4.69)

i.e., the centreline is a parabola. The leading order pressure is modified to read

p0 =
P+ + P−

2
− C

2
h0xx − 2u0x. (4.70)

The equation for conservation of mass and the longitudinal force balance remain the same.

Therefore, the effect of including a pressure drop across the film is to force the centreline

to have nonzero curvature.

2We assume that α is not so large that both the longitudinal and transverse components of gravity
must be included.
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4.4.3 Van der Waals forces and disjoining pressure

Long-range molecular forces, due to the interactions between the two liquid surfaces,

generate disjoining pressures, which may either stabilise or destabilise the film. Two such

forces are termed ‘Van der Waals’ (attractive) and ‘electric double layer’ (repulsive): see

Middleman [58]. For these forces to be present, the film under consideration must be

sufficiently thin (roughly 10-100 Angstroms). We model such forces by including an extra

term, Aφ/(6π), in the pressure, where φ is given by φ = 1/h3 and A is the Hamaker

constant.3 We assume that A = A/(6πL2µUǫ3) ∼ O(1), and then these forces enter the

problem at O(ǫ2). The appropriate modification of (4.29) reads

−p0x + u0xx + u1zz = A
(

1

h3

)

x

. (4.71)

On performing the algebra, we find that the longitudinal force balance is

(4hux)x +
C
2
hhxxx + 2Mσx +

3A
h3
hx = 0, (4.72)

and the pressure is given by

p = −2ux −
C
2
hxx −

A
h3
. (4.73)

We have formulated the problem for attractive forces: repulsive forces simply correspond

to A being negative.

4.4.4 Closure of the models

In this section we have presented a number of models for the film thickness h and the

velocity u. Some of these formed closed systems, but those of interest contain Marangoni

terms. To close these systems, we must make constitutive assumptions about σ. Our

approach is to incorporate more chemistry (as described in Chapter 2) and so in §4.5

and §4.6, we couple the surface tension to the concentration of surfactant or volatile

component. There are more ad-hoc approaches that we could also employ (see §2.4): the

simplest is to assume that the surface velocity is zero. In this case, from (4.36), assuming

that σ+ = σ− = σ, we find that

ū =
C̄
24
h2hxxx, (4.74)

and (4.33) reduces to the lubrication equation

ht +
C̄
24

(

h3hxxx

)

x
= 0, (4.75)

3The Hamaker constant A ∼ 10−21
− 10−19 Kg m2 s−2, see Middleman [58].
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see Myers [59]. This approach has been used to model a soap film by Schwartz and Princen

[69]. Once h has been found, ū is given by (4.74), and σ by (4.34).

We might also employ a surface viscosity. As shown below, this can simplify the modelling,

but only at the expense of demanding extra experimental evidence which may be difficult

to obtain. The constitutive relation is that

σ = ηux, (4.76)

where η is the coefficient of surface viscosity. We nondimensionalise using η = Λη ′, where

Λ is the typical magnitude of the surface viscosity, and we replace our Marangoni number

by another dimensionless group, the viscosity ratio Vs = Λ/(ǫµL). We note that this

is independent of the chosen velocity scale. Thus we obtain two distinguished limits

corresponding to §4.3.1.1 and §4.3.1.2. In the first case, the surface velocity is equal to

the bulk velocity, and the longitudinal force balance reads

((4h+ 2Vsη) ūx)x +
C
2
hhxxx = 0, (4.77)

and it is clear that the surface viscosity enhances the ‘Trouton viscosity’. In the second

case, the relationship between surface and average velocity is

us = ū− C̄

24
h2hxxx, (4.78)

and the longitudinal force balance becomes

2Vs (ηūx)x − Vs
C̄

12

(

η
(

h2hxxx

)

x

)

x
+

C
2
hhxxx = 0. (4.79)

We must now specify extra h boundary conditions, since our problem for h is now fifth-

order.

4.5 Thin film equations: presence of a surfactant

As discussed in the previous chapters, the presence of a surfactant reduces the surface

tension of an interface. We also recall that it is energetically favourable for a surfactant to

accumulate at a surface rather than remaining in the bulk liquid. We denote the surface

surfactant concentration on the top and bottom surfaces by Γ±(x, t) respectively and the

bulk surfactant concentration by C(x, y, t). The field equations and boundary conditions

for the concentration fields read (see §2.2)

Ct + (u.∇)C = D∇2C, (4.80)
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with, on y = H ± h/2,

Γ±
t +

(usΓ
±)x

√

1 + (Hx ± 1
2
hx)2

= ∓ D
√

1 + (Hx ± 1
2
hx)2

(

Cy −
(

Hx ±
hx

2

)

Cx

)

, (4.81)

σ∗ − σ± = −RTΓ∞ ln

(

1 − Γ±

Γ∞

)

, (4.82)

Γ± =
Γ∞C

k2 + C
, (4.83)

where D is the diffusion coefficient σ∗ is the surface tension of water and Γ∞ and k2 are

(dimensional) Langmuir coefficients. We must also specify an initial condition and bound-

ary conditions at the ends of the film in order to close the model. Nondimensionalising

using Γ± = Γ∗Γ′±, C = C∗C ′ and the other scalings given in (4.6) earlier, the resulting

equations are (dropping primes)

ǫ2Pe(Ct + uCx + vCy) = ǫ2Cxx + Cyy, (4.84)

with, on y = H ± h/2,

Γ±
t

√

1 + ǫ2(Hx ±
1

2
hx)2 + (usΓ

±)x = ∓S
ǫ

(

Cy + ǫ2
(

Hx ±
hx

2

)

Cx

)

, (4.85)

σ∗ − γ

RTΓ∞
− ∆γ

RTΓ∞
σ± = − ln

(

1 − Γ∗Γ±

Γ∞

)

, (4.86)

Γ± =
Γ∞λ
Γ∗ C

1 + λC
, (4.87)

where we have three dimensionless groups, the Péclet number, Pe = UL/D, the replen-

ishment number, S = DC∗/UΓ∗ and λ = C∗/k2. We shall decide on our choice of Γ∗

and C∗ when we come to apply these equations in specific situations. Again there are

several intrinsic velocity scales that present themselves in this problem, which come from

balancing the various mechanisms in the convection-diffusion problem. As before, we

may choose one of these as our velocity scaling, or we may choose U from the boundary

conditions. The extra possible velocity scalings are

• the velocity resulting from a balance between longitudinal diffusion and convection,

Up =
D

L
; (4.88)

• the velocity resulting from a balance between diffusion across the film and convec-

tion,

Uq =
D

Lǫ2
=
Up

ǫ2
; (4.89)
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• the velocity resulting from a balance between diffusion from the bulk and convection

on the surface,

Us =
DC∗

Γ∗ . (4.90)

In classifying the possible regimes, it is useful to form the dimensionless group

Hp =
C∗Lǫ2

Γ∗ =
Usǫ

2

Up

. (4.91)

As in §4.3.1, it transpires that we can balance at most three effects and there are two

distinguished limits in which this occurs.

4.5.1 Distinguished Limits: three mechanisms balancing

The two distinguished limits are when bulk convection, bulk diffusion and surface con-

vection all balance, in the cases (a) when the concentration is uniform across the film and

(b) when the concentration varies across the film. This is analagous to the situation in

§4.3.1, where either u was extensional or it varied across the film.

4.5.1.1 Longitudinal diffusion, bulk convection and surface convection

Here, Hp ∼ O(1), U ∼ Up ∼ Usǫ
2, and we have S ∼ O(ǫ−1) and Pe ∼ O(1). As in the

liquid case, we expand the dependent variables in power series in ǫ2. We set S = 1/(Sǫ),

and our leading order problem reads

C0yy = 0, (4.92)

with, on y = H0 ± h0

2
,

C0y = 0, (4.93)

which has the solution

C0 = C0(x, t), (4.94)

i.e., the bulk concentration is constant across the lamella. This is often called the ‘well-

mixed approximation’ (compare with (4.3.1.1) to see the similarity with the u problem).

With this form for the bulk concentration, the Langmuir isotherm (4.87) dictates that

the surface concentrations Γ±
0 are the same (and equal to Γ0).

We must proceed to the next order in our expansions to close the model. At O(ǫ2), the

problem reads

Pe (C0t + u0C0x) = C0xx + C1yy, (4.95)
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with, on y = H0 ± h0/2,

∓
(

C1y +

(

Hx ±
hx

2

)

C0x

)

= S (Γ0t + (usΓ0)x) . (4.96)

We integrate (4.95) across the film, and apply the boundary conditions (4.96), to yield

(dropping zeros)

(hCx)x − Peh (Ct + ūCx) − 2S (Γt + (usΓ)x) = 0. (4.97)

The first of these terms represents bulk diffusion, the second, bulk convection, and the

third, surface convection. Finally we have obtained a closed system; for (4.97) along with

the film equations and the constitutive relations (4.86) and (4.87) comprise five equations

for h, u, C, Γ and σ. We shall discuss the mathematical structure of such problems in

§4.7.

4.5.1.2 Diffusion across the film, bulk convection and surface convection

Here Hp ∼ O(1), U ∼ Us ∼ Uq and we have S ∼ O(ǫ) and Pe ∼ O(ǫ−2). The problem for

C = C(x, y, t) reads

P ∗ (Ct + uCx + vCy) = Cyy, (4.98)

with, on y = H ± h/2,

∓Cy = S
(

Γ±
t +

(

u±s Γ±)

x

)

, (4.99)

where P ∗ = ǫ2Pe. We must also couple these with (4.86)-(4.87). This limit presents a

harder mathemtical model than the previous one. It is analogous to the equations in

the diffusive boundary layer in our description of the overflowing cylinder experiment.

However, in that case we were able to make progress due to the different scales over which

the liquid and the surfactant acted. Here we are not so lucky. An iterative solution scheme

might be as follows: we first assume that we know what h, u and v are, and then we solve

for C. We infer Γ using the Langmuir isotherm (4.87), and hence find the surface tension

gradient. We must then feed this information into the liquid problem and solve again for

h, u and v.

We note that we were able to make significant progress in the liquid problem because we

set Re = 0. With Re ∼ 1/ǫ2, we have problems analagous to those for large Pe, and we

are unable to make many simplifications.
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4.5.2 Intermediate Regimes: Two mechanisms balancing

4.5.2.1 Bulk convection and surface convection

Here, Hp ∼ O(1), U >> Up ∼ Usǫ
2, and we have S ∼ O(1) and Pe ∼ O(ǫ−1). We

find that the bulk concentration is well-mixed and that the surface concentrations are the

same. So the equation for C = C(x, t) reads

Peh (Ct + uCx) + 2S (Γt + (usΓ)x) = 0. (4.100)

We must substitute the Langmuir isotherm (4.87) into (4.100) to give a hyperbolic equa-

tion for C, and, assuming u and us are given, this can be solved for C using an initial

condition. Once this is solved, we can read off the surface concentrations.

4.5.2.2 Diffusion across the film and bulk convection

Here, Hp >> O(1), U ∼ Uq << Us and we have S ∼ O(1) or larger, Pe ∼ O(ǫ−2). The

bulk concentration is not uniform across the film, and we must solve

P ∗ (Ct + uCx + vCy) = Cyy, (4.101)

with, on y = H ± h/2,

Cy = 0, (4.102)

to find C (using the procedure described in §4.5.1.2). We then find Γ± from (4.87).

4.5.2.3 Longitudinal diffusion and surface convection

Here, Hp << 1 and U ∼ Usǫ
2 << Up and we have S ∼ O(ǫ−1) and Pe ∼ O(ǫ). The

surfactant is well-mixed, and the equation reads

(hCx)x + 2S (Γt + (usΓ)x) = 0. (4.103)

We must substitute for Γ from the Langmuir isotherm (4.87) into (4.103) in order to solve

the problem for C(x, t), and then Γ may be obtained by using (4.87) for a second time.

4.5.2.4 Diffusion across the film and surface convection

Here, Hp << 1 and U ∼ Us << Uq, and for example S ∼ O(ǫ) and Pe ∼ O(ǫ−1). The

concentration of surfactant is not uniform across the film and, with S∗ = ǫ/S, we have

C =
1

2λ

[

(

1 +
y

h

)

(

Γ+

Γ∞
Γ∗ − Γ+

)

+
(

1 − y

h

)

(

Γ−

Γ∞
Γ∗ − Γ−

)]

, (4.104)
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where Γ+ and Γ− can be found from solving

(

Γ+ + Γ−)

t
+
(

u+
s Γ+ + u−s Γ−)

x
= 0. (4.105)

and

(

Γ+ − Γ−)

t
+
(

u+
s Γ+ − u−s Γ−)

x
= − 1

λS∗h

(

Γ+

Γ∞
Γ∗ − Γ+

− Γ−

Γ∞
Γ∗ − Γ−

)

. (4.106)

This model is analagous to the Marangoni dominated model presented in §4.3.3.3, where

the velocity was linear across the film.

4.5.3 Regimes where one mechanism dominates

4.5.3.1 Surface convection

Here, Hp << 1, Usǫ
2 << U << Up and we have S ∼ O(1) or less, Pe ∼ O(1). The

surfactant is well-mixed which forces the surface concentration to be the same on both

surfaces, and the field equation at next order reveals

Γt + (usΓ)x = 0. (4.107)

To find the concentrations Γ and C, we must solve (4.107) to find Γ, and we can then

find the (well-mixed) C using the inverted Langmuir isotherm

C =
Γ

λ
(

Γ∞
Γ∗ − Γ

) . (4.108)

4.5.3.2 Bulk convection

Here, Hp >> 1, U ∼ Up << Usǫ
2 and we have S ∼ O(ǫ−1), and Pe ∼ O(ǫ−1). The

surfactant is well-mixed which forces the surface concentrations to be the same, and the

field equation becomes

Ct + uCx = 0. (4.109)

The solution procedure is to find C using (4.109) and to then find Γ using (4.87).

4.5.3.3 Longitudinal diffusion

Here, we let Hp be any size, U << Up, Usǫ
2 and for example we could have Pe ∼ O(ǫ) and

S ∼ O(ǫ−3). We find that bulk diffusion governs the distribution of well-mixed surfactant,

and the equation that the concentration satisfies is reduced to

(hCx)x = 0. (4.110)
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If, for example, the film thickness is spatially constant, the solution to (4.110) is

C =
f1(t)

h(t)
x+ f2(t), (4.111)

where f1 and f2 are determined using two end conditions. The surface concentration is

then found from (4.87).

4.5.3.4 Convection dominated flows

Here, we have flows where Pe ∼ O(ǫ−3) or larger. In this parameter regime, we have

a convection-dominated situation, with diffusive boundary layers set up at the two free

boundaries (as in the overflowing cylinder). We must solve the outer problem (which is

convection-dominated),

Ct + uCx + vCy = 0, (4.112)

and then match to our inner solution which satisfies

Ct + uCx − u(Hx ±
1

2
hx)Cη + vCη = Cηη, (4.113)

where H ± h/2 + η =
√
P ∗y, with, on η = 0,

∓Cη =
S√
P ∗

(

Γ±
t +

(

u±s Γ±)

x

)

, (4.114)

and the adsorption isotherm closes the problem. It seems reasonable to take the obvious

solution of (4.112), C = Cb, and so we apply the matching condition

C → Cb as η → ±∞, (4.115)

(where the ± depends on which surface the boundary layer is on). The solution strategy

here depends on the size of B = S/
√
P ∗. If B >> 1 we solve the surface-convection-

dominated problem

Γ±
t +

(

u±s Γ±)

x
= 0, (4.116)

and then we solve for C in the two boundary layers using the inverted Langmuir isotherm

(4.108) to pass information to the boundary layer model. If B ∼ O(1) we must first

substitute for Γ using the isotherm, and then solve the resulting problem (which balances

all three transport mechanisms) for C. Γ is then inferred by using the isotherm for a

second time. Finally, if B >> 1, we solve the bulk convection and diffusion dominated

problem with the boundary condition Cη = 0 and we then read off Γ from the isotherm.
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4.5.4 Summary

We have derived the leading-order equations governing the evolution of both the surface

and bulk concentrations, in a variety of parameter regimes. In Figure 4.4, we show how

each of the models fits into Hp, U parameter space, and in Figure 4.5 we present a

table of the models. Once U has been determined, Pe and S can be calculated, and the

appropriate model may be “lifted” from the catalogue. We note that (i) if ǫ2Pe << 1,

then the surfactant is well-mixed, (ii) if not, but ǫ2Pe = O(1), transverse diffusion and

convection balance and the surfactant concentration varies across the film, and (iii) if

ǫ2Pe >> 1, we have a boundary layer structure.

4.5.5 The no-slip condition

In the limit where the concentration of surfactant is high, the Langmuir isotherm (4.87)

implies that the variation in surface concentration is small. So, Γ is of the form

Γ ∼ Γ∞

Γ∗

(

1 − k2

C∗C
+ . . .

)

=
Γ∞

Γ∗ − αΓ1 + . . . , (4.117)

where α = k2Γ∞/(C
∗Γ∗). Substituting this into (4.85) and expanding the surface velocity

in the form us = u0 + αu1 +O(α2) yields, on y = H ± h/2,

−SCy ∼ Γ∞

Γ∗ u0x − α (u0Γ1)x −
Γ∞

Γ∗ αu1x − αΓ1t +O(α2). (4.118)

Hence, the leading order balance depends on the size of S and α (since we assume that
Γ∞
Γ∗ ∼ O(1)). This reduces to a no-slip condition if both α and S are small (i.e. the surfac-

tant is also relatively insoluble). Such a condition has been employed in this geonetry by

previous authors such as Schwartz and Princen [69], but has not previously been justified

from any systematic modelling of the free surface properties.

4.5.6 Insoluble surfactants

If insoluble surfactants are present on the film surfaces, but not in the bulk liquid, they

move due to surface convection and diffusion. The concentration of such a surfactant

satisfies

Pes

(

Γ±
t +

(

usΓ
±)

x

)

= Γ±
xx, (4.119)

where Pes is the surface Péclet number, and with

σ∗ − γ

RTΓ∞
− ∆γ

RTΓ∞
σ± = − ln

(

1 − Γ±

Γ∞

)

, (4.120)

at the free surface. These surfactants always generate high shear at the free surface.
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Figure 4.4: Schematic showing where the models lie in U , Hp space. The red blocks show
the distinguished limits, the blue blocks show the intermediate regimes where two mech-
anisms balance, and the green blocks show the limits in which one mechanism dominates.
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4.6 Thin film equations: presence of a miscible, volatile

component

As stated in Chapter 2 earlier, we denote the volatile component concentration by s, and

the nondimensionalised field equation for s reads

ǫ2Pe(st + usx + vsy) = ǫ2sxx + syy, (4.121)

where Pe is the Péclet number. We nondimensionalise the boundary conditions (2.24)

and (2.26) in the usual way, and we obtain

sy − ǫ2
(

Hx ±
hx

2

)

sx ± ǫ2PeEe±(1 − s)

√

1 + ǫ2
(

Hx ±
hx

2

)2

= 0, (4.122)

v ∓ u

(

Hx ±
hx

2

)

−
(

Ht ±
ht

2

)

= Ee±

√

1 + ǫ2
(

Hx ±
hx

2

)2

, (4.123)

where E = E0/(Uǫ) is the evaporation number. The modified kinematic condition (4.123)

can be used to obtain a modified conservation of mass equation which now takes account

of the loss of liquid due to evaporation:

ht + (ūh)x + E(e+ + e−) = 0. (4.124)

As stated in §2.3, we must specify models for how the evaporation and surface tension

vary with concentration, and so we set e± = s|H±h
2

and σ±
x = −αsx|H±h

2
. So (4.124)

becomes

ht + (ūh)x + E(s|H+ h
2

+ s|H−h
2
) = 0. (4.125)

and boundary condition (4.122) reads

sy − ǫ2
(

Hx ±
hx

2

)

sx ± ǫ2PeEs(1 − s)

√

1 + ǫ2
(

Hx ±
hx

2

)2

= 0, (4.126)

where s is evaluated at the two free surfaces. Thus we arrive at a closed system for h,

u, and s. The volatile model has a number of similarities to the surfactant model, but is

simpler because we only have to consider one concentration field.

As in the liquid and surfactant cases, we consider changing the order of the two parameters

Pe and E , and catalogue the numerous models that result. We restrict ourselves to flows

where E ∼ O(1) or smaller in cases where the volatile is well-mixed, since conservation of

mass forces s = 0 when E violates this size condition. We may obtain a non-zero leading

88



order solution for s for larger values of E by considering a shorter timescale than L/U (see

§4.6.3.4). We, can, as before, identify several key velocity scalings by balancing various

mechanisms:

• a balance between convection and diffusion in the well-mixed limit,

Up =
D

L
, (4.127)

• a balance between convection and diffusion when the volatile is not well-mixed,

Uq =
D

Lǫ2
=
Up

ǫ2
, (4.128)

• an evaporation based velocity scale,4

Ue =
E0

ǫ
. (4.129)

We note that Up and Uq are identical to those specified for the surfactant problem. Here,

it is convenient to continue to work with the parameter E . We shall start by deriving the

leading-order model in the case where Pe ∼ O(1) and E ∼ O(1), when we can obtain a

dominant balance between convection, diffusion and evaporation in a well-mixed scenario.

We then present the other dominant balance, followed by the intermediate regimes where

two forces balance, and, finally, the intermediate regimes where one force dominates.

4.6.1 Distinguished limits: three mechanisms balancing

The distinguished limits are when convection, diffusion and evaporation all balance in the

cases (a) when the volatile has uniform concentration across the film and (b) when the

volatile has non-uniform concentration across the film.

4.6.1.1 Convection, longitudinal diffusion and evaporation

Here, E ∼ O(1), U ∼ Up ∼ Ue and Pe ∼ O(1). The leading-order problem reads

s0yy = 0, (4.130)

with

s0y = 0, (4.131)

on the free boundaries, which has the solution

s0 = s(x, t), (4.132)

4This comes from considering the balance in the conservation of mass equation.
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so, in this regime, the concentration is well-mixed. This tells us that the evaporation rates

on the free boundaries are the same. As previously, we must proceed to order O(ǫ2) in

the field equation and boundary conditions in order to close the leading order problem.

We find

Pe(st + usx) = sxx + s1yy, (4.133)

and

−s1y −
(

Hx ±
hx

2

)

sx ± PeEs(1 − s) = 0, (4.134)

on the free surfaces. Integrating (4.133) across the film and applying (4.134), we obtain

(hsx)x − Peh (st + ūsx) − 2PeEs(1 − s) = 0, (4.135)

as the equation for the leading-order concentration. The first term in (4.135) represents

bulk diffusion, the second term represents convection and the third represents evaporation.

Coupling (4.135) with the liquid equations, as in the surfactant case, we obtain three

coupled nonlinear partial differential equations for the film thickness, velocity and volatile

concentration.

4.6.1.2 Convection, diffusion across the film and evaporation

Here, E ∼ O(1), U ∼ Uq ∼ Ue and we have Pe ∼ O(ǫ−2). The volatile no longer has

constant concentration across the film, and it satisfies a problem in which convection,

diffusion and evaporation all play a part. We set P ∗ = ǫ2Pe, and the model then reads

syy = P ∗ (st + usx + vsy) , (4.136)

with

sy ± P ∗Es(1 − s) = 0, (4.137)

on the free boundaries. Assuming that u and v are given, we may solve this parabolic

equation, with appropriate initial and end-conditions. We then use the relationship be-

tween the volatile’s concentration and surface tension to feed information back into the

problem for the liquid.

4.6.2 Intermediate regimes where two mechanisms balance

4.6.2.1 Convection and longitudinal diffusion

Here, E ∼ O(ǫ), U ∼ Up >> Ue, we have Pe ∼ O(1), and we find the evaporation no

longer plays a part in determining the concentration. The volatile is well-mixed, and we

are left with a balance between diffusion and convection

(hsx)x − Peh (st + ūsx) = 0. (4.138)

This requires two end-conditions and an initial condition for s in order to be solved.
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4.6.2.2 Convection and evaporation

In this case, E ∼ O(1), U ∼ Ue >> Up and Pe ∼ O(ǫ−1), and the problem becomes

dominated by convection and evaporation

h (st + ūsx) + 2Es(1 − s) = 0. (4.139)

The volatile remains well-mixed in this case, and we solve this equation by specifying one

end-condition and an initial condition for s.

4.6.2.3 Convection and diffusion across the film

Here E ∼ O(1), U ∼ Uq >> Ue and we have Pe ∼ O(ǫ−2). We simplify the boundary

condition on the free surfaces, and the model for the concentration (which is non-uniform

across the film) becomes

P ∗ (st + usx + vsy) = syy, (4.140)

with

sy = 0, (4.141)

on the free surfaces. In this problem, the transport is dominated by convection and

diffusion.

4.6.2.4 Convection and diffusion across the film (and evaporation)

Here, E ∼ O(ǫ−1), U ∼ Uq << Ue and Pe ∼ O(ǫ−2), conservation of mass dictates that

s|h/2 = −s|−h/2, and the boundary condition says that s = 0 or 1 on both the free surfaces.

We conclude that the appropriate boundary condition to apply is s = 0 and so we have

P ∗ (st + usx + vsy) = syy, (4.142)

with

s = 0, (4.143)

on the free surfaces. Evaporation, in this case, occurs fast enough to remove any volatile

component that approaches the surface.

4.6.3 Regimes where one mechanism is dominant

4.6.3.1 Diffusion

Here E ∼ O(1) or less, U ∼ Ue << Up or Ue << U << Up and we have Pe ∼ O(ǫ)

or smaller. The convective terms are negligible and, evaporation terms do not enter the

model at leading-order. The volatile is well-mixed, and satisfies merely

(hsx)x = 0. (4.144)
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If, for example, the film thickness is spatially constant, this yields the solution

s =
f1(t)

h(t)
x+ f2(t), (4.145)

where f1 and f2 have to be determined using the end conditions (c.f. §4.111).

4.6.3.2 Convection (well-mixed)

In this limit, E ∼ O(ǫ), U >> Ue, Up and Pe ∼ O(ǫ−1) for example, and neither diffusion

nor evaporation plays a part in the volatile concentration distribution. The convection-

dominated model for the well-mixed surfactant reads

st + ūsx = 0. (4.146)

4.6.3.3 Convection dominated flow

Here, E can be any size, and Pe ∼ O(ǫ−3) or larger. As in the surfactant case, the

problem is now convection-dominated, and we have diffusive boundary layers at the two

free boundaries. The outer convection-dominated problem reads

st + usx + vsy = 0, (4.147)

while in the boundary layer, after scaling by
√
P ∗y = H ± h/2 + η, we find that

st + usx − u(Hx ±
1

2
hx)sη + vsη = sηη. (4.148)

The boundary condition at the free surfaces is

sη ±
√
P ∗Es(1 − s) = 0. (4.149)

The solution procedure depends on the size of
√
P ∗E . If this is much bigger than one,

then we apply s = 0 (by the same argument as in §4.6.2.4). If
√
P ∗E ∼ O(1) then we

must use the full boundary condition and if
√
P ∗E << 1, we use sη = 0. All cases require

the use of initial and end-conditions.

4.6.3.4 Evaporation

Here, E ∼ O(ǫ−1), U << Ue, Uq, the volatile component is well-mixed, but the boundary

conditions force the leading-order concentration to be zero, i.e., the evaporation takes

place fast enough for there to be no volatile component remaining on this timescale

(given by L/U). If we wish to follow the evolution of this leading order concentration
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on its journey to zero, we must look at an evaporation timescale given by ǫL/U . Setting

t′ = t/ǫ, conservation of mass reads

ht′ + 2Es = 0, (4.150)

where the volatile concentration is given by

hst′ + 2Es(1 − s) = 0. (4.151)

We may solve these equations, assuming that s = sI < 1 and h = 1 at t = 0 to yield

h =
1 − sI

1 − s
, (4.152)

where s satisfies
s(1 − sI)e

1
1−s

sI(1 − s)
= e

1−2Et′
1−sI . (4.153)

Hence,

s→ 0 h→ 1 − sI as t′ → ∞. (4.154)

4.6.4 Summary

We have derived the leading-order equations governing the evolution of the concentration

of a volatile component, in a variety of parameter regimes. In Figure 4.6, we show how

each of the models fits into E , U parameter space, and in Figure 4.7 we present a table of

the models. We note that we have found that it is not possible to balance diffusion and

evaporation without convection when the volatile is well-mixed, on the timescale L/U .

Once U has been determined, Pe and E can be calculated, and the appropriate model may

be “lifted” from the catalogue. As in the surfactant case, (i) if ǫ2Pe << 1, the volatile

is well-mixed, (ii) if ǫ2Pe ∼ 1, the volatile concentration varies across the film and (iii) if

ǫ2Pe >> 1, we have a boundary layer structure at the free surfaces.

4.7 Mathematical Structure of a typical coupled prob-

lem

We illustrate the procedure for determining the type of system that we are working with

by considering the case of a film containing a well-mixed surfactant, in the parameter

regime Ma ∼ O(1), Ca ∼ O(ǫ2), S ∼ O(ǫ−1), and Pe ∼ O(1) (see §4.3.1.1 and §4.5.1.1).

We set Γ = bC for convenience, and S∗ = 2b/Sǫ, T = 4bMaCa/ǫ2. The system reads

ht + (uh)x = 0, (4.155)
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hhxxx = TCx, (4.156)

(hCx)x − Peh (Ct + uCx) − S∗ (Ct + (uC)x) = 0, (4.157)

which, after setting g = hx, d = Cx, integrating (4.156) and writing as a matrix system

reads

AUt +BUx = C, (4.158)

where U = (h, u, g, C, d),

A =













1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −(Peh+ S∗) 0













B =













u h 0 0 0
0 0 h 0 0
1 0 0 0 0
0 0 0 1 0
0 −S∗C 0 −(Pehu+ S∗) h













,

(4.159)

and C is the vector containing all of the non-derivative terms in the system. We consider

det(ẋA− ṫB) = 0, where ˙ denotes differentiation along a characteristic, and we find that

−h3ṫ5 = 0, (4.160)

and so conclude that the system has one repeated root (ṫ = 0) and is therefore parabolic.

In fact, all the models that include the surfactant concentration turn out to be parabolic.

The parabolic system given above needs initial conditions for C and h, three end-conditions

for h, two end-conditions for C and an end-condition for u in order to close the model.

In §5.2, we discuss appropriate choices for these conditions in a foam lamella containing

a well-mixed surfactant.

The only hyperbolic system is the Trouton model described in §4.3.3.2.

4.8 Conclusion

In this chapter we have presented models for the evolution of thin films between two free

surfaces acting under the influence of a number of forces. We may summarise these by

writing down equations which contain all the terms: we must then decide on the parameter

sizes and hence which terms to keep at leading order. These equations read

ht + (ūh)x +
E

ǫ
(e+ + e−) = 0, (4.161)

(4hūx)x +
ǫ

2Ca
hhxxx +

Ma

ǫ
(σ+ + σ−)x + Sth+

3A∗

ǫ3
hx

h3
= 0, (4.162)

96



where

u = ū+
ǫ3

4Ca
hxxx

(

−y2 + 2Hy −H2 +
1

12
h2

)

+
ǫMa

2
(σ+ − σ−)xy, (4.163)

Hxx = −∆PCa

2ǫ
, (4.164)

P =
P+ + P−

2
− 2ux −

ǫ

2Ca
hxx −

A∗

ǫ3h3
. (4.165)

We note that there is no asymptotic limit in which all the terms in (4.161)–(4.165) balance.

The shear is generated due to a coupling with:

1. the concentration of surfactant, which satisfies

• either

ǫ2Pe(Ct + uCx + vCy) = ǫ2Cxx + Cyy, (4.166)

with, on y = H ± h/2,

∓S
(

Cy + ǫ2
(

Hx ±
hx

2

)

Cx

)

= Γt + (usΓ)x, (4.167)

• or

(hCx)x − Peh (Ct + ūCx) −
2

ǫS
(Γt + (usΓ)x) = 0, (4.168)

where both models must use, on y = H ± h/2,

σ∗ − γ

RTΓ∞
− ∆γ

RTΓ∞
σ± = − ln

(

1 − Γ

Γ∞

)

, (4.169)

Γ± =
Γ∞λ
Γ∗ C

1 + λC
; (4.170)

2. the concentration of volatile liquid component, which satisfies

• either

ǫ2Pe(st + usx + vsy) = ǫ2sxx + syy, (4.171)

with, on y = H ± h/2,

−sy + ǫ2
hxsx

2
= ǫPeEe(1 − s)

√

1 +
ǫ2h2

x

4
, (4.172)

• or

(hsx)x − Peh (st + ūsx) − 2
PeE

ǫ
e(1 − s) = 0, (4.173)
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where both models must use, on y = H ± h/2,

σx = −αsx, (4.174)

e = s. (4.175)

We note that

• The velocity across the film is uniform except when the capillary number is O(ǫ3)

or when the Marangoni number is O(ǫ−1).

• The centreline is straight unless there is a pressure drop across the film.

• Applying a no-slip boundary condition may only be justified by considering the

surfactant problem, and requires that the concentration of surfactant is high, and

that it is relatively insoluble.

• The surfactant or volatile component problem can be considerably simplified in

parameter regimes where they are well-mixed.

• The possible velocity scales which come from balancing forces are Um, Uc, Ul, Up, Uq

and either Us or Ue. The appropriate velocity scale depends on the situation being

modelled.

• The coupled system of equations for the longitudinal velocity, thickness of film

and concentration of Marangoni-inducing component form a parabolic system of

equations.

In the next chapter, we use various forms of these models to describe flow from a lamella

into a Plateau border in a foam.
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Chapter 5

Foam films

5.1 Introduction

As discussed in Chapter 1, the liquid within a foam is contained within three characteristic

structures: lamellae, Plateau borders and nodes. In this chapter, we focus on the flow

of liquid from a lamella into a Plateau border. An understanding of this process is

fundamental to the understanding of foam collapse, since rupture of lamellae is responsible

for bubble coalescence and thus foam deterioration.

Systematic work on lamella drainage has been undertaken by several previous authors.

We briefly describe some of the relevant work below.

1. Schwartz and Princen [69] decomposed the liquid into four regions: a Plateau bor-

der, a transition region, a laid-down film and a black film; see Figure 5.1. They

considered a Plateau border moving away from a lamella at speed U(t) where the

liquid interfaces are loaded with surfactant everywhere except the Plateau border.

They used this assumption to justify the use of a no-slip boundary condition. They

derived a lubrication-style equation for the evolution of the transition region thick-

ness which they solved using matching conditions with both the Plateau border and

the laid-down film.

2. Barigou and Davidson [5] also decomposed the liquid into four regions: a border

region, two transition regions (one with fully rigid surfaces and one with partially

mobile interfaces), and a lamella, see Figure 5.2. They assumed that the Plateau

border is immobile and the lamella is free (the converse of the Schwartz and Princen

conjecture). They derived a lubrication-style equation for the velocity in region II1,

and they performed a shear balance in region II2 which they relate to the gradient of

surface tension. They discussed the possibility of a sharp border contraction, that is

a dimpling effect at the Plateau border end of the lamella, and they concluded that
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Figure 5.2: Barigou and Davidson’s liquid regime.

the pressure distribution in such a configuration is ‘physically impossible’. They

estimated film thinning by an approximation to the conservation-of-mass equation,

and then compared this with experimental evidence.

3. Braun, Snow and Pernisz [13] modelled a vertical film draining under capillary,

gravitational and viscous forces. They assumed that the surfactant loads the surface

everywhere, and therefore employed the no-slip condition throughout their regions.

They matched a time-dependent film onto the static meniscus. Their numerical

solutions exhibit dimples close to the meniscus.

A less systematic approach was adopted by Hirasaki, Singh and Miller [71], who assumed
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that the flow obeys the radially-symmetric form of the lubrication equation everywhere

(but without assuming u = 0 on the boundary) and formulated the surfactant problem

using convection and diffusion of the bulk surfactant and convection, diffusion and replen-

ishment of surface surfactant. They incorporated surface tension gradients by utilising

surface elasticity and surface viscosity, and proposed a global force balance to determine

the velocity scaling and govern the rate of thinning. The cases of both insoluble and

soluble surfactant were considered, and a ‘mobility factor’ was introduced which allowed

calculation of the film drainage time.

As mentioned in Chapter 2 as a motivation for considering the overflowing cylinder, exper-

imental work on in situ foam lamellae remains sparse due to the experimental difficulties

concerned with probing a foam. However, some work has been carried out on single foam

films. Joye, Miller and Hirasaki [43] presented interference patterns from a single film

containing surfactant above the critical micelle concentration. They used this evidence

to support the claim that foam films thin with a dimple close to the Plateau border (in

opposition to Barigou and Davidson [5]). They formulated a model (utilising no-slip ev-

erywhere) for the drainage of a foam film draining with constant flux and their numerical

solutions develop dimples close to the Plateau border.

Our approach to the problem of lamella drainage is also to decompose the liquid domain

into separate regions, and then to match together the solutions in each region. We use

the thin film models generated in Chapter 4 to describe the flow of liquid with or without

the presence of a surfactant or volatile component. Our work differs from that described

above because we do not, a priori, assume anything about the surfactant loading at the

surface. Indeed, determining the surfactant distribution forms an integral part of our

solution procedure.

5.1.1 Relevant parameter sizes

The physical parameters describing the liquid, surfactant or volatile component, and the

shape of the bubbles, vary considerably between different foams. Even for chemically

identical systems, bubble size can be varied by changing the way that the foam is formed.

We list typical parameter sizes for aqueous surfactant solutions in Table 5.1 and for volatile

systems in Table 5.2.
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µ ∼ 10−3 Kg m−1 s−1 ρ ∼ 103 Kg m−3

σ∗ ∼ 7 × 10−2 N m−1 γ ∼ 2 − 5 × 10−2 N m−1

∆γ ∼ 10−3 − 10−2 N m−1 R ∼ 8.3 J mol−1 K−1

T ∼ 298 K Γ∞ ∼ 1 − 6 × 10−6 mol m−2

D ∼ 10−10 − 10−8 m 2 s−1 k2 ∼ 0.1 − 0.5 mol m−3

Table 5.1: Estimated parameter values for aqueous systems containing surfactants.

µ ∼ 1 × 10−4 Kg m−1 s−1 ρ ∼ 7 × 102 m−3

σ∗ ∼ 1 × 10−2 N m−1 E0 ∼ 10−5 − 10−4 m s−1

D ∼ 5 × 10−9 m2 s−1

Table 5.2: Estimated parameter values for volatile systems.

5.1.2 Plan

We start by recapping the case of a pure viscous lamella previously studied by Howell [38].

The solution procedure is to decompose the liquid domain into (i) a viscous lamella, (ii)

a capillary-static Plateau border, and (iii) a transition region between the two in which

viscous and capillary forces balance. The result is a prediction of the drainage rate of

liquid from the lamella into a Plateau border. Thus if, as explained in Chapter 1, we

assume that the lamella ruptures at a critical thickness hcrit, we obtain a corresponding

lamella lifetime.

It transpires that for a typical aqueous system this lifetime is extremely short: around

10−3 seconds. In practice, it is a common experience that foam can last much longer

than this when some stabilising mechanism is present. Therefore we extend the simple

viscous model of Howell to include Marangoni effects due to a surfactant or to a volatile

component. This introduces extra parameters into the model and there are a number

of asymptotic limits that we can consider. We focus on several such limits which are

of interest. We consider a fast diffusing surfactant, for which diffusion, convection and

surface convection are all important, a surfactant such as CTAB, for which surface and

bulk convection dominate, and an insoluble surfactant, where the motion is governed by

surface convection and surface diffusion. We also discuss a lamella stabilised by a volatile

component and “a lamella stabilised by a constant surface viscosity”.
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5.2 Evolution of a thin aqueous film in the absence

of surfactant

5.2.1 Introduction and modelling ideas

We first consider the case where there is no surfactant present in the system, and show

that such a film has a very short lifetime. Howell [38] has considered the analagous

problem of drainage of a bubble near the surface of a viscous liquid, and we follow his

methodology in our work here. We restrict ourselves to a two-dimensional geometry and

show the liquid domain in Figure 5.3. Our modelling assumption is that the velocity of

Plateau border

Lamella
Tension

Figure 5.3: The ‘outer’ picture.

the liquid in the Plateau border is small enough that we may treat the Plateau border as

capillary-static (we will check that this assumption is valid a posteriori in §5.2.3). Thus

its free surfaces have constant mean curvature which, in our two dimensional geometry,

implies that they must be circular arcs of constant radius a. These meet tangentially at

three points, the points where the lamellae meet the Plateau border. For bubbles of a

given size, the radius a is determined by the liquid fraction in the foam (see Chapter 6).

We now look more closely at the lamella, as shown in Figure 5.4. In the lamella, the

free surfaces are almost flat and here we suppose that capillary forces are small (we

shall, again, check this assumption a posteriori in §5.2.3). We therefore have a viscosity-

dominated lamella. However, near to the Plateau border, the assumption that capillary
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Figure 5.4: The ‘inner’ picture.

forces are negligible must break down, because here curvature of the film has to increase

from practically zero to an O(1/a) amount to match into the Plateau border. In this

‘transition region’, capillary and viscous forces are both important. We use this balance

between viscosity and capillarity in the transition region to decide on the correct velocity

scaling.

5.2.2 Model for a film acting under viscosity and capillarity

Recall that the model for a liquid acting under capillary and viscous forces reads (see

§4.3.2.2)

ht + (ūh)x = 0, (5.1)

(4hūx)x +
ǫ

2Ca
hhxxx = 0, (5.2)

where the pressure is given by

p = −2ūx −
ǫ

2Ca
hxx. (5.3)

We must now determine the appropriate lengthscale for the transition region and the

velocity scaling for the problem, so that we can estimate the size of each of the terms in

(5.1) and (5.2) and hence read off the models that hold in each region.
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5.2.3 Lengthscale of the transition region and velocity scalings

We find the lengthscale of the transition region from the fact that we must be able to

match this region with both the lamella and the Plateau border. As before, we denote

the radius of curvature of the Plateau border by a. So, dimensionally, we must have

hξξ ∼ 1/a, (5.4)

where ξ is the dimensional lengthscale in the transition region. We nondimensionalise the

transition region thickness with ǫL (ǫ is the aspect ratio of the lamella and L is the length

of the lamella), length with δL, and we find ǫh′ξ′ξ′/(δ
2L) ∼ 1/a. We therefore take our

transition region lengthscale to be

δL =
√
ǫaL. (5.5)

For example, for typical bubbles with the following characteristic dimensions

ǫ ∼ 10−3, L ∼ 10−3 m, a ∼ 4 × 10−4 m, (5.6)

we find δ ∼ 0.02. The aspect ratio of the transition region ǫ′ = ǫ/δ ∼ 0.05 and so our

thin film models will hold here too.

We have yet to decide on the velocity scaling, U , for this problem. Our transition region is

defined by the fact that viscous and capillary effects balance there, and so this determines

our velocity scaling (found by setting ǫ′/Ca = 1)

U =
γ

µ

√

ǫL

a
. (5.7)

For water, µ = 1× 10−3 Kg m−1 s−1 and γ = 7× 10−2 N m−1. We therefore have U ∼ 3.5

m s−1. So we have the inequalities

ǫ << ǫ′ = Ca << 1, (5.8)

which imply (i) capillarity is negligible in the lamella; (ii) viscous effects are negligible in

the Plateau border, and (iii) the two effects balance in the transition region, justifying

our initial assumptions.

We read off the model in the lamella from (5.1)-(5.2):

ht + (ūh)x = 0, (5.9)

(4hūx)x = 0, (5.10)
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while in the transition region (after performing the scaling x− 1 = δξ) we have

(ūh)ξ = 0, (5.11)

(4hūξ)ξ +
1

2
hhξξξ = 0. (5.12)

We note that (5.9)-(5.10) require two boundary conditions on u in order to determine

the solution. One condition is the obvious symmetry condition that the velocity must be

zero at x = 0: the second condition must come from matching with the transition region.

Thus our solution procedure in this case is to consider the transition region first, so as to

find the rate at which liquid leaves the lamella. We shall then return to solve the lamella

problem.

5.2.4 Transition region

We must couple equations (5.11) and (5.12) with boundary conditions at both the lamella

and the Plateau border ends of the region. We set constant velocity and thickness at the

lamella end and match curvature at the Plateau border end:

ū→ Q

h0
, h→ h0 as ξ → −∞ (5.13)

hξξ → 1 as ξ → ∞, (5.14)

where Q is the flux from the lamella into the Plateau border, which is to be found.

Equation (5.11) implies that the flux is uniform through the transition region

ūh = Q. (5.15)

Then (5.12) becomes an ordinary differential equation for h, with Q as a parameter. Cru-

cially, the boundary conditions (5.13) and (5.14) overdetermine the problem; integration

of this ordinary differential equation gives rise to a relationship between Q and h0:

Q(h0) =
3
√

2h
3
2
0

16
. (5.16)

We note that, as the film thins, the flux decreases.

With Q given by (5.16) the transition region model becomes

ĥĥξ̂ =
√

2
(

ĥ
3
2 − 1

)

, (5.17)

where ĥ = h/h0 and ξ̂ = ξ/h
1
2
0 . The solution to (5.17) is

2
√

ĥ− 2√
3

arctan

[

1 + 2
√

ĥ√
3

]

+
1

3
log

[

1 − 2
√

ĥ+ ĥ

1 +
√

ĥ+ ĥ

]

=
√

2ξ̂, (5.18)

106



-6 -4 -2 2
xi

2

4

6

8

10

h

Figure 5.5: Transition region shape.

where the constant of integration (corresponding to translation in ξ) has been set to zero

without loss of generality. A plot of the solution is given in Figure 5.5. We note that the

profile is monotonic increasing. Finally, we obtain the pressure in the transition region,

using the scaled form of (5.3) and the solution in (5.17),

p = −1

2
+

1

4ĥ
3
2

+
1

4ĥ3
. (5.19)

A plot of the pressure distribution is shown in Figure 5.6. The pressure decreases mono-

tonically from zero in the lamella to −1/2 in the Plateau border. It is the large negative

pressure in the Plateau border (compared with the lamella) which drives the flow and

causes the lamella to drain.

5.2.5 Lamella model

We can also solve the lamella model explicitly in this case. In addition to (5.9) and

(5.10), we specify boundary conditions describing the symmetry of the system, the flux

from the lamella into the Plateau border, and an initial condition to close the model. For

simplicity, we set the thickness of the lamella to be initially uniform. We take

ū = 0 at x = 0, (5.20)

ū =
Q(h)

h
=

3
√

2

16
h

1
2 at x = 1, (5.21)

h = 1 at t = 0. (5.22)
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Figure 5.6: Transition region pressure profile.

Under our assumption that the film thickness is spatially uniform initially, we can easily

see that it remains so. Then we find that

ū =
3
√

2

16
h

1
2x, (5.23)

and (5.9) provides us with an equation for h

ht +
3
√

2

16
h

3
2 = 0, (5.24)

which has the solution

h =

(

1 +
3
√

2

32
t

)−2

. (5.25)

The solution for h given in (5.25) does not tend to zero in finite time. Hence, as noted in

Chapter 1, we assume that there is a critical thickness (which is a material property of

the film) at which the lamella ruptures. Redimensionalising, we find the lamella lifetime,

depending on the critical rupture thickness hcrit
D ,

tcritD =
32µL

√
a

3
√

2γ

[

(

1

hcrit
D

)
1
2

−
(

1

h∗D

)
1
2

]

, (5.26)

where the subscript ‘D’ denotes dimensional quantities, and h∗D is the initial dimensional

lamella thickness. If we use suitable values for the parameters, and suppose the film

starts with thickness 1µm and ruptures when the thickness reaches 0.1µm, then the time

to rupture is tcritD ∼ 4 × 10−3 s. Clearly, for foam with a lifetime of many seconds or
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minutes, the presence of a surfactant or volatile component must alter the dominant

balance so as to slow down drainage significantly.

5.2.6 Implications

In this section we have shown how, in a simple case, we can describe the drainage of a

lamella into a Plateau border by introducing a transition region between the two in which

there are significant curvature changes. In the following sections, we perform a similar

decomposition of the liquid domain for cases in which there is surfactant present in the

system.

5.3 Evolution of films stabilised by a well-mixed sol-

uble surfactant

We apply an analagous procedure to the case where there is a well-mixed soluble surfactant

which is transported by bulk convection, diffusion and surface convection. The general

equations for such a system were derived in §4.5.1.1 and to choose the correct leading-

order model we must decide on our choice of C∗, Γ∗, and ∆γ. To proceed, we make

the assumption that the concentration in the Plateau border is constant, CPb say, on the

time-scale of our lamella drainage problem. We justify this assumption in §5.3.2 later.

We make the further assumption that CPb is small and we set C∗ = CPb. This simplifies

the problem greatly because it allows us to replace the Langmuir isotherm (4.170) with a

linear relation, Γ = ηC (where η = Γ∞/k2), known as the Henry isotherm. We recall that

we performed a similar linearisation of the Langmuir isotherm in Chapter 3. We are also

able to linearise the Frumkin equation (4.169) in this limit too. We choose Γ and ∆γ to

remove the constants of proportionality in the Henry isotherm and in the relation between

surface tension and the surface concentration, and hence Γ∗ = ηCPb and ∆γ = RTηCPb.

We include capillary, Marangoni, viscous, diffusive, convective and replenishing effects in

the model. We therefore have (see the summary at the end of Chapter 4)

ht + (ūh)x = 0, (5.27)

(4hūx)x +
ǫ

2Ca
hhxxx +

2Ma

ǫ
σx = 0, (5.28)

(hCx)x − Peh (Ct + ūCx) −
2

Sǫ
(Γt + (usΓ)x) = 0, (5.29)

109



where

u = ū+
ǫ3

4Ca
hxxx

(

−y2 +
1

12
h2

)

, (5.30)

us = ū− ǫ3

24Ca
h2hxxx, (5.31)

p = −2ūx −
ǫ

2Ca
hxx, (5.32)

Γ = C, (5.33)

σx = −Γx. (5.34)

5.3.1 Selection of velocity scale

Again, there are numerous ways that we could select our velocity scale in this case.

However, we make the observation that, for velocities of practical interest (O(10−3) m

s−1 say) the reduced capillary number (Ca/ǫ) is small and so viscous forces are negligible

everywhere. With small capillary number we have a capillary-static Plateau border, and,

since the curvature of the lamella is small, we conclude that the lamella must be dominated

by Marangoni forces. Our transition region in this case is therefore where the capillary and

Marangoni terms balance. However, we are unable to obtain a velocity scaling from such

a balance, since the remaining dimensionless group in (5.28), T = CaMa/ǫ2 = ∆γ/(ǫ2γ)

is independent of the velocity scale chosen.

To ensure a balance in (5.28), we must have a gradient in Γ, which means that we must

ensure that there is a nontrivial balance in (5.29). We choose to balance the surface

convection and bulk diffusion in the transition region, i.e., we set

Sǫ

δ
= 1, so U =

D

η

√

ǫL

a
. (5.35)

If we have chosen the velocity scaling inappropriately, we will find that one of remaining

parameters in the system is large and deduce that a different scaling for U is more appro-

priate (as we find in §5.4 for a lamella stabilised by CTAB). For the moment, we choose

to work with an artificial highly diffusive surfactant, with say D ∼ 2 × 10−8 m2 s−1, and

η ∼ 1 × 10−5 m. We estimate U ∼ 1 × 10−4 m s−1 (we note that this is much smaller

than the velocity scaling of the previous section), the reduced Péclet number, P = δPe

is O(1), Ca ∼ 10−6, and T = T/δ2 ∼ O(1).

Thus the leading-order model that holds in the lamella is

ht + (ūh)x = 0, (5.36)
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σx = 0, (5.37)

PhCt + 2Γt + PūhCx + 2(usΓ)x = 0, (5.38)

u = us = ū, (5.39)

Γ = C, (5.40)

σx = −Γx, (5.41)

while in the transition region we have

(ūh)ξ = 0, (5.42)

hhξξξ + T σξ = 0, (5.43)

(hCξ)ξ −PhūCξ − 2 (usΓ)ξ = 0, (5.44)

us = ū− β̃h2hξξξ, (5.45)

Γ = C, (5.46)

σξ = −Γξ, (5.47)

where T = 4a∆γ/(γLǫ) and β̃ = ǫ′3/24Ca. In both the lamella and the transition region,

viscous forces are negligible at leading order and the physical structure of the problem is

different from the pure liquid film considered in the previous section. Here, the flow is

completely governed by what is happening at the free surfaces.

5.3.1.1 Parameter sizes and plan for the rest of this section

We first consider the behaviour of this system of equations by analysing the case where

P and T are both O(1), but the ‘lubrication’ parameter β̃ << 1. We note that these are

assumptions that are not, in general, true. If P << 1 we lose the bulk convection term,

and if P >> 1 we must choose a different velocity scaling, balancing bulk convection with

either diffusion or surface convection. The effect of having a very small or very large T
is that h and C vary over different lengthscales, and we have nested transition regions.

However, assuming P, T ∼ O(1) appears to be the most generic case, where all the terms

have the same influence, and so we proceed under this assumption.

Changing β̃ has a different effect on the model. With β̃ << 1, the flow is everywhere

extensional, but with β̃ ∼ O(1), the velocity in the transition region becomes parabolic.

Using typical values for the parameters, β̃ ∼ 2 and so, after considering the (simpler)

β̃ << 1 case, we incorporate the effect of β̃ ∼ O(1) in §5.3.7.
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We follow the following plan in the rest of this section. First we consider the Plateau

border, and show that our assumptions about the concentration are correct and that its

shape is governed by capillary statics. Next, we consider the problem in the lamella, with

the aim of relating the concentration in the lamella to its thickness. Following this, we

work with the transition region model, using the information already obtained from the

lamella and the Plateau border. As in the last section, the aim will be to find the flux of

liquid, Q, flowing out from the lamella as a function of lamella thickness h0. Finally, we

return to the lamella problem to find how the thickness varies with time, and, ultimately,

the time to rupture. Once this is completed, we consider how the inclusion of a nonzero

β̃ modifies the problem, and we repeat the transition region analysis to find Q(h0) and

then the time to rupture.

5.3.2 Plateau border

In this subsection we justify our assumption that the surfactant concentration is constant

in the Plateau border. To do this, we consider the flux of surfactant leaving the lamella,

which is controlled by surface and bulk convection, and reads, in dimensional variables,

Flux out = huCl

(

1 + 2
η

h

)

, (5.48)

where Cl is the concentration in the lamella. We equate this to the flux into the Plateau

border, so
dCPb

dt
∼ huCl

a2

(

1 + 2
η

h

)

. (5.49)

We nondimensionalise in the standard way, to get

dCPb

dt
∼ ǫL2

a2
QCl

(

1 +
2η

ǫLh

)

. (5.50)

Using typical parameter values, we find that dCPb/dt ∼ 10−1QCl, and we conclude that,

providing Q ∼ O(1) or smaller, CPb is constant on the timescale for lamella drainage.

As noted earlier, with the velocity scaling given by (5.35), Ca ∼ O(10−6) and so our

assumption that the Plateau border is dominated by capillary statics is verified, and the

Plateau border free surfaces have constant curvature 1/a.

5.3.3 Lamella model

The lamella model (5.36)-(5.41) may be simplified to read

ht + (uh)x = 0, (5.51)

Cx = 0, (5.52)
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(2 + Ph)Ct + PuhCx + 2 (uxC) = 0, (5.53)

where, since capillary forces are small in this region, u = ū = us. We note that (5.52)

dictates that C = C(t). So, (5.53) reduces to the following (linear) equation for C,

Ċ = − 2Cux

2 + Ph. (5.54)

We impose the boundary conditions of no flux and symmetry at the lamella’s middle,

flux conservation with the transition region, and, for simplicity, that the concentration of

surfactant and the lamella thickness are both constant initially (the concentration must

necessarily be constant at t = 0 to satisfy (5.52). If the concentration is not constant,

we must consider a problem on a shorter timescale than L/U in which the concentration

adjusts), i.e.

u = 0 at x = 0, (5.55)

u =
Q

h
at x = 1, (5.56)

C = CI , h = 1 at t = 0. (5.57)

As before, Q is the flux of liquid flowing from the lamella into the transition region, and CI

is the initial lamella concentration. The choice of appropriate CI depends on the “history”

of the lamella. Consider the initial formation of the foam as a whole. At the start, the

bubbles are almost spherical, with surfactant distributed uniformly. The liquid drains

through the foam to form the lamella-Plateau border structure. The concentration of

surfactant in the lamella is decreased by the increase in surface area required to generate

this evolution of morphology. Therefore, we conjecture that CI < 1 for draining foams

(in dimensional terms, this reads CI < CPb). However, in some laboratory experiments

to study single lamellae (see Joye et al. [43]), individual thin films are generated by

dipping a ring into surfactant solution. The thin films are automatically forced into

the lamella-Plateau border shape although the concentration of surfactant may still be

assumed uniform. We therefore allow ourselves to consider CI ≤ 1.

We may then solve the system for C to give

C = CI
(2 + P)h

2 + Ph . (5.58)

We note that the flux of surfactant from the lamella is given by

Flux = QC

(

P +
2

h

)

, (5.59)

and so we see that, as the film thins, the transport of surfactant is dominated by surface

convection.
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As in §5.2, we can also solve for u,

u =
Q(h)x

h
, (5.60)

and finally h is given by
∫ 1

h

dH
Q(H)

= t. (5.61)

We return to evaluate this integral once we have determined the flux Q as a function of

thickness using the transition region model.

5.3.4 Transition region

We couple (5.42)-(5.47) with boundary conditions that the film thickness, liquid velocity

and concentration are constant in the lamella. We read off these values from the lamella

model, given the thickness h0, and they are

h→ h0, ū→ Q

h0

, C → C0 = CI
(2 + P)h0

2 + Ph0

as ξ → −∞. (5.62)

We also match curvature of the film and concentration with the Plateau border and we

set

hξξ → 1, C → 1 as ξ → ∞. (5.63)

The corresponding leading-order equations for the liquid velocity, lamella thickness and

concentration of surfactant are

ūh = Q, (5.64)

T (C − C0) = hhξξ −
h2

ξ

2
, (5.65)

hCξ = PQ (C − C0) + 2Q

(

C

h
− C0

h0

)

, (5.66)

We note that the flow in the transition region is quasi-steady. The first of these equations

is the integrated conservation of mass equation, the second is the integrated longitudinal

force balance, and the third is the integrated surfactant concentration equation. The

constants of integration were found by applying the conditions as ξ → −∞. We note that

(5.65) and (5.66) decouple from (5.64): we can solve for C and h and then read off ū from

(5.64).
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5.3.4.1 Asymptotic behaviour of solutions at ±∞

We must check that the boundary conditions that we wish to impose on (5.65)-(5.66) do

not over-determine the problem. We first reduce the number of parameters in the problem

by setting Ĉ = (C − C0)/C0, ĥ = h/h0 and ξ̂ =
√

T C0/h2
0ξ. The resulting system of

equations for Ĉ and ĥ are

Ĉ = ĥĥξ̂ξ̂ −
ĥξ̂

2

2
, (5.67)

ĥĈξ̂ = ΥQ∗Ĉ +Q∗

(

Ĉ+1

ĥ
− 1

)

, (5.68)

where Υ = Ph0/2 and Q∗ = 2Q/(h0

√
T C0) and the boundary conditions that we wish

to impose now read Ĉ → 0, ĥ → 1 as ξ̂ → −∞, ĥξ̂ξ̂ → h0/(T C0), Ĉ → (1 − C0)/C0

as ξ̂ → ∞. Our plan is to find the behaviour of ĥ and Ĉ as ξ̂ → ±∞ and then see

how many of the number of degrees of freedom the boundary conditions eliminate. We

linearise about ĥ ∼ a1ξ̂
2/2 as ξ̂ → ∞ by setting

ĥ ∼ a1ξ̂
2

2
+ a2ξ̂ + a3 +

a4

ξ̂
+
a5

ξ̂2
+O

(

1

ξ̂3

)

. (5.69)

We note that, in general, we must also look for terms of the form ξ̂me−aξ̂n

, but it is

easy to show that these terms do not appear. We find the corresponding form for Ĉ by

substituting this into (5.67):

Ĉ ∼ a1a3 −
a2

2

2
+

3a1a4

ξ̂
+

3a2a4 + 6a1a5

ξ̂2
+O

(

1

ξ̂3

)

. (5.70)

We are able to find relationships between the coefficients in these expansions using (5.68),

and we get the leading order balance

−3

2
a2

1a4 = ΥQ∗
(

a1a3 −
a2

2

2

)

−Q∗. (5.71)

Imposing the boundary conditions as ξ̂ → ∞, we see, trivially, that a1 = h0/(T C0) and

that we must also take a1a3 − a2
2/2 = (1−C0)/C0 (from (5.70)). Substituting into (5.71)

gives an expression for a4:

a4 = −2T 2C2
0

3h2
0

(

ΥQ∗
(

1 − C0

C0

)

−Q∗
)

, (5.72)

and we can generate a5 from (5.68),

a5 =
2T 3C3

0

3h3
0

(

ΥQ∗
(

1 − C0

C0

)

−Q∗
)(

a2 +
Q∗Υ

2

)

. (5.73)
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Since the system exhibits translational invariance, we may set a2 = 0. We can see that

once this is done, a1, a3 . . . are all determined uniquely by (5.67) and (5.68) and the

boundary conditions. We re-write these expansions in the original variables, and they

then read (with error O(1/ξ3))

h ∼ ξ2

2
+

(

1 − CI(2 + P)h0

2 + Ph0

)

T + 2 (−P + CI(2 + P))
QT
3ξ

− (−P + CI(2 + P))
PT Q2

3ξ2
,

(5.74)

C ∼ 1 + 2 (−P + CI(2 + P))
Q

ξ
− 2 (−P + CI(2 + P))

PQ2

ξ2
. (5.75)

We note that, for CI = P/(2 +P), the coefficients of the small terms in these expansions

vanish, and that, for CI < P/(2+P), C → 1 from below, while if CI > P/(2+P), C → 1

from above.

We conclude that, for a given set of parameters including the unknown h0 and Q, there

is a unique solution (up to translation) leaving ξ = ∞.

At the other end of the range, we linearise about ĥ = 1, setting ĥ ∼ 1+aeλξ̂. Substituting

this into (5.67) gives

Ĉ ∼ aλ2eλξ̂, (5.76)

and we obtain an equation for λ by substituting into (5.68):

λ3 − (Υ + 1)Q∗λ2 +Q∗ = 0. (5.77)

Setting χ = λ
√

1 + Υ, and q = Q∗(1 + Υ)
3
2 , the cubic can be simplified to

χ3 − qχ2 + q = 0. (5.78)

Now the structure of the solution depends on the sign of Q∗. Motivated by the purely

viscous calculation of §5.2, and on physical grounds, we anticipate that Q∗ should be

positive, i.e. the liquid should flow from the lamella into the Plateau border. Therefore we

assume that q > 0 and deduce that (5.78) has at least one negative real root, χ = −χ∗(q)

say, where

χ∗ = −q
3

+
2

1
3 q2

3f(q)
+
f(q)

2
1
3 3
, (5.79)

and

f(q) =
(

27q − 2q3 + 3
√

3q
√

27 − 4q2
)

1
3

. (5.80)

The other two roots are, in terms of χ∗,

χ± =
χ∗

2(1 − χ∗2)

(

1 ±
√

4χ∗2 − 3
)

, (5.81)
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which are real if χ∗ >
√

3/2 and form a conjugate pair with positive real part if χ∗ <
√

3/2.

The corresponding behaviour for ĥ and Ĉ is monotonic decay in the former case and

oscillatory decay in the latter.

The corresponding condition on q for oscillatory behaviour reads

q =
2Q

h0

√
TC0

(

1 +
Ph0

2

)
3
2

<
3
√

3

2
. (5.82)

and using (5.62), this condition reads

B =
4
√

2Q
(

1 + Ph0

2

)2

3
√

3
√

T CI(2 + P)h
3
2
0

< 1. (5.83)

So, as we approach −∞, we find that we must suppress one growing mode (the one given

by χ = −χ∗), and the other two modes decay either monotonically or in an oscillating

fashion, as dictated by (5.83). In either case, for a given set of parameters (including h0

and Q), there is a one-parameter family of solutions leaving ξ̂ = −∞ (as in Tuck and

Schwartz [75]) of the form

ĥ ∼ 1 + α
(

eξ̂χ− + eξ̂χ+

)

, (5.84)

where α is a free parameter and translational invariance has been used to make the

coefficients of the two exponentials the same.

We consider two possible numerical procedures for solving the problem. One alternative

is to start from ξ̂ = −∞ (in practice, some large negative value), in which case we have

two shooting parameters, α (c.f. (5.84)) and Q to vary, and two conditions ĥξ̂ξ̂ → h0/T C0

and Ĉ → (1−C0)/C0 to satisfy as ξ̂ → ∞. Thus it is at least plausible that the problem

is well posed and that Q is uniquely determined. The method that we prefer to employ,

however, is to start from ξ̂ = ∞ (again, really a large positive value), in which case we

only have one free parameter Q, which we vary in order to satisfy ĥ→ 1 as ξ̂ → −∞.

We note that, since Q is not known a priori, we are not able, given a set of parameters,

to decide whether or not we would expect oscillating solutions before attempting the

numerical solution.

5.3.5 Summary

We summarise the results presented above before obtaining numerical solutions of the

transition region model.
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• There is a relationship between the concentration and thickness in the lamella which

reads

C0 = CI
(2 + P)h0

2 + Ph0

. (5.85)

• The behaviour at the Plateau border end of the transition region depends on the

size of

K =
P

(2 + P)CI

. (5.86)

This condition does not depend on h0 or Q. If K > 1, then C → 1 from below. If

K < 1, we have C → 1 from above, and since the concentration in the lamella is less

than that in the Plateau border (except possibly at t = 0), we must have Cξ = 0

somewhere, and hence C must be nonmonotonic.

• The behaviour at the lamella end of the transition region is determined by the size

of

B =
4
√

2Q
(

1 + Ph0

2

)2

3
√

3
√

T CI(2 + P)h
3
2
0

. (5.87)

If B < 1, we expect oscillating solutions as we approach the lamella. If B > 1, we

expect monotonic behaviour as we approach the lamella.

• We appear to have a well-posed system which, upon numerical solution, will yield

the flux Q for each given value of h0, P ,T and CI . Our plan is to solve for Q(h0)

with all the other parameters fixed, and then find the evolution of the lamella using

(5.61).

The flow of information is shown in Figure 5.7. The arrows show how the information is

transmitted between the regions, and shows that we pass information about the surfactant

concentration into the transition region from both the lamella and the Plateau border,

and we pass information about the liquid from the Plateau border into the transition

region and then into the lamella.

5.3.6 Results and discussion

We solve the transition region system (5.65)-(5.66) to obtain Q = Q(h0). To demonstrate

two classes of solutions to the transition region model, we start by keeping h0, P and T
fixed while varying CI . First, we use h0 = 0.8, P = 5, T = 5, CI = 0.5, and we find

that Q = 0.4292. We calculate B = 1.405 > 1, and so we expect monotonic behaviour as

ξ → −∞. We also have K > 1 , and so expect C → 1 from below as ξ → ∞. The film

thickness and surfactant concentrations are shown in Figure 5.8. They exhibit monotonic

increase in both h and C, as predicted. We call such solutions ‘monotonic’. Secondly, we
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Figure 5.7: Flowchart showing information routes.

set CI = 1, and we find that Q = 0.0349. We calculate B = 0.0808 < 1, and so we expect

the solution to oscillate as we approach −∞. We also have K < 1 and so we expect

C → 1 from above as ξ → ∞. The film thickness and concentration of surfactant in this

case are shown in Figure 5.9. Both the film thickness and the surfactant concentration

are nonmonotonic, as expected. We call such solutions ‘dimpled’.

We show plots of the surface convective flux 2QC/h, bulk convective flux PQC and the

diffusive flux −hCξ when h0 = 0.8, P = 5, T = 5, and CI = 0.5 in Figure 5.10. We

see that the diffusive flux is always negative, i.e., diffusion transports surfactant from

the Plateau border into the lamella, and that the convective fluxes are both positive,

indicating that they transport surfactant from the lamella to the Plateau border. We

note that bulk convection appears to be the dominant mechanism.

We repeat this procedure for the same parameters but setting CI = 1, and we show

the results in Figure 5.11. Here, bulk convection and surface convection again transport

surfactant from the lamella into the Plateau border, but now transport by diffusion is

more complicated. We remember that the concentration profile in this parameter regime

is nonnomotonic, and that the concentration achieves a maximum within the transition

region. We see that diffusion transports surfactant out from this maximum (both towards

the Plateau border and further into the transition region).
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Figure 5.8: Results for thickness and concentration in a monotonic solution.
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Figure 5.9: Results for thickness and concentration in a dimpled solution.
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Figure 5.10: Surface convection (blue), bulk convection (green) and bulk diffusion (red)
for a monotonic solution.
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Figure 5.11: Surface convection (blue), bulk convection (green) and bulk diffusion (red)
for a nonmonotonic solution.
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We may examine the behaviour of each of these mechanisms for large ξ by substituting

the appropriate expansions from §5.3.4.1. We find

PQC ∼ PQ+ 2P(−P + CI(2 + P))
Q2

ξ
+O

(

1

ξ2

)

, (5.88)

2Q
C

h
∼ 4Q

ξ2
+O

(

1

ξ2

)

, (5.89)

−hCξ ∼ −(−P + CI(2 + P))Q+ 2(−P + CI(2 + P))
PQ2

ξ
+O

(

1

ξ2

)

, (5.90)

i.e., as ξ → ∞, the bulk convection term tends to the constant PQ from below if K > 1,

the surface convection term always tends to zero from above, and the diffusion term tends

to the constant (−P + CI(2 + P)) which is negative if K > 1. These behaviours are

supported by the numerical solutions above.

We now calculate the pressure in the transition region using

p = −1

2
hxx. (5.91)

As we would expect, in a monotonic solution, shown in red in Figure 5.12, we see that the

pressure decreases monotonically from 0 to −1/2. In a dimpled solution, shown in blue

in Figure 5.12, we see that the pressure variation is non-monotonic.
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-0.3
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Figure 5.12: Pressure in a monotonic solution (red) and a dimpled solution (blue).
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Figure 5.13: Barigou and Davidson’s rejected transition region.

Notice that in the latter case there is a maximum of pressure in the transition region,

i.e., the pressure increases to a value greater than zero before a sudden decrease to a

value just below −1/2. The pressure then tends to −1/2 from below. We compare this

pressure distribution with that dismissed by Barigou and Davidson [5], shown in Figure

5.13. Since they have a sharp change in boundary structure at the start of the transition

region (a change from a stress-free boundary in the lamella to a ‘no-slip’ boundary in the

transition region), they have a ‘step rise in pressure’ at the ‘inlet to the contraction zone’.

It is this step that they reject as unphysical. Our results have a gradual change in stress

at the surface and we obtain a smooth profile for the pressure when we have a dimpled

solution. We therefore see no reason to reject this type of solution on the basis of the

pressure profile.

We now generate Q = Q(h0) for a given set of parameters. We take P = 0.5, T = 0.5,

CI = 0.1, and we vary h0 from 1 to 0.1 (to tie in with the initial and critical values used

in §5.2 earlier). Here, we have K > 1, and so we expect C → 1 from below as ξ → ∞.

The variation is shown in Figure 5.14. Surprisingly, the flux increases as h0 decreases, in

contrast with the surfactant-free case.

We show the thickness of the transition region for h0 between 0.1 and 1 (using these

parameters) in Figure 5.15, and we show some of the corresponding concentrations in

Figure 5.16. These may be thought of as “time snapshots” of the transition region as

the lamella drains from h = 1 to h = 0.1. We calculate B for each of the snapshots. We

find that, for h0 = 0.6 and larger, we have B < 1, while for the other solutions, we have
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Figure 5.14: Graph showing Q as a function of h0 for P = 0.5, T = 0.5, CI = 0.1.
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Figure 5.15: Transition region thickness for various values of h0, with P = 0.5, T = 0.5,
CI = 0.1.

B > 1. If we examine the solutions closely for large negative ξ, we see that the solutions

agree with this prediction. We note that condition (5.87) for oscillatory solutions contains

the factor Q/h
3
2
0 , and that this factor increases as h0 decreases, with the flux as shown in

Figure 5.14. Hence, (5.87) dictates that the oscillations as ξ → −∞ die away as the film
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Figure 5.16: Concentration in the transition region for various values of h0, with P = 0.5,
T = 0.5, CI = 0.1

thins. This is supported by this numerical evidence. However, we note that, for h0 = 0.5,

0.4 and 0.3, a single oscillation remains close to ξ = 0 even after the small oscillations

have died away. We have thus far been unable to explain this using asymptotics.

We are now in a position to determine the time taken for the lamella to drain. We

(numerically) integrate (5.61), and find that the time taken for the lamella to reach its

critical thickness, hcrit = 0.1, is t = 9.085. A graph of lamella thickness h against time is

shown in Figure 5.17. We note that, from the graph, it appears that h tends to zero in

finite time. Whether this does in fact occur depends on the behaviour of Q as h0 → 0,

and we return to this point in §5.3.6.1 below. We redimensionalise the time to rupture

using the timescale L/U = 10s. Hence tcritD ∼ 90 s for the parameter values chosen here.

This is at least in the right ball park, and is certainly much closer to the timescale for

rupture of a typical foam film than the prediction of §5.2.
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Figure 5.17: Graph showing lamella thickness versus time for P = 0.5, T = 0.5, and
CI = 0.1.

5.3.6.1 Unexpected results

While attempting numerical solutions to the transition region model, we found the fol-

lowing surprising behaviour. We noticed that, for some parameter regimes, Q appears to

tend to infinity at a finite value of h0. We illustrate such behaviour in the case when we

have CI = 0.5, P = 5, and T = 5, shown in Figure 5.18. We were unable to find a value

of Q for h0 ≤ 0.58. At first, we dismissed these results as erroneous, but such behaviour

can in fact be justified asymptotically. For convenience, we combine (5.65) and (5.66) to

eliminate C, giving

h3h′′′ = Q(Ph+ 2)

(

hh′′ − 1

2
h′

2

)

+ 2QT C0

(

1 − h

h0

)

, (5.92)

with

h→ h0 as ξ → −∞, (5.93)

h ∼ 1

2
ξ2 + T (1 − C0) as ξ → ∞. (5.94)

We then reduce the order of the problem by setting h′2 = G(h). (Note that the solutions

of interest here are all monotonic, so there is no problem defining G(h)). The problem

becomes √
GGhh =

Q

h3
(2 + Ph) (hGh −G) +

4QT C0

h3

(

1 − h

h0

)

, (5.95)

where

G(h0) = 0, G′(h0) = 0, (5.96)
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Figure 5.18: Graph showing Q against h0 for CI = 0.5, P = 5, and T = 5.

G ∼ 2h− 2T (1 − C0) as h→ ∞. (5.97)

In our earlier approach, we varied h0 and found the corresponding value for Q. Here, we

use the opposite idea, i.e., we let Q→ ∞, and see if we can deduce a value for h0.

First, we consider the problem near to the Plateau border. We note that (5.95) is singular

as Q→ ∞, i.e., to lowest order the highest derivative disappears. However, as h becomes

large to match with the Plateau border this term comes back in at leading order. The

appropriate scaling is h = Q2ĥ, G = Q2Ĝ, and we arrive at

ĥ3
√

ĜĜĥĥ =

(

Pĥ+
2

Q2

)

(ĥĜĥ − Ĝ) +
4T C0

Q2

(

1

Q2
− ĥ

h0

)

, (5.98)

with

Ĝ ∼ 2ĥ− 2T (1 − C0)

Q2
as ĥ→ ∞. (5.99)

We seek an outer solution as an asymptotic expansion in powers of 1/Q2, and the leading-

order problem reads

ĥ3
√

G0G0ĥĥ =
1

2
Pĥ(ĥG0ĥ −G0). (5.100)

It is fortunate that we can spot a solution to (5.100) which also satisfies the boundary

condition as ĥ→ ∞, namely

G0 = 2ĥ. (5.101)
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We need not look for a more general solution since we have already established that the

solution eminating from ∞ is unique. Comparing terms of O(1/Q2), we find

√

2ĥG1ĥĥ =
P
ĥ2

(ĥG1ĥ −G1) −
4T C0

h0h2
. (5.102)

This has the solution

G1 =
1

2P2

(

ĥ

(

α1 −
√

2P(α1 − α2)
√

ĥ
e
−

√
2P√
ĥ + (α2 − α1)e

−
√

2P√
ĥ

))

− 4T C0

Ph0

. (5.103)

We want G1 ∼ −2T (1 − C0) as ĥ→ ∞, so we set α2 = 0, and

α1 =
8T C0

Ph0
− 4T (1 − C0). (5.104)

Therefore Ĝ reads

Ĝ ∼ 2ĥ+
1

P2Q2

(

8T C0

Ph0

− 4T (1 − C0)

)(

ĥ− (ĥ+ P
√

2ĥ)e
−

q

2

ĥ
P
)

− 4T C0

Ph0Q2
+O

(

1

Q4

)

.

(5.105)

We obtain a matching condition for the inner problem by susbtituting Ĝ = G/Q2, ĥ =

h/Q2 and thus the two-term outer expansion of the two-term inner solution must read

G ∼ −4T C0

Ph0

+ 2h+

(

8T C0

h0P3Q2
− 4T (1 − C0)

P2Q2

)

h, (5.106)

as h→ ∞.

We now consider (5.95) in the limit Q → ∞. We seek an asymptotic solution in powers

of 1/Q, and the leading-order equation reads

hGh −G+
4T C0

(2 + Ph)

(

1 − h

h0

)

= 0, (5.107)

which has the solution

G = αh+
1

4h0

[

8T C0h0 + (8T C0 + 4T C0h0P)h log

(

h

2 + Ph

)]

. (5.108)

Applying the matching condition (5.106) at leading-order, we obtain

G = 2h

[

1 +
CI(2 + P)T

2
log

( Ph
2 + Ph

)]

+
2T CI(2 + P)h0

2 + Ph0

. (5.109)

We remember that here we are trying to find h0 as a function of Q (in the limit as Q→ ∞)

and to do so we apply the left-hand boundary conditions G(h0) = 0 and G′(h0) = 0. We

set

h0 = hc +
hc1

Q
+
hc2

Q2
+ . . . , (5.110)
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so that hc is the value of h0 (if it exists) at which Q approaches infinity, and satisfies

G(hc) = 0, i.e.

2hc

[

1 +
CIT (2 + P)

2
log

( Phc

2 + Phc

)]

+
2T CI(2 + P)hc

2 + Phc
= 0. (5.111)

For given CI , P and T , (5.111) has two nonnegative solutions for hc, one of which is

hc = 0. However, this can be rejected since one can readily show that G′(0) 6= 0. The

other, positive, solution for hc does satisfy G′(hc) = 0. For T = 5, P = 5, and CI = 0.5,

this gives hc = 0.587. So, our numerical observations that Q → ∞ for h0 around 0.59

appear to have been justified. With T = 0.5, P = 0.5, and CI = 0.1, we calculate

hc = 4.4 × 10−7. Clearly, in our calculations we did not make h0 small enough to notice

the presence of this hc. We note that the existence of hc, however small, explains why the

flux increases as h0 decreases.

In general, the positive solution of (5.111) can be written as

h̃c = Phc = F (T ∗), (5.112)

where T ∗ = CIT (2 + P), and F is given by

T ∗ = − 2(2 + F (T ∗))

(2 + F (T ∗)) log
[

2+F (T ∗)
F (T ∗)

]

+ 2
. (5.113)

We show the solution to (5.113) in Figure 5.19. We note that, as T ∗ → 0, F → 0, and

we find that the behaviour is

F ∼ 2e−1− 2
T ∗ as T ∗ → 0, (5.114)

and in particular if T ∗ is small, F is exponentially small. This is the reason why we did

not notice the presence of hc when we took CI = 0.1, and T = P = 0.5 earlier. We also

note that, as T ∗ → ∞, F → ∞, and

F ∼
√
T ∗ as T ∗ → ∞, (5.115)

and so, for large enough T ∗, we are in a situation where hc > 1 (i.e., the critical thickness

is above the starting thickness of the lamella) and we cannot even start to follow the

evolution of h.

Of course, in practice the flux cannot become infinite on physical grounds. We anticipate

that, as Q becomes large, some physical effects that have thus far been neglected become

important. Moreover, these should then describe the behaviour of Q for h < hc. There
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Figure 5.19: Graph showing how the function F varies with T ∗

is more than one candidate for the relevant extra effect; for example, it could be inertia,

but we will only assess the effect of the viscous term that was neglected in (5.43). When

this term is included, the transition region model reads

uh = Q, (5.116)

−νQ
(

hξ

h

)

ξ

+ hhξξξ − T Cξ = 0, (5.117)

hCξ = PQ(C − C0) + 2Q

(

C

h
− C0

h0

)

, (5.118)

where ν = 8δCa/ǫ. Using our velocity scaling, ν ∼ 4 × 10−5 << 1. As previously, we

re-write the problem as one equation for h, which reads

h3h′′′ = Q(2 + Ph)
(

hh′′ − 1

2
h′

2

)

+ 2T C0

(

1 − h

h0

)

+ νQ

(

h

(

h′

h

)′
− 2Q

h′

h
−PQh′

)

.

(5.119)

We set G = h′2, and the problem becomes

h3
√
GGhh =Q(2+Ph)(hGh −G)+4T QC0

(

1 − h

h0

)

+νQ

(

Gh−
2G

h
−Q

(

4

h
+ 2P

)√
G

)

.

(5.120)

We can see that for Q ∼ O(1), we have the problem that we have just considered, but for

Q ∼ O(1/ν) the viscous terms come in and we have the equation

hGh −G+
4T C0

2 + Ph

(

1 − h

h0

)

− 2

h
Q̃
√
G = 0, (5.121)
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where Q̃ = νQ. We note that Q̃ is the viscous scaled flux that we considered in §5.2.

We hope that the solution to this equation will provide insight into what happens to the

solution after the lamella thickness has reached hc. In any case, since the flux becomes

very large at this thickness, we assume that the rest of the drainage occurs on the (much

faster) viscous timescale, and so the film thins to the rupture thickness very quickly.

We conclude by summarising the behaviour of the solution that we have uncovered in this

subsection.

• We are able to find a solution to the surfactant problem (5.65)-(5.66) providing h0

is larger than a critical value hc given by
[

1 +
CIT (2 + P)

2
log

( Phc

2 + Phc

)]

+
T CI(2 + P)

2 + Phc
= 0. (5.122)

• As h0 → hc from above, Q→ ∞.

• To find the behaviour of solutions once the lamella has thinned to hc, we must

include more physics; we considered introducing the viscous terms. We obtain a

new model that holds when viscous effects are significant.
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Lamella drains

Lamella drains with slow velocity

Q→ ∞

(Viscous forces
become important)

Figure 5.20: Schematic showing how the thickness of a lamella changes with time. The
upper part of the curve was calculated for CI = 0.5, P = 5, T = 5.

• We hypothesise that the film thins from hc to hcrit on the fast viscous timescale and

we show a schematic of our conjecture for the variation of the film thickness with

time in Figure 5.20.
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We conjecture that if hc > 1, the surfactant is unable to prolong the life of the film, since

for h0 = 1 < hc, we are already in the regime that requires a viscous velocity scaling.

5.3.7 Including the ‘lubrication’ term

We now take into account the effect of nonzero β̃ on the solution. If β̃ = O(1), then the

lamella model remains the same but the transition region model is modified. We have

ūh = Q, (5.123)

T (C − C0) = hhξξ −
h2

ξ

2
, (5.124)

(1 + βT C)hCξ = PQ(C − C0) + 2Q

(

C

h
− C0

h0

)

, (5.125)

where β = 2β̃, with

hξξ → 1, C → 1, as ξ → ∞, (5.126)

h→ h0, u→ Q

h0
, C → C0, as ξ → −∞, (5.127)

and

u = ū+ 3β

(

−y2 +
1

12
h2

)

hξξξ, (5.128)

C0 =
CI(2 + P)

2 + Ph0
h0. (5.129)

5.3.7.1 Behaviour as ξ → ±∞

In order to check that the problem is well-posed, we must again consider the asymptotic

behaviour of this system. We scale C = C0 +C0Ĉ, h = h0ĥ and ξ = h0/
√
T C0ξ̂, and the

system of equations becomes

Ĉ = ĥĥξ̂ξ̂ −
ĥ2

ξ̂

2
, (5.130)

(

1 + β∗ + β∗Ĉ
)

ĥĈξ̂ = Q∗ΥĈ +Q∗

(

Ĉ + 1

ĥ
− 1

)

, (5.131)

where, as before, Υ = Ph0/2, Q∗ = 2Q/(h0

√
T C0), and we have the extra parameter

β∗ = βT C0. On substituting

ĥ =
a1ξ̂

2

2
+ a2ξ̂ + a3 +

a4

ξ̂
+
a5

ξ̂2
+O

(

1

ξ̂3

)

, (5.132)

(again, we do not explicitly search for exponentially small terms), we find that

Ĉ = a1a3 −
a2

2

2
+

3a1a4

ξ̂
+

3a2a4 + 6a1a5

ξ̂2
+O

(

1

ξ̂3

)

. (5.133)
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Using (5.131),

a4 = −
2
(

Q∗Υ
(

a1a3 − a2
2

2

)

−Q∗
)

3a2
1

(

1 + β∗ + β∗
(

a1a3 − a2
2

2

)) , (5.134)

a5 = −a2a4

a1

−

(

a4Q∗Υ
2a1

+
3a1a2

4β∗

4

)

1 + β∗ + β∗
(

a1a3 − a2
2

2

) , (5.135)

which reduce to (5.72) and (5.73) when β∗ is set to zero. Imposing boundary conditions

as ξ̂ → ∞, we see that a1 = h0/(T C0) and a1a3 − a2
2/2 = (1 − C0)/C0. Hence, imposing

a2 = 0 by translational invariance, we see that the solution satisfying the conditions at

ξ̂ = ∞ is unique.

If we look for stability of ĥ = 1 by substituting ĥ = 1 + aeλξ̂ as ξ̂ → −∞, we obtain

(1 + β∗)λ3 = Q∗(Υ + 1)λ2 −Q∗, (5.136)

as the equation for λ. In this case, we may reduce (5.136) to (5.78) by setting χ = λ
√

Υ + 1

and q = Q∗(1 + Υ)
3
2/(1 + β∗). We therefore expect oscillations of the solution as we

approach minus infinity if

2Q
(

1 + Ph0

2

)
3
2

h0

√
T C0(1 + βT C0)

<
3
√

3

2
, (5.137)

i.e., if

B =
4
√

2Q
(

1 + Ph0

2

)2

3
√

3h
3
2
0

√

T CI(2 + P)
(

1 + βT CI(2+P)h0

2+Ph0

) < 1. (5.138)

We either have two real roots indicating monotonic behaviour or a conjugate pair suggest-

ing oscillatory behaviour as we approach the lamella. Again, we have a one-parameter

family of solutions eminating from ξ̂ = −∞. We conclude that we are not over-specifying

the problem, and that, as before, the most convenient numerical solution procedure is to

start from ξ̂ = ∞ and vary Q until ĥ→ 1 as ξ̂ → ∞.

5.3.7.2 Surface and centre-line velocities as ξ → ∞

We use asymptotics to examine the behaviour of the velocities as we approach the Plateau

border. Scaling h = h0h
′, y = h0y

′, ξ = h0/(
√
T C0)ξ

′ and u = (T C0)
3
2u′, we have

(dropping primes)

u′ =
Q
h′

+ 3βh′ξ′ξ′ξ′

(

1

12
h′

2 − y′
2

)

, (5.139)
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where Q = Q/(h0(T C0)
3
2 ). Calling u′cl the velocity of the liquid at the centreline, we have

the following expressions for u′s and u′cl

u′s =
Q
h′

− β

2
h′

2
h′ξ′ξ′ξ′ , (5.140)

u′cl =
Q
h′

+
β

4
h′

2
h′ξ′ξ′ξ′ . (5.141)

Using (5.69),

u′s ∼
3a2

1a4β

4
+

3a5a
2
1β

ξ′
+

2Q
a1

+ β
2
(6a1a3a4 + 15a2

1a6)

ξ′2
+O

(

1

ξ′3

)

, (5.142)

u′cl ∼ −3a2
1a4β

8
− 3a5a

2
1β

2ξ′
+

2Q
a1

− β
4
(6a1a3a4 + 15a2

1a6)

ξ′2
+O

(

1

ξ′3

)

, (5.143)

and we use the expression for a4 given by (5.72) to decide whether we have u′s > 0, u′cl < 0

or u′s < 0, u′cl > 0 as ξ′ → ∞. If we set

D =
Ph0

2

(

2 + Ph0

CI(2 + P)h0
− 1

)

− 1 =
2 + Ph0

2
(K − 1), (5.144)

then we have u′s > 0 if D < 0 and vice versa, i.e., u′s > 0 if K < 1. In the special case where

CI = P/(2+P) (i.e., K = 1), both a4 and a5 are zero, but a6 = −Q∗T /(h0(1+β∗+ 2β∗

Ph0
)) 6=

0. Here, we have u′s, u
′
cl → 0 as ξ′ → ∞, where u′cl always approaches from above and u′s

approaches from above providing

PT (1 + βT )

15β(2 + Ph0)2
> 1. (5.145)

5.3.7.3 Summary

In addition to the points raised in §5.3.5, we have

• The condition for oscillating solutions as ξ → −∞ is

B =
4
√

2Q
(

1 + Ph0

2

)2

3
√

3h
3
2
0

√

T CI(2 + P)
(

1 + βT CI(2+P)h0

2+Ph0

) < 1. (5.146)

• The surface velocity is positive as we approach the Plateau border if K < 1, and

the centre-line velocity is negative. If K > 1, then the surface velocity is negative

and the centreline velocity is positive. We therefore expect eddies to be set up at

the entrance to the Plateau border, with direction of rotation being determined by

K.
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5.3.7.4 Results and discussion

We solve the transition region model and, again, see the two classes of solution. Here, since

the liquid velocity is no longer extensional, we can visualise the flow easily by plotting

the velocity field. To do this, we must use the vertical velocity, which reads,

v =
Q

h2
hxy − βhxxxx

(

h2

4
y − y3

)

− β

2
hhxhxxxy. (5.147)

With T = 5, P = 5, CI = 0.5, h0 = 0.8 and β = 1, we find that Q = 2.008. We calculate

B = 1.97 > 1 and hence we expect no oscillations. We note that, as before, K > 1,

and so we expect that C → 1 from below and that us < 0, ucl > 0 as ξ → ∞. We

show the transition region shape and the velocity field in the region in Figure 5.21 (we

do not show the monotonic increasing concentration profile). We observe a monotonic

solution in which the velocity decreases as the liquid approaches the Plateau border, and

the centre-line velocity is positive while the surface velocity becomes negative. Eddies are

set up at the entrance to the Plateau border which drive liquid down the transition region

walls while returning it along the centre-line.

-4 -2 2 4

-4

-2

2

4

Figure 5.21: Velocity field for a solution where K > 1.
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Figure 5.22: Velocity field for a solution where K < 1.

With T = 5, P = 5, CI = 1.0, h0 = 0.8 and β = 1, we find Q = 0.2095. We calculate

B = 0.086 < 1, predicting oscillations, and since K < 1, we expect that us > 0 and ucl < 0

as ξ → ∞. Plots of the transition region shape, along with velocity field are shown in

Figure 5.22. We observe a dimpled solution in which the velocity decreases in magnitude

as the liquid aproaches the Plateau border, and the velocity beomes negative on the

centre-line, and is always positive along the free surfaces. In contrast to the previous

case, eddies are now set up which send the liquid in the opposite direction, that is, the

liquid moves into the Plateau border along the walls and out along the centreline.

We stress that the cases us > 0, us < 0 are not dependent on whether or not we have a

dimpled solution, but merely on whether K ≷ 1. We examine the effects of increasing the

value of β from zero to one in the two cases we presented earlier. Surface velocities and

the centreline velocities for β = 0 (black), 0.2 (red), 0.4 (green), 0.6 (blue), 0.8 (purple)

and 1.0 (cyan) are shown in Figure 5.23. When β = 0 the liquid velocity is everywhere

positive. With nonzero β, we note that in the K > 1 case (with CI and P fixed), increasing

β from zero creates a stagnation point which travels down the free surface from infinity.

The centreline velocity remains positive everwhere in this case. When K < 1, increasing

β from zero creates a stagnation point on the centreline which travels in from infinity.
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Figure 5.23: Graphs showing surface velocities and centreline velocities in the cases CI <
P/(2 + P) (figures (a) and (c)) and CI > P/(2 + P) (figures (b) and (d)), for β = 0
(black), 0.2 (red), 0.4 (green), 0.6 (blue), 0.8 (purple), and 1.0 (cyan).
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The surface velocity remains positive everywhere in this case.

We proceed to generate Q = Q(h0) for a given set of parameters. We take P = 0.5,

T = 0.5, CI = 0.1, and β = 1, and we vary h0 from 1 down to 0.1. The variation of Q

with h0 is shown in Figure 5.24. As previously, we see that Q increases as h0 decreases.

We briefly comment on the behaviour of the solution as Q→ ∞. In this case, we combine

(5.124)-(5.125) to give

(

1 + βT C0 + β

(

hh′′ − 1

2
h′

2

))

h3h′′′ = Q(Ph+ 2)

(

hh′′ − 1

2
h′

2

)

+ 2QT C0

(

1 − h

h0

)

,

(5.148)

and the boundary conditions remain the same, viz (5.93)-(5.94). Here, we do not attempt

to analyse asymptotically this equation in the limit as Q → ∞. Rather, we note that

the condition (5.122) giving hc in the extensional flow case was obtained by considering

the leading-order inner problem in the limit as Q → ∞, and that (5.148) has the same

leading-order behaviour. We therefore have the same condition for hc, namely (5.122).

We note that this is a preliminary result and that we have yet to check that the matching

with the outer problem can be completed without any complications.

Finally, we integrate (5.61), to give h = h(t) as shown in Figure 5.25 and calculate the

time taken for the lamella to reach its critical thickness, which is t = 8.82, which we

redimensionalise to give tcritD = 88 s. Comparing this to the case β = 0, we see that the

inclusion of the parabolic velocity profile has resulted in a slight decrease in the rupture

time. We stress that the main effect of including the lubrication term is that it either

retards the surface flow and accelerates the centre-line flow, or vice versa, depending on

the magnitude of K.
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Figure 5.24: Graph showing Q as a function of h0 for P = 0.5, T = 0.5, CI = 0.1, and
β = 1.
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Figure 5.25: Graph showing lamella thickness with time for P = 0.5, T = 0.5, CI = 0.1
and β = 1.0.
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5.3.8 Conclusions

We present a summary of the important results and behaviour of the solutions that we

have uncovered in this section.

• We identified a relationship between the lamella concentration and thickness, which

we used in the solution of the transition region model.

• In the summary §5.3.5, we presented conditions on two key parameters, K and B
which determine the behaviour at the Plateau border end and lamella end of the

transition region respectively, in the case when β = 0. The corresponding conditions

when β ∼ O(1) were given in §5.3.7.3.

• We examined numerical solutions to the transition region model and showed that

they had the behaviour predicted by the key parameters.

• The solutions fall into three categories: monotonic solutions, solutions that are

nonmonotonic but tend monotonically to the lamella thickness, and nonmonotonic

solutions that oscillate as the lamella is approached.

• We obtained the flux of liquid from the lamella into the transition region, as a

function of lamella thickness, for a given set of parameters.

• We solved the lamella model, using this flux, to obtain a time to critical thickness,

which on redimensionalising, was 90 seconds in the β = 0 case, and was slightly

reduced in the β = 1 case.

• We found (numerically) that, for some parameter values, the flux tends to infinity

at a finite lamella thickness. We were able to predict this thickness by considering

the Q → ∞ limit of the model. We conjectured that viscosity enters the model

when Q became sufficiently large, and enables the lamella to carry on thinning.

• We saw that, when β is nonzero, eddies are set up in the transition region which

draw liquid into the Plateau border along the centreline in one case, and along the

free surfaces in another. The size of K determines which scenario occurs.

In the following two sections, we present and solve the models for a lamella stabilised by

CTAB and an insoluble pulmonary surfactant. The methodology used is identical to that

in this section, so we omit the bulk of the details.
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5.4 Example: evolution of a thin film stabilised by

CTAB

We use the ideas of the previous section to look at drainage of a lamella stabilised by

CTAB. We recall that for CTAB, D ∼ 5 × 10−10 m2 s−1, and if we proceed using the

velocity scaling given in (5.35) we find that U ∼ 2.5×10−6 m s−1. We calculate Pe ∼ 0.05

but β ∼ 2500. Since ǫ ∼ 10−3, including such a large β is asymptotically dubious. We

conclude that the velocity used in §5.3 is inappropriate in this case. We note that we

must still have a nontrivial balance in the surfactant equation in the transition region or

we will not have gradients in the concentration field and hence a Marangoni stabilisation.

To obtain (5.35), we balanced diffusion with surface convection in the transition region,

while assuming that the resulting Péclet number would be O(1) (with respect to ǫ). Here,

we choose to balance diffusion to the surface and surface convection while assuming that

Pe ∼ O(ǫ−1). With this in mind, we set

S = 1 U =
D

η
, (5.149)

which gives U ∼ 5 × 10−5 m s−1. Our timescale here is T = L/U = 20 s. We calculate

the parameter values, and find that Pe ∼ 100 ∼ O(ǫ−1), β̃ ∼ 5, Ca ∼ 10−6 and T ∼ O(1)

(for C ∼ O(10−3)−O(10−2) mol m−3) and so we use the model given in §4.5.2.1 for flows

where Pe ∼ O(ǫ−1) and S ∼ O(1). We set ǫPe = P∗, and we operate in an intermediate

regime where diffusion may be neglected. Our plan, again, is to consider the Plateau

border first, then the lamella and finally to match between the two.

5.4.1 Plateau Border

Here, we check that the concentration may be considered constant in the Plateau border.

We follow the ideas of §5.3.2. The flux out is, again, due to bulk and surface convection,

and, since (5.50) is independent of the velocity scale chosen, we read off that dCPb/dt ∼
10−1QCl, i.e. the concentration in the Plateau border is constant on the lamella drainage

timescale. We also calculate Ca ∼ 10−6 and so we also conclude that the Plateau border

shape is governed by capillary statics.

5.4.2 Lamella

In the lamella, the model is identical to that described in §5.3.3, and so we read off

C =
CI(2 + P∗)h

2 + P∗h
, (5.150)
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u =
Q(h)

h
x, (5.151)

∫ 1

h

dH
Q(H)

= t. (5.152)

5.4.3 Transition region

Our transition region model reads

(ūh)ξ = 0, (5.153)

hhξξξ = T Cξ, (5.154)

P∗h (uCξ) + 2 (usC)ξ = 0, (5.155)

where

us = ū− β

2
h2hξξξ, (5.156)

as before. We might, in the first instance, think that we would be unable to apply

two conditions on the concentration problem, since we have lost the diffusion term from

(5.155). However, we remember that the lubrication part of the surface convection term

also provides a second derivative (for C), and so we have not reduced the order of the

problem by neglecting diffusion.

Equations (5.153)-(5.155) can be simplified to

hhξξ −
h2

ξ

2
= T (C − C0), (5.157)

βT hCCξ = P∗Q(C − C0) + 2Q

(

C

h
− C0

h0

)

. (5.158)

We note that we are able to obtain (5.158) from (5.125) by dividing through by β in

(5.125) and then taking the limit β → ∞ while Q/β ∼ O(1). Hence, the asymptotic

solutions presented in §5.3.7 can be easily modified to cater for our current situation (by

removing the constant 1 that occurs in the denominators of a4 and a5, for example), and

we have a unique solution (up to translation) leaving ξ = ∞.

We set Q∗ = Q
β
, and work with Q∗ in our numerical simulations. We take T = 1, P∗ = 0.1

β = 10.4 and CI = 0.1, and we vary h0 from 0.1 to 1 as before, to find Q∗ as a function

of h0. We show the behaviour in Figure 5.26.

We find that
∫ 1

0.1

dH
Q∗ = 3.61, (5.159)

143



0.2 0.4 0.6 0.8 1

h0

0.25

0.3

0.35

0.4

0.45

Q

Figure 5.26: Graph showing the variation of Q∗ with h0 for T = 1, P∗ = 0.1 and CI = 0.1

and so the time to rupture t = 3.61/β = 0.347. Hence, redimensionalising, we find that

tcritD = 6.94 s.

We note that as Q → ∞, (5.157)-(5.158) has the same leading-order behaviour as (5.92)

and so the critical thickness defined by (5.111) applies to this problem too.

5.4.4 Implications

We found a rupture time for a lamella stabilised by a dilute CTAB solution to be about 7

seconds. We note that this is a plausible time for collapse of such a film. We comment that

neglecting the diffusion term has resulted in a model which exhibits the same qualitative

behaviour as shown in the previous section (where diffusion was included).

We shall use the function Q(h0) found in this section in the next chapter when describing

a macroscopic foam model.
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5.5 Example: evolution of films stabilised by insolu-

ble surfactants

In the presence of an insoluble surfactant, we include viscous, capillary, Marangoni, con-

vective and diffusive effects. Assuming symmetry about the centerline, we have

ht + (ūh)x = 0, (5.160)

(4hūx)x −
2Ma

ǫ
Γx +

ǫ

2Ca
hhxxx = 0, (5.161)

Pes(Γt + (usΓ)x) = Γxx, (5.162)

where

us = ū− ǫ3

24Ca
h2hxxx, (5.163)

p = −2ūx −
ǫ

2Ca
hxx. (5.164)

We note that in this model we include surface diffusion, which has thus far been neglected.

For realistic velocities we expect the viscous term in (5.161) to be negligible compared to

the other two terms (taking U ∼ 10−4 m s−1 for example, the viscous term is O(10−2))

and when we neglect this term, the problem is somewhat degenerate unless we include

the surface diffusion term (for example, there is no intrinsic velocity scale).

We choose our velocity scaling by balancing surface diffusion and convection in the tran-

sition region, which tells us that

U =
Ds√
ǫaL

. (5.165)

Using a value for Ds for a pulmonary surfactant , given by Halpern and Grotberg [32],

of 1 × 10−8 m2 s−1, we find that U ∼ 5 × 10−4 m s−1. We calculate β̃ ∼ 0.5 and, with a

choice of ∆γ ∼ 5× 10−5 N m−1, we have T ∼ 1.6. We find our timescale T = L/U = 2 s.

The model that holds in the lamella reads

ht + (uh)x = 0, (5.166)

Γx = 0, (5.167)

Γt + (uΓ)x = 0, (5.168)

while in the transition region we have

(ūh)ξ = 0, (5.169)

T Γξ = hhξξξ, (5.170)
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(usΓ)ξ = Γξξ, (5.171)

where

us = ū− β̃h2hξξξ. (5.172)

Again, we consider the Plateau border first, then the lamella, and then the transition

region.

5.5.1 Plateau border

Here, the flux of surfactant from the lamella into the Plateau border is entirely due to

surface convection. Therefore
dΓPb

dt
∼ huΓl

a2
, (5.173)

where Γl is the concentration in the lamella. Nondimensionalising, we find that

dΓPb

dt
∼ ǫL2

a2
QΓl, (5.174)

and we calculate dΓPb/dt ∼ 6 × 10−3QΓl and so we conclude that Γ is constant in the

Plateau border on the lamella drainage timescale. Here, Ca ∼ 10−5 and so we also

conclude that the Plateau border is dominated by capillary statics.

5.5.2 Lamella

The tangential force balance (5.167) immediately integrates to give Γ = Γ(t). If we assume

that h = 1 and Γ = ΓI initially, the solution is

Γ = ΓIh, (5.175)

with

u =
Q(h)

h
x, (5.176)

and h(t) is given by
∫ 1

h

dH
Q(H)

= t. (5.177)

We use the relationship between Γ and h in the transition region, and shall return to find

the time to rupture once we have found Q(h).
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5.5.3 Transition region

We simplify the system by integrating (5.169), (5.170) and (5.171) and then, substituting

for us, obtain

ūh = Q, (5.178)

T (Γ − Γ0) = hhξξ −
h2

ξ

2
, (5.179)

Γξ =
Q

1 + β̃T hΓ

(

Γ

h
− Γ0

h0

)

, (5.180)

where we have applied the conditions that h → h0 and Γ → Γ0 as ξ → −∞. Here, it

is clear that, with β̃ = 0, the surfactant distribution equation (5.180) cannot admit a

solution which has Γ → Γ0 as ξ → −∞ and Γ → 1 as ξ → ∞. Thus, we conclude that

we must include β̃ 6= 0 in the model.

5.5.4 Asymptotics of the transition region

We examine the behaviour of the system and we find that there is a unique solution

leaving ξ = ∞. We examine the behaviour as ξ → −∞ and we find that there is a one

parameter family of solutions. As in the previous cases, we have either monotonic or

oscillating behaviour, and the condition for oscillations now reads

B =
2Qh2

0

3
√

3
√
T ΓIh0(1 + β̃T ΓIh2

0)
< 1. (5.181)

We may use the asymptotic form of the solution as ξ → ∞ to find the surface and

centreline velocities as the liquid approaches the Plateau border. We find that

h2hξξξ ∼
QΓI

β̃
+O

(

1

ξ

)

, (5.182)

for large ξ, so

us ∼ ΓIQ+O

(

1

ξ

)

, ucl = −ΓIQ

2
+O

(

1

ξ

)

, as ξ → ∞, (5.183)

i.e., we always have flow out along the free surfaces and back along the centreline, for

Q > 0. We note that this is counter-intuitive, and that this is a manifestation of the fact

that the concentration tends to 1 from above as ξ → ∞.
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5.5.5 Solution

We illustrate the solution in the limit when β̃ becomes large compared to one. This is

analagous to choosing the velocity scaling by setting β̃ = 1 and then taking the limit

Pe → 0. The surfactant model is then governed wholly by surface convection. In this

case, we set Q = Q

β̃T , and (5.180) becomes

Γξ =
Q
hΓ

(

Γ

h
− ΓI

)

. (5.184)

We employ the same solution procedure as previously, we choose the parameters param-

eters T = 0.5 and ΓI = 0.1 (and β̃ = 10), and we solve the system to find Q for each h0.

We then solve the lamella model to find the time to rupture. For T = 0.5 and ΓI = 0.1,

we show the graph of Q vs h0 in figure 5.27. We calculate that

∫ 1

0.1

dh

Q = 6.27, (5.185)

and so,
∫ 1

0.1

dh

Q
=

6.27

T β̃
= t. (5.186)

For β̃ = 10, we have t = 1.25 and so, redimensionalising, we have tcritD = 2.5 s. Again,

this time is plausible for the drainage of a real lamella. We note that we have not yet

considered the Q→ ∞ problem in this case.

5.6 Preliminary model: film stabilised by a well-mixed

volatile component

In this section we present our thoughts on modelling a lamella stabilised by a well-mixed

volatile component, but do not solve the problems arising. We include viscous, capillary

and Marangoni effects, and also mass transfer across the surfaces. Here, we have two

physical effects that we can use to select a velocity scaling; evaporation and convection.

Since we wish to examine the behaviour generated by the ability of this component to

evaporate, we use the evaporation number to determine the velocity scaling. In fact, we

assume that the Plateau border is governed by capillary statics (as before) and that the

concentration of the volatile component is constant there (we check that these are valid

assumptions in §5.6.1). We are left with a choice of either (a) having evaporation in the

lamella and not in the transition region, or (b) having no volatile in the lamella (to leading

order) and then having evaporation in the transition region. We choose to work with the
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Figure 5.27: Graph showing the variation of Q with h0 when T = 0.5 and ΓI = 0.1

former (since, when we attempted the latter, we were unable to effect the matching of the

transition region into the Plateau border). We therefore set

U =
E0

ǫ
. (5.187)

We note that this is fast (U ∼ 0.01 m s−1 for E0 ∼ 1 × 10−5 m s−1 and ǫ ∼ 10−3)

and that the associated timescale is 10−1 s. We further assume that the Péclet number

Pe ∼ O(1/δ) (i.e., that the volatile has a large diffusivity).

The general model reads (see the summary in §3.8),

ht + (ūh)x + 2Es = 0, (5.188)

(4hūx)x −
2Ma

ǫ
sx +

ǫ

2Ca
hhxxx = 0, (5.189)

(hsx)x − Peh (st + ūsx) − 2PeEs(1 − s) = 0. (5.190)

Hence, using the velocity scaling (5.187), the leading-order lamella model reads

ht + (uh)x + 2s = 0, (5.191)

sx = 0, (5.192)
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h (st + usx) + 2s(1 − s) = 0, (5.193)

while in the transition region we have

uh = Q, (5.194)

hhξξ −
1

2
h2

ξ = T (s− s0), (5.195)

hsξ − PQ(s− s0) = 0, (5.196)

where s0 is the lamella concentration.

5.6.1 Plateau border

We calculate the flux from the lamella into the Plateau border. The flux out from the

lamella is due to convection, and so

dsPb

dt
∼ uh

a2
sl, (5.197)

where sl is the concentration in the lamella. On nondimensionalising (5.197) reads

dsPb

dt
∼ ǫL2

a2
Qsl ∼ 6 × 10−3Qsl. (5.198)

Hence, the concentration in the Plateau border can be considered constant. We also

calculate that Ca ∼ 10−4 and so we conclude that the Plateau border shape is governed

by capillary statics.

5.6.2 Lamella model

Since the consequence of (5.192) is that s = s(t), for simplicity we seek a solution where

h = h(t), and, applying uh = Q at x = 1, we find that

u =
Q(h)

h
x, (5.199)

and the problem for h and s reads

ht +Q+ 2s = 0, (5.200)

hst + 2s(1 − s) = 0, (5.201)

which we couple with the conditions h = 1 and s = sI at t = 0. Once Q has been found

from the transition region, the evolution of h and s is determined by (5.200) and (5.201).
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5.6.3 Transition region

As previously, we consider how many boundary conditions we are imposing on the system.

We set

h ∼ a1

2
ξ2 + a2ξ + a3 +

a4

ξ
+
a5

ξ2
+O

(

1

ξ3

)

, (5.202)

as ξ → ∞. We find that

s = s0 +
1

T

(

a1a3 −
a2

2

2

)

+
3a1a4

T ξ +
3a2a4 + 6a1a5

T ξ2
+O

(

1

ξ3

)

. (5.203)

Using the boundary conditions

hξξ = 1 s = spb as ξ → ∞, (5.204)

we find that a1 = 1, a3 = T (spb − s0) and we may set a2 = 0 due to translational

invariance. We use (5.196) to find the other constants in the expansion. For example,

a4 = −2

3
T (spb − s0). (5.205)

The solution is, given all the parameters, again uniquely determined by the conditions at

ξ = ∞.

As ξ → −∞, we linearise about the thickness h0 and the concentration s0, assumed

known. We set h = h0(1 + aeλξ), and we find that s = s0 + h2
0aλ

2eλξ/T . We use (5.196)

to find an equation for λ,

λ2

(

λ− PQ
h0

)

= 0, (5.206)

and so we have λ = PQ/h0 or zero. Thus there is a single decaying solution as ξ → −∞
and, once translational invariance is eliminated, this implies that there is a unique solution

eminating from ξ = −∞. This differs from all our previous models in which there was a

one-parameter family of solutions coming out of ξ = −∞, and implies that in general the

present problem is not well posed.

To attempt to explain why we have lost the degree of freedom, we include the so-far

neglected viscous term, and repeat our search for the behaviour at minus infinity. The

model in this case reads

−νQhξ

h
+ hhξξ −

h2
ξ

2
= T (s− s0), (5.207)

hsξ = PQ(s− s0), (5.208)
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where ν = 8µE0δ/(ǫ
2γ). When we substitute for h = h0(1+ aeλξ), we find that λ satisfies

λ3 − λ2

(

νQ

h2
0

+
PQ
h0

)

+
νPQ2

h3
0

λ = 0. (5.209)

The roots of this equation are

λ = 0,
νQ

h2
0

,
PQ
h0

, (5.210)

and so we see that we recover the roots given above in the limit as ν → 0. The implication

is that there is a region between the lamella and the transition region in which viscous

effects must be included no matter how small ν is. In this way, two decaying solutions as

ξ → −∞ are recovered and thus the problem is rendered (at least potentially) well posed.

5.6.4 Implications

In this section we have presented a preliminary model for a thin film containing a volatile

component. Some more careful asymptotic analysis of the effect of the viscous term is

required before we can proceed with a numerical solution.

5.7 Films stabilised by the presence of surface vis-

cosity

In this section we discuss the use of surface viscosity in place of our Marangoni-induced

stress. It is our aim here to show that this simplification of the model, while enabling

an exact solution to the problem which has a plausible rupture time, does not result in a

solution which exhibits the behaviour that we have uncovered in §5.3. The liquid model

(see §4.4.4) reads

ht + (ūh)x = 0, (5.211)

(4hūx)x + 2Vs (ηusx)x +
ǫ

2Ca
hhxxx = 0. (5.212)

We suppose that Λ ∼ 2 × 10−7 Kg s−1 in line with Dey et al. [27] although we note that

this parameter appears to vary widely in the literature (for example Bikerman [11] has

surface viscosity of 3 × 10−5 Kg s−1). Hence, the viscosity ratio is O(ǫ−1).

To effect our decomposition of the liquid domain, we assume that the Plateau border is

governed by capillary-statics and that the lamella is governed by surface viscosity (and

we check that these assumptions hold a posteriori). We must then generate a balance

between capillarity and surface viscosity in the transition region between the two. This

determines the velocity scale, which we find by setting VsCaδ/ǫ = 1 whence

U =
γǫ′ǫL

Λ
. (5.213)
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With the magnitude of surface viscosity given above and taking γ = 7× 10−2 N m−1, we

find that U ∼ 1.8 × 10−2 m s−1. We also have Ca ∼ ǫ′2, so ū = us = u. We note that,

since the capillary number is small, we have verified that the Plateau border is governed

by capillary-statics and that the lamella is dominated by surface viscosity, as assumed

earlier.

In general, η = η(C), but for illustrative purposes we proceed by assuming that the

surface viscosity is constant (in line with a number of authors, see Braun et al. [12] for

example), and, without loss of generality, η = 1. We do not, therefore, need to consider

the surfactant problem at all, and we follow the layout of §5.2 for a pure liquid, i.e., we

consider the transition region first and then the lamella second.

5.7.1 Transition region

After making the x− 1 = δξ scaling, in the transition region we have

uh = Q, (5.214)

2 (uξ)ξ +
1

2
hhξξξ = 0, (5.215)

which we couple with the boundary conditions

h→ h0, u→ Q

h0

, as ξ → −∞, (5.216)

hξξ → 1 as ξ → ∞. (5.217)

We integrate (5.215), and apply the boundary conditions to yield

hξ = B
√
h− 8Q

5h2
. (5.218)

As in §5.2 earlier, applying the condition as ξ → ∞ gives B =
√

2, and we obtain the

relationship between Q and h0 from (5.218),

Q =
5
√

2h
5
2
0

8
. (5.219)

We note that Q decreases as h0 decreases, in line with the surfactant-free case, and in

contrast to the Marangoni-stabilised films.

We scale ξ =
√
h0ξ̂ and h = h0ĥ, and we obtain

ĥ2ĥξ̂ =
√

2
(

ĥ
5
2 − 1

)

, (5.220)
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which we integrate to yield

√
2ξ̂ = 2

√

ĥ− 1

5

√

2(5 +
√

5) arctan

[

2

√

2

5 +
√

5

(

1

4
(1 −

√
5) +

√

ĥ

)

]

−

1

5

√

2(5 −
√

5) arctan

[

2

√

2

5 −
√

5

(

1

4
(1 +

√
5) +

√

ĥ

)

]

+
2

5
log[−1 +

√

ĥ] −

1

10
(1−

√
5) log

[

1+
1

2
(1−

√
5)
√

ĥ+ĥ

]

− 1

10
(1+

√
5) log

[

1 +
1

2
(1+

√
5)
√

ĥ+ĥ

]

. (5.221)

The transition region thickness given by (5.221) is shown in Figure 5.28. As in the pure
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Figure 5.28: Transition region shape

water case earlier, this shape is monotonic.

5.7.2 Lamella model

In the lamella, we have

ht + (uh)x = 0, (5.222)

uxx = 0, (5.223)

coupled with the initial and boundary conditions

u = 0 at x = 0, (5.224)

u =
Q

h
at x = 1, (5.225)

h = 1 at t = 0. (5.226)
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We assume that h is spatially independent and solve for u to give

u =
5
√

2

8
h

3
2x. (5.227)

The equation for h then reads

ht +
5
√

2

8
h

5
2 = 0, (5.228)

which has solution

h =

(

1 +
15

8
√

2
t

)− 2
3

, (5.229)

whence

u =
5
√

2

8
(

1 + 15
8
√

2
t
)x. (5.230)

We redimensionalise, and rearrange to find the time to rupture

tcrit
D =

16Λ
√
aL

15
√

2γ

(

(

1

hcrit
D

)
3
2

−
(

1

hD
∗

)
3
2

)

. (5.231)

We calculate the critical time to rupture, tcrit
D = 1.3 s, given that the critical thickness for

rupture is 0.1µm.

Thus, while the inclusion of a constant surface viscosity in place of our Marangoni term has

enabled us to obtain an exact solution to the problem, which has a rupture time consistent

with our Marangoni models, it has not produced the same behaviour of solution as our

previous work, namely the dimpled solutions which are also seen in some experiments and

the increase of the flux as the film thins.

In the case where the surface viscosity is larger, so that us 6= ū, we are unable to find an

exact form for the solution even when the surface viscosity is constant, and we must resort

to a numerical solution. If we allow the surface viscosity to vary with concentration too,

we have the added problem that we must specify the constitutive relation for η = η(Γ).

If we assume that the relationship is linear, then the coupled problem reads

C

(

2
Q

h
− βh2hξξξ

)

ξ

+ hhξξ −
h2

ξ

2
= 0, (5.232)

hCξ = PQ(C − C0) + 2Q

(

C

h
− C0

h0

)

− βCh2hξξξ. (5.233)

The flux Q is now present in both equations, and the longitudinal force balance (5.232)

has higher-order derivatives than before. This system is as complicated as the Marangoni

formulations and so there is no benefit in considering it any further.
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5.8 Conclusions

In this chapter, we have studied a number of models for the drainage of thin films in

the presence of surfactants or volatile components. In each case, we have decomposed

the liquid domain into a capillary-static meniscus, a time-dependent thinning film and a

quasi-steady transition region between the two. We draw the following conclusions.

• In the absence of a Marangoni component, the drainage is governed by a balance

between capillary and viscous forces. We found that the flux from the lamella into

the transition region is given by Q = 3
√

2h
3
2
0 /16. So, Q tends to zero as h0 tends to

zero. We found that h ∼ t−2, and concluded that h does not tend to zero in finite

time. Imposing a critical rupture thickness, we found the time to rupture is of the

order of 4 × 10−3 s.

• In the presence of a highly diffusive surfactant, the drainage is governed by a bal-

ance between Marangoni and capillary forces, and bulk diffusion, convection and

surface convection. We first worked in the limit where the lubrication term is negli-

gible. We were able to find a relationship between the concentration and thickness

in the lamella. We solved the transition region problem numerically, and found

that the flux increases as thickness decreases, suggesting rupture in finite time. We

saw two types of solution: monotonic and nonmonotonic. The nonmonotonic so-

lutions sometimes have oscillatory exponentially decaying behaviour, as predicted

from analysing the behaviour as the lamella is approached. We found a rupture

time of approximately 90 s.

• In some parameter regimes, we found that the flux becomes very large as the lamella

thickness approaches a critical value. We were able to find this value by considering

the limit as Q→ ∞. We hypothesised that, once this value has been reached, some

neglected physics, such as viscous forces, must be re-introduced and the lamella

ruptures very quickly.

• In the limit where the lubrication term is nonnegligible, the longitudinal velocity is

parabolic across the transition region, and, when K > 1, an eddy is produced which

rotates in such a way that the liquid leaves the transition region along its centreline,

and returns along the film’s walls. When K < 1 the eddy rotates in the opposite

sense. We calculated that a rupture time for a typical set of parameters is 88 s.

• We formulated the model which describes a lamella stabilised by a surfactant like

CTAB. Here, we found that diffusion is not important (and that neglecting this
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term does not reduce the order of the problem) and we observe similar behaviour

to that described above. We solved the transition region model numerically using

realistic parameters for a dilute CTAB solution, and we found that the rupture time

is 6.9 s.

• For an insoluble surfactant, we concluded that we must always have a parabolic

profile for the velocity in the transition region. Again, there are monotonic and

nonmonotonic solutions, but now we found that there is flow out along the free sur-

faces and back along the centreline for all fluxes Q > 0. We used typical parameter

sizes for a pulmonary surfactant and calculated a rupture time of 2.5 s.

• We presented a model for a lamella stabilised by a volatile component. We plan to

study the behaviour of this model in the future.

• In the presence of a constant surface viscosity, we found an analytic form for the

flux. Here it reads Q = 5
√

2h
5
2
0 /8, and hence the flux tends to zero as h0 → 0. We

found that a lamella drains with thickness h ∼ t−
2
3 , which does not tend to zero

in finite time. However, employing the rupture criterion, we calculated a rupture

time of 0.66 s. We noted that including the surface viscosity term, while producing

a plausible drainage time, did not capture the behaviour that we uncovered in our

Marangoni work. We also noted that, since η = η(Γ) in general, the problem for a

surface-viscosity-stabilised lamella would be as complicated as that for a Marangoni-

stabilised one.

In all these situations, the introduction of a Marangoni stress increases the time to the

critical thickness, and also results in a flux that increases as the lamella thickness de-

creases.

We may extend this work in a number of ways. Firstly, we may relax the small concen-

tration approximation, that is, use nonlinear relationships between C, Γ, and σ. This

would result in a more complicated system in the transition region. Our solution pro-

cedure in this instance would be identical to that we have previously detailed and we

would expect the results to be qualitatively the same. There are other regimes that we

have not considered. For example, some surfactants may have small enough diffusivity

that they will not be well-mixed in the transition region. In this limit, we would have to

solve a two-dimensional problem for the concentration in the transition region. Obviously,

more work is required in the interpretation of the critical thickness and importantly, in

analysing the model including viscous terms to see whether the lamella continues to thin

on this faster timescale.
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In this chapter we have examined the microscopic flow between a lamella and a Plateau

border in a foam. In the next chapter we use the knowledge of this drainage process when

formulating several ad-hoc models for macroscopic foam drainage.
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Chapter 6

Plateau border flow, macroscopic

models and foam destruction

6.1 Introduction

In this chapter we present an overview of two other aspects of foam modelling, namely

• Flow within Plateau borders and macroscopic models.

• Effectiveness of foam destruction methods.

Our approach is different from that adopted in the previous chapters. Here, we concentrate

on formulating phenomenological models. We hope that such models will give us insight

into some macroscopic foam properties.

6.2 Plateau border flow

The bulk flow of liquid within a dry foam is through the network of Plateau borders, where

gravitational forces are strong enough to drain the liquid through the foam. Previous

work on the subject has been concerned with predicting (i) the height to which a foam

will rise, (ii) the amount of liquid leaving the base of a standing foam, (iii) the hold-up of

a foam (that is, the amount of the gaseous phase contained within the foam). Desai and

Kumar [25], for example, present both experimental and modelling work on flows through

foams. They note that models for Plateau border flow using no-slip boundary conditions

at the Plateau border walls predict velocities significantly smaller than those they find

experimentally (which are of the order of 5× 10−3 m s−1 for bubble diameters of 1× 10−2

m). They present a model for flow through a network of pipes of triangular cross-section,

where the velocities at the vertices of these triangles are taken to be zero, and the velocity

on the rest of the free surfaces obeys a surface-viscosity-controlled momentum balance.

159



Narsimhan [60] and Bhakta and Ruckenstein [10] include drainage from lamellae (using

the lubrication equation for the thin film) into a model which couples conservation of

liquid in the lamellae with conservation of liquid in the Plateau borders (which they allow

to deform) and assumes given forms for the velocities in each region. They use a disjoining

pressure to describe the difference in pressure between the lamellae and Plateau borders,

and generate predictions about the film hold-up, and the height of a foam as it is formed.

All these papers assume that the Plateau borders are either vertical or at a specified

(single) angle, based on a uniform dodecahedron. Podual, Kumar and Gangdi [67] work

with a modified tetrakaidecahedron, which has square, pentagonal and hexagonal faces,

and they include transport along horizontal, vertical and oblique Plateau borders. They

compare experimental results to their numerical solutions for the liquid drained from a

foam.

Verbist and Weaire [76], Verbist, Weaire and Kraynik [77] and Grunnet-Jepsen, Darton

and Whalley [21] all generate similar models, although they neglect the flow from the

lamellae into the Plateau borders. They derive a partial differential equation for the

evolution of the Plateau border area, assuming that the velocity obeys Darcy’s law with

the pressure controlled by surface tension and gravity. They discuss steady and travelling

wave solutions to the equation.

We present Verbist and Weaire’s derivation as an example of all the work described above.

They suppose that the Plateau borders form a network of N independent vertical pipes,

each with cross-sectional area A(z, t) and having average velocity u(z, t) in the direction

of the pipe. Conservation of mass then reads

At + (uA)z = 0. (6.1)

The assumption that the net pressure gradient balances the viscous drag gives

ρg + γ

(

1

R

)

z

− η∗u

A
= 0, (6.2)

where η∗ is the effective viscosity of the liquid in the channel. This takes account of the

stiffening of the Plateau border walls due to the presence of a surfactant. The pressure

has been taken as equal to the excess capillary pressure. Here, R is the radius of curvature

of each of the Plateau border walls as in Figure 6.1. R is related to A using

R =

√
A

(√
3 − π

2

)
1
2

=

√

A

C1

, (6.3)
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g

R

Figure 6.1: A Plateau border aligned with its centreline in the direction of gravity.

which defines C1, the Plateau border parameter. Hence, the following equation gives the

evolution of the Plateau border area

At +

(

ρgA2

η∗
−

√
C1γ

2η∗
A

1
2Az

)

z

= 0. (6.4)

Verbist et al. [77] call this equation the ‘Foam Drainage Equation’. We make the following

observations.

• No account is taken of lamella drainage.

• Gravity acts to decrease the Plateau border area, while surface tension acts to

increase the area.

In the next section, we use the limit η∗ → 0 to formulate a model for Plateau border flow

which incorporates zero shear at the walls.

6.2.1 An ad-hoc model for drainage of a Plateau border incorpo-

rating zero shear on the walls

We choose to work in the limit of the model (6.1)-(6.2) in which the effective viscosity

may be set to zero. This may be seen as analogous to choosing to work with a zero shear

boundary condition in place of no slip. Thus, our nondimensional model for the Plateau

border cross-sectional area and the velocity of the liquid in the Plateau border, with z

measured vertically upwards from the bottom node of the Plateau border, reads

At + (uA)z = 0, (6.5)
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BA+
(√

A
)

z
= 0, (6.6)

where B is the Bond number, given by B = ρg
√
A0L/(

√
C1γ), L is the length of the

Plateau border, and A0 is a typical cross-sectional area. We note that this system has the

obvious general solution

A =
1

(a1(t) +Bz)2
u = −a

′
1(t)

B
+ β(t)(a1(t) +Bz)2. (6.7)

We have, so far, neglected drainage from the lamellae into the Plateau borders. To include

these terms, we modify the conservation of mass equation (6.5) to read

At + (Au)z =
3Udrainh0L

UpbA0

Q (h) , (6.8)

where Udrain is the lamella drainage velocity given in Chapter 5, UPb is a typical velocity

of the liquid in the Plateau border, h0 is the lamella thickness scaling, the factor of three

corresponds to the number of lamellae draining into the Plateau border, and Q is the flux

from a lamella into the Plateau border, as given in one of the many parameter regimes

of the last chapter. We note that there is no intrinsic velocity scale present in (6.6).

Thus the appropriate velocity scaling must be externally specified through the boundary

conditions that we apply at the end of the Plateau borders, where they meet the nodes.

We use (6.6) and (6.8) in the next section where we generate a macroscale model for a

foam.

6.2.2 Application to foam build-up

6.2.2.1 Experimental set up

In this section, we present a rough model to describe foam build-up in an experimental

rig. The rig has a square cross section and is shown in Figure 6.2. Gas is supplied at the

bottom of the rig, at a speed of approximately Usup ∼ 5× 10−2 m s−1, and the surfactant

solution in the rig begins to foam above the distributor. The bubbles that form at the

bottom of the rig are nearly spherical, while at the top of the rig the bubbles are more

polyhedral. The situation is dynamic, with bubbles rising in random patterns, but the

foam forms a ‘head’ of constant height, approximately 40 cm, after an initial build up

period. Given the material properties of the surfactant solution, and the gas velocity, we

would like to be able to predict this height, and also the foam coarseness.
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Figure 6.2: Diagram showing the foam rig.

6.2.2.2 Foam Height

We are able to make an initial estimate for the height of the foam, assuming that the

bubbles are convected with the velocity of the gas supply until such time as they rupture.

Hence,

H = TRuptUsup. (6.9)

With our rupture time for a lamellae stabilised by CTAB, given in §5.4, of 6.9 seconds,

and a flow speed of 5 cm s−1, we have that Hd = 34.5 cm. We are encouraged by the fact

that this is the same order of magnitude as the height that is seen experimentally.

6.2.2.3 Homogenisation

We wish to construct a simple model which describes the foam coarseness (i.e. the area

of the Plateau borders and the thickness of the lamellae) in the rig, the concentration of

surfactant in the rig, and the height to which the foam rises. We formulate conservation

equations for α, the volume fraction of the foam occupied by Plateau borders, β, the

volume fraction occupied by the lamellae, and 1 − α − β, the volume fraction of the

gaseous phase. Thus,

αt + (uPbα)z = q, (6.10)

βt + (ulβ)z = −q, (6.11)
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−αt − βt + (ug(1 − α− β))z = 0, (6.12)

where q is the flux of volume fraction leaving the lamellae and entering the Plateau

borders, uPb is the velocity of the liquid in the Plateau borders, ul is the velocity of the

liquid in the lamellae and ug is the gas velocity. For convenience later, we now combine

(6.10) and (6.11) to give

αt + βt + (uPbα)z + (ulβ)z = 0. (6.13)

We suppose that each of the bubbles has the same number of associated lamellae and

Plateau borders. We do this for simplicity but we note that this does not adequately

describe the fact that bubbles are formed with random shapes. Further, we suppose that

there are N such bubbles per unit volume. We call NPb the average number of Plateau

borders per bubble (that is, the total number of Plateau borders in a unit volume/total

number of bubbles, which depends on the geometrical properties of the bubble shape

chosen and the typical volume of the bubbles produced by the distributor), Nl the average

number of lamellae per bubble (defined in a similar way toNPb), Al the area of the lamellae

faces, h the average lamellae thickness, A the average area of the Plateau border and L

the length of the Plateau border.

We suppose that all of these parameters are constant, but we can easily see that AL, L

and N need not be. Indeed we would expect AL and L to increase from the bottom of

the rig, and for N to decrease. Allowing N to vary due either to diffusion of gas between

bubbles or to lamellae rupture within the foam will be the subject of future work.

Since there are three lamellae draining into each Plateau border, the volume fraction of

liquid entering the Plateau borders is given by three times the product of the flux from

a single lamella, the average number of Plateau borders per bubble and the number of

bubbles per unit volume. Hence

q = 3QDLNNPb, (6.14)

where QD is the dimensional form of the flux Q defined in the previous chapter. We

note that, in general, this depends on the lamella thickness, the Plateau border area and

the concentration of surfactant. We relate the volume fractions α and β to A and h

respectively using

α = NNPbLA β = NNlALh. (6.15)

Thus we are able to write the system as

ht + (ulh)z = −3QDLNPb

AlNl

, (6.16)
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NPbL (At + (uPbA)z) +NlAL (ht + (ulh)z) = 0, (6.17)

(NNPbL(uPb − ug)A+NNlAl(ul − ug)h+ ug)z = 0. (6.18)

We note that we have three equations for the five unknowns h, A, ul, uPb and ug. We must

specify two constitutive relations to close this system. We choose to use the dimensional

form of the quasi-steady relationship for A given in (6.6)
√

C1γAz + ρgLA
3
2 = 0, (6.19)

and we set the simplest possible condition on the velocity of the lamellae: that it is

identical to the gas velocity, and so

ul = ug. (6.20)

Thus we now have five equations (6.16)-(6.20) for the five unknowns. Finally, we suppose

that the surfactant present in the Plateau border is convected with the liquid in the

Plateau border, and that the concentration in the lamella is given by the relationship

that we found in the previous chapter, so

CPb
t + uPbC

Pb
z = 0, (6.21)

Cl =
CI

(

1 + 2η
ǫL

)

h

2η + h
. (6.22)

We have ignored the flux of surfactant from the lamella into the Plateau border, since we

have already established in the previous chapter that this is negligible, and we have also

ignored diffusion, since we can easily see that the associated Peclet number will be high.

As the concentration of surfactant in the lamella decouples from the rest of the problem,

we shall henceforth not explicitly discuss it. We also take the constant solution to (6.21),

i.e. C = C0, the concentration of the surfactant solution added to the system.

We are interested in the steady state of the system (once the constant head, height H,

has formed). Henceforth, we set all time derivatives equal to zero. In order to close the

model we must now decide on appropriate boundary conditions to apply. We suppose

that we know the gas velocity at the bottom of the rig, and that the distributor produces

bubbles with known lamella thickness and Plateau border area. We suppose that the top

surface is determined by the condition that this is where the lamellae rupture. Finally,

we assert that the net liquid content in the foam does not change once the steady state

has been reached. Thus, the conditions read

ug(0) = Usup, (6.23)

A(0) = A0, (6.24)

h(0) = h0, (6.25)

h(H) = hcrit
D , (6.26)
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with the further condition that the total liquid flux is zero.

We note that we have not chosen to specify the pressure at the top surface of the foam

(which one might think would be a plausible boundary condition). In fact, we allow

there to be a discontinuity in the pressure at the top surface, which we attribute to the

curvature at the top surface.

We assume that the rig has width W (which is 20 cm) and we nondimensionalise with

A = A0A
′ h = h0h

′, (6.27)

(uPb, ug) = Usup(u
′
Pb, u

′
g) z = Wz′. (6.28)

The nondimensionalised system reads

(ugh)z = −Q(h)

F , (6.29)

uPbA+ Gugh = 0, (6.30)

L(uPb − ug)A+ ug = (1 −L(G + 1)), (6.31)

Az +BA
3
2 = 0, (6.32)

where F = ALUsupNl/(3LWUdrainNPb), G = NLALh0/(NPbLA0) and L = NNPbLA0.

The boundary conditions become

ug(0) = 1, (6.33)

A(0) = 1, (6.34)

h(0) = 1, (6.35)

h(H) = hcrit. (6.36)

The solution to (6.32) and (6.34) is

A =
1

(1 +Bz)2
, (6.37)

and we use (6.30) and (6.31) to give

ug =
1 − L(G + 1)

1 −L(Gh+ A)
uPb = − Gh(1 − L(G + 1))

A(1 −L(Gh+ A))
, (6.38)

The final step is to solve (numerically) for the thickness h using

(

(1 −L(G + 1))h

1 −L(Gh+ A)

)

z

= −Q(h)

F . (6.39)
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As noted in Chapter 1, the total volume fraction of the liquid phase is small and thus we

simplify the system by letting L → 0 (recall that L is the volume fraction of liquid in the

Plateau borders at the bottom of the rig) while keeping B, F and G ∼ O(1). Thus, in

addition to (6.37), we have

ug = 1, (6.40)

uPb = −Gh(1 +Bz)2, (6.41)

z = F
∫ 1

h

dH
Q(H)

, (6.42)

H = F
∫ 1

hcrit

dH
Q(H)

. (6.43)

We note that the average Plateau border area and the average lamellae thickness decrease

towards the top of the rig, i.e., the foam becomes coarser.

In principle, given an experiment, we are now in the position to determine the physical

characteristics of the foam in the rig. We can use the techniques of the previous chapter

to determine the flux function (which depends on h, C and A), and then we would use

the model presented in this section to determine the height of the top surface, average

Plateau border area and average lamella thickness (and hence coarseness).

6.3 Foam destruction

In this section, we consider two experiments in which foam destruction occurs.

6.3.1 First experimental set up

The first involves the foam rig described in §6.2.2. Here, it was found (Sun [73]) that,

if the rig was modified so that a sample of foam could be collected from the top, then

the solution that was obtained from this sample acted as an antifoam, i.e., when the

solution was poured back into the foam rig, the foam height decayed rapidly to a tenth

of its original size, remained at this level for a few minutes, and then slowly rose again,

see Figure 6.3.

6.3.1.1 Homogenised model

We consider the amount of surfactant in the collected sample. The number of moles

of surfactant collected are equal to the number of moles in a lamella multiplied by the

number of lamellae (Nl) plus the number of moles in a Plateau border multiplied by the
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Figure 6.3: Antifoam production: the top layer of foam was removed and allowed to break
down. The solution was added to the foam and it dramatically reduced its height

number of Plateau borders (NPb). We must also take account of the surfactant adsorbed

onto the surface. We work in dimensional variables, and then the number of moles of

surfactant contained in a lamella, Ml, is given by

Ml(z) =
CI(2 + P)h(z)CPb

2ǫL+ Ph(z) h(z)AL +
CIη(2 + P)h(z)CPb

2ǫL+ Ph(z) 2AL, (6.44)

and the number of moles of surfactant in a Plateau border, MPb, is given by

MPb(z) = CPbA(z)L+ ηCPbπ

√

A(z)

C1
L, (6.45)

Hence, the total number of moles is

NMoles = NlMl +NPbMPb (6.46)

= CPb

(

NlALCI

(

2η

ǫL
+ 1

)

h(z) +NPbLA(z)

(

1 +
πη

√

C1A(z)

))

, (6.47)

where we have used P = Lǫ/η. The volume of liquid present is given by

V (z) = NPbLA(z) +NlALh(z), (6.48)

and so the total average concentration at any z station is

C(z) =
CPb

1 + F (z)

(

CI

(

1 +
2η

ǫL

)

+ F (z)

(

1 +
ηπ

√

C1A(z)

))

, (6.49)
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Figure 6.4: Graph showing how the total average surfactant concentration varied in the
rig. The height is in metres and the concentration is in moles per cubic metre.

where F (z) = NPbLA(z)/(NlALh(z)). Using the solutions for A and h given by (6.37)

and (6.42), we use typical values of the parameters to find that

C(H) ∼ 1.34C0 C(0) ∼ 1.26C0 (6.50)

i.e., C(H) > C(0), where C0 is the concentration of the surfactant solution.

The variation of C in the rig is shown in Figure 6.4. We may thus view the rig as

a distillation column, since the average concentration of surfactant at the top of the

foam is greater than at the bottom. When the solution is poured back into the rig, its

concentration is closer to that of the foam at the top of the rig than that at the bottom.

The solution therefore destroys the lower levels of the foam, and the height decreases. The

foam that remains is the foam that was at the top of the column. Now the solution at

the bottom of the rig will equilibrate reasonably fast (because the volume of the solution

being poured back in is small), and so new foam that tries to form at the bottom of

the rig will be in equilibrium with the bulk liquid, but out of equilibrium with the foam

that has remained. Thus the generation of new foam will be hindered until such time

as the concentration of surfactant in the remaining foam has equilibrated with the bulk

concentration. After this time, the foam will be able to grow again.
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Figure 6.5: Schematic showing the hot gauze restricting the growth of a foam.

6.3.2 Second experimental set up

The second experiment uses a hot gauze (Darton [19]), see Figure 6.5.1 The wire spacing

is of the same order of magnitude as the bubble diameters. Foam is generated in the rig

and allowed to rise up below a hot grid of wires. Providing the temperature is hot enough,

the foam was unable to flow through the gauze. It was found that higher concentrations

of surfactant require higher temperatures to contain the foam. It was also noted that

there is a gap of a few millimetres between the top of the foam and the gauze.

Here, there is a mechanism that we have not considered before, namely the effect of

temperature on surface tension. A change in temperature affects the surface tension in

two ways. Firstly, a change from 80 to 100 degrees centigrade, say, alters the surface

tension of water from about 63 mN m−1 to about 59 mN m−1 (Darton [20]). Secondly,

such a change in temperature also affects the behaviour of the surfactant (recall that the

relationship between σ and Γ, (2.19) contains a T factor). Both these mechanisms result

in a reduction of the surface tension of a surfactant solution, and so there is a gradient

of surface tension between hot and cold spots in a liquid which draws liquid towards the

cold spot.

6.3.2.1 Microscopic model

We present preliminary ideas about the destruction of a lamella using hot wires. We

restrict ourselves to the case where the surface tension varies linearly with temperature,

1A more recent experiment uses a spiral tube, see Stone [72].
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θ, (Adamson [1])

σ = Es

(

1 − θ

θc

)

, (6.51)

where Es is a measure of the surface energy and θc is the critical temperature (that is,

the temperature associated with the triple point of the solution). We assume that the

temperature of the film is not sufficient to boil the liquid.

We model the temperature in the liquid in a lamella assuming that it obeys a convection-

diffusion equation, and that, at the free surfaces, we have a radiation boundary condition

(see Crank [16]). The model reads

D∇2θ = θt + (u.∇)θ, (6.52)

with, at the free surface,

Dθn = −H(θ − θAIR), (6.53)

where H is a heat transfer coefficient. We study the situation in which the temperature

is well-mixed and diffusion, convection and the transfer to the air term all balance. This

requires the thermal Peclet number PeT = UL/D ∼ O(1), and the radiation parameter

K∗ = H/(Dǫ) ∼ O(1). We nondimensionalise and, as in the previous cases, must proceed

to O(ǫ2) in the field equation and boundary condition in order to close the model. We

find that the temperature θ = θ(x, t) satisfies

(hθx)x = PeTh (θt + uθx) +K∗(2θ − θAIR − θBUB), (6.54)

where θBUB is the temperature of the air in the bubble, and θAIR is the temperature above

the foam (see Figure 6.6).

To solve for the temperature field in a lamella geometry would require the decomposi-

tion of the liquid domain as described in the previous chapter, and the coupling of (6.54)

with equations for conservation of mass, longitudinal force balance and surfactant concen-

tration. Here, we simply make qualitative suggestions about how this mechanism could

result in accelerated lamella rupture.

We suppose that the lamella is at temperature θc and the Plateau border has a different

(lower) temperature (the Plateau border has the lower temperature because it contains

more liquid). In this case, we will have a transition region between the two in which the

temperature changes. However, here, provided the temperatures are large enough that

surfactant-generated Marangoni forces are of the same size or smaller than those brought

about by the temperature change, the surface tension is lower in the lamella than in
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Figure 6.6: Close-up of lamella at the surface of the foam, with the hot gauze above

the Plateau border, and so this temperature difference enhances the drainage caused by

capillary forces, and the lamella thins rapidly.

6.4 Short-comings of the models

Our approach in this chapter has been less systematic than in previous ones. Ultimately,

we must back up our modelling by more rigorous derivations of our models. In the case

of the Plateau border flows, this will require the extension of the work in Cummings and

Howell [17] to include the evolution of non-axisymmetric fibres that have cusps. In our

modelling, we have neglected the nodes that are present within the foam. These Plateau

border junctions have an associated curvature and shape which will affect the liquid flow.

In future modelling, these should also be taken into account.
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Chapter 7

Conclusion

In this chapter we give a brief summary of the main results that we have obtained and

we then propose some extensions to this work. We also discuss some experiments that

are suggested by our modelling work.

7.1 Review of thesis

In Chapter 1 we presented an overview of foaming situations, foam structure and foam

properties, and discussed some of the general literature on various aspects of foam mod-

elling.

In Chapter 2, we presented models for surfactant solutions and for volatile-inert systems.

In the surfactant case, we showed how to formulate the model for adsorption at the free

surface, and discussed the variation of surface tension with surface concentration. In the

volatile-inert system, we incorporated bulk and evaporative mass transfer into our model

and also discussed the variation of surface tension with composition.

In Chapter 3 we formulated a model to describe the flow of liquid and the distribution of

surfactant in the overflowing cylinder experiment. The general structure of the problem

is as follows

• gravity is strong enough to keep the top surface flat;

• the bulk flow is dominated by inertia; we solved the inviscid problem to find the

“outer” flow;

• convection dominates surfactant transport and thus the surfactant concentration is

constant throughout most of the cylinder;
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• there are hydrodynamic and diffusive boundary layers at the free surface where the

effects of viscosity and diffusivity become important; the diffusive boundary layer is

much thinner than the hydrodynamic boundary layer;

• at the free surface, the system selects its own length scale and velocity scale which

are therefore independent of the radius of the cylinder and the flux of liquid imposed

at depth; this agrees with experimental evidence.

The most puzzling aspect of the model is that it appears to admit a one-parameter

family of solutions. When we fixed this parameter using experimental data, the rest

of the solution agreed well with experiments. However, we have been unable to find a

mathematical criterion to select the value of the arbitrary constant. We hypothesise that

neglect of rim effects was the most likely cause of the indeterminacy.

In Chapter 4, we derived models for thin films between two free surfaces acting under the

influence of viscosity, capillarity, and surface tension gradients. We found that

• there are two distinguished limits in the liquid problem: one where viscous, capillary

and Marangoni effects balance, and one where capillary, Marangoni and lubrication

effects balance. There is no limit in which both viscosity and lubrication effects are

important;

• there are two distinguished limits for the surfactant (or volatile) problem: one where

longitudinal diffusion, convection and surface convection (or evaporation) balance,

and one where lateral diffusion, convection and surface convection (or evaporation)

balance;

The dominant physical effects are determined by the relative sizes of the corresponding

dimensionless parameters, and we tabulated all the possible relevant combinations.

In Chapter 5 we used the models that we derived in Chapter 4 to describe the flow of liquid

from a lamella into a Plateau border. In each case we decoupled the liquid regime into

a time-dependent lamella, a capillary-static Plateau border and a quasi-steady transition

region between the two. We showed the following.

• A surfactant-free lamella draining under the influence of viscosity and constant

surface tension ruptures extremely quickly.

• The distinguished limit most appropriate to the problem of foam lamella drainage

contains Marangoni, capillary and lubrication effects. In this limit, the liquid is

retarded by surface tension gradient effects and thus exhibits a much longer lamella

lifetime.
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• Our theoretical estimated rupture times are broadly in line with experiments.

• One interesting prediction of our models was that the film thins slowly down to a

critical thickness, after which it ruptures very rapidly.

We also obtained the film thickness and surfactant concentration profiles in each case,

and the velocity field in the liquid.

In Chapter 6, we adopted a more phenomenological approach in obtaining bulk models

for foams. We presented a model for drainage of liquid through a foam including surface

tension, gravity and transport from the lamellae into the Plateau borders. Our model for

a continuously regenerated foam gave a height of the correct order of magnitude. We also

discussed how foam removed from the top of the rig could be used as an antifoam, and

how a hot gauze could cause foam destruction.

7.2 Future work

In this thesis we have considered situations in which a Marangoni shear at a free surface

enhances or retards the flow. There are numerous other situations which could benefit

from our modelling approach. For example, as commented on in Chapter 3, another

experiment used to measure the properties of expanding surfaces uses a jet of surfactant

solution. The solution is ‘shot’ from a nozzle at high velocity, and measurements of surface

velocities and concentrations are taken close to the point of exit from the nozzle (and out

as far as the jet remains horizontal). The situation here is different from the overflowing

cylinder set-up for a number of reasons: the most important difference is that here the

surfactant at the surface is not in equilibrium with the surfactant below the surface. The

case where the surface tension takes much longer to reach its equilibrium value than the

jet does to reach an effective uniform velocity has been previously studied by Harper [34].

The liquid configuration is shown in Figure 7.1.

r

z

Figure 7.1: The jet experiment.
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The liquid velocity at the exit from the nozzle is of the order of several metres per

second, but the liquid velocity profile is unknown in the nozzle itself. A crucial part of

the modelling of the system is to determine the correct velocity profile at the exit. The

surfactant distribution in the nozzle is more straightforward. Since the surfactant does not

adsorb onto the surfaces in the apparatus, we have C = Cb and Γ = 0 for z ≤ 0. Outside

the nozzle, the liquid must adjust itself to take account of the change from a no-slip

boundary condition to one of continuity of tangential stress. The liquid velocity profile

will change to plug flow at distance down the stream, while the surfactant will equilibrate

with the surface. The surfactant distribution at the surface will have the opposite effect

to that in the overflowing cylinder. Here, we have the surface concentration increasing as

z increases, and we expect a surface tension gradient to be established which retards the

flow close to the surface. The study of such a system would be useful since, in a foam,

the surface tension gradient generates a flow which opposes the main flow of the liquid.

In the rest of this section we restrict ourselves to suggestions of future work that follow

directly from the work in this thesis.

• Overflowing Cylinder

We reiterate that finding the undetermined parameter in the overflowing cylinder

model, possibly by solving the coupled boundary layer problems on the finite domain

of the cylinder is the next (and most important) step towards a complete description

of the liquid flow and surfactant distribution. Another extension to this work would

be to look above the critical micelle concentration, utilising a convection-diffusion

problem for both the bulk and micellar surfactant with interactions between the two,

as well as adsorption onto the surface. This could be checked against the (already

existing) experimental work.

• Models for thin films

Our work on thin films acting under Marangoni, viscous and capillary effects could

be extended to include other physical effects such as inertia and disjoining pressure.

Such effects could become important, for example, in the final thinning phase of

foam films.

• Lamellae with surfactants

We formulated our models for the drainage of foam lamellae in the limit of small

concentration. For foam containing higher surfactant concentrations, we would have

to include the nonlinear relationships between surface tension, surface concentration

176



and subsurface concentration, but we would expect the problem to exhibit the same

qualitative behaviour as the model that we have considered. The study of the critical

blow-up thickness discovered in §5.3.6.1 also deserves considerably more attention,

in particular, to see whether or not viscosity will enable the film to continue thinning

past the critical thickness.

• Lamellae with volatiles

The model for drainage of a lamella stabilised by volatile components is at a pre-

liminary stage. Carrying out a detailed study of the region where viscous effects

become important (by looking at (5.207)-(5.208)) is obviously the next thing to do

here.

• Destabilisation of foam films

In Chapter 6 we discussed the destabilisation of foam films using an antifoam or

heat. Development of the thin film theory to include (i) a point source of a “strong”

surfactant or (ii) heat transfer, would enable us to make progress towards a full

description of foam destruction in industrially relevant situations.

• Macroscopic models

Our Plateau border work could be extended to include the effect of the nodes.

Hopefully, this would determine a velocity scale for the problem on the microscale

of one Plateau border. Our macroscopic model for the foam rig needs refining and

checking against experimental observations of the heights reached and the foam

coarseness.

A natural extension of this work would be to couple the changes in Plateau border area

into the lamella model (remember that, at present, our model assumes that the area is

constant).

7.3 Experiments that would provide extra insight into

foam modelling

There are numerous experiments that would provide valuable information for foam mod-

elling. We briefly detail these below.

• Chapter 3

The overflowing cylinder experiments could be repeated with two modifications.

Firstly, the use of a cylinder with a much larger radius, 20 cm say, might highlight
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any variation of the surface properties with radius (which have not been seen by

varying the radius between 3 and 5 cm). Secondly, the use of an overflowing trough

might allow us to check the validity of a two-dimensional version of the model.

The overflowing cylinder could also be used to check the behaviour of the volatile-

inert system in the presence of an expanding free surface, which could provide

valuable insight into the modelling of expanding free surfaces in hydrocarbon foams.

• Chapter 5

Any non-invasive experiments that could be carried out on individual lamellae would

provide a wealth of data that we could check against the predictions of our model.

For example, the direction of the surface flow could be checked, as could the dimpling

in the film.

• Chapter 6

Taking samples of the foam at various levels in the foam rig would enable us to

verify whether our crude model for the surfactant distribution in the foam is cor-

rect. Checking whether it is the top or bottom layer of foam which remains when

the surfactant solution is added would test our hypothesis about why the foam is

destroyed.

7.4 Discussion

In this thesis we have developed models for describing the evolution of free surfaces under

the influence of surfactants. We have succeeded in systematically modelling the liquid flow

and surfactant distribution in the microstructure of a foam and thereby explained how

lamellae can be stabilised by the presence of surfactant. This provides a key building block

for the fundamental understanding of why an intrinsically unstable foam can persist after

it has been formed. The final goal, which has yet to be achieved satisfactorily, is to predict

the macroscopic constitutive properties by systematically averaging the microstructure.
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