
The Mathematics of Product Form Queuing Networks

RANDOLPH D. NELSON

IBM Research Division, T. J. Watson Research Center, P. O. Box 704, Room H2-D26, Yorktou,n Heights, NY

10598

Markov processes that have a product form solution have become an important

computer performance modeling tool. The fact that such a simple solutlon exists for

seemingly complex Markov processes M surprlsmg at first encounter and can be

established by showing that balance equations are satisfied. In this article we attempt

to provide insight as to why such a solution form exists and demonstrate that product

form and compamon results, such as the arrwal theorem and Norton’s theorem, are

consequences of four properties satisfied by queues that satisfy partial balance Notions

of reverse processes, reversibility, and quasireversibility are developed to establish the

four properties.

Categories and Subject Descriptors: C,4 [Computer Systems Organization]:

Performance of Systems—modelmg techniques; G.3 [Mathematics of Computing]:

Probability and Statistics; 1.6 [Computing Methodologies]: Simulation and Modeling

General Terms: Performance

Additional Key Words and Phrases: Networks, partial balance, product form,

quasireverslbdity, queuing theory, reversibility

1. INTRODUCTION

The discovery that certain queuing net-

works have tractable product form solu-

tions [Baskett et al. 1975; Gordon and

Newell 1967; Jackson 1963; Whittle 1967]

has had a profound influence on com-

puter performance modeling. In such sys-

tems the stationary distribution of the

network is composed of a product of the

distributions of each queue analyzed in

isolation (subject to a normalization con-

stant). When first encountered, such a

solution is difficult to understand since

for open networks it implies indepen-

dence (of the stationary distributions) of

the individual queues, and for closed net-

works it implies that the dependence be-

tween the queues is captured by normal-

izing the independent solution over a

truncated state space. The purpose of this

article is to provide some insight into

why such solutions are obtained. We pro-

vide this insight by showing that product

form and related results, such as the

arrival theorem and Norton’s theorem,

follow from four properties of queues that

satisfy partial balance. Each of these four

properties can be understood within the

context of a simple queuing system. The

algebra for how such queues can be

formed into a network while still retain-

Permmslon to copy without fee all or part of this material M granted provided that the copies are not made

or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication

and lts date appear, and notice is given that copying is by permmsion of the Association for Computmg

Machinery. To copy otherwise, or to repubhsh, requires a fee and/or speclfc permission.

(2 1993 ACM 0360-0300/93/0900-0339 $01.50

ACM Computmg Surveys. VO1 25, No 3. September 1993



340

CON

. Randolph D. Nelson

EN-rs

1 INTRODUCTION

2 PRELIMINARY RESULTS

2 1 Prehmlnary Deflnltlons

22 Balance Equations for the

Forward and Reverse Process

23 Reverslblllty and Detaded Balance

24 Quasmeverslbdlty

25 Partial Balance

3 NETWORKS OF QUASIREVERSIBLE QUEUES

31 Tandem Queues

32 Feedback Queues

33 Product Form or Quasmeverslble

Quemng Networks

4 CONCLUSIONS

ACKNOWLEDGEMENTS

REFERENCES

ing product form is shown to follow from

the four properties. These properties

unify the approach to product form, and,

since establishing them does not initially

burden intuition with excessive notation

or algebraic manipulation, they bring to

light the reasons underpinning the solu-

tion form. A by-product of this approach

is that we clear up a possible confusion

regarding the differences between re-

versible and quasireversible processes.

Networks of queues have been exten-

sively used to model computer and com-

munications networks. Work includes

models of specific computer systems such

as IBM mainframes running the VM

[Bard 1978a; 1978b] and NIVS [Buzen

1978] operating systems, subsystems

such as DASD [Bard 1980; Brandwajn

and McCormack 1984], memory and in-

terconnection networks [Brown et al.

1977; Lam 1977; Lazowska and Zahorjan

1982; Thomasian and Bay 1984; Towrdey

1983; 1986], systems that have features

of parallel or concurrent processing

[Heidelberger and Trivedi 1982; 1983; Le

Boudec 1985; Sauer 1981; Thomasian and

Bay 1986], and models that include

blocking [Hordijk and Van Dijk 1981].

Often, the difficulty in calculating sta-

tionary measures for product form net-

works lies in the complexity of the nu-

merical calculations required to calculate

normalization constants. Much research

has focused on creating new and efficient

methods for determining performance

measures [Conway and Georganas 1986;

Conway et al. 1989; de Souza e Silva and

Lavenberg 1989; Hoyme et al. 1986; Lam

and Lien 1983; Reiser and Kobayashi

1975; Reiser and Lavenberg 1980] or by

creating approximate techniques that can

be used when product form does not hold

[Bryant et al. 1984; Chandy and Sauer

1978; Chandy and Neuse 1982; de Souza

e Silva et al. 1986; Eager and Lipscomb

1988; Krzesinski and Greyling 1984;

Krzesinski and Teunissen 1985;

Schweitzer 1979; Zahorjan et al. 1988].

Modeling of communication networks us-

ing product form networks includes work

found in Henderson and Taylor [ 1989],

Nelson and Kleinrock [1985], Reiser

[ 1979], Van Dijk [1990a; 1990b; 1991],

and Wong [1978].

The subject of product form queuing

networks is mature, and there are sev-

eral surveys of the area [Disney 1975;

Disney and Konig 1985; Gelenbe and

Muntz 1976; Lemoine 1977] and books

which have sections devoted to various

aspects of the subject [Disney and

Kiessler 1987; Kelly 1979; Lavenberg

1983; Lazowska et al. 1984; Ross 1983:

Sauer and Chandy 1981; Walrand 1988;

Whittle 1986a]. The approach in this ar-

ticle is heavily indebted to Kelly’s ele-

gant treatment of the subject. Other main

sources for the material come from two

excellent books, Wah-and [1988] and

Whittle [1986a], and a thorough survey

by Disney and Konig [19851. Arguments

often rely on viewing a Markov process

in reverse time. Kolmogorov [ 1936] ap-

pears to be the first to consider such

processes, and the theory was later ex-

tended in Reich [1957]. Viewing systems

in reverse time yields important insight

into the input-output behavior of queu-

ing systems. Burke [1956] first estab-

lished that the departure process of an

M/M/ 1 queue is Poisson and is indepen-

dent of the state of the queue. Such a

queue thus produces Poisson outputs

when presented with Poisson inputs.

Muntz [1972; 1973] called this the M =
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M property and first observed that prod-

uct form solutions arise from input/out-

put properties of queues. This approach

allows one to ignore internal details of a

queuing structure. In Muntz [1972], the

M * M property was used to establish

that partial and local balance (as defined

later in the paper) hold for product form

networks and was also used to establish

algebraically that certain queues satis-

fied properties later collectively termed

quasireversibility by Kelly [1976a]. Fur-

ther work characterizing input-output

properties of queues can be found in

Burke [1972; 1976], Daley [1976], Disney

[1975], Kelly [1976b; 1983], and Kelly

and Pollett [1983], and theoretical work

on product form networks can be found

in Chandy and Martin [ 1983], Harrison

and Williams [1990], Hordijk and Van

Dijk [ 1983a; 1983b], Kelly [1982], Pittel

[1979], and Serfozo [1989]. Previous to

much of this research, Koenigsberg [ 1958]

showed that cyclic networks of queues

had product form solutions, and Jackson

[1963] established this fact for a larger

class of networks. These results were ex-

tended to closed queuing networks by

Gordon and Newell [1967] and in terms

of migration models by Whittle [ 1967;

1986a] (where the notion of partial bal-

ance was first introduced) and by King-

man [1969]. The important BCNIP pap=.

[Baskett et al, 1975] (the acronym is

composed of a concatenation of the first

letters of the last names of the authors)

established that a useful class of queuing

networks satisfied partial balance and

also satisfied product form. This had a

profound influence on computer perfor-

mance modeling and set a direction for

further work (see Barbour [1976] and

Chandy et al. [1977] for instance). Kelly

[1975; 1976a] also independently estab-

lished that product form holds for certain

classes of networks.

Two types of networks are commonly

distinguished: open networks, which have

external arrival streams for all classes of

customers, and closed net works, in which

there is a fixed population of customers

for all classes of customers. For open net-

works, product form implies that the sta-

tionary distribution is a product of indi-

vidual queue distributions obtained by

analyzing each queue with an appropri-

ately modified arrival rate to reflect the

routing of traffic in the network. For

closed networks, computational difficul-

ties emerge since a normalization con-

stant must be calculated so that proba-

bilities sum to unity over a restricted

state space [Buzen 1973; Chandy and

Sauer 1980; McKenna and Mitra 1982;

Reiser and Kobayashi 1975]. An impor-

tant property of closed networks is that

the distribution of the system seen by a

customer in transit between queues (but

not yet resident in any queue) is the

same as the stationary distribution of a

system that does not contain the transit

customer. This is a form of an arrival

theorem [Lavenberg and Reiser 1980;

Melamed 1982; Sevcik and Mitrani 1981].

This insight led to an important paper by

Reiser and Lavenberg [ 1980] that derives

a set of recurrence equations that can be

used to compute derived quantities, such

as mean queue lengths, without calculat-

ing a normalization constant. This proce-

dure, called Mean Value Amalysis, has

had a major influence on the application

of closed queuing networks to model com-

puter systems.

In this article, we concentrate on the

mathematics leading up to product form

and do not consider difficulties associ-

ated with the computational aspects of

the problem. The basic mathematical

structures that we consider are Markov

processes which satisfy a set of balance

equations called partial balance. For such

processes, the underlying mathematics

that implies product form is often ex-

pressed in terms of probabilistic relation-

ships that are found between events of

the Markov process and specified sets of

states. Such a representation does not

require an interpretation of how such sets

and transitions are reflected in the sys-

tem that is modeled by the Markov pro-

cess. In the special case of a queuing

network, one can create a correspon-

dence between states of the queues with

sets of states found in the underlying

Markov process. Such a correspondence

ACM Computing Surveys. Vol 25, No 3, September 1993
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can also be established between cus-

tomer events in the queuing network and

transition events in the Markov process.

Thus, the abstract theory developed for

Markov processes can be applied to that

of the actual queuing network.

As an example of this correspondence,

suppose the state of a Markov process

that models a queuing network is a vec-

torn = (nl, 72~,. ... n~), K> I,where n,,

1< i < K, is the number of class z cus-

tomers in the system. The set of all possi-

ble queuing states that can exist when a

class i customer arrives to the system

corresponds to the set of all possible

states of the Markov process that can

exist when a transition causes the value

of n, to increase by 1. Although we con-

centrate on queuing-network applica-

tions of product form networks (there are

many other applications that do not cor-

respond to queuing networks such as

polymerization models and genetic mod-

els) we fxnd it more convenient to derive

the basic mathematics of product form in

the abstract paradigm of Markov process

theory rather than in the specific terms

of queuing networks. This approach has

the advantage of presenting the underly-

ing mathematics of product form in a

general, abstract, setting. Later, when

discussing how these results can be used

to model networks, we switch over to the

ideology of queuing networks.

In Section 2 we present preliminary

results regarding Markov processes and

introduce the notions of reverse time pro-

cesses, reversibility, and quasireversibil-

ity. The four properties of partial balance

that are heavily used in product form

networks are also established in this sec-

tion. Partial balance is an important

principle behind product form, and we

fully explore its ramifications in this sec-

tion. Our emphasis is on product form as

found in networks of quasireversible

queues. Although product form can hold

when quasireversibility is not satisfied,

quasireversible networks are frequently

found in applications, and concentrating

our attention to this type of network is

not, in our opinion, unduly restrictive. In

Section 3 we show how individual

quasireversible queues can be joined into

networks that preserve quasireversibil-

ity. Such networks have product form

solutions. In Section 4 we present our

conclusions.

2. PRELIMINARY RESULTS

In this section we define our notation

and establish fundamental properties of

Markov processes and their time reversal

counterparts. We denote sets in calli-

graphic type style (i.e., ~’, %) and will

denote the union of sets %’ and Y as

{%, % }. The notation {&C}~. ~ will repre-

sent the unio~ of sets Y; over c, i.e.,

u:=l.~:, and % will denote the comple-

ment of set 1~ with respect to some uni-

versal set.

2.1 Preliminary Definitions

We let S’ be a countable set of states and

let X(t), –~ < t < M, be a Markov pro-

cess defined on j’. Throughout this arti-

cle we assume that X(t) is time homoge-

neous, irreducible, and stationary [Ross

1983]. We will sometimes suppress the

time dependency in our notation of X(t).

The state transition rate from state i to

state J, i, J“ E P, is defined as

q(l, J)

‘[

P[X(t + ~) =jl X(t) = i]
_ lim, ~ ~ i +J’,,

T

o, L=J,

(1)

and we define the total transition rate

from state i as

The stationary distribution of X is de-

noted by W( i), i G Y, and is equal to the

fraction of time that the process spends

instate i. Fortl<t2< ,.. <t~jm>l,

the joint distribution of X is defined to

be

ACM Computmg Surveys, Vol 25, No. 3, September 1993



Product Form Queuing Networks ● 343

L7(il, iz, . . ..i.n; tl, ta, tin), tm)

-PI X(tl) = il, X(tz)

=iz, ..., X(t,n)= in,]. (3)

The joint distribution is the total proba-

bility of the set of paths where X is

found in state i at times tJ,1< j < m.

The probabihty flux from state i to

state J“ is defined as

F(i, j) = m(i)q(i, j), i GY (4)

and is equal to the time average transi-

tion rate out of state i to state j. More

generally, we define the probability flux

between two subsets of M’, ?(, and 9“, as

F(%’,y ) = ~ F(u, u). (5)

UEY[, UE7

The time reversal of a stationary

Markov process X on the state space

about the time r is defined to be the

process Xr( t ) - X(T – t) and corre-

sponds to viewing the process backward

in time about the pivot T. Under the

given assumptions of X it can be shown

that X‘ is also a time homogeneous, ir-

reducible, and stationary Markov process

[Kelly 1979]. These assumptions imply

that selection of T is arbitrary since, as

in the forward process, properties of the

reverse process do not depend on abso-

lute time. We henceforth set the pivot of

time reversal to be ~ = O and will call

process X(t) and X’(t) - X( –t) the for-

ward and reverse processes, respectively.

We let qr(i, j) and qr(i), i,j G.9’, be

the transition rates and total transition

rate, respectively, of the reverse process

and let m‘ ( i ) be its stationary distribu-

tion. In general, the transition rates of

the reverse process differ from that of the

forward process. As an example, suppose

that q(i, j) + O and q(j, i) = O for some

process. Viewing the process in reverse

time shows that q ‘(j, i) + O, and thus

the forward and reverse transition rates

are not equal. Since reversing time does

not affect the fraction of time a process

spends in a state, the stationary distribu-

tions of both the forward and reverse

process are identical, i.e., m ‘(i) = n(i),

i = S. The joint distribution of the re-

verse process and probability flux of the

reverse process are defined similarly to

that of the forward process, i.e.,

!Zr(il, iz, . . ..im. tl, tz, tnZ)tnZ)

=PIXr(tl) = il, Xr(tz)

=iz, ..., X’(tnl) = i,. ]

=PIX(–t,,, )=i~, X(–tn_l)

=i~ ~, ..., X(–tl)=il] (6)

and

Fr(i, j) - nr(i)qr(i, j)

= m-(i) qr(i, j), i,j G,Y’, (7)

with a similar form of probability flux for

sets (5), We note that, by definition, the

joint distributions for the forward and

reverse process satisfy

~(il, iz, . . ..z~. “tl, t2,... ,tnz)

=@ ’(i~l, i,~_l,... ,iz, il;

–t,,, , –tnz.l,... , –t2, –tl). (8)

It is important to note that equality of

the stationary probabilities for the for-

ward and reverse process does not imply

equivalence of the joint distribution of

these processes. The joint distribution is

a more precise characterization of the

process since it specifies the probability

of evolving along a certain set of paths

rather than simply specifying the frac-

tion of time the process spends in a given

set of states.

Processes that have the property that

the joint distribution of the forward and

reverse process are equal are said to be

reversible. Specifically, a process is re-

versible if

~(il, iz, . . ..i~. ;tl, tz, t~), t~)

=~r(il, zz, . . ..z~. ,“tl, t2, . . ..t.n)

(9)

=~(z~, i,~_l, . . .. il.

–t,n, –t ~_l,... tl)l). (10)

This definition implies that reversible

ACM Computmg Surveys, Vol 25, No 3, September 1993
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processes are statistically identical in

forward or reverse time and implies that

n(i)q(i, J“) = Wr(i)qr(i, J“) and conse-

quently that q(i, j) = qr(i, j). We will

frequently make use of this characteris-

tic of reversible processes to derive re-

sults that are difficult to obtain through

other means. We record here that, be-

cause of this statistical equivalence, the

probability flux of the forward and re-

verse process must be equal, i.e.,

F(2Z,7 ) –F’(Y/, 7 ) = O.

Reversibility Balance Equations

(11)

2.2 Balance Equations for the Forward and

Reverse Process

To determine the stationary distribution

of the process we must find values of

m(i), i E Y’, that satisfy global balance

equations. These equations can be ex-

pressed as a conservation law of proba-

bility flux and are given by

F(z, ~) – F(Z,2’) = O,

Global Balance Equations (12)

where ?[ is any set in Y’ and where ~ is

its complement with respect to >, A solu-

tion to (12) for all Z’ that is normalized to

sum to unity is the unique stationary

distribution of the process [Ross 1983]. A

convenient way to represent ( 12) is shown

in Figure 1. An arc from state i to state j

in this figure is assumed to have a di-

rected probability flux on it equal to

F( i, j). Equation (12) shows that the

probability flux into and out of any sub-

set of states is equal. By careful selection

of set %’, we can sometimes use the struc-

ture of a Markov process to determine a

possible solution (a guess) of the global

balance equations and then normalize it

to sum to unity. The solution can then be

checked by showing that it satisfies (12).

As an example of such a procedure,

consider a birth–death process. Birth

transitions in state i occur at rate Al, i >

0, and death transitions in state i occur

at rate p,, z > 0. We will think of this

process as a queuing system in which the

action of the scheduling and servicing

policy of the queue in state i is such that

customers arrive at rate A, and depart at

rate I-L,( I.-Lo= O). One context for such a

system is a first-come first-serve, single-

server queue where customers require a

unit exponential service and the server

works at rate p, when there are i cus-

tomers in the queue. Other service and

scheduling assumptions also lead to the

same Markov process.

Setting 7/= {O, 1,..., i – 1},i >1, and

using the global balance equations (12)

show that

=F(i–l, i)– F(i, i–l)=O,

i >1, (13)

and thus that

~(i) AL–1
izl. (14)

m(i–l)– A,’

Equations (14) suggest that n(i) has the

form of a product of the ratio of transi-

tion rates. We guess a solution of the

form

Normalizing it with

implies that the guessed stationary prob-

abilities are given by

(17)

(a product with an empty range is de-

fined to be equal to 1). It is easy to check

( 17) to show that it satisfies the global

balance equations and that the probabili-

ties sum to 1. Thus (17) is the stationary

distribution of the process.

We shall shortly see that, like birth-

ACM Computmg Surveys Vol 25 No 3, September 1993
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Detailed Balanc~ Parhal Balance

e ●

,_#/’
i /’

Figurel. Balance equations.

death processes, all reversible Markov which, after dividing by dt and letting

processes have solutions that can be dt s 0, and using (1) implies that

written as products of the ratios of tran-

sitions rates (15), Before proceeding to 7r(i)q(i, h) = 7r(k)qr(k, i). (21)

this, we first derive equations satisfied

by the reverse transition rates. Use (8) to Summing this equation over h and using

write global balance for the reverse process also

shows that

P[X(t +dt) =k, X(t) =i]

=P[Xr(–t)=i,
q(i) = q’(i). (22)

Xr(–t–dt)=h] (18) It is convenient to record the result of

=P[Xr(t+dt) =i, Xr(t) =h]
(21) in terms of probability flux for any

~~~, two disjoint subsets ~~, z ● Y,

F(2Y,7’-F’(7, %)=O
where (19) arises from (18) by shifting

the process by 2 t + dt time units. Since Reverse Balance Equations (23)

the process is time homogeneous and sta-

tionary, this shift in time does not change
Equations (21-23) must be satisfied by

the joint probability. We rewrite (19) as
the reverse transition rates. They show

that we can deduce the reverse transition

~(i) P[X(t + dt) = klX(t) = i] rates after we know the stationary distri-

bution, or alternatively we can deduce
= wr(k)P[Xr(t + dt)

the stationary distribution after we know

= ilXr(t) ==k] (20) the reverse transition rates. Since both

ACM Computmg Surveys, Vol 25, No 3, September 1993



346 * Randolp?t D. Nelson

the stationary distribution and reverse

transition rates are not known before

hand, it might appear at first that the

reverse balance equations are not practi-

cally useful. But suppose we can simulta-

neously guess values for both the reverse

transition rates and the stationary prob-

abilities that satisfy (21) and (22 ) (and

consequently that also satisfies (23)).

Does our guess correspond to the actual

values of the stationary probability dis-

tribution and the reverse transition rates

(i.e., are the guessed values of n(i) and

q’ (i, j) correct)? To see that they are cor-

rect, we sum (21) over i

~ 7T(i)q(i, k)

lEY

= ~ m(h)qr(k, i) (24)

rEY

= n(k) ~ q(h, i) From (22),

Le-r

(25)

and thus the guessed values of n(i) and

q‘( i, j) satisfy global balance.

Often it is the case that the structure

of the reverse process is evident by imag-

ining the process running backward in

time, and we can often guess a form for

the structure of the stationary probabili-

ties. In such cases, algebraic experimen-

tation can often be used to hone in on the

solutlons for the stationary probabilities

and reverse transition rates, and then

the reverse balance equations can be used

to validate the derived solution. Al-

though it might seem futile to attempt

heuristic guessing to determine solutions

for complex processes, we will later de-

rive the stationary dlstrlbutlon for the

entire family of quasireversible queuing

networks in exactly this manner. The

surprising thing about obtaining a result

of this magnitude in this ad hoc manner

is that the proposed guess is motivated

largely by the desire to have a tractable

solution rather than by any deep, pene-

trating insight. The reader has perhaps

already anticipated, from the introduc-

tory material, the form of the guess.

2.3 Reversibility and Detailed Balance

We can deduce the reverse transition

rates for one class of Markov processes.

Comparing the reversibility balance

equations (11) to the reverse balance

equations (23) shows that for reversible

processes

F(w,7 ) =F(7 ,7/),

Detailed Balance Equations (26)

and thus that

m(i)q(z, j) = m(j)q(j, i), i,je~.

(27)

It can be shown that detailed balance is a

necessary and sufficient condition for a

process to be reversible [Kelly 1979].

The stationary probabilities for these

reversible processes can be obtained in

the same manner as in the birth-death

example. Pick a starting state s = >’, and

for each state i E 2’ find any sequence of
. .

states s=jl, l,jt, z, . . ..~t. m = i,rnl 2 1,

so that dj, h>j, /.+ I )>o, l<k< m-

1. Such a sequence exists for all states

1 e ~ since X is irreducible. Analogous

to (15) and (17) let

(28)

where

k=l,2,..., nzl ,1, (29)

is the ratio of the forward to the reverse

rate for step k along the sequence of

states selected for the i th state. Normal-

izing (28) we obtain

Thus the form of the solution for the

stationary distribution for reversible pro-

cesses is a ratio of products of rates as in

the birth–death example. Since we can

ACM Computmg Surveys, Vol 25, No J, September 1993
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pick any sequence of states to derive (30),

it follows that the rates along any span-

ning tree of the state space of a reversible

process are sufficient to determine its

stationary distribution. This observation

leads to some interesting conclusions. For

example, for a given spanning tree it

shows that changes to transition rates

not contained in the spanning tree that

keep the process reversible do not affect

the stationary distribution of the process.

Detailed balance is a restrictive con-

servation law that is graphically shown

in Figure 1. From it we can derive a way

to determine if a Markov process is re-

versible from inspection of its transition

rates. Let ,jl, J’z, . . . J“,)?+ ~, m > 0, be any

sequence of states that satisfies jv, + ~ =

jl. If the process is reversible, then de-

tailed balance implies that

m(jk)q(jk, J”~+l) = fiI~k+l)~(J”k+l>~k)>

I<f% <m, (31)

and

) (32)W(J”n)q(J”~, J”l) = w(jl)~~JI>Jn~ .

Multiplying the left and right-hand sides

of (31) for 1 < k < m and (32) and can-

celing the common probability factors

implies that

q(jl, j2)q(j2, j3)... q(jm, j1)

= q(jl,jm)q(~,n>~,n-l )... q(j2, j1)

(33)

are satisfied if the process is reversible.

Another argument can be used to estab-

lish that if (33) is satisfied for all se-

quences of states, then the process is

reversible. This criterion is called Kol-

mogorov’s criterion [Kolmogorov 1936]

and is often used to establish the re-

versibility of a process. Each side of (33)

can be thought of as a flow of transition

rates along one direction, and the equal-

ity thus implies that there is no net cir-

culation of this flow in the state space. It

immediately follows that all Markov pro-

cesses that have a state transition dia-

gram that forms a tree with bidirectional

arcs, regardless of transition values, are

reversible. Here Equation (33) is trivially

satisfied.

Returning to the birth–death example,

since the state space is a tree, it immedi-

ately follows that the process is re-

versible. Thus the process is statistically

identical in forward and reverse time. We

apply this result to establish that the

arrival and departure processes from the

queue are statistically identical. The ar-

rival and departure processes are defined

to be the times at which customers join

and leave the queue, respectively. Ar-

rivals and departures in the forward pro-

cess cause X to increase or decrease by

one customer, respectively. An increase

(decrease) of one customer in forward

time, however, corresponds to a decrease

(increase) of one customer in reverse time.

Thus, arrivals and departures of the for-

ward process correspond to departures

and arrivals in the reverse process, re-

spectively. Since both the forward and

reverse processes are statistically identi-

cal, the arrival process of the forward

process is statistically identical to the

arrival process of the reverse process. The

correspondence of reverse arrivals and

forward departures thus implies that the

arrival and departure processes of the

forward process are statistically identi-

cal, as claimed. There is a striking con-

trast to the difficulty in obtaining this

result using algebraic techniques [Burke

1956; 1972; 1976] with the ease of the

above argument.

To continue the above line of reason-

ing, assume that arrival rates are inde-

pendent of the state, At = A, i >0. It then

follows that the arrival and departure

processes are both Poisson with rate A

This conclusion initially appears to vio-

late intuition since it is invariant to the

selection of the values of the service rates

as long as the system permits a station-

ary distribution. Although it is clear that

the average customer departure rate

must be A since the queue is stationary,

it is not clear that the departure process

must have independent interdeparture

intervals. We are led to believe that we

could arrange service rates so as to force

departures to occur in clusters. For ex-

ACM Computing Surveys, V.] 25, No 3, September 1993



348 e Randolph D. Nelson

ample, consider setting the service

as follows

(

e, l<i <N,~, E
p, N<i,

rates

(34)

for a given value of N, O s N < ~, and

● > 0. The system is stationary provided

that A/N <1. For any value of N and

8,0<8< 1, we can select 6 so that the

probability of having at least N cus-

tomers in the queue is greater than 8. As

an example, suppose we select N = 10134

and 6 = 1 – 10– A31. Thus the process has

fewer than 1013& customers less than

10’431 x 100 percent of the time. This

seems to imply that the departure pro-

cess would frequently consist of a series

of exponential interdeparture intervals at

rate w when the queue length is greater

than N with exponential interdepartures

at rate c during the infrequent times

that the queue length was below N. How

then can the departure process have in-

dependent interdeparture intervals and

be Poisson at rate A as we have already

shown?

Intuition leads us astray in the above

argument since it misses a subtle depen-

dency. The departure process is deter-

mined not by the stationary distribution,

but rather by the joint queue length dis-

tribution. But the departure process and

the time during which the queue length

is greater than N (which is also deter-

mined by the joint queue length distribu-

tion) are not independent of each other.

The “intuitive argument” presented

above ignores this dependency by focus-

ing only on the nature of the stationary

distribution.

2.4 Quasireversibility

One important property arises when we

consider the birth–death example in the

case where the arrival rates are indepen-

dent of the state of the system, i.e., A, =

A, i >0, Since we will have recourse to

discuss this process repeatedly in the ar-

ticle, we will call it the constant arrival

birth–death process. Suppose that, at a

random time, we observe both the state

of the system and its future-arrival

stream. Clearly these are independent

since, for all states, arrivals are Poisson

with rate A But since arrivals in the

forward process correspond to departures

in the reverse process and since the pro-

cess is reversible, it must be the case

that the state of the system at a random

time is independent of the departure pro-

cess prior to that time, and thus both the

arrival and departure processes are Pois-

son. It is important here to note that if

arrivals are state dependent, then the

state of the system at a random time and

its future arrivals are not independent

(here the probability of an arrival within

dt seconds in state i is Al dt which clearly

is state dependent).

A new property, that was first identi-

fied by Kelly [ 1976a], emerges from the

above discussion, which captures a type

of independence of both the arrival and

departure processes from the state of the

system [Burke 1956; Muntz 1972; 1973].

We will define this property within the

context of a multiple-class queue. Sup-

pose there are C, C > 1, classes of cus-

tomers that arrive and are serviced by a

queuing system. The Markov process as-

sociated with this system is said to be

quasireuersible if the state of the process,

for all c, 1< c < C, at time t is indepen-

dent of the arrival process of class c cus-

tomers after time t and is also indepen-

dent of the departure process of class c

customers prior to time t. Note that this

definition, with the identification of ar-

rivals (resp., departures) in the forward

process with departures (resp., arrivals)

in the reverse process, implies that the

reverse process of a quasireversible queue

is also quasireversible. If we think of a

queue as a filter which takes a set of

input processes and produces a set of

output processes, then, as shown below,

quasireversible queues have the property

that Poisson streams pass through such

a filter statistically unchanged (this is

the M * M! property of Muntz [1972]).

Queuing systems are typically easier to

solve if’ governed by Poisson arrival and

departure processes. This, with the fact

that the state of a quasireversible queue
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is independent of both of these processes,

suggests that a network of such queues

would also have states that were mutu-

ally independent. These observations

provide the first glimpse as to why

input-output relationships lead to queu-

ing networks that have tractable analy-

sis [Kelly 1976a; Muntz 1972; 1973].

The above arguments show that the

constant-arrival birth–death m-ocess is

quasireversible whereas the b;rth–death

process with state-dependent arrivals is

not. Both systems, it is important to note,

are reversible. It is easv to construct ex-.
amples of Markov processes that are

quasireversible but not reversible. Con-

sider the birth–death aueue with con-.
stant arrival rates where we “split” state

1 into two states, say states 1. and lb.

Set the transition from state O to state 1

(resp., state 1~) to be equal to p~ (resp~,

(1 – p) A) and the transition from state 2

to state 1,, (resp., state lfi ) to be equal to

(1 – p )p (resp., pp). The-transition rates

from state 1. and lb are similar to the

original birth–death queue (i.e., the rate

from these states to state O (res~.. 2) is

given by p (resp., A)). It is simpl~ to see

that the sum of the stationary probabili-

ties of state 1,, and 1~ in this modified

process is equal to this stationary proba-

bility of state 1 in the original birth-

death process. It is also clear that this

splitting of state 1 does not influence the

departure process from the system. The

modified process, however, is not re-

versible. This is easilv seen from Kol-

mogorov’s criteria b; comparing the

product of transition rates in both direc-

tions of the cycle O ~ 1,, ~ 2- lb e O.

Equality of these two products is only

achieved if p = 1/2. These examples

show that reversibility and quasire-

versibility are entirely separate notions

even though the word “quasireversibility”

seems to imply a superset relationship

with “reversibility.” In general, quasire-

versibility (resp., reversibility) does not

imply reversibility ( resp., quasireversibil -

it y).

We have now established that the con-

stant-arrival birth–death process is

quasireversible and also has Poisson ar-

rival and departure processes that are

independent of the state of the queue. We

now show that this input-output prop-

erty is shared by all quasireversible

queues. The details of the following

derivation were first presented by Muntz

[1972] and the approach here follows

Kelly [1979]. Let t be a random time,

and let >;(i), 1 < c s C, i =Y, be the set

of states that contain one more class c

customer than in state i with the same

number of customers of other classes. The

arrival rate of class c customers given

that X(t) = i is given by

A(c, i) = ~ q(i, k), i ●Y’, (35)

ke~, ([)

and thus the average arrival rate of class

c customers is given by

A(c) = ~ m(i) A(c, i). (36)

1EY

By definition of quasireversibility, how-

ever, the arrival process of class c cus-

tomers subsequent to t is independent of

the state at time t, and thus N c, i) is

independent of i. Using (35) and (36) we

write

A(c) = ~ q(i, k), (37)

k=/{(2)

where i is any state in .Y’. The probabil-

ity of an arrival of a class c customer

within (t, t + dt ) is independent of any

event prior to time t and is given by

A(c )dt, which shows that the arrival of

class c customers is a Poisson process.

Assume that all arriving customers

leave the system and that the queue is in

equilibrium. This, combined with the

identification of arrivals (departures) of

the forward process with departures

(arrivals) of the reverse process and the

fact that the queue viewed in reverse

time is also quasireversible, implies that

the departure process is also Poisson with

rate A(c). This argument also shows that
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We can obtain substantially more from

the above argument. The reverse balance

equations (23) show that

7r(i) ~ qr(i, k) = ~ 7r(/2)q(h, i).

ke /’([) k-~<(z)

(39)

Using (37) and (38) in (39) shows that

7r(i) ~ q(i, k) = ~ m(h)q(k, i)

k =>(z) ke.Y;(zl

(40)

and also (obtained by subtracting this

from a global balance) that

7r(L) ~ q(z, h) = ~ 7T(k)q(k, i).

k=<>.(z) k&Y;(t)

(41)

Rewriting in terms of probability flux we

have for all c, 1 s c s C,

F(i, Y;(z)) – F(.Y, (i), i) = O,

F(i,s~) - F(>;(i), i) = O, i GY’.

Partial Balance Equations (42)

These equations imply that the probabil-

ity flux due to arrivals of class c jobs

from a state i is equal to the probability

flux due to departures of class c jobs that

result in state i. In contrast to detailed

balance which was necessary and suffi-

cient for the reversibility of a process,

partial balance is only a necessary condi-

tion for quasireversibility. There are pro-

cesses that satisfy partial balance that

are not quasireversible (e.g., those that

do not have Poisson arrival and depar-

ture processes). The essence of product

form, as will be seen later, is found in the

partial balance equations. Networks of

quasireversible queues have product form

solutions because they also satisfy

partial balance. It is important to note,

however, that product form can exist in

systems that do not satisfy quasire-

versibility.

To discuss other versions of partial bal-

ance, let 7/, ( i) be the set of states that

have one less class c customer than state

z, and let ~(i) be the set of states that

have the same number of class c’ cus-

tomers as state i for c’ = 1,2, ..., C.

Transitions between state i and set ~(i)

will be termed internal transitions since

they can be viewed as transitions within

a queue that do not change the number

of its customers. We will also term exter-

nal transitions as being those that corre-

spond to external arrival or departure

events. If all transitions cause class

changes for some class, i.e., if all transi-

tions are external transitions, then set

Y(i) is empty. State transition from i are

contained in the set {~(i), Y~(i), %~(i)}~= ~.

Global balance implies that

F(i, {jY(i), ~(i),7<(i)}~=1)

– F({~(i), >~(i), Y~(i)}~=l, i] = O,

i G&’. (43)

Summing (42) over all c implies that

partial balance holds for the set

{~;(i)}~. ~ and that

F(i, {.y;(i)}~=l ] - F({5(i)}~=l, i] = O.

Using this in (43) shows that for systems

that satisfy partial balance, the following

balance equation also holds

F(i, {&’(i),’7j(i)}~=1)

–F({~(i),7’’~(i )}~~1, i) = O,

i G Y. (44)

The partial balance equations (42) along

with (44) are sometimes collectively

termed local balance equations. Equa-

tion (44) implies that the probability flux

due to internal transitions and depar-

tures of customers from state i is equal

to the probability flux due to internal

transitions and arrivals that result in

state i.

A more restrictive form of balance holds

when station balance equations are sat-

isfied. These equations are given by

F(i, Z(i)) –F(Y(i), i) = O (45)

F(i,7C( i)) –F(7C(i), i) =0 i ● >’.

(46)

Station Balance Equations
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Equation (45) implies that the probabil-

ity flux due to internal transitions is bal-

anced, and (46) implies that the proba-

bility flux due to departures of class c

customers from state i is equal to the

probability flux due to arrivals of class c

customers that result in state i. It is

clear that if either partial balance or sta-

tion balance is satisfied then (44) holds.

Equation (44), however, can hold without

either partial balance or station balance

being satisfied. Station balance (resp.,

partial balance) does not imply that par-

tial balance (resp., station balance) holds.

As an example where partial balance is

satisfied but station balance does not

hold, consider a multiple class M\ M/K

queue with C classes of customers. As-

sume that class c customers arrive with

a rate of AC and have an exponential

service rate of ~. The state of the system

can be written as g where ~ = ( SI,

S2, ..., ‘K,s~+;,... ) represents classes of

customers resident in the system. Here

the first K components of ? correspond

to the classes of customers that are being

served, and the remaining components

correspond to the classes of customers

that wait in the queue (we set s, = O if

no customer exists in position i). Let the

total arrival rate of customers of all

classes be given by A = E~_ ~AC, and let

pi = A</A be the probability that an ar-

rival is of class c. Let a(n) be the sta-

tionary probability of having n cus-

tomers in a single class M/M\K queue

with an arrival rate of A. Then a simple

calculation shows that the stationary

probability is given by

m-(:) = a(l:l) fipc, (47)
~=1

where I: I is the number of customers in

state s. It can be shown algebraically

that tiis queue satisfies partial balance.

Station balance, however, is not satisfied.

To see this consider a state

S=(:, c,-...,— C, SIC+@K+~,... ). (48)

K

In this state all servers are processing a

class c customer. A departure of a class c

customer then results in a state

J=(c, c,... c, L$K+l, sK+ ~>... ). (49)

K–1

It is clear that if SK+ ~ + c no arrival of a

class c can result in a s’ ~ s transition,— —
and thus station balance cannot be satis-

fied.

Product form solutions, as we will later

see, arise from systems that satisfy par-

tial balance. We show that one such class

of networks are those consisting of

quasireversible queues and in the next

section explore the properties of partial

balance that will allow us to develop such

results. Consequences of station balance

include insensitivity of the stationary

distribution to higher moments of service

time. These results lie outside the scope

of this article and can be found in Chandy

et al. [ 1977], Disney and Kiessler [ 1987],

and Jansen and Konig [1980].

2.5 Partial Balance

The notion of customer classes is a useful

paradigm within which to couch partial

balance, but it can be expressed for arbi-

trary sets. More generally (see Whittle

[1967; 1968] for the first definition of

partial balance) we say that partial bal-

ance holds on set 7/ if

F(i,7/) –F(//, i) = O

F(i, ~) –F(~, i) = O Vi =?/. (50)

Observe that global balance for state i

results by summing these two equations.

It is important to note that if partial

balance holds over set 7/ then it does not

necessarily hold over all possible sets.

We will always specify which sets we

mean when discussing partial balance

and make it the convention that for

quasireversible systems we mean partial

balance as given by the sets >,(i) as

specified in (42). The relationship be-

tween partial, local, and station balance

for a two-class system is shown in Figure

2. Since partial balance and quasire-

versibility play key roles in the rest of

the article, we spend some time here to
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Figure 2. Partial, local. and station balance equations

explore some of their properties. The first arrival of a class c customer to a quasire-

property below requires that the process versible queue that is in state i. We know

is quasireversible. The following three that this arrival causes a state transition

properties hold generally for all pro- to some state i’ ● ~,( i ), and here we wish

cesses that satisfy partial balance. We to derive its distribution. This probability

is written as

P[X(t + dt) = i’l X(t) = t, Arrival of class c in CZt]

P[X(t + dt) = z’, X(t) = i, Arrival of class c in dt]
——

F’[ X( t ) = i, Arrival of class c in dt ]

n(z)q(z, z’)dt q(z, i”)
—

m-(i) ~(c)dt – A(c) ‘ (51)

make the convention that when we say a

quasireversible queue satisfies partial

balance, we mean that for all states i, i

E Y’, Equation (42) is satisfied. When

partial bal ante is said to hold over a set

2/ c> we mean that Equation (50) is

satisfied over Y[.

The Distribution Property

The first property requires that quasire-

versibility, and thus also that partial bal-

ance, is satisfied. Suppose we observe an

where we have used the fact that the

arrival rate of class c customers is inde-

pendent of the state of the system (37).

We call this the distribution property of

quasireversible queues. Notice that this

property holds only for quasireversible

queues and does not hold in general for

processes that satisfy partial balance.

App/icat/on of the Distribution Properly

This property is, in some sense, the

mechanism that allows us to join quasi-
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reversible queues together into a net-

work and still preserve that fact that the

resultant network is quasireversible. We

will see in Section 3 that this implies

that the network has a product form so-

lution.

The State Truncation Property

The second property of partial balance

arises when we truncate the state space

of the process. Let 7/ be a set of states

and consider the process & that restricts

X to ?? by setting

(52)

If partial balance holds over ?/ and if Y

is irreducible then

F(i,7/) –F(?/, i) = O, i ● Yz’, (53)

and it is easy to see that (53) is un-

changed if W(i) is replaced by

7rY(i) = Cm(i), i = ?/, (54)

where C = l\Zl. ~,T( i ) is a normalizing

constant. Since Y is restricted to 1/, this

shows that n-y(i) is its stationary distri-

bution. Conversely, suppose that (54) is

Y’s stationary distribution and thus sat-

isfies the global balance equations,

Global balance for X can be written as

Substituting (52 and 54) into (55) and

subtracting it from (56) shows that par-

tial balance is satisfied. Thus, stationary

probabilities are identical (up to a nor-

malization) if a process is truncated to a

set ?/ if and only if partial balance holds

over Y/. We call this property the state

truncation property of processes that sat-

isfy partial balance.

Application of the State Truncation Property

Two applications of the state truncation

property are finite-buffer models for com-

munication networks (see Henderson and

Taylor [1989] for an interesting example

in communications) and closed, fixed-

population queuing networks. As an ex-

ample of a finite-buffer model, consider

an infinite-server queue with Poisson ar-

rivals at rate AC and exponential service

times with expectations of I/pc for

classes c = 1, 2, ..., C (the results pre-

sented here also hold if the service times

are generally distributed with expecta-

tion l\pC; see Kelly’s [1979] treatment of

symmetric queues for a sketch of a proof).

It is well known that this finite-buffer

system satisfies partial balance and that

the stationary distribution that there are

n, class c customers in the system is

given by

where p, = A,/P, and z = (nl, nz, ...,

n(,). Suppose we restrict the total num-

ber of customers in the system, regard-

less of class, to be not greater than N.

Customer arrivals to the system when

there are N servers busy are assumed to

be lost. Let w be the set of all feasible

states that contain N customers or less.

The stationary distribution for this sys-

tem is then given by

The difficulty of analyzing truncated sys-

tems, as demonstrated in the above ex-

ample, arises from the complexity of cal-

culating the normalization constant over

the truncated state space (i.e., the de-

nominator in (58)).
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For applications of the state truncation

property to closed systems, consider an

open multiple-class queuing network; let

1:( nC) c>’ be a subset of states having

nc, nC>l, class c,c=1,2, . . ..C. cus-

tomers; and let Y be the process X re-

stricted to the set of states having n,, 1

s c g C’, class c customers. This restric-

tion corresponds to a closed network

where the underlying Markov process is

truncated to the set

c

3 = n.$C(nC). (59)
~=1

Notice that (59) implies that

Uy(i)=z. (60)

L●2

Suppose that Y is irreducible on & and

that X satisfies partial balance on set 2.

Using (60) this is equivalent to having

(45) satisfied, which follows if station

balance holds, Then the state truncation

property implies that the stationary dis-

tribution of the closed system Y is a

renormalization of the stationary distri-

bution of the open system X.

Application of the D/str/bution and State

Truncation Properties

We continue the closed-network applica-

tion of the state truncation property. If

the process Y defined on set Y is not

irreducible or if X does not satisfy par-

tial balance on 2 then we cannot imme-

diately apply station truncation. A closed

system, however, can be thought of as

being derived from an open system by

modifying the open system’s external

state transitions while retaining the in-

ternal transitions of the open system. In

particular, transitions in the open sys-

tem that result in having more than n,

class c customers are assumed to be lost

in the closed system; departures of class

c in having more than n, class c cus-

tomers are eliminated; and transitions

that reduce the number of class c cus-

tomers to be less than nC are modified so

that they keep the number of class c

customers equal to n, in the closed sys-

tem. We can thus think of arrivals in the

open system as being “lost” in the closed

system and departures of class c cus-

tomers in the open system as causing an

immediate arrival of a class c customer

in the closed system. We require a pre-

cise specification of the transition rates

of these immediate arrivals in the closed

system. To do this, assume that the open

system satisfies partial balance, and thus

specifically that (44) is satisfied, and de-

fine the sets consisting of one less class c

customer as

Observe that in terms of the sets 7;(i)

we can write U ,.z~~(i)=~,. We as-
sume the immediate arrivals of the closed

system, being similar to external arrivals

of the open system, satisfy the distribu-

tion property. This implies that transi-

tions for these immediate arrivals, which

are denoted by qY ( ), are given by

qY(i, k)=q(i, k)

In words, (62) can be explained as fol-

lows. The value q( z, k) in the first part of

(62) corresponds to the internal transi-

tion rate found in the open process which

is retained in the closed process. The

second part of (62) accounts for external

departure transitions from the open sys-

tem which are altered in the closed pro-

cess. Class c transitions from state i, z G

S, must first enter some state j in set -ZC

which occurs at rate q( i, j). This reduces

the number of class c customers to n ~ – 1

and in the closed system causes an im-

mediate arrival of a class c customer.

Using the distribution property, the

probability that this new arrival causes a

transition into state k, k G S?”, is given by

q(.j, k )\N c ). Summing over all possibili-

ties yields (62).
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The closed network can thus be thought

of as a truncation of the open process

with modified external transitions that

satisfy the distribution property. We now

show that, as in the state truncation

property, the stationary distribution for

the closed process is simply a renormal-

ization of the stationary distribution for

the open process, i.e., that (54) is satis-

fied with ?/ being set 2. From (54) then

it suffices to show that

m(i) ~ qy(i, k) = ~ m(k)qy(k, i),

k E1 k s_Z

i ● s. (63)

Using (62) we write the left-hand side of

(63) as

T(i) ~ qy(i, k)

kE/

=%-(i) ~ q(i, k)

k ●_Z

Product Form Queuing Networks ●

q(j, k)
+ f’ m-(i) ~ q(i, j) ~ —

‘=l J &?, k=z A(c)

(64)

—— m(i) ~ q(i, k)

k c-Z

c

+ ~ n-(i) ~ q(i, j) (65)
<=1 J •~<

= F(i,{2,2c}~= l). (66)

Equation (65) follows from Equation (64)

by an application of (37).

Using (62) we can write the right-hand

side of (63) as

~ 7r(k”)qy(k, i)

k =.2’

= ~ n(k)q(k, i)

f?Gz

(67)

= ~ m(k)q(k, i)

ksz

355

(68)

(69)

(70)

Equation (68) follows from (67) from the

reverse balance equations (21), and

Equation (69) follows from (38). Equation

(63) thus follows from the fact that (44) is

assumed to hold in the original process.

We call such a system a closed quasire-

versible queue.

The Arrival-Departure Property

The equation given in (50) permits an

interesting probabilistic interpretation.

Suppose one defines the point process Y~

by observing X just before making a

transition that leaves a set 7/. Let

~Y(/ i ), i ● 7/, be the probability that the

system is in state i just prior to the

transition. Similarly we let Y. be the

point process formed by observing X just

after a transition into z and let ~Y,(i ), i

● 7/, be its distribution. We will speak of

the distribution of Y~ and Y. as being

the distribution of states as seen by a

transition out of and into set Z, respec-

tively. What is the relationship between

these two distributions?

We can write the following equations

for i G Y/,

(71)
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4Y{(i ) =

—
..-

F(~,2’) “

Global balance ( 12) shows that the de-

nominators of (71) and (72) are equal.

Partial balance shows that the numera-

tors are also equal, and thus XY,J i ) =

~Y ( i), i G Y’. It is easy to see, conversely,

that if the above two distributions are

equal then partial balance must hold.

Thus the distribution as seen by transi-

tions out of set ?/ is identical to that seen

by transitions into set Y/ if and only if

partial balance holds on set Z.

We call this property the partial bal-

ance arrival-departure property. Note

that, in general, the distributions seen by

transitions out of and into a set % that

satisfies partial balance are not equal to

the stationary distribution of the process.

As a simple counterexample, assume that

only one state in W, say u = %’, permits

transitions out of 7/. Then it must be the

case that YY ( u) = 1 which is clearly not

equal to T( ul.

Quasireversible queues inherit the

partial balance arrival-departure prop-

erty since they satisfy partial balance.

They also have the additional property

that the distributions seen by transitions

out of and into set ~?’ are equal to the

stationary distribution. We show this by

recasting the above argument in terms of

customer classes and will talk of distri-

butions seen by transitions out of (resp.,

into) a set /2’ in terms of distributions

seen by customer departures (resp., ar-

rivals) that leave (resp., enter) set Z. Let

2(,( z), i = Y’ be the point process seen by

an arriving class c customer which, simi-

lar to above, has a distribution given by

From equation (37) however

A(c) = ~ q(i, h)

/?=/,(2)

= x m(i) ~ q(i, k) (74)
lE/ /?=> (2}

and substituting this into (73) shows that

4ZJZ) = n-(i) as claimed. A similar argu-

ment shows that departing class c cus-

tomers also see the system in equilib-

rium. Analogous to (73) we write

which, using (38), shows that ~z~(i ) =

n(i) from the partial balance arrival-de-

parture property. Thus for quasire-

versible queues, arrivals and departures

of class c queues see the system in equi-

librium. We call this property, the ar-

rival-departure property of open quasi re -

uersible queues. We will sometimes refer

to this as the arrival theorem for open

networks (see Lavenberg and Reiser

[ 1980] and Sevcik and Mitrani [ 1981] for

theorems of this type).

Appl/cat/on of the State Truncation and

Arriva/-Deparlure Properties

Suppose the system has a fixed popula-

tion as in the closed-network application

of state truncation property or the

closed-network application of the distri-

bution and the state truncation proper-

ties. The process Y corresponding to a

quasireversible queue restricted to >-

thus has a stationary distribution equal

to

7ry(i) = C7r(L) i G=, (76)

where C = l/Z~ ~ _ rr(k). What are the

distributions seen by a class c arrival or

departure from this system? When we

talk about such a customer, we are as-

suming the customer is in transit be-

tween queues (i.e., not resident at any

queue). Consider a departing class c cus-

tomer and denote the distribution it sees

at time of departure by $~( i ). We first

note that there must be a class c cus-

tomer for one to depart and that there is
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one less class c customer in the system

after departure. Thus the states that can

be seen by the departing customer are in

set 2C. We can write the distribution as

where we have used (38) and (39). This

has to be normalized over SC, and thus

the class c departure sees the system in

equilibrium with one less class c cus-

tomer. Considering the process in reverse

time shows that this is also true for an

arriving class c customer, and thus ar-

rivals or departures of class c customers

see the system in equilibrium with one

less class c customer. We call this prop-

erty the arrival-departure property of

closed quasireuersible queues.

Mean Value Analysis

Consider a closed quasireversible queu-

ing network that consists of J different

service centers, and suppose that there

are n customers of a single class. Sup-

pose that service center j is a single-

server FCFS queue with exponential ser-

vice times with expectation 1/~1 and that

fll is the frequency with which a cus-

tomer visits queue j relative to the fre-

quency with which it visits queue 1. Let

RJ(n), L,(n), and A~(n) be the expected

response time, expected queue length,

and throughput, respectively, for service

center j when the population of the net-

work is n. Note that Al(n) = O~Al(n).

Now consider an arrival to queue J. From

the arrival-departure property of closed

quasireversible queues it follows that the

expected number of customers in queue .j

found by this arrival (while in transit

and not in any queue) is equal to the

expected number of customers in queue j

when the population is equal to n – 1.

Using this we can write the expected

response time for the newly arrived cus-

tomer as

R,(n) = :(l+L$~t - l)). (79)

Applying Little’s [1961] result to the in-

dividual queues implies that

Lj(n) = tl~Al(n)R~(rz), (80)

and summing (80) over all queues yields

n
(81)

‘l(n) = ~:=loJRj(n)

Equations (80) and (81) are a special case

of the celebrated Mean Value Analysis

(MVA) equations [Reiser and Lavenberg

1980]. These equations, with the obvious

boundary condition of LJ(0) = O, can be

used to recursively calculate the expected

response time and queue length for in-

creasing values of n without the difficul-

ties of calculating a normalizing con-

stant.

The State Aggregation Propetfy

The last property of partial balance is

related to state truncation. Suppose we

partition >’ into sets tin, n = O, 1,...,

N, N > 1, and let X n denote X trun-

cated to Z’n. We assume that X n is irre-

ducible and let n‘( i), i G %’, denote the

stationary distribution of X n analyzed in

isolation. Also assume that the sets sat-

isfy nearest-neighbor transitions, i.e.,

q(i, k) = O,i ● ?/n, k ~ ?/’”, if In – ri >
1. We call each set an aggregated state

and define a birth–death process with

transition rates, Q( n, m), given by

Q(n, rn) - ~ ~ m“(i)q(i, k),

1 G ?/” 1? G //’”

n,m>O, ln–ml=l. (82)

Let 11(n), n >0, be the stationary distri-

bution of this birth–death process. These

values satisfy the following detailed bal-

ance equations

ll(n)Q(n, n + 1)

–II(n+ l)Q(n+ l,n) =0,

n >0, (83)
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and thus can be easily solved using

Q(n, m).

What relationship does the distribu-

tion of this aggregated birth–death pro-

cess have to the original process? We

claim that if partial balance holds on sets

Y“ then II(n) = Z , ~ ,/,n-(i). To show this,

observe that if partial balance is satisfied

then the state truncation property im-

plies that

and thus substituting this into (82) shows

that (83) is satisfied with TI(n ) =

Z, ~ ~,tdi). Note that, if partial balance

holds, Q( n, m) is equal to the average

transition rate from states in set 7/’ to

states in set Z’m in the original process.

Summarizing this result, we say that if

partial balance holds on sets ?/’ then the

distribution of the aggregated process is

identical to what would be obtained in

the original process by summing the sta-

tionary distribution of the aggregated

states. We call this property the state

aggregation property of processes that

satisfy partial balance.

Viewing this in terms of an open

quasireversible network with customer

classes, note that partial balance among

classes (42) implies that

F(. fj(n),. J~(n + 1))

– F(.fij(n + l),.%(n)) = O, 0< n.

(85)

Let states in the aggregated system cor-

respond to the number of class c cus-

tomers, and let !dC(n) - )11G , ~~~m(i) be

the probability that there are’ n class c

customers in the original system. Since

we assume the process is quasireversible,

the arrival rate of class e customers, A(c),

is independent of the state of the system.

Let PC(n) be the average departure rate

of class c customers conditioned on n

class c customers being in the queue.

This is given by

n >0. (86)

Thus the detailed balance equations sat-

isfied by the aggregated process (analo-

gous to (83)) are

IIc(n)Ac – Hc(rL + l)y, (n, + 1) = O,

n > 0. (87)

Notice that (17) implies that we can write

the solution to (87) as

Ac
IIc(rL) a ii —

J=l w,(j) ‘
(88)

and thus, as in the birth–death example

with state-independent arrival rate, the

arrival rate and departure rates of the

aggregated process determine its station-

ary distribution. Thus, if some property

of a given quasireversible queue depends

only on the distribution of its aggregated

process, then the stationary statistics for

that property are identical to that of a

system where we replace the given queue

by a simple birth-death queue that has

the appropriate state-dependent service

rates. This result has been termed Nor-

ton’s theorem [Chandy et al. 1975;

Krzesinski and Teunissen 1985] and will

be discussed below.

Apphcatton of the State Aggregation Properfy

The main application of the state aggre-

gation property is to create a fZow-equiu-

alent server for a complex set of queues

in a network. The flow-equivalent server

is equivalent to the birth–death queue

with state-dependent service rates men-

tioned above. For example, suppose we

consider a model of a computer system

consisting of a CPU subsystem and a

disk subsystem. Assume that the disk

subsystem consists of K M/M/1 queues,

each corresponding to a disk with a queue

of work, and assume that customers are

routed with uniform probability to any

one of the disks. Let customers at the

disks be of class c; define IIC( n) to be the
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probability that there are a total of n

class c customers in the system (i.e., at

the disk subsystem); and let ~C(n) be

defined as in (86). Suppose now that we

wish to study the changes in perfor-

mance of the entire system as a function

of parameters of the CPU subsystem.

Since there are no changes in the disk

subsystem, the parametric study can be

computationally facilitated by replacing

the disk subsystem with a flow-equiv-

alent server consisting of a single-server

FCFS queuing system with a state-de-

pendent service rate of ~,(n).

We review in words the above proper-

ties.

e Distribution Property. In an open

quasireversible network, the probabil-

ity that an arriving class c customer

causes a state transition to a given

state is equal to the ratio of a transi-

tion rate to the arrival rate of class c

customers.

* State Truncation Property. The sta-

tionary distribution for a system re-

stricted to a subset of the states is a

normalization of the unrestricted sta-

tionary distribution if partial balance

holds on the subset. When open

quasireversible queues are closed such

that external transitions of the corre-

sponding open system satisfy the dis-

tribution property, then the closed sys-

tem is a truncated version of the open

system and has a stationary distribu-

tion which is a normalization of the

open system’s distribution.

● Arrival-Departure Property. The

distribution seen by transitions out of a

set w is identical to that seen by tran-

sitions into set ?[ if and only if partial

balance on set 7/ holds. If partial bal-

ance holds on set 7/ and if the queue is

quasireversible then for open systems,

arriving (resp., departing) class c cus-

tomers that enter (resp., leave) set ?/

see the stationary distribution, and for

closed systems, arriving (resp., depart-

ing) class c customers that enter (resp.,

leave) set 7/ see the stationary distri-

bution, calculated as if they were not in

the system.

. State Aggregation Property. The

stationary distribution of an aggre-

gated system Yn, for n= O,l,..., N,

with constant arrival and departure

rates is the same as would be found by

summing up stationary probabilities of

the aggregated states in the original

process if partial balance holds on sets

?/’.

We have already seen one queue that

is quasireversible, the birth–death pro-

cess with state-independent Poisson ar-

rivals. Other queues that are useful in

computer modeling and are quasire-

versible are the classical BCMP queues

[Baskett et al. 1975] which allow general

service time distributions and include the

following scheduling policies: last-come

first-serve preemptive resume, processor

sharing, and infinite server. Symmetric

queues [Kelly 1979] include these queu-

ing disciplines as special cases. We refer

the reader to Kelly [1979] and Walrand

[1988] for the proofs that these queues

are quasireversible. We just mention here

a typical way to establish that a queue is

quasireversible is to use the form of the

reverse process. Assume that the forward

process has Poisson arrivals that are in-

dependent of the state of the system. Of-

ten it is the case that the reverse process

has a queuing structure that is a mirror

image of the original system. If this is

the case then the correspondence be-

tween arrivals (resp., departures) of the

forward process and departures (resp.,

arrivals) of the reverse process implies

that the departure process of the forward

process is also independent of the state of

the system and is also Poisson. This es-

tablishes that the queue is quasire-

versible, and typically the stationary dis-

tribution of the process can be guessed

and checked using the reverse balance

equations (21) and (22).

We close this section by reviewing the

differences between reversible and

quasireversible queuing systems in the

context of a queuing system with C cus-

tomer classes. Reversible systems satisfy

detailed balance and have arrival and

departure processes that are statistically
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Table 1. Charactenzatlon of Reversible and Quaslreverslble Processes

Property Quasu-everslble Reversible

Arrival Rates Exponential Interarrlval Times

a(c) M Independent of State a(c, L) can be State Dependent

(Stronger Condltlon) (Weaker Condltlon)

Balance Equations Partial Balance Detaded Balance

(Weaker Condltlon) (Stronger Condltlon)

identical. The arrival and departure pro-

cesses of class c customers, a(c, i), i = Y’,

are generally state dependent. A re-

versible system is quasireversible only if

arrivals of customers to the queue are

Poisson with state-independent rates.

Quasireversible queues satisfy partial

balance, a less restrictive condition than

detailed balance, and always have Pois-

son arrival and departure processes. A

queuing system can be reversible with-

out being quasireversible (as in the

birth-death queue with state-dependent

arrival rates), and a quasireversible

queue is not necessarily reversible since

partial balance does not imply detailed

balance. We summarize these statements

in Table 1.

3. NETWORKS OF

QUASIREVERSIBLE QUEUES

The previous section established four

properties of queuing systems that satis-

fied partial balance and quasireversibil-

ity. Suppose that we join a set of quasire-

versible queues into a network so that

the resultant system is also quasire-

versible. This network would then also

satisfy these properties, namely, it would

satisfy the distribution, state truncation,

arrival-departure, and state aggregation

properties. Clearly we cannot join queues

in an arbitrary fashion and still preserve

quasireversibility, but the algebra for

how such queues can be joined is surpris-

ingly flexible. In this section we fh-st ana-

lyze two simple models of quasireversible

networks to derive properties of their

stationary distributions. This allows us

to derive basic properties of such systems

without being burdened with excessive

notation. We then indicate how all of the

results found in these simple models gen-

eralize to more complex models.

3.1 Tandem Queues

Suppose we consider an open network

consisting of two quasireversible queues

in tandem. Suppose arrivals to the first

queue are Poisson with rate A. The state

of the system is (xl, .rz) where xl, t =

1,2, is the state of queue i. What are the

stationary state probabilities, W( .t ~, Xz )?

To answer this, we note that because

the first queue is quasireversible, x I( t)is

independent of the departure process

from queue 1 prior to time t.Departures

from queue 1, however, form the arrivals

to queue 2 and thus determine the value

of .~2(t).Thus xl(t) and XZ(t) are inde-

pendent and act as if it were in isolation.

The stationary probabilities satisfy a

product form, T(xl, Xz) = Z-l(xl)nz(xz),

where T,( ) is the stationary distribution

for queue i analyzed in isolation. The

arrival-departure property of open

quasireversible queues implies that an

arriving customer to the second queue

sees the same distribution of ( x ~, Xz ) that

is seen by a departing customer from the

second queue. Both of these distributions

are equal to the stationary distribution of

the process.

Recall that we specified no scheduling

or service policy for the birth–death

model with state-dependent servicing

rates. The existence of product form de-

pends on external properties (the input-

output properties) of queues rather than

internal properties (scheduling disci-

plines for example) [Kelly 1979: Muntz

1972]. The fact that is is quasireversible

does not require any notion of the opera-

tion of the queue. To show that a system
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is quasireversible we must first define a

system state and then specify which

transitions correspond to class c arrivals

and departures and then demonstrate

that the conditions for quasireversibility

are satisfied. This procedure permits

great flexibility and creativity in defining

such processes [Kelly 1979]. It is some-

times misleading, however, to speak of

such systems as “queues” since very little

queuing in the traditional sense takes

place in many quasireversible systems.

For example, the arrival and departure

processes, from the tandem queuing sys-

tem are Poisson streams that are inde-

pendent of the state of the system. Thus,

considering the tandem as one unit shows

that it is also a quasireversible queue.

This would hardly qualify as a “queue” in

the normal sense of the word.

Within the above arguments are the

seeds for an algebra of quasireversibility

in which quasireversible queues can be

joined in a manner that preserves quasi-

reversibility. It is easy to see, in the above

system, that joining queues in series can

be performed any number of times and

still lead to a quasireversible queue. The

stationary distribution after such opera-

tions is a product of terms where each

term is the stationary distribution of the

individual queues analyzed as if they

were in isolation. It is intriguing to ques-

tion the generality under which such

properties hold. Before we address this

issue, we first consider the tandem model

under slightly different assumptions.

Assume now that the network is closed

and thus that there are a fixed number of

jobs in the queuing system, N > 1, so

that once a job finishes executing at the

second queue, it immediately cycles back

as an arrival to the first queue. Let n,( x, ),
i = I, 2 be the number of customers in

queue i when that queue is in state Z,.

Observe that several states of a queue

could correspond to having the same

number of customers. Clearly, now the

states of the queues are dependent since

nz( Xz) ==N – nl(xl). We are compelled

here to perpetuate the existing nomen-

clature for such a system and call it a

closed network of quasi reversible queues.

Clearly, the notion of Poisson arrival and

departure processes does not exist in a

closed network. and also the arrival and

departure processes from a queue of this

system are not independent of its state.

Each queue of the network thus violates

the properties of quasireversibility. What

we mean by calling the system a closed

network of quasireversible queues is that

the network consists of aueues that would

be quasireversible if ~ach queue were

considered in isolation with Poisson in-

put processes.

Here we view the system as a network

of quasireversible queues that is re-

stricted to have only N customers, The

state truncation property combined with

the solution for the open system immedi-

ately yields a product form solution,

n(xl, X2) = Cn-l(xl)nl(xl), where C is a

normalization constant calculated over

all (xl, XZ) so that nl(xl) + nz(xz) = N.

Without knowirw the state truncation

property, it woul~ be surprising to have

such a solution. Let us take this moment

to clear up a possible confusion regarding

the solution. We know that the aueues

are mutually dependent, and yet the so-

lution is of product form which might

seem to imply independence. There is no

contradiction, however, because the nor-

malization constant implies that the fac-

tors of the product do not correspond to

the distributions of the individual queues.

In other words, there is no way to sepa-

rate the normalization term into a prod-

uct of factors, say C = Cl Cz, so that

Cl Tl( x, ), i = 1,2 is the stationary distri-

bution for aueue i.

Continui~g the discussion of the closed

system above, we now revisit the state

aggregation property of partial balance.

Suppose we consider queue 2 in isolation

and aggregate its states according to its

number of customers. State n here thus

corresponds to the aggregation of all

states Xz satisfying nz(xz) = n. If we

solve for the stationary distribution of

tbe aggregated states then (88) shows

that
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where II Z(n ) is the stationary probability

of aggregated state n and where Wz( n ) is

the average departure rate of customers

calculated for aggregated state n. Sup-

pose now that one replaces queue 2 with

a queue that processes customers at rate

Kz( n) when it contains n customers. This

is the flow-equivalent server previously

mentioned and corresponds to replacing

the original process by a birth-death

process with queue-dependent service

rates. Clearly, this has the same station-

ary distribution as (89), and thus, as

stated in Section 2, any function that

depends on queue 2 only through its ag-

gregation will not change with this re-

placement of a flow-equivalent server.

One such function is the probability of

observing queue 1 in state x ~, denoted by

n~(xl). Let 7/z(.xl) = {.x21 r22(x2) = N –

n I( xl )} be the set of states of queue 2

that contain the customers not found in

queue 1 when in state x ~. Then we can

write the probability as

T:(xl) a E non, (90)

t2 E//2(x1)

a VI(XI)HZ(N – nl(xl)) (91)

N–nl(rl) ~

a ml(. zl) n — (92)
,=0 v2(j) “

Thus n~( xl) depends only on the flow-

equivalent rates Pz( n ) of queue 2. This is

an application of Norton’s theorem men-

tioned in Section 2.

3.2 Feedback Queues

lVe next consider a simple modification

of the routing scheme given above. Sup-

pose we have a single queue with two

classes of customers. Customers of both

classes are assumed to be served in the

order in which they enter the tail of the

queue. Arrivals to the queue are of class

1 and are Poisson with rate A After re-

ceiving service, a class 1 customer re-

turns to the tail of the queue as a class 2

customer. Class 2 customers leave the

system after receiving service, and we

assume that the service times for both

classes of customers are exponential with

rate ~. The state of the system is the

sequence of classes in the queue, c =

(c~, c~, . . ..cn. ) where c1 is the class of the

customer in position i in the queue, and

n is the number of customers in the

queue. We denote the state correspond-

ing to an empty system by O and will let

IcI be the total number of customers found

in state c. The transition rates for this

system a~~egiven by

(~,~’ = (c,l), (Arrival)

I
p,g=(2, g’), (Departure)

q(~, g’) =

p>! = (l><)!C’ = (j,2),

[ (Feed Back).

(93)

We claim that this process is quasire-

versible. To see this we first guess the

form of the stationary distribution and

the reverse transition rates and then

show that (21) and (22) are satisfied.

What would the reverse process look

like? The obvious guess is that customers

arrive at the system at rate A as class 2

customers, are fed back, and then leave

the system as class 1 customers. This

implies transition rates given by

(
p,<’ = (g, 1), (Departure)

I
A, g = (2, g’), (Arrival)

q’(g’, g) =
W,g = (l, j), g’ = (j.2),

~ (Feed Back).

(94)

Thus we have interchanged arrivals and

departures for the reverse transition

rates.

Since both classes of customers arrive

at an average rate of A and have the

same service time distributions, it is

plausible that states with the same num-

ber of total customers have the same

probability, i.e., that n(g) = w(g’) if Icl =

Ic’1. We thus aggregate states accor~ing
to their number of customers. Let 7/’ =

{gin = IcI} be the set of states with n

customers, and let H(n) be the probabil-

ity of aggregated state n. Since each state

c E V’ is assumed to have the same
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probability, it follows that

1 Icl

()m-(~) = ~ rI(lgl). (95)

Suppose that we then make a guess that

the distribution of the aggregated states

are identical to that of an M\M\ 1 sys-

tem with an arrival rate of 2 A Thus we

guess that

II(n) = (1 – p)p”, n. >0, (96)

where p G 2 A/p.

It is clear that the transition rates (93)

and (94) satisfy (22), and thus we only

have to show that the reverse balance

equations are satisfied (21) to show that

the values (95) are correct. For forward

arrivals (reverse departures) this implies

that

(1’ ()
~kl+l

(l–p)~lLA=(l–p)z ~ (97)

which is clearly true. It similarly follows

that (21) is satisfied for forward depar-

tures (reverse arrivals) and for fed back

customers, and thus (95) is correct. The

nature of the reverse process shows that

the departure process is Poisson and sim-

ilarly that the queue is quasireversible

as claimed.

We make an important observation

about this system. In the open tandem

system considered in Section 3.1, the in-

put process to each queue was Poisson,

and thus it was not surprising that the

queues were quasireversible. Although

the external arrival process to feedback

queue is Poisson its input process is not

Poisson. We will now provide a proof of

this by creating a mapping between our

feedback model, henceforth called the

fixed-feedback model and that of a model

of Bernoulli feedback. In Bernoulli feed-

back, each customer is fed back with

probability p, O s p < 1, after receiving

service. Burke [1976] considered such a

model and showed that the stationary

distribution of states as seen by any ar-

riving customer (external or fed back) is

the same as that of an M\M\ 1 queue

with an arrival rate given by A\(l – p)

and also that the total arrival stream of

customers to the queue is not Poisson.

We show here that the total arrival

stream of customers in the feedback

model is statistically identical to that of a

Bernoulli feedback system with p = 1/2,

and thus it follows from Burke’s result

that the total arrival stream is not Pois-

son as claimed. Equation (96) shows that

the stationary distributions for the num-

ber of customers in the system are identi-

cal for the fixed feedback and Bernoulli

feedback models when p = 1/2.

Consider now the fixed-feedback model.

Since the queue is quasireversible; the

arrival-departure property of quasire-

versible queues shows that the probabil-

ity distribution seen by any arriving cus-

tomer (either external or fed back) is

equal to the stationary distribution. Sup-

pose now that we randomly select an

arriving customer, customer J, and as-

sume that at the time of its arrival it

sees n, n > 0, customers in the system.

Note that J joins the queue in position

n + 1. Since every customer that arrives

externally will be fed back exactly once,

the probability that J is of class 1 (exter-

nal arrival) or class 2 (fed back) is identi-

cal and equal to 1/2. Thus, the probabil-

ity that the customer in position n + 1

(i.e., customer J) is of class 2 is equal to

1/2. We claim that this is also the case

for the customer in position j, 1 s j s n,

of the queue. This follows the fact that all

states in ?/’ are equally likely with prob-

ability given by (95). Thus, the probabil-

ity that any customer in the queue after

J’s arrival is of class 2 is given by 1/2 so

that the system is equivalent to a

Bernoulli feedback system with p = 1/2

as claimed. Thus, the total arrival stream

of customers to the queue is not Poisson.

This result can be established more gen-

erally (see Walrand [1983]). It is still the

case, however, that the external arrival

and departure processes are Poisson. The

non-Poisson flow within the queue do not

violate the notion of quasireversibility.
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3.3 Product Form or Quasireversible

Queuing Networks

The algebra hinted at in the previous

examples suggests that quasireversible

queues can be joined together so as to

form new quasireversible queues. More

general routing mechanisms also pre-

serve quasireversibility. For example, in

Markov routing [Walrand 1988] class c

customers at queue i depart and become

class c’ customers at queue Z’ with prob-

ability r(c, i; c’, i’). This routing is said to

be Markovian because routing decisions

for a customer depend only on its current

class and queue and are independent of

the rest of the state of the network. More

general routing decisions that still pre-

serve quasireversibility and allow certain

types of state dependencies can be found

in Kelly [ 1979], Krzesinski [1987], and

Towsley [ 1980]. Any network created us-

ing such routing policies leads to a net-

work of queues that is quasireversible

and thus will have product form solu-

tions and will satisfy the four properties

derived in Section 2. The proof of these

claims is obscured by the notations

needed to define the general process and

by the algebra needed to establish that

global balance is satisfied. In keeping

with the tenor of this article, we content

ourselves with investigating a simplified

case that illuminates the procedures used

to prove the general case.

We consider an open network consist-

ing of M quasireversible queues and C

customer classes. Suppose that we know

the stationary distribution m-~(.x) and the

forward and reverse transition rates,

qn,( ) and q~( 1, respectively, of queue m
when analyzed in isolation. In the net-

work, external arrivals of class c cus-

tomers are Poisson with rate y(c). Class

c customers start at queue r,(1) and se-

quentially visit queues r,.(j), 1 S j S

1,, 1, > 1, and then leave the system.

There are three different types of transi-

tions: external arrivals and external de-

partures, each of which causes a state

change at only one queue, and internal

transitions, where a departure from one

queue corresponds to an arrival to an-

other queue. Internal transitions change

state values of two queues in the net-

work. The state of queue m is a vector

containing the number of class c cus-

tomers resident in the queue, and the

state of the network is a concatenation of

all the states of all the queues. For a

given transition that causes queue m to

change state, we denote its state before

the transition by x~ and its state after

the transition by y.,.

To analyze the process we must specify

transition rates for each of the above

transitions. To do this we expand our

previous notations to include a queue in-

dex. Let Y;’” (x) be the set of states for

queue nz that have one more class c

customer than state x with the same

number of customers of other classes.

Transition rates for queue m will be de-

noted by q~l( ), and the arrival rate of

class c customers to the queue is given

by Am(c). It is clear that Am(c) =jy(c), j

> 0, if class c jobs visit queue m exactly

,j times.

We now specify the rates for each of

the above types of transitions. External

arrivals of class c customers to queue

m = rC(1)occur at rate q,~( ~n,, y,,, ) where

-,. ● >~”’( x~, ). Similarly, external depar-Y

tures occur at rate q,,,( x~, y., ) where x~

● :~~~( y~ ), m = r,( 1, ). Internal transi-

tions of a class c customer from queue

m = rC(7), 1 < j < 1, – 1, to queue n2’ =

r,( j + 1)are assumed to occur at rate

and thus satisfy the distribution prop-

erty of quasireversible queues (51). It is

important to note that the rates (98) are

defined for the process in such a way

that they satisfy the distribution prop-

erty. If we arbitrarily join quasireversible

queues together in a network, it is not

true that they necessarily satisfy this

property.

We are now in the position to make

good our previous promise to “guess” the

correct solution for networks of quasire-
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versible queues. We guess the only

tractable solution, that the distribution

of the network is the product of the dis-

tributions of the individual queues ana-

lyzed in isolation,

r(xl, x2, . ..M. Mt)

= m1(x1)7r2( x2). ..7rM(xM). (99)

We next guess the transition rates for

the reverse process. It seems natural to

suppose that, in the reverse process, class

c customers backtrack on the forward

route, i.e., they enter the system at queue

rC(lC ) according to a Poisson process with

rate y(c), sequentially visit queues rC(lC

– 1),7-C(1C – 2),..., rc( 1), and then exit

the system. The reverse transition rates

are then just the “reverse” of that given

above, i.e., qj,(~~j ~~), xm ~~;(Ym), m
= rC(l C), for reverse external arrivals,

9;~Y,., ~~), Yn ~ .~~(x~), m = r,(l), for
reverse external departures, and for m’

=rC(j+ l), m=rC(j), l <j <l, – 1,

q:(ym, xn)
q;, ( Ym , Xm)

Am(c) ‘

Xm =$’;m(ynL), yml =~c~’(xnj), (loo)

for reverse internal transitions.

To show that our guess is correct, we

must show that the reverse balance

equations, (21) and (22), are satisfied,

and this is a matter of algebra. For exter-

nal arrival (reverse departures) transi-

tions this implies checking that

%(~m)9m(~nL2 Ym)

— )Wm(Ym)q~(Ym> ‘m >

Yrn =~cm(~m)> (101)

which is clearly satisfied since the sta-

tionary distribution and reverse transi-

tion rates for queue m in isolation are

given. External departures (reverse ar-

rivals) are just as easily checked. For

internal transitions we must show that

qmixm,,Ym)
m-m(xm)%-mr(xml)qm(xm, ym)

Am?(c)

x ~1•y;~(ym), yvtf GJ@(xm).

(102)

But this follows from the fact that (21) is

satisfied for each individual queue. We

have only (22) to check. The total transi-

tion rate from a network state for the

forward process is given by

f q(xm) + E -y(c).
~=1 ~=1

Equation (22) is thus satisfied

(103)

since

q;-(xm) = qm(xm).

The above derivation embodies the

methodology that is used to establish that

product form holds for more general net-

works. Specifically, we set up routing be-

tween queues so that the distribution

property holds. The “obvious” reversed

routes are then guessed as is a product

form solution for the stationary distribu-

tion. We then use the reverse balance

equations, (21) and (22), to show that the

guess is correct. The state truncation

property is invoked if the network is

closed. The resultant network is itself

quasireversible and thus possesses the

properties derived in Section 2. Thus,

closing the system leads to a product

form solution: the arrival theorem holds.

For some systems a generalized form of

Mean Value Analysis can be developed,

and Norton’s Theorem can be applied to

create flow-equivalent servers.

Although, externally, an open quasire-

versible network has Poisson arrival and

departure processes, the internal flow of

customers within the network is not nec-

essarily Poisson [Kelly 1979; Walrand

1983]. This does not violate the property

of quasireversible since, as previously

mentioned, such a notion requires no

specification of the internal workings of

the queue.

4. CONCLUSIONS

The fact that networks of quasireversible

queues have product form solutions fol-
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Figure 3. Summary of lmphcations

lows from fundamental properties of par-

tial balance in general and quasire-

versibility in particular. Properties such

as the arrival-departure property are

preserved when queues are joined into

networks in a manner that preserves

quasireversibility, and we have seen that

the algebra for joining such queues is

flexible. The results derived in this arti-

cle can be used as a starting point for

studying more general forms of product

form networks. Properties derived from

the four properties established in Section

2 are summarized in Figure 3. The impli-

cations in this figure should be inter-

preted within the context of this article,

and the assumptions used in their

derivation can be found in the body of the

article. There are many properties and

features of product form networks that

lie outside the scope of this article. For

example, it can be shown that if partial

balance is satisfied for set % then the

equilibrium dlstrlbutlon of the system

depends only on the mean of the distri-

bution of time that is spent in states ?/

[Whittle 1985; 1986b]. This property is

called insensitivity, since the stationary

distribution is insensitive to higher mo-

ments of sojourn time in Z“,

Our focus was to develop the mathe-

matics of product form from first princi-

ples. In so doing we have had to bypass a

rich body of work devoted to using these

results to model computer systems. As

many applications do not satisfy the as-

sumptions needed for product form, nu-

merical or approximate solution tech-

niques are required, and often these

methods are based on intuition gained

from exact solutions. Several sources

[Lavenberg 1983; Lazowska et al. 1984;

Sauer and Chandy 1981] provide a good

starting point for investigating work

along these lines.
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