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Abstract

Motivated by the motion of a ship in a heavy sea, a mathematical model for
the vertical impact of a two-dimensional solid body onto a half-space of quiescent,
inviscid, incompressible fluid is formulated. No solutions to the full problem
are known, but in the case when the impacting body has small deadrise angle
(meaning that the angle between the tangent to the profile and the horizontal is
everywhere small) a uniformly valid solution is obtained by using the method of
matched asymptotic expansions. The pressure on the body is calculated and is
in fair agreement with experimental results. The model is generalised for more
complicated impacts and the justifications for the model are discussed.

The method is extended to three-dimensional bodies with small deadrise angle
and solutions are obtained in some special cases. A variational formulation of the
leading order outer problem is derived, which gives information about the solution
and leads to an fixed domain scheme for calculating solutions numerically. A
partial linear stability analysis of the outer problem is given which indicates that
entry problems are stable but exit problems are unstable to small perturbations.

A mathematical model for the effect of a cushioning air layer between the
body and the fluid is presented and analysed both numerically and in appropriate
asymptotic limits.

Finally, the limitations of the models are discussed and directions for future

work indicated.
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Chapter 1

Introduction

1.1 Ship Slamming

A ship travelling in a heavy sea experiences a continuous buffeting from the waves,
which can cause violent motions of the hull. For certain combinations of ship
speed, course, loading and sea state, the bows can leave the waves and impact
back onto the water, generating large pressures on the hull. This phenomenon
is known as ship slammaing, and is the motivation for the research in this thesis.
The transient loading experienced during a slam can cause localised damage
to the plates of the hull near the keel. Not only are these plates expensive to
repair, but sensitive devices such as sonar domes are often located on the keel
and are especially vulnerable to damage. A more serious problem is the whipping
vibration of the hull that is excited by the transient impact force, which causes a
characteristic shudder throughout the ship. The resulting stresses can be larger
than those induced by the waves, and dramatically reduce the fatigue life of the
hull. In extreme cases they have even caused hulls to fracture. In order to reduce
the damage to the ship (and discomfort to the occupants) caused by slamming,
the Master is usually compelled to slow the vessel down. Indeed, in heavy seas
this is the primary reason for speed reduction for ships of frigate and destroyer
size.

Slamming first came to the attention of naval architects more than fifty years
ago with the introduction of the diesel engine. Recently, interest in the subject
has been revived by the advent of new types of vessels, such a hydrofoils and

Small Waterplane Area Twin Hull (S.W.A.T.H.) ships, for which the traditional



theoretical and empirical methods for predicting the occurrence of slamming and

the resulting fluid loadings are inappropriate.

1.2 The Background of the Problem

The ship slamming problem was first brought to the Oxford Applied Mathemat-
ics Group by Dr. D.W. Chalmers from the Admiralty Procurement Executive
in Bath, and was discussed during the 1986 Oxford Study Group with Industry.
Following the interest in the problem expressed at this meeting, the author wrote
an M.Sc. dissertation concerning a simple model for the response of a ship hull to
transient loading, and the problem became the subject of a C.A.S.E. studentship.
The award was funded jointly by S.E.R.C. and the Admiralty Procurement Ex-
ecutive in Dunfermline through Mr. J.D. Clarke, and began in October 1987.

1.3 Aim and Structure of Thesis

The aim of this thesis is to formulate and analyse mathematical models for solid-
fluid impact problems which are relevant to ship slamming. The chief theoretical
aims are to identify the important physical effects and predict the pressure dis-
tribution on an impacting body.

The remainder of Chapter 1 consists of a review of the mathematical litera-
ture about fluid entry problems. The majority of the papers discuss approximate
methods of varying rigour and usefulness, but there are also a number of analyt-
ical and numerical results concerning the full nonlinear free boundary problem:.

Chapter 2 concerns the vertical entry at constant velocity of a two-dimensional
rigid body into a half-space of quiescent, inviscid, incompressible fluid. In the
case when the body has small deadrise angle (i.e. when angle made between the
tangent to the profile of the body and the horizontal is small), we show that
the flow field can be analysed in three distinct regions. In each region we seek
solutions in the form of asymptotic series in the deadrise angle and derive the
appropriate leading order problem. Using the method of matched asymptotic
expansions the unknown parameters are determined by matching the solutions

appropriately, and the uniformly valid composite pressure is constructed. The



model is generalised to include the effects of variable impact velocity, surface
tension and gravity. Solutions are obtained for a number of simple body shapes,
and the theoretically predicted pressure distributions are found to be in fair
agreement with experimental observations.

In Chapter 3 the approach of the previous chapter is extended to three-
dimensional bodies with small deadrise angle. Less analytical progress is possible,
but solutions are obtained in a number of special cases. A variational formulation
of the leading order outer problem is derived, which leads to a ‘fixed domain’
numerical scheme for computing solutions. Simple finite element programs which
implement the scheme in two and in three dimensions are described.

Chapter 4 contains a local linear stability analysis of the outer problem, and
the results lead to a discussion of the fundamental differences between entry and
exit problems.

The major discrepancy between the theoretically predicted pressures and ex-
perimental observations on the keel is due to the presence of a cushioning air
layer between the body ‘and the fluid, an effect which reduces the large pressures
generated in the initial stages of an impact. In Chapter 5 a coupled model for
the flow in the air and the fluid before the body reaches the fluid is formulated.
The leading order problem is examined in various asymptotic limits, and numer-
ical solutions obtained which predict the formation of an air pocket between the
body and the fluid.

Finally, in Chapter 6 conclusions are drawn from the work presented and

directions for future work are indicated.

1.4 Review of Previous Work

The literature concerning ship slamming reviewed in this section consists of three
basic kinds; theoretical papers about idealised solid-fluid impact problems, those
which report the results of experiments, and those that try to make predictions

about the effect of slamming on real ships, their cargoes and their crews.



1.4.1 Fluid Impact Problems

The large body of literature about fluid impact problems falls into two broad
categories, viz. solely mathematical papers and those which attempt to combine
approximate theories with experimental results. Those in the first group con-
centrate on exact mathematical analysis of the simplest impact problems. The
subject of most of those in the much larger second group is a variety of approxi-
mate and asymptotic theories, of varying complexity, rigour and usefulness, and

their comparison with experimental data.

Numerical and Analytical Studies of the Full Problem
(a) The Wedge Entry Problem

Mathematically, the simplest fluid impact problem is that of an infinite two-
dimensional wedge, with opening angle 2a, entering a half-space of quiescent,
inviscid, incompressible fluid. This situation is called the wedge entry problem
and is summarised in Figure (1.1). Since, in the absence of gravity and surface
tension, there is no length scale in the problem, the solution is self-similar and
the number of independent variables can be reduced from three, viz. z, y and
¢, to two by introducing the similarity variables X and Y defined by X ==z /Vt
and Y = y/Vt. As a result of this simplification most of the analytical and
numerical studies have concentrated on the wedge entry problem. Although
several authors have studied this problem, no closed form solutions are known,
and no existence/uniqueness theory has been developed.

As in classical jet theory, substantial progress has been made by employing
complex variable techniques, beginning with the pioneering paper by Wagner

(1932). In a footnote to this paper the author introduced the so-called Wagner
function, h(z), defined by

where z = X + 1Y, ( = £ +14n and w(() is the complex potential. Subsequently,
o number of workers have corrected a mistake in Wagner’s work which prevented

him from exploiting the properties of this function, and have shown that it maps



Figure 1.1: Wedge entry geometry.

the unknown fluid domain to a finite region in the h-plane bounded by straight
lines.

Wagner (1932) also showed that the arc length measured along the free sur-
face between any two fluid particles remains constant throughout the motion, and
this was subsequently confirmed by Garabedian (1953) using complex variable
methods. A direct proof of this property is given in Appendix A. Garabedian
(1965) used the properties of the Wagner function to obtain bounds on the con-
tact angle made between the free surface and the solid boundary, 3. Under the

assumption that the free boundary was convex, he showed that

s
0<ﬁ<z.

Mackie (1969) proved that if the pressure on the wedge face was greater than
or equal to atmospheric pressure, then the free boundary must be convex, and
under this assumption improved the bounds on the contact angle by showing

thaf:
O<ﬁ<g—w



Figure 1.2: Pressure distribution along the wedge face for different values of the
half-angle «, reproduced from Dobrovol’skaya (1969). The vertical scale of the
dashed curve is one quarter of that of the solid curves.

Dobrovol’skaya (1969) used ’;he Wagner function to reduce the wedge entry prob-
lem to a non-linear singular integral equation, whose solution she computed. Her
numerical calculations of the pressure on the wedge face are reproduced here in
Figure (1.2), and for small opening angles are in agreement with the linearized
theory of Mackie (1962). The largest half-angle she computed was o = 7 /3, and
in this case she found a large pressure maximum some distance up the wedge
face above the undisturbed waterline. By performing a local analysis around
the three phase contact line, Tayler (1972) reproduced Mackie’s bounds on the
contact angle without using complex variable methods.

Hughes (1972) developed an unusual quasi-analytical numerical method, which
exploited the properties of the Wagner function and combined numerical confor-
mal mapping with a local analysis of the singular points in the flow. Some errors
in Dobrovol’skaya’s (1969) calculations were pointed out, and good agreement
obtained with Wagner’s (1932) approximate expression for the total force for

wedge in the case a = /4.



The first Lagrangian formulation of the wedge entry problem was performed
by Johnstone & Mackie (1973), who neatly established the convexity of the free
surface and derived an explicit formula for the contact angle. Unfortunately,
their analysis depended on the invalid assumption of continuity of fluid velocity
at the wedge tip, and this explains why the predicted contact angle violated
Mackie’s (1969) upper bound.

Greenhow (1987) reviewed some of the work on wedge impact problems, and
compared a number of approximate theories with the results of his own numer-
ical calculations, made using a boundary integral method. Particular difficulty
was experienced in resolving the flow in the thin, fast-moving jet of fluid that
forms close to the body, and in consequence he was unable to perform calcu-
lations for wedges with half-angle larger than about w/4. Worse, even in the
absence of gravity the jet was observed to separate from the wedge, in viola-
tion of the self-similarity property. Some more complicated problems were also
studied, including those of variable impact velocity, oblique entry and complete
submergence of finite wedges. Yim (1986) encountered similar difficulties resolv-
ing the jet in his numerical calculations. Taking atmospheric pressure to be zero,
he observed that for convex pointed bodies the pressure due to the jet was always
positive and that for convex bodies it was negative, indicating that in the latter
case the jet might separate from the body. In a recent paper Greenhow (1988)
applied the same numerical approach as that in his earlier paper to the entry of
a circular cylinder, and obtained a wide variety of free surface flows, including

jet formation and cavity formation behind a fully submerged body.

(b) The Cone Entry Problem

The simplest three-dimensional impact problem is that of a semi-infinite cone
entering a half-space of quiescent, inviscid, incompressible fluid. In the absence
of gravity and surface tension the problem is again self-similar, but complex
variable methods can no longer be used, and as a consequence less progress has
been made. Tayler (1972) performed a local analysis in the region of the jet tip
and showed that, in contrast the wedge entry problem, the contact angle must be

zero. The Lagrangian formulation due to Johnstone & Mackie (1973) extended



easily to three-dimensions and, although unable to obtain an explicit formula for
the free surface, they reproduced Tayler’s (1972) result that the contact angle

must be zero.

Approximate and Asymptotic Theories
(a) Incompressible Fluid Models

The earliest work was motivated not by an interest in ships, but by the desire to
predict the force on the floats of a landing sea-plane. The pioneering papers were
written independently by T. Von Karman in 1929 and by H. Wagner in 1931 and
1932. Both authors propose approximate theories for simple solid-fluid impact
problems based largely on intuition. Essentially, Von Karman’s approach consists
of replacing the impacting body with a flat plate whose width is equal to the body
cross-section at the instantaneous waterline, and neglecting the deformation of
the free surface. An expression for the force is then obtained by equating the
momentum of the fluid to the momentum of the plate, set instantaneously into
motion normal to the undisturbed fluid surface with the impact velocity.
Wagner’s approach is more sophisticated, and more closely resembles the
present work. The body is again approximated by a flat plate, whose width
is now determined by obtaining an approximate expression for the free surface
rise around the body and requiring that it meets the body at the point corre-
sponding to edge of the plate. The resulting pressure distribution on the plate
can be integrated to give an expression for the force, but has physically unac-
ceptable singularities at the edges of the plate. Wagner (1932) realised that to
correct this singularity a new problem would have to be formulated in this re-
gion, corresponding to the spray root where the free surface turns over to form
a jet, and suggested the form it should have. However, since his work pre-dates
the development of the techniques of matched asymptotic expansions, his ideas
lacked a formal basis and he was unable to determine the size of this region.
Furthermore, he neglected the effect of the thin, fast-moving jet that forms close
to the body, implicitly assuming it to be of low pressure compared to that in
the main part of the flow. Both these approaches are valid only when the body

has small deadrise angle, defined as the angle made between the tangent to the



body and the horizontal, but various ad hoc attempts have been made to modify
them for bodies with large deadrise angles. Some of these are listed by Pier-
son (1951). For example, Pabst (1931) added an ‘aspect ratio’ correction, Mayo
(1943) multiplied Wagner’s result by an empirical factor of 0.82 in order improve
the agreement with some experimental data, and Kreps (1943) added a ‘“fluid
dynamic’ resistance.

Pierson (1950) employed an unusual graphical method to obtain approximate
solutions for the entry of a wedge with arbitrary deadrise angle. By insisting that
the free surface satisfy conditions of continuity of flow, dynamic similarity and ir-
rotationality he derived an iterative scheme for calculating the free surface shape,
and hence the velocity and pressure everywhere. By measuring the thickness of
the jet he then calculated the force in the region of the spray root suggested by
Wagner (1932) and found it to be in reasonable agreement with his own direct
calculations.

Schmieden (1953) extended Wagner’s flat plate analogy to rotationally sym-
metric bodies by approﬁmating the body by an equivalent disc, whose radius
had to be determined.

A widely employed method of extending the early flat plate theories is that
of approximating the flow by that around a simpler shape, chosen in some way
to be ‘equivalent’ to the impacting body. Shiffman & Spencer (1953) derived an
approximate theory for the impact of a cone by ‘fitting’ an ellipse, whose dimen-
sions were determined by equating the depth of penetration and accounting for
the free surface rise in the same way as Wagner (1932). Fabula (1957) compared
ellipse fitting with the alternative approach of approximating the flow by the flow
around a diamond-shaped body, like described by Ferdinande (1966). Perhaps
surprisingly, he found the former to be in closer agreement with experiment, and
he attributed this to the fortunate accident of a more accurate representation of
the singularity in the region of the spray root.

Borg (1959) considered the impact of a wedge with small deadrise angle and,
by using a crude geometrical construction of the jet, was led to approximating
the body by a flat plate of width 1.5 times that of the cross-section at the

instantaneous waterline. His analysis also gave approximate values of the value
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of pressure at the vertex and the pressure maximum in the region of the spray
root.

Fraenkel (1958) addressed the problem of the impact of a slender cone and ob-
tained solutions to a linearized problem for oo < 1, representing the flow around
the submerged portion of the body. He took into account the discontinuous slope
of the reflected body, but the linearization of the free surface condition was invalid
in a region of width O(e~'/*) near the body. Mackie (1962) adopted a similar
approach for slender wedges and cones, and derived and solved the appropriate
linearized problem, from which he obtained an explicit formula for the shape of
the free surface. A similar approach, closely related to the distribution of singu-
larities in aerofoil theory was taken by Moran (1961), who obtained approximate
solutions to a linearized entry or exit problem for slender bodies. Recently Gonor
(1986) has corrected the weak singularity at the wedge tip to obtain a solution
valid everywhere away from the contact points.

Cumberbatch (1960) tackled the related impact problem of a wedge of fluid
striking a rigid wall by ﬁumerically patching together solutions valid near to and
far from the wall, and was able to give estimates of the free surface shape and
the force on the wall.

Payne (1981) extended Von Karman’s (1929) flat plate theory and added
mass calculations by calculating the added mass associated with the immersed
portion of an impacting wedge, and found fair agreement between his predictions
and some experiments made using wedges with small deadrise angles.

Most of the recent developments in fluid impact problems have been made by
Russian researchers. Pukhnachov (1979) formulated the impact problem in La-
grangian coordinates and, when the impacting body is blunt, derived a linearized
problem based on the assumption of small fluid displacement. Pukhnachov & Ko-
robkin (1981), Korobkin & Pukhnachov (1985) and Korobkin (1985) extended
this approach to three-dimensional bodies with elliptical cross-section. In the
case of the impact of a two-dimensional parabolic body they derived an inner
expansion to correct the singularity in the outer solution at the contact line.
They employed time as their perturbation parameter and so their analysis ap-

plies is valid during the initial stages of the motion. Korobkin (1982) employed a
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clever Baiocchi-type smoothing transformation to write the leading order outer
problem as a variational inequality.

The modern paper closest in spirit to the present approach is that by Watan-
abe (1986), who sought to correct the singularity in Wagner’s flat plate solution
for bodies with small deadrise angle by considering an inner problem in the re-
gion of the spray root. His inner problem, however, represented the physically
meaningless problem of an infinitely long planing flat plate, and expanding in

the region of the stagnation point therefore gave the wrong local behaviour.

(b) Compressible Fluid Models

All of the incompressible impact theories predict an infinite pressure on a blunt
body at the instant of impact which, of course, cannot occur. One possible
neglected effect is that of the fluid compressibility, which is significant in the
early stages of impact even when the Mach number, M, is small. Here M is
defined to be V/¢, where V is the impact velocity and ¢ is the sound speed.
The solution of the incompressible problem is evidently the leading term in the
asymptotic expansion of the solution to the compressible problem in the limit
M — 0.

There are two characteristic stages of the impact onto a compressible fluid.
First, there is a time interval, 0 < ¢ < t*, during which the boundary of the solid-
fluid contact region is expanding supersonically, and the region of disturbed fluid
is bounded by a shock attached to the body and to the contact line. Second,
there is a subsonic phase, t > t*, during which the shock moves away from the
contact line.

Von Kérman (1929) considered the one-dimensional situation of the normal
impact of a flat plate onto a compressible fluid and, by making an acoustic
approximation in the fluid, found the pressure on the body at the instant of
impact to be the so-called water-hammer pressure pcV, where p is the density of
the water.

During the supersonic stage, the contact region is known and Korobkin (1984)
obtained the solution using an acoustic approximation, based on the assumption

that the disturbance of the fluid is small, which reproduces Von Karman’s result
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at t = 0. The approximation is invalid within a small vicinity of the contact points
as ¢ — t”7, and this problem has been addressed by Korobkin & Pukhnachov
(1985), who showed that for a parabolic body the pressure at the contact point
1s O(M'%) as M — 0, ¢ — t*7. During the subsonic phase the contact region is
unknown, and the solution has only been obtained numerically.

A different approach to the problem was taken by Lesser (1981), who used a
simplification based on geometrical acoustics, and obtained good agreement with
earlier theoretical and experimental work.

Despite a large body of work, there is currently no well-developed theory for

the fully compressible problem.

(c) Models Including a Cushioning Fluid

The pressures and total forces predicted by both compressible and incompressible
theories are, in general, overestimates of the experimental observations. The most
likely mechanism for reducing the actual pressure is that a pocket of air, which
cushions the impact, is trapped between the body and the fluid surface. The
geometry is shown in Figure (1.3) and a number of approximate theories have
been developed to account for the presence of an air layer during fluid impact.
Verhagen (1967) used a simple one-dimensional model for the compressible
flow of air in the narrowing gap between a flat plate and the fluid, which he solved
numerically. Motivated by the well-known theory applying to the steady flow of
compressible fluid in converging and diverging channels, he assumed that as the
air velocity reached the local sound speed in the throat formed between the body
and the rising water surface, the flow would choke, and thereafter that the local
air speed would be equal to the sound speed. The flow in this new regime was
then calculated until the instant the body first touched the water. Then a model
for the trapped pocket of air, in which it was assumed that the air pressure was
a function of time only, was used to predict the pressure on the body. Despite
incorporating a number of crude approximations, and introducing an arbitrary
smoothing factor into the pressure distribution, the calculations were shown to
be a good agreement with a set of experimental measurements made using a

light-weight model.
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Figure 1.3: Air Cushioning Geometry.

Lewison & Maclean (1967) and Lewison (1970) reported an extensive series
of drop tests of flat plates, and compared them with approximate numerical
solutions to a one-dimensional model for the flow in the air which incorporated
additional physical a,ssumpigions. The computed solutions were in qualitative
agreement with the experiments, but displayed a marked sensitivity to the the
choice of initial conditions and overestimated the pressures by roughly a factor
of two. A series of experiments with ship models showed, unsurprisingly, that
adding flanges to the keel to encourage air entrapment reduced the measured
impact pressures.

Apparently working without reference to the earlier work, Asryan (1972)
derived averaged equations for the flow of air beneath a plate, modelled first as
an incompressible and then as a compressible fluid. Approximate solutions were
obtained numerically and in both cases estimates for the time of first contact

between the plate and the water were calculated.

(d) Review Papers

A number of review papers have appeared in the last fifty years. Among them

Chu & Abramson (1961) discussed the various flat plate, diamond, circle and
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ellipse fitting theories and compared them with experimental results. A broader
ranging survey by Moran (1965) included sections on slender body theories and
more complicated impact problems, including variable entry speed, water com-
pressibility and the effect of a cushioning air layer. Recent developments are
reviewed in Korobkin & Pukhnachov (1988), who placed particular emphasis on
their Lagrangian formulation of the problem. This latter paper includes a num-
ber of valuable references to the work of other Russian authors, and incorporates

sections on the impact of elastic shells and impact onto compressible fluids.

1.4.2 Experimental Papers

There is a large body of literature reporting experimental data from drop tests
and full scale measurements, and many compare their findings with the various
approximate theories outlined above.

Chuang (1967) described a series of drop tests performed with flat-bottomed
and small deadrise wedges. His experiments indicated that only the flat body
and 1° deadrise wedge entrapped a significant quantity of air, and he derived a
sequence of empirical correction factors to Wagner’s (1932) simple flat plate the-
ory to give better agreement with observations. Hagiwara & Yuhara (1974a,b)
conducted experiments to measure the impact forces and resulting stress dis-
tributions in a number of one-third scale bow models. They too observed the
effects of air-entrapment for angles of less than about 3°, and were able to produce
pressures roughly equal to the water hammer pressure for large impact velocities.

Results of experimental impacts made using a variety of different bodies and
compressible fluids were reported by Eroshin et al. (1980). Figure (1.4) is repro-
duced from their paper, and shows that the dependence of the total force on the
body on the Mach number in the fluid, M, is strongly influenced by the shape
of the body. Whereas the force on a flat disc rises sharply as M — 0, that on a
cone with a semi-angle of 75° is only weakly dependent on M, while that on a
hemisphere is effectively independent of M.

Moghisi & Squire (1981) performed drop test experiments using a hemisphere
and measured the resulting total force on the body, which they found to be

proportional to the square root of the depth of immersion. Two typical force
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Figure 1.4: Maximum values of the force on (1) a disc, (2) a cone with half-angle
a = 25° and (3) a hemisphere plotted as a function of the Mach number, M.
Reproduced from Eroshin et al. (1980). S denotes the midsection area of the
body.

Figure 1.5: Typical relations between drag force and time for a hemisphere.

Reproduced from Moghisi & Squire (1981).
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histories are shown in Figure (1.5).

Driscoll & Lloyd (1982) reported a series of drop tests using flat bottomed
wedges of varying keel size and deadrise angle, and made measurements of the
speed and magnitude of the maximum pressure pulse. First contact was usually
made at the edge of the keel, and for larger keels a smaller secondary, inward
travelling pressure pulse due to air entrapment was recorded.

Eroshin et al. (1984) reported a series of drop test experiments onto a com-
pressible fluid using flat bodies in the presence of various types of cushioning
fluid layers, and found them to be in good agreement with numerical solutions
to a simple one-dimensional model.

Nethercote et al. (1986) conducted an extensive series of drop tests using
representative hull sections and ship models and performed numerical calcula-
tions using a commercially available finite difference code. The numerical results
were very noisy, and even after extensive smoothing were only approximately in
agreement with the experimental results.

Greenhow (1987) included a number of photographs of small scale experi-
ments, one of which is reproduced here in Figure (1.6). They clearly show jet

separation does occur during wedge impacts, probably due to the effect of gravity.

1.4.3 Applications to Ship Loading and Dynamics

There are a large number of numerically and empirically based papers which
seek to apply approximate predictions of impact pressures to realistic ship mod-
els, and hence make useful predictions about the resulting stresses set up in the
hull, as well as the effect on the dynamics of the motion of a ship in a seaway.
A full review is not attempted here but we should record that a series of papers
combining an elastic beam model for the ship hull with empirical approxima-
tions for the impact force are due to Bishop with various co-workers, and are
summarised in the recent paper by Belick, Bishop & Price (1987). A more math-
ematical presentation is given in Bishop, Price & Wu (1986), in which the ideas

are extended to other floating structures. In both cases extensive finite element
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Figure 1.6: High speed impact of a wedge with half-angle « = 7/6 into water.
Photograph courtesy of Dr. M. Greenhow, Brunel University, London.

calculations are performed and a large number of empirical factors have to be
estimated.

There are also a large group of research papers and technical reports detail-
ing experimental and real life observations of sea trials, such those made on two
frigates on rough weather by Bishop, Clarke & Price (1984). Recently atten-
tion has been focused on new types of vessel, and a recent paper by Graham
(1988) reports a series on slamming trials made using a scale model of a SWATH
destroyer.

Other authors seek to draw conclusions directly from the experimental data

without using mathematics, or by employing the techniques of statistics and

probabilistic modelling.
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Chapter 2

Two-Dimensional Fluid Impact
Problems

In this chapter, we consider the problem of a two-dimensional rigid body impact-
ing onto an inviscid, incompressible fluid. When the body has small deadrise an-
gle, the flow field decomposes into three regions. In the outer region, the problem
is the normal impact of a flat plate of unknown width, whilst in the inner region,
a free streamline problérn is obtained. In the third region there is a thin, fast-
moving Jet close to the body. In each region we formulate and solve the leading
order problem, and obtain the corresponding leading order pressure distribution
on the body. We construct solutions for a number of simple body profiles, and
consider the effect of additional physical phenomena, such as gravity and sur-
face tension, neglected in the simple model. Finally we compare our asymptotic

results with the work of other authors and with some of the experimental data

available in the literature.

2.1 Physical Motivation

We wish to construct a mathematical model for the impact of the forward part
of a ship hull onto the sea, with the principal aim of predicting the resulting
pressure distribution on the hull. The first step of the modelling procedure 1s to
identify the most important physical phenomena, and we shall do this crudely by
evaluating the orders of magnitude of the relevant non-dimensional parameters.

Consider a ‘typical’ ship with characteristic width, [, of 10m impacting onto

the ocean with a relative speed, V, of 30ms™!. Since the kinematic viscosity of
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water, v, is roughly 107®m?s™! the Reynolds number, R., for the flow is

Vi
R. = — ~ 108.
1%

The square of the Froude number, F?, is given by

where g ~ 9.8ms™? is the acceleration due to gravity and the Weber number, W.,

is defined as
_ plV?

Y
where v >~ 7.5 x 107*Nm™! is the surface tension at a water-air interface and p

W. 104,

is the density of water. Finally the Mach number in the water, M,,, is
M, = Y. 1072,
Cw
where ¢, >~ 1400ms~? is the local sound speed.

Since Re > 1 and M, < 1 our first model will be of an inviscid, incompress-
ible fluid and since F? > 1 and W, > 1 we shall neglect the effects of gravity
and surface tension.

The air present between the ship and the sea before the impact occurs may
play an important role in the impact process, and we will consider it more care-
fully in Chapter 5. Typical magnitudes of the air and water pressures are p,V}?
and p,, V.2 respectively, where p, is the air density, V, is a characteristic air speed
and p,, V,, are the corresponding quantities for the water. The air pressure will,

therefore, be negligible compared to the water pressure provided
v2\? w
vw pa

Pw
Pa
Since this density ratio is large, we expect the air pressure to be negligible except

where

~ 103,

just before impact occurs, when the air velocity may become sufficiently large for
the air pressure to be significant. This stage of the impact is analysed in Chapter
5, but in this first model we can assume that the impacting body moves through

a vacuum before striking the fluid.
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Clearly, all these intuitively evident assumptions must be reviewed when the
calculation is completed and some or all of these effects may have to be re-

introduced to reproduce the observed physical phenomena.

2.2 Problem Formulation

Consider the impact of a two-dimensional rigid body onto a half-space of qui-
escent, inviscid and incompressible fluid. In this simple model we assume that
the body is symmetric and take cartesian coordinates (z,y) with the y-axis ver-
tically upwards along the axis of symmetry of the body and the z-axis along the
undisturbed fluid surface. The fluid initially fills ¥ < 0 and the region y > 0 is
assumed to be a vacuum. The effects of gravity and surface tension are ignored.
The body has profile y = f(z), where f(0) =0, f(z) = f(—z) and f(z) > 0 for
lz| > 0, and moves vertically downwards with constant speed V throughout the
impact. We choose the origin of time ¢ = 0 to correspond to the moment when
the body first touches the undisturbed fluid surface, and so the position of the
body at time ¢t is given by
y = f(z) - Vi.

The fluid flow is described by the fluid velocity u(z,y,t) and pressure p(z,y, t).
The governing equations, which are derived from the principles of conservation

of mass and of momentum, are Euler’s equations,

V.u=0, (2.1)
Du 1
i VA F 2.2

where p is the constant fluid density. The body force F is assumed to be conser-
vative and consequently can be written in the form F = —VQ, where Q(z,y,1)
is a scalar potential function. D/Dt denotes the convective derivative which can

be expressed in terms of derivatives at a fixed point as

D d

A fluid flow is said to be irrotational if V xu = 0. Since the fluid is incompressible

and inviscid, Kelvin’s Theorem applies, and so the circulation around any closed
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curve moving with the flow is constant. Hence, since the flow is initially at rest
and therefore irrotational, it will remain irrotational throughout the motion. We

can therefore define a velocity potential ¢(z,y,t) such that
u= Vo,

and hence, from equation (2.1), the potential ¢ satisfies Laplace’s equation
Vi = 0. (2.3)

When ¢ has been determined the pressure, p, is calculated from the equation of
motion (2.2) which can be integrated to give the unsteady form of Bernoulli’s
equation,

0¢

1 2, P _
5 TalVel+ s =g0), (24)

in which g(t) is a function of time ¢ only.

For ¢ > 0 the surface of the fluid will be divided into two parts, the wetted
body surface and the free surface.

On the wetted body surface the appropriate boundary condition for an invis-
cid fluid is that there should be continuity of normal velocity between the body
and the fluid. This means tilat

D

=y = f(e) + Vi) = 0,
and so i 06 e
®_ — _
5 Gy V on y=f(z)-Vt (2.5)

The shape of the free surface is denoted by y = h(z,t) and, since it is to be
determined as part of the solution, we require that two boundary conditions are
imposed on it. The first comes from the kinematic condition that fluid particles
originally in the free surface always remain so. Consequently for a fluid particle

in the surface

D

E(y - h(mat)) =0,

which gives the condition

Oh  0Oh
+ d¢ 09¢

5t " Geor Gy - 0 on y=h(z,1). (2.6)
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The second relation is the pressure matching condition that the pressure on the
free surface is equal to the zero pressure in the vacuum above, and so from

Bernoulli’s equation (2.4) in the absence of gravity and surface tension we have

8¢ 1 |[/86\° [06)\°
EW[(%) +<5§)}:o on y = h(z,1) (2.7)

We must also specify initial conditions at the instant of impact ¢t = 0 and the
far-field behaviour of the solution. Without loss of generality we can choose the

potential so that
¢($’y7 O) - 07 (2°8)

and since the fluid filling y < 0 is initially at rest, we have that
h(z,0) = 0. (2.9)

Physically we insist that the fluid velocity must tend to zero at large distances

from the body and so

[ [ond

Vo(z,y,1)| =0 as (2* +3°)F — oo, (2.10)

with the consequence that h(z,t) — 0 as |z| — oo.

Laplace’s equation (2.3) together with the boundary conditions (2.5), (2.6),
(2.7), the initial conditions (2.8), (2.9) and the far field condition (2.10) are
an unsteady, nonlinear free boundary problem for ¢(z,y,t) and h(z,?) in the
geometry shown in Figure (2.1). No solutions of this set of equations are known

for arbitrary shaped bodies and there is no existence/uniqueness theory for the

problem.

2.3 Bodies with Small Deadrise Angle

In order to make progress we restrict our attention to bodies whose deadrise
angle 3, defined to be the angle made between the tangent to the profile and the
horizontal, i1s everywhere ‘small’. By ‘small’ in this context we mean that 3 is

much less than 7/2.
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Figure 2.1: Rigid body impact geometry.

First we non-dimensionalize the problem by introducing suitably scaled non-
dimensional variables z*, y* and t*, based on a typical length scale [ and impact

velocity V, in the form

n

Z
T :-l—, y =

T = —.

.Y Vit
l’ !

In a similar way we define a non-dimensional velocity potential ¢*(z*,y~,t*),

pressure p*(z*,y",t*) and free surface elevation h*(z*,t*) by

— OO

1 1
¢ (z7,y", 1) = —-¢( z,y,t), p(e5,y,¢)= ;Vgp(x,y,t), h(27,17) = Th(z,1).

We now introduce the small dimensionless parameter ¢ < 1 in such a way that

the position of the impacting body is given by
y" = f(ec”) — 17,

where the function f*(:) describes the profile of the body. We immediately
drop the cumbersome starred notation, but hereafter all quantities will be non-

dimensional unless otherwise stated. Non-dimensionalizing equations (2.3), (2.5),
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Figure 2.2: Impact of a body with small deadrise angle.

Vo -0 as (azz-l—yz)';'—)oo

(2.6) and (2.7), we obtain the full impact problem,

o*¢ %9 ‘ .
2 + 3y = 0 in the fluid, (2.11)
ef/(ez)% —_ 6_¢ = 1 on Yy = f(em) — t7 (212)
Oz ay

Oh 0Ly 09 ~
ot Tazae oy - 0 °n v=hiat) (2.13)

8¢ 1((04\° [(84\*| _ B
ot T 2 [(8:1:) + (ay = 0 on y= h(:l:,t), (2.14)

together with the initial conditions from (2.8) and (2.9),
qS(:c,y,O) =0, h(z,0)=0, (2.15)

and the far-field condition from (2.10),

6¢ a‘f’ ) 2 1
52 By_)o as (z°+y°)? — oo, (2.16)

which is summarised in Figure (2.2).
A natural way to approach the equation (2.11) together with the boundary
conditions (2.12), (2.13) and (2.14) is as a perturbation problem in the small

parameter ¢, which we do by introducing suitably scaled variables and seeking a
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solution in the form of an asymptotic series in €. As we shall see, this approach
yields a description of the flow which is valid in an outer region but fails in an
inner region near the body where it is singular. In order to correct the singularity
in the outer problem, we must rescale the variables, then formulate and solve the
appropriate inner problem in that region. Once the inner solution is known a
uniformly valid solution can be obtained by first matching the two expansions,
and then constructing a uniformly valid composite expansion. This technique is
known as the method of Matched Asymptotic Expansions and has been applied

to many singular perturbation problems, especially in fluid mechanics, and is

described in detail in the classic book by Van Dyke (1975).

2.4 The Outer Problem

The profile of the body changes by an O(1) quantity over a length of O(1/e).
The length scale of the outer region is, therefore, O(1/¢), and so we introduce

scaled outer variables X and Y defined by
X = ez, Y = ey.

Since the velocities in the outer region will be O(1), we introduce a scaled outer

velocity potential ®(X,Y,t) defined by
®(X,Y,t) = ed(z,y,1),

and, since the free surface deformation will also be O(1), we define an outer free

surface elevation H(X,t) by h(z,t) = H(X,t) so that
Y = eH(X,1)

describes the position of the fluid surface. Writing (2.11), (2.12), (2.13) and

(2.14) in outer variables we obtain the full outer problem:

f*® §*®
— ; i 2.17
e + e 0 in the fluid, (2.17)

od 0d
! —_— —— s = —t 2.18
ef (X)aX 5y 1 on Y =¢(f(X)-1), (2.18)

OH OH 0% od
el - = = 4 19
o “axax sy - 0 on Y=eH(X1) (2.19)

9% ¢ |[0®\* [5d\?
_ét_+§[<5f) +(W) = 0 on Y =eH(X,?), (2.20)
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together with the initial conditions from (2.15),
®(X,Y,0)=0, H(X,0)=0, (2.21)

and far-field condition from (2.16),

0® 09

‘ 2 V5 _,
X aY——rO as (X°4+Y7) 0. (2.22)

In order to carry out a systematic expansion the boundary conditions on
the body and on the free surface, they must be expressed in terms of quantities
evaluated on the undisturbed position of the free surface ¥ = 0, corresponding
to setting € = 0. This is accomplished by expanding the boundary conditions in
Taylor series about their values at Y = 0. This procedure presents no difficulties
for the boundary condition on the body ¥ = ¢(f(X) — t), but when applied to
those on the free surface Y = eH(X,t) it does if the free surface becomes double
valued. Indeed, we would expect this to be the case since many experimental
and numerical investigations note the formation of a long, thin, fast-moving jet
of fluid close to the bociy during small deadrise impacts. For example, Figure
(1.6) is a photograph of a small scale experiment reproduced from Greenhow
(1987) which clearly shows such a jet. Motivated by these observations and by
the assumption, to be verified a posteriori, that the volume of fluid in the jet
is small compared to a typical volume measured on the outer length scale, we
neglect the effect of the jet in the outer problem. Hence when performing the
linearization of the boundary conditions we apply the wetted body condition on
Y =0, |X| < d(t) and the free surface conditions on ¥ = 0, |X| > d(t) where
d(t) is an unknown function of t which represents the position of the point where
the free surface turns over to form the jet.

We now seek regular perturbation solutions for ® and H as power series in €

in the form

® = @0-{'—6@1 +€2¢2+O(€3),
H =Hy+eH, + €Hy + O().
The leading order outer problem is, therefore,

0?®, + 0*d,
0Xx?2 0Y?

= 0 in Y<0, (2.23)
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Figure 2.3: Leading order outer problem.

%?,3 = -1 on Y =0, |X]|<d), (2.24)
%?,9 = %T—fg on Y =0, |X|>d(t), (2.25)
6—;9 = 0 on Y =0, |X]|>d), (2.26)

with initial conditions
Bo(X,Y,0) =0, Ho(X,0)=0, (2.27)

and far-field conditions
gii’, %ff —~0 as (X’+Y)?7 - oo (2.28)

Integrating (2.26) with respect to time and using the initial condition (2.27a)

we obtain

Bo=0 on Y =0, |X|>d). (2.29)

The equation (2.23), together with the boundary conditions (2.24), (2.25)
and (2.29), form a mixed boundary value problem for ®,, which is summarised
in Figure (2.3). It is mathematically equivalent to the problem of the normal
impact, with speed 1, of a flat plate of width 2d(¢) onto a half-space of fluid
Y < 0. Because of this analogy, first drawn by Wagner (1932), we shall call
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d(t) the semi-width of the equivalent flat plate, which will be determined by an

appropriate matching condition.

For completeness, we note that the second order outer problem is

0*®, 0*P, . .
X2 + v = 0 in the fluid, (2.30)
f 3@0 6@1 62@0
FOOS2 =S (FX) ~ 0722 = 0 on Y =0, 1X|<d(s)
(2.31)
0H, O0H,0%, 09, 0%,
i + X ax oy —HOBY2 = 0 on Y =0, |X|>d),
(2.32)
8%, 8@, 1 [[88,\" [8%,)° .
Y +HOB?5?+2I:(EX—> +(5?) = 0 on Y =0, |X|>d(),
(2.33)
with
él(X,Y,O) = 0, Hl(X,O) = O, (234)
and
P 1
0%, 0% —0 as (X*+Y?)? — co. (2.35)

0X’ 9Y
2.4.1 Solution of the Leading Order Outer Problem

The nature of the singularity at the edge of the plate in the leading order outer
problem can be determined in a straightforward way by taking local polar coor-
dinates (R, ®) about X = d(t) and obtaining the local form of the solution. If
we insist, on physical grounds, that the spatially integrated fluid energy remains
bounded, then it is easy to show that the worst possible singularity in the veloc-
ity is R~% and so the velocity potential behaves locally like RZ. The solution for

®, is then obtained by observing that the complex function
Wo(Z) =iZ — (d(t)* = Z*)7, where Z =X +1iY,

is holomorphic in the cut Z-plane if we make branch cuts along the X-axis
between (—o0,0) and (—d(t),0) and between (d(t),0) and (+00,0). Moreover,
Wo(Z) evidently satisfies

W=

Wo(X +i0) = iX — (d(t)? — X?)

9

29



with

oW, '
(X i) =it TX i) = 14—
oX (d(t) —x2)" 9 (d(¢)? - X?)

and the far behaviour

Wo(Z) — 0 and

— 0 as |Z]|— oo.

If we now write the complex potential Wy(Z) in terms of its real and imaginary
parts thus : Wy(Z) = ®¢ + 1%y, then, since Wy(Z) is holomorphic in Z, the
function &, = R(Wj) is harmonic in ¥ < 0 and satisfies the correct boundary

and far field conditions. The appropriate solution for @, is, therefore,
Bo(X,Y,t) = — [Y + R(d(t)’ - 2%)?], (2.36)

where R(:) denotes the real part of a complex quantity. Once @, is known we
can determine H, by integrating (2.25) with respect to time for |X| > d(t) and
use the initial condition (2.27b) to obtain

t
Ho(X,t) = i %%E(X,O,T)df. (2.37)

Hence, substituting from (2.36), the leading order solution for the profile of the
free surface for |X| > d(t) is given by

Ho(X,t) = —t + /: - _)2(7)2)% dr. (2.38)

2.4.2 The Pressure in the Outer Region

Once the outer velocity field is known, we can evaluate the outer pressure distri-

bution P(X,Y,t) from Bernoulli’s equation (2.4), which, when written in outer

3 (5) (&)

Expanding P(X,Y,t) as an asymptotic series in powers of € in the form,

variables, gives
109

- P =0.
+68t+

1
P=EP0+P1+€P2+O(€2),
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and substituting for &, we obtain the leading order terms

0%
~P = —- (2.39)
8%, | 1{(0%:\"  [0%)’
“ho= St [(?ﬁ) +(a—y) ’ (2:40)

and we can, therefore, easily evaluate the leading order outer pressure to be,

_ d(t)d'(t)
P(X, Y, t) =R {(d(t)2 — Z?)%] : (2.41)

The pressure on the body is given in terms of quantities evaluated on the plate

Y =0, | X| < d(t), and its leading order terms are

—Py(X,0,t) = %‘%‘i, (2.42)
~P(X,0,t) = %l +(f(X) - t)g:;); +% [(%)2 + (%%)2 (2.43)

In particular, the leading order pressure on the body is given by
Po(X,0,1) = 204 (2.44)

(d(2)? — X2)3

which has square root singularities at the points |X| = d(t). A typical leading

order outer pressure distribution is shown in Figure (2.4).

2.5 The Matching Condition to Determine d(t)

The matching condition to determine the semi-plate width d(¢) was first sug-
gested by Wagner (1932), and requires that the leading order free surface eleva-
tion in the outer problem as X — d(¢)* should be equal to the position of the
body at X = d(t), viz.

Ho(d(t),t) = f(d(t)) —t forall ¢2>0. (2.45)

In Appendix B we show that this condition follows from the assumption that
the volume of fluid in the jet i1s small on the length scale of the outer problem,
and we will be able to justify this assumption a posteriori once the jet solution

has been determined. Ho(X,t) is already known in terms of d(t), and so we can
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PO(X7O>t)

Figure 2.4: Typical leading order outer pressure on the body.
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substitute from equation (2.38) into this matching condition to obtain a singular

integral equation for the plate semi-width d(t), namely

f(d(2)). (2.46)

2.5.1 Solution of the Singular Integral Equation for d(t)

Confronted with the singular integral equation (2.46), Wagner (1932) attempted
to solve it for d(t) by writing t as a function of d and expanding t'(d) as a power
series in d. After expanding the body shape f(d) in powers of d he equated
the coefficients of the powers of d and obtained expressions for the coefficients
in the power series expansion of t(d). In practice inverting the power series
for d(t) is too difficult for all but the simplest bodies and the method, copied
by a number of authors since including Fabula (1957), Watanabe (1986) and
Greenhow & Yanbao (1987), fails to provide a useful closed form solution. The
integral equation can in fact be solved simply in a closed form. First we write ¢ as
a function of d, then introduce the new integration variable o and write 7 = t(o)
so that dr = t'(0)do and hence equation (2.46) becomes

]d o) do = f—(d—)
o (d

2 _ 02)% d

This is an Abel integral equation, as described in Sneddon (1966), and has the

o) = 2 [ e

_71:d0' o? —62)'2'

provided the that integral exists. In this thesis, the function f(-) describing the

solution

body shape will always be continuous, and this is a sufficient condition for the

existence of the integral. Integrating this expression once with respect to o, ¢(d)
9 d
4(d) = —/ (—f—(-Q—dg. (2.47)
0

is given by

s d? — 52)%
Given any body shape, the corresponding semi-width function can be calculated

simply by evaluating (2.47), and then inverting for d(t).
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2.6 The Inner Problem

The leading order solution of the outer problem is singular at z = =d(t)/e and
hence fails to accurately represent the flow near these two points. Since the prob-
lem is symmetric in z, it is sufficient to analyse the flow in the neighbourhood
of just one of them. In order to obtain the correct inner problem in the neigh-
bourhood of z = d(t)/e and y = f(d(t)) — t, we introduce scaled inner variables
¢ and y defined by

e= MW ies o fan) -1t ey

The exponent n > —1, which determines the scale of the inner region, 1s unknown
and will be determined by matching the inner solution with the outer solution.
Since the entire inner region is moving with the positive z-direction with speed
d'(t)/e we deduce that the fluid velocity in the inner region must be of O(1/¢)
and therefore the velocity potential must be O(e"~!). Hence, we define a scaled

inner velocity potential qg(:i:,_{/,t) so that
bz, y,t) = &7 [d(1)E + §(2,9,1)] ,

where the factor of d'(¢)Z has been subtracted out to simplify the algebra. Writ-

ten in inner variables, the position of the body is given by

%2

(F(d(t) + €18) — £(d(1)) = & f(d(2) + €2 F"(d[1)) + O(*).

yAz 2

o | =

Since the O(1) term in this expansion is zero whatever the value of n, the body

is flat to leading order, and so we can write the position of the body as
§ = ef(2,1).
Similarly, the profile of the free surface is given by
(h(z,1) — F(d(D) + ). (2.48)

Written in outer variables and expanded about X = d(t) in powers of ¢, the
leading order term in (2.48) is

L (Ho(d(8),1) - £(d(1) +1),

en
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which, because of the matching condition defining d(t), is identically zero. The
second order term is O(1) whatever the value of n, and we can therefore define

an inner free surface profile 2(z,t) so that
y = h(z,1)

describes the position of the fluid surface.

Writing the impact problem (2.11), (2.12), (2.13) and (2.14) in inner variables

we obtain the full inner problem,

o 9% , .
Faz + 5?;; = 0 1in the fluid, (2.49)
. 8d] 186 .
! d t n+1 ! R — = T .
fild(t)+ e z) [d(t) + 3:&} aEn 1 on g=c¢€f(z,t), (2.50)
, , WOh 1[866h 084] _
FUm)d) -1+ 5+ 35 02 ag} =0
on g = h(z,t), (2.51)
a2 A2 2 7
1 6¢ 8d) ! 2 1 ! / a¢ n—1 " 6d) -
L [(a) +(5e) - er|+1h- s gere [+ 5| =
on ¢ = h(&,1). (2.52)

We now seek regular perturbation solutions for ¢ and h as power series in e,

6031 + 62(132 + 0(53)a
ehy + €hy + O(%).

¢ = do
ilzilo

+ -+

After expressing quantities in terms of their values on their basic positions cor-

responding to € = 0, the leading order inner problem is found to be

82 o . 8o

577 57 = 0 in the fluid, (2.53)
% = 0 on g:o, (254)
0y

8(&08730 3(50 g -
— = = ho(Z,1), 2.5
9: 9z o5 O o U=h(&) (2:23)
A 2 - 2
?ip:o_ + .(220_ = d'(t)2 on :(j/:izo(i’,t). (256)
oz 0y

Since the leading order problem is steady, there are no initial conditions imposed

on it.
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Figure 2.5: Leading order inner problem.

2.6.1 Solution of the Leading Order Inner Problem

The geometry of the leading. order inner problem is shown in Figure (2.5). It is a
Helmholtz cavity flow with a jet whose asymptotic thickness, denoted by h(t), is
unknown. To leading order the body is flat and, since no time derivatives appear
in the problem, it is steady with time, ¢, only entering as a parameter. The
most well-known steady, inviscid free streamline problem is the ‘Borda Mouth-
piece’, and we can apply the same conformal mapping techniques, as described in
Birkhoff & Zarantonello (1957) and Milne-Thomson (1968), to solve the present

problem.

First we construct the scaled complez potential plane defined by

where & and ¥ are the velocity potential and stream function respectively and
so w is an analytic function of 2 = Z +1g. U is a typical reference velocity and,
since equation (2.56) tells us that the speed everywhere on the free streamline

is d'(t), this is the natural choice for U. We denote the image of the point A in
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7

Figure 2.6: w-plane.

the physical z-plane by A’ in the w-plane and so on. Since the rigid boundary
and the free surface are streamlines they correspond to straight lines on which
¥ is constant in the w-plane. C 4 denotes the separating streamline of the flow
and therefore A is the stagnation point on DB. Without loss of generality we
take ¥ = 0 on the rigid boundary DB and choose ¢ = k(t)d'(t), where k(t) is
unknown, at the stagnation point A. AB now maps to the upper side of a branch
cut in the w-plane from B’ at (k,0) to A’ at (c0,0) and similarly AD maps to
the lower side. Far down the jet there is a uniform parallel flow with velocity
d'(t) and thickness h(t), and so % = —h(t)d'(t) on the free surface CEB, and ¢
varies from —oo at C' to +oo at B’. The region occupied by fluid is, therefore,

mapped to the fixed region in the w-plane shown in Figure (2.6).
Now we construct the hodograph plane defined by

Q(w) = log (j;})

where w(2) is the scaled complex velocity potential. @ is an analytic function of



C/I,D/I(O,ﬂ') #/

o ///// )

" / >

B7(0,0) , L
Figure 2.7: Q(w)-plane.

z and hence also of w(2). We motivate this definition by observing that

Q=L +16,

where L =log |dz/dw| and 6 is the direction of the fluid velocity, and so along a
free streamline the fluid speed is constant and therefore L is constant, while on a
fixed straight body the fluid velocity coincides with the direction of the body and
so 8 is constant. Hence we .can determine the boundary of the region occupied
by fluid in the hodograph plane. We construct the hodograph plane Q(w) for
the present problem, denoting the image of the point A by A”. The free surface
CEB then maps to the line L = 0. At C 6 equals 7 and moving along CEB
6 decreases to 7/2 at E and 0 at B. On AB 6 is equal to zero and since the
velocity is also zero at A4, it maps to the point A” at (c0,0). Moving along AB
towards B the fluid velocity increases towards its asymptotic value of d'(t) and
so L decreases towards zero at B” while § remains zero. Similarly moving along
DA 6 equals 7 and L decreases from infinity at A” to zero at D”. The region
occupied by fluid in the physical plane is therefore mapped to a region bounded
by straight lines in the Q(w)-plane, viz. the semi-infinite strip shown in Figure
(2.7).

The problem can now be solved if a conformal transformation can be found
from the fluid region in the Q-plane onto the fluid region in the w-plane, since

then we can eliminate Q(w) and, in theory, solve for w(2). To accomplish this
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Figure 2.8: (-plane.

transformation we introduce an intermediate variable ( = € + in and map the
fluid region in the @Q-plane into the upper half of the (-plane, which is shown in
Figure (2.8). E corresponds to E" at the origin, D and C correspond to D" and
C" at (-1,0) and B maps to B” at (1,0). The well-known conformal mapping
fixing these points is

) = % [w + wi] , (2.57)

&

¢ = cosh(Q(

where @' denotes dw/dz.
We must now find a conformal transformation from the fluid region in the
Q(1)-plane onto the upper half of the (-plane. The required mapping is provided

by the well-known Schwartz-Christoffel Transformation, from which we obtain

dw K
i T CrrC-1) (2.58)

where K is a complex constant which is determined by the orientation in the

fluid region to be —h/m. Integrating with respect to Z we have

N SR
w—k—ﬂ_[(c_}_l)—i-lg C+1], (2.59)

where the constant of integration has been chosen appropriately. We can now

eliminate ¢ between (2.57) and (2.59) to obtain a nonlinear differential equation
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for w(Z), namely

w=k

2y
(W' + 1) °°

w - 1” . (2.60)

™ w +1

In principal, we could now integrate this equation to obtain (%) and hence solve
the problem. However, we shall not attempt to solve this equation here, since
we can determine the properties of w(2) we require without deriving an explicit

solution.

2.7 Matching of the Leading Order Solutions

Having derived the leading order terms in the inner and outer expansions we
can now determine the scale of the inner region and the unknown asymptotic
jet thickness by matching the two appropriately. Van Dyke (1975) discusses
matching at length and states the asymptotic matching principle which dictates
that, for all integers M and N, the M-th term inner expansion é)f (the N-th
term outer expansion) equals the N-th term outer expansion of (the M-th term
inner expansion). This rule will be sufficient for our present purposes if we take
M = N =1 and match the.inner limit of the leading order outer solution with
the outer limit of the leading order inner solution.

Written in inner variables the first term of the outer expansion of the velocity

potential evaluated on the body is given by equation (2.36) as

2

-%% [d(t)"’ —~ (d(t) + e"+1az)2}

Expanding for small ¢, and writing back in outer variables, we obtain an expres-

sion the one term inner expansion of the one term outer solution evaluated on

the body,

(8

_ %&e —2d(t) (X — d(£))]} . (2.61)

Without solving equation (2.60) we can still determine the far behaviour of the
inner leading order solution. As £ — —oo we know that @ ~ —Z, representing a

uniform stream with speed d'(t) in the negative Z-direction. We therefore write

B(2) = =2+ w(2)
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and, by substituting into equation (2.60), we find that w(Z) satisfies the nonlinear

|

As £ — —oco w' — 0, and so the 1/w’” term dominates the right side of the

differential equation

2h ~ !
—Zz4+w=%k—- — 2_(__1i}_0_)

T w/2

-2 +w'

wl

+ log

equation, which indicates that the asymptotic behaviour of w'(2) is given by

” 4h A
we~—— as T — —o0o.
Tz

Taking the appropriate square root, integrating once, and substituting back for

W(Z), we obtain the far behaviour of the scaled inner complex potential to be,

L
. . (hé) 2 .
wn~ —2z—41 | — as & — —o0,

T
and so the inner velocity potential on the body is asymptotically equal to

e"_ld/(t)% [—47: (E) 2} as T — —oo.

™

Writing the velocity potential in outer variables we obtain

1 ()R [—41: (h(X - d(t))ﬂ ,

and so expanding for small € and writing back in inner variables we find the one

term outer expansion of the far behaviour of the one term inner expansion to be

s

(1R [—41’ (E) EJ as & — —oo. (2.62)

The matching condition now requires that the outer inner limit of the outer
expansion is equal to the inner limit of the outer expansion. The far behaviour
of the inner is the correct quantity to match with the outer, and so, writing
both (2.61) and (2.62) in original variables, we find that the one term inner of
the one term outer is O(e%) and the one term outer of the far behaviour of the
inner 1s O(e”“%). Evidently these orders must be the same and so n = 1. The

scale of the inner region is, therefore, O(¢) and the velocity potential is O(1).
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Equating the coefficients of ¢ we obtain an expression for the asymptotic jet

thickness h(t) in terms of d(¢), namely

(2.63)

For completeness, we note that the second order inner problem is given by

8¢ . .
32 + Y = 0 in the fluid, (2.64)
/ 6(50 6(51 - 3250 -
d(t b & - -
Opo ; 8¢o]| Bho B Ohy Bd ; B
_reY h _ _ / / -1 =
[3:?: " 165183}] oz oz oz oy Mg T WA -1=0
on § = ho(Z,1), (2.66)
800 [0¢1 ;. 0%°B0] 8o [0d1  ; B0 Vo 8do
GE [35: Thgzag] T oy By T | T SR) =0
on § = ho(%,1). (2.67)

2.7.1 The Equations of the Streamlines

Without obtaining the solution of the leading order inner problem w(Z) we can

obtain implicitly the equations of the free streamline and the body. If dZ is an

element of a streamline parameterized by ¢ then
dz = ——d¢. (2.68)
W

The free streamline C'E B is mapped to the segment —1 < ¢ < 1 of the real axis

n = 0 in the (-plane, and so from (2.57) we obtain
dz 1
— = ¢+i(1 - &),
dw
and from equation (2.59)
w_ a1
d¢ T (E+1)HE-1)

Thus, taking a origin for Z at E, corresponding to £ = 0, we have

=

h £ g

o Er - &

zZ=-
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Figure 2.9: Leading order shape of inner free surface.

Performing the integration we obtain a formula for the shape of the free surface

A ~

£(€,t), g = y(€,t) parameterized by £ where —1 < ¢ <1, namely

) h 1+¢] 2¢
2 ;r-[log1_€—1+€ : (2.69)
o dr[ (1-gy

= - [1 <———1+€) : (2.70)

which is plotted in Figure (2.9).
The body DB is mapped to the regions { < —1 and £ > 1 of the real axis
n = 0 in the (-plane. From equation (2.57), and by choosing the signs to give
the correct asymptotic behaviour, we obtain
gz;_{ §- (£ +1)7 for £ < -1,
di | £+ (2 +1)7 for 2> 1.
Thus, taking an origin for 2 at A, corresponding to { = oo, we have
( _éﬁ/f E= (€1 b qore< -1,

m /oo (£4+1)7(¢ - 1)

_4h e £+ (€ 1) de for € > 1.

(T Je (EF1)2(E - 1)

-

™
il
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Performing the integration, we obtain a parameterization of the leading order

shape of the body & = (¢,t), ¥ = §(£,t) in terms of ¢, namely

ok £+1 £—1\7 6-+4¢
= — |1 — 4 — _— 2.71
=t (E) Y em
and of course
=20 (2.72)

2.7.2 The Pressure in the Inner Region

Once the velocity field is known, we can obtain the inner pressure distribution
p(Z,7,t) from Bernoulli’s equation (2.4), which, when written in inner variables,

gives

1 [(8d\" . (88\" ., .
ﬁ[(a?) +(5) -ew

Expanding p(Z,9,t) as an asymptotic series in powers of ¢, in the form

~

b a
F 2 O (A)] E + )+ G+ p =0

. 1. 1, .
pP= gpo ~+ Zpl + p2 + 0(5)7

and substituting for @, we obtain the leading order terms

a2 A2
- _‘1 a¢0 a¢’0 / 2
—po = 2[(%) +<ag) —d(t)] (2.73)
. 08800 +6‘<£o d
Pro= 538z T By 6y

In particular, the leading order inner pressure on the body is given in terms of

(2.74)

quantities evaluated on § = 0 as,
_ d(t)?
2

where we take the positive square root for ¢ < —1 and the negative square root

Po(&,0,1) 1-(e£(e-1)%), (2.75)

for ¢ > 1, and Z is given as a function of { by equation (2.71). The maximum

pressure occurs at the local stagnation point A, corresponding to { = £oo, and

is of magnitude

d’(t)2
2¢2
which is evidently O(1/€*) compared to the O(1/¢) pressure in the outer region.

The leading order inner pressure distribution on the body is shown in Figure

(2.10).
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Figure 2.10: The leading order inner pressure distribution on the body.

2.8 The Jet Problem

The remaining region of the flow to be considered is that of the jet. We expect
the jet to be a long, thin stream of fluid partially attached to the body and
emanating from the inner region. The most appropriate coordinate system in
which to investigate the jet will therefore be one conforming to the shape of the
body and moving with it, as described in Milne-Thomson (1968). We choose
curvilinear coordinates (Z,y) with £ measured along the body and § measured
normal it, as shown in Figure (2.11). Let the normal to the body passing through
the point P, with coordinates (Z,7), meet the body at M, where the curvature
of the body is k(Z). C is the centre of curvature and PM is the perpendicular to
the adjacent radius which passes through P’ at (Z + 6Z,7 + 67). If we measure
T along the body from an origin at O, then OM =z, MM' = 6z, MP = § and

NP’ = 6y. Hence,
PN 1/k+7

6z 1/x

=1+«
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Figure 2.11: Curvilinear jet coordinate system.

and so PN = (1 + «4)6z. The appropriate scale factors h; and h, for this

coordinate system are, therefore,
h1=1+l‘«"g, h2:1

In the new coordinates, the body is given by ¥ = 0 and, since from the scaling
in the inner problem we expect the jet thickness to be O(e), we write the free

surface profile as § = €h(Z,t). In this coordinate system Laplace’s equation (2.3)

becomes

Kg 86 1 0% 04 N
<22 1 792, .
A+ 370z  1tnrgom "y TG =0 (2.76)

where &' denotes dx/dZ. The boundary condition on the body, ¥ = 0, is conti-

nuity of normal velocity between the body and the fluid and, therefore,
9¢ =0 on = (2.77)

in the moving system. On the free surface § = €h(Z,t) we have the usual kine-

matic condition

=0, (2.78)

Oh 1 _990h] 05
‘19t T1+xy0z0z| 07

and pressure matching condition

86 1 1 86\*  (8¢\7] _
i@ @] o
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Motivated by the arc length conservation property in the case of wedge impacts,
we expect the length of the jet to be O(1/¢) and, from the inner problem, to be
of thickness O(e). We therefore introduce scaled jet variables £ and § defined by

oy

T = €I, y==,

and, because the velocity of fluid flowing into the jet from the inner region is

O(1/e€), define a scaled jet velocity potential, qg(:?:,f/,t), by
6= €'¢.

The body is described in original variables by y = f(ez) and so the curvature

k() is
K(:E) _ y// _ €2f”(€1:)
(1+y?)?F  (1+ef(ex)?)?

which is evidently O(e?). Therefore we introduce a new scaled jet curvature k(Z)

so that
. K
K= '6'5
Writing the equation (2.76) and the boundary conditions (2.77), (2.78) and (2.79)

in jet variables we obtain the full jet problem, which has governing equation,

R 06 1 ¥ k06 (+CR)TI_ e
(1+ €g)2 0% 1+ Skjo0E* € 0§ o O .
subject to the boundary conditions,
oo
s = y = 2.81
ag O on Yy O’ ( 8 )
oh 1 860h] 89 )
4 pony _ 99 _ - _ = .
‘ [81& T 1+ @Ry 0z 8:2] 5; = 0 on §=h(&1) (2:82)
- ~\ 2 -\ 2
8¢ 1 1 o 1 (8o L
= T3 ' =\ 7= = = h(z,1). (2.
gt T2 |1+ eRp) (a:z) Ta (@) ] 0 on §=h(z¢). (283)

We now seek solutions for ¢ and h as asymptotic series in powers of ¢, in the

form

gg = d;o + 6951 + 62(52 + 0(63),
il = }.1,0 -+ Cl-ll + 62712 + 0(63).
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Substituting into Laplace’s equation (2.80), we obtain the leading order terms

O(1) 8;;" =0,

Oe) %:; =0,

O(e*) _65;3 + K,y %2;" *f%";ﬁ =0,
oty Th 78006 Fh

572 Vo T %5 T o

Similarly, substituting into equation (2.77), the boundary condition the body

y =0, gives i
o(1) :ai; —o,
0(e) ?‘—:— ~ o,
0(e) :;%:O’
0(e) 6%‘":0.

By integrating the governing equations and applying the boundary condition we

deduce that ¢o, ¢1, ¢, and #3 are independent of §, and that ¢, is given by

T 18%¢o
¢4($,y,t) - —5 8:520y2

‘+‘ /84(57 t))

where the function B4(Z,t) is unknown. The leading order non-zero term in the
expansion of the kinematic boundary condition (2.78) is, therefore,
Ohg , 00 Oho _ 09
ot 0z 0z 0y

and from the pressure condition (2.79) we obtain

=0 on g= izo(:?:,t)

0(1) %Jr%(%i")z:o,
g Ttk L)
o B2 et Bt g (05,
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Substituting the solution for ¢4(%,7,t) into these equations we obtain two partial
differential equations for the leading order velocity potential éo(Z,t) and free

surface profile ho(Z,1),

Ohe 0O [- Odo
8do 1 (0o i .
5 + 3 <3;E) 0. (2.85)

If we introduce the leading order horizontal velocity @o(Z,t), where o(Z,t) =
8bo /0%, and differentiate (2.85) once with respect to Z, then we obtain the

shallow water equations in the absence of gravity,

dhe 0 s .

- T (houo) = 0, (2.86)
Bio . Bio
5 g = (2:87)

which is as we would expect, since they represent statements of conservation of
mass and of momentum in a thin layer of fluid.

The appropriate boundary conditions on the velocity and free surface eleva-
tion are specified at the exit from the inner region = = d(t), where both take

their asymptotic values from the inner solution, and so

Go(d(t),1) = 24/(1),  ho(d(t),) =h(t) = T

The factor of two arises in the velocity condition to account for the motion of
the entire inner region with velocity d'(t) as well as the asymptotic value of the
fluid velocity far down the jet in the inner problem, also d'(t). The position of
the jet tip is identified as the smallest value of Z > d(t) at which ho(2,t) = 0.

The leading order jet problem is summarised in Figure (2.12).

2.8.1 Solution of the Leading Order Jet Problem

Equations (2.86) and (2.87) are two first order quasi-linear hyperbolic equations
and can therefore be solved using the method of characteristics as described, for

example, in Ockendon & Tayler (1985). Equation (2.87) is a kinematic wave
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Figure 2.12: Leading order jet problem.

equation, and since it is independent of ].'Lo(.l’-:,t), it can be solved directly for

Uo(,t). First we parameterize the boundary conditions by a > 0 so that
i=d(a), t=a, d=2d(a), ho=h(a).

The characteristics can be parameterized by 8 > 0, and the characteristic equa-

tions of (2.86) are
0z ot Oig 0

B BT @B

= Uy,
These equations can be readily integrated to give the solution implicitly, viz.
T =2d'(ae)f+d(a), t=oa+p, ue=2d(c).

For any particular function d(-) we can attempt to eliminate & and 8 to obtain
uo(Z,t) explicitly. The result can then be substituted into equation (2.87), which
can be solved for hqo(Z,t) in a similar manner, but we defer doing this until we
consider specific body shapes later in the Chapter.

If we specify boundary data on & = d(t) for all ¢ > 0, then we expect to
obtain a well defined solution for #¢(Z,t) in some region of Z > d(¢). The do-
main of definition of the solution is limited by the curve on which the Jacobian
d(z,t)/9(e, B) vanishes, corresponding to the locus of points where the inversion
of # = #(a,B) and t = t(«a, B) for a(Z,t) and B(Z,t) fails. In the present problem,

this statement yields the condition

d'(a) — 2d"(a)8 = 0. (2.88)
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In particular, if the equivalent plate is expanding, d'(¢) > 0, then shocks cannot
occur in the solution for uo(z,t) if d”(¢) < 0. If there is a curve in £ > d(t) on
which equation (2.88) holds, then the earliest time, ¢*, at which the solution fails
1s of interest. Differentiating (2.88) with respect to  and setting the result equal
to zero gives

() ~ 2"(@)8) 22 24"(0) 22 =

Furthermore, since at any turning point of (2.88) dt/dz = 0, consequently,

dt  9tda 0t08 Oa 88

i 6ad: T80z 9z Tar

Eliminating either a /8% or 83/0% between these equations another relation

between o and  can be obtained, namely
3d"(a) —2d"(a)B = 0. (2.89)

Equations (2.88) and (2.89) can now be solved for a and 3, and hence for z~, the
position of the first shock and t*, the time when it occurs. Physically, the shock
where the solution fails is a zero gravity hydraulic jump.

Finally, since there is a flow with speed d'(t)/e from the inner region with
asymptotic thickness eh(?) into the jet, the volume flux is A(t)d'(¢), and so at

time t the volume of fluid in the jet 1s

/0 “h(s)d(s)ds = -’85 Ot j((‘:)) ds. (2.90)

Evidently the volume of fluid in the jet is O(1), which i1s small compared with
the O(1/¢) volume of fluid displaced by the body. This justifies our earlier
assumption that led to the matching condition (2.45).

2.8.2 The Pressure in the Jet Region

Once the solution in the jet is known we can evaluate the leading order pressure

in the jet p(Z,9,t) from Bernoulli’s equation (2.4). Written in jet variables we

1 98\" 1 (8%
1+argr \oz) T a\5g

have

o 1 2 -
_a—t_ 2 +€p—0’

a1



and so, if we seek a solution for p as an asymptotic series in powers of ¢ in the

form

1. 1_ . ”
=bo+ =P+ P2 + eps + O(€%),
then the leading order pressures are given by

8o 3(6&))2

T e Ta\Be
- 6<51+6¢308d31
U= "0 T ez 0z
_ O¢: O¢o 8¢, 1 (06 i
P2 = B T ez ai+§<¥)’

~ O¢ps = Opo0ps  0¢1 02 . _ (0o
—p3 = + -5t HF = TRY| S| -
ot 0z 0z 0z Oz 0z
Referring to the pressure matching condition (2.79), we deduce that since pg, p1
and p, are functions of Z only they must be identically zero, and so the zero
pressure on the free surface is impressed through the jet to at least O(e). If the
curvature () is everywhere zero then so is the pressure to all orders. Otherwise

the leading order non-zero term is
Bs = &(Z)io(Z,1)? (ho(Z,1) — 7) ,

which is precisely the pressure required to balance the centrifugal effect of flow

around a curved body. In particular, the pressure on the body is

Yao(2,1)"ho(&,t) + O(€?), (2.91)

ar

5 = e

which is evidently O(e¢) compared to a pressure of O(1/¢€) in the outer region
and of O(1/€%) in the inner region. The sign of the pressure depends on the
sign of the curvature. In particular, if the body is convex then k < 0, and so
the leading order pressure on the body will be negative, suggesting that, in the
absence of surface effects, the jet will separate from the body. In a recent paper
Vanden-Broeck & Keller (1989) have shown that even small amounts of surface
tension can be the crucial in determining the position of separation points in
inviscid flow, and so the naive statement that the jet will separate where the
pressure becomes negative should be treated with caution. Once separation has

occurred the jet becomes a thin stream of fluid falling under gravity, and since
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this problem has been addressed by Keller & Geer (1973) and Vanden-Broeck
and Keller (1982) we shall not pursue it further here.

2.9 Construction of the Composite Expansion

Once the leading order inner, outer and jet solutions have been obtained we can
construct a uniformly valid composite expansion. Construction of the compos-
ite expansion can be carried out in a number of different ways, and since such
expansions are not unique they may yield different answers, but they will all
be equivalent to the order of accuracy retained. Van Dyke (1975) discusses a
number of methods but the simplest is additive composition where the sum of
the outer and inner expansions is corrected by subtfacting their common part.
In the natural notation, where fi(M) denotes the M-term inner expansion, and so

on, the rule for additive composition is
fch’N) - fi(M)'+ féN) - [ng)] (-M) = ng) + fi(M) - [fi(M)](N)'

Since the inner potential is unknown we cannot construct the composite potential,
but fortunately we can determine the composite expansion of the pressure on the
body. Adopting the notation of the previous paragraph, the leading order term

of the outer pressure on the body from equation (2.44) is

(()l)z1 d(t)d(?) - for X < d(t).
€(d(t)? — X2)?

The leading order term of the inner pressure on the body is given in equa-

tion (2.75) to be

o = T e ¢ 1)y,

where we take the plus sign for £ < —1 and the minus sign for £ > 1, and £ is

given in terms of £ by equation (2.71). The leading order pressure due to the
jet 1s

P\t = ’()ho(Z,1)i0(2,1)° for Z > d(t).
On the portion of the wetted body surface corresponding to the equivalent plate

in the outer solution |z| < d(t)/e the total pressure is due to the pressure in the

inner and the outer solutions. Their common part is easily calculated by taking
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the one term inner expansion of the one term outer pressure. Written in inner

variables this is

1 d(t)d'(t)
€ (d(t)? — (d(t) + e22)2)*

and so, expanding for small ¢, this gives

?

?

w1 _ 1d(t)Fd()
[Po ] €2 (_23»:,)15

and the composite pressure on |z| < d(t)/¢ is therefore

1)
ptY = pM + pl — [p] . (2.92)

o
1

On the remainder of the wetted body surface, corresponding to the jet in |z| >
d(t)/e, the total pressure in due to the pressure in the inner and the jet solutions.

The composite pressure is therefore

(1)
1) = ) 4 ) [p(l)} , (2.93)

(o4 1
J 1

where the form of [p(-l)] (,1) will be calculated for specific body shapes later in the

J o1

chapter.

2.10 The Total Force on the Body

The total force per unit width exerted on the impacting body can be evaluated by
integrating the composite pressure distribution over the body. The leading order
term in the outer pressure is of order O(1/€) and, since it acts over a length
of O(1/¢€), it produces a force of O(1/€*). The leading term in the expansion
of the inner pressure despite being O(1/€?) acts over a O(e) length producing
a O(1/¢) force and consequently makes no contribution to the force at leading
order. Similarly the pressure due to the jet is O(¢) acting over a O(1/¢) length
and so the resulting force is only O(1), and its contribution to the expression for
the force enters at third order.

If we write the total force, F(t), as an asymptotic series in powers of ¢ in the

form
F(t) = 2 Falt) + Fi(t) + Fy(t) + O(e)

€2
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then the leading order term is due solely to the outer solution. The force on the

equivalent plate in the outer solution is evaluated by integrating Py(X.t) from

X = —d(t) to X = d(1) to give

Fo(t) = / ) Py(X,8)dX = d(t)d(2) / ©___dX

(o) o (@ —xo)E  rAnd). (2.94)

Wagner (1932) neglected the pressure in the jet and the inner region and calcu-

lated this formula directly from the flat plate solution without comment.

2.11 Examples of Impacting Bodies

In this section we calculate the leading order solution in the outer and jet regions
for a number of simple body shapes and construct the resulting composite pres-
sure distributions. In each case the procedure is the same. First, we identify the
small parameter € in terms of the constants defining the body shape by writing
the body in the form y = f(ez), and insisting for definiteness that f(1) = 1. Then
we determine the function d(t), describing the width of the equivalent plate, by
substituting for f(-) into the solution of the integral equation (2.47). The solu-
tion of the jet problem can.be obtained by solving equations (2.86) and (2.87),
and finally the composite pressure distribution on the body can be evaluated
from equations (2.92) and (2.93).

2.11.1 Wedge

The simplest impacting body is a wedge, y = m|z|. We can write the profile in the
form y = f(ez) by choosing f(z) = |z| and defining the small parameter € so that
¢ = m. The theory is therefore applicable to wedges with small deadrise angle
such that m < 1. Substituting f() into the solution of the integral equation

arising from the free surface matching condition (2.47), we obtain

2 rd 2d
)= | (_z-’-—f_g_?)—%_déz?’

which gives Wagner’s (1932) result that

d(t) = —. (2.95)
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Ho(X,1)

Figure 2.13: Leading order outer free surface elevation for a wedge shaped body.

Notice that d(¢) is linearly dependent on ¢, in accordance with the self-similarity
of the wedge impact problem. Since the maximum pressure occurs at the point
z = d(t)/e, it will always be a factor of 7/2 ~ 1.571 further from z = 0 than
the point of intersection between the body and the level of the undisturbed fluid

surface.

We can now evaluate the leading order shape of the outer free surface using

equation (2.38) to be

(2.96)

2X % dr 2X | _ /Tt
H"(X’t)"HT/o (X2 — r2)% m <2X>’
which is shown is Figure (2.13). From (2.63) the asymptotic jet thickness in the

inner region Is

t
Sd(t)? 4

In the leading order jet problem, equation (2.87) has parametric solution
7r -
Ho8) = T (20t ), Haf)=a+h, dofa,8)=r

and so equation (2.86) takes the form
8ho  Ohe

_— —~ =0
8t+7r<95: ’
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Figure 2.14: Leading order jet solution for a wedge shaped body.

which has characteristic equations

0z

ot
5’)—/—71', —67—-1 ——-O

Q
3

Subject to the boundary conditions

é -
5m¢)=%3 £0,8) =6, ho(0,6) =

for 6§ >0,

the parametric solution is

_ T - 6
2(7,0)=52v+6), ) =7+8 h(y,6)=7,
which can be written explicitly as
. = 1 z
ﬁdmﬂzw,hd@ﬂzzk—;k (2.97)

as shown in Figure (2.14). (A simple check on the algebra is to verify by direct
integration that the mass of fluid in the jet is equal to the value of 7t?/16 pre-
dicted by equation (2.90).) The tip of the jet is evidently at & = =t, and so the
arc length of the jet surface is 7t/2¢ + O(1), in agreement with the arc length
conservation property for wedge impacts. The condition for shocks to form in
the solution for ho(Z,t) is that the Jacobian 8(Z,t)/8(v,§) should vanish. This
never occurs, and so both u(Z,t) and f.zo(:E,t) are well defined for ¢ > 0.

Since the surface of the body is flat there are no curvature terms in the
Bernoulli equation (2.79), and so the zero pressure on the free surface of the

jet is impressed through to all orders, and the pressure on the wedge in the jet
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Figure 2.15: Leading order composite pressure distributions on a wedge.

region is identically zero.! The composite pressure distribution on the wedge can

therefore be evaluated using equations (2.92) and (2.93), after taking

pg_l) _ [p(_l)]( ) _ 0.

J 1

Figure (2.15) shows a sequence of pressure distributions at different times, and
Figure (2.16) shows a typical set of pressure histories measured at equally spaced
points on the wedge face. Since the maximum pressure is d'(t)?/2¢* = % /8¢?,
which is a constant, all the peaks are of equal height, and as ¢t — 07 the pressure
at z = 0 has a discontinuity of this magnitude. Also, in accordance with the
self-similarity of the problem, the pressure history graphs are the same curve
subjected to a translation in the t-direction proportional to distance away from

the wedge vertex. The leading order force on the body is given by wd(¢t)d'(t)/€? =
73t /4€>.

1The zero pressure in the jet region explains why the inevitable errors in the numerical calcu-
lations of Greenhow (1987) led to a small negative pressure on the upper part of the wedge face,
which suggested, in violation of the self-similarity property, that the jet would separate.

58



Figure 2.16: Leading order composite pressure histories for a wedge.

2.11.2 Parabola

We now consider the impact of a parabolic body,

profile in the form y = f(ex) by choosing f(z)

We can write the

z? and defining the small

parameter € so that € = mz. The theory is therefore applicable to parabolic

bodies whose deadrise angle is everywhere small such that m? & 1. Substituting

f(+) into the solution of the integral equation (2.47) we obtain

t(d)zzAd(_ﬁ_

d2 _52)%

s

and so inverting gives

d(t) = (2t)2.

d¢ =

d2
'é_’

(2.98)

The maximum pressure occurs at the point z = d(t)/e, and so it will always be

a factor of \/§ ~ 1.414 further from z = 0 than the point of intersection between

the body and the level of the undisturbed fluid surface.

We can now evaluate the leading order shape of the outer free surface us-
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Figure 2.17: Leading order free surface elevation for a parabolic body.

ing (2.38) to be

oX ¢ d 1
Ho(X,t) = —t + / 5 T - X(XPo2)F X2 (2.99)
0

us 2 - 27)

L8] Lo

which is shown is Figure (2.17). From (2.63) the asymptotic jet thickness in the
inner region is
m d(t) mt
h(t) = = = :
(1) =3 d'(t)?  2v/2

In the leading order jet problem, equation (2.87) has parametric solution

#(c,0) = V2 (Bat +ab), Haf)=a+B, ddaf) =25,

which can be written explicitly as io(Z,t) = £/t. Equation (2.86) now takes the

form o7 o
o .Oho =

ha =
t5y T8z Th=0

which has characteristic equations

or _ Ot Ohoe
— =z, - =t — = —ho.
O Lo 0y
Subject to the boundary conditions
L - H
7(0,8) = V267, (0,6) =6, ho(0,8) = 275 for §>0,
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Figure 2.18: Leading order jet solution for a parabolic body.
the parametric solution is
oo \/_ L Y Y 7 ﬂ-é% -
z(v,8) = v267e”, t(v,8) = b€, h0(775):2\/2-e 3
which can be written explicitly as
e r - . t
Uo(l‘,t) = ;’, ho(w,t) = 271':—5', (2100)
z

as shown in Figure (2.18). (Again we can verify by direct integration that the
mass of fluid in the jet is equal to the value of 7t /8 predicted by equation (2.90).)
The tip of the jet is evidently at £ = +o00 in contrast to the case of a wedge
impact where it is at £ = 7m¢. The condition for shocks to form in the solution for
uo(Z,1), from equation (2.88), is never satisfied. The condition for shocks to form
in Eo(:?:,t) is that the Jacobian 0(Z,t)/0(x,6) vanishes, which is only satisfied at
§ = 0 (corresponding to the instant of impact). Hence both do(Z,t) and ho(Z,t)
are well defined for t > 0.

The curvature of the body, £(z), is equal to —2 everywhere, and so we can

evaluate the leading order term of the pressure in the jet from equation (2.91)

to be
.t?.
ps = —4m—

z3’
and a typical pressure distribution on the body in the jet region is shown in
Figure (2.19). The composite pressure distribution on the body can now be

evaluated using equations (2.92) and (2.93), by taking

2 2
1) _ g1t an® _ v L
pg - 467‘—:237 [pJ ]i = ‘_4€7Td(t)3 = \/_2'€7T't2,
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Figure 2.19: Typical leading order pressure distribution in the jet region for a
parabolic body.

and since the pressure in the jet region is negative we expect the jet to separate
from the body at the point where the composite pressure p{**) vanishes. Figure
(2.20) shows a sequence of pressure distributions at different times, and Figure
(2.21) shows a typical set of pressure histories measured at equally spaced points
on the body. The maximum pressure on the body is d'(¢)?/2¢? = 1/4te*, and
so as t — 0% the pressure at £ = 0 has a 1/¢ singularity. Since d(t) = (2t)%
the magnitude of the pressure peaks decrease like 1/z* with distance z, and the

leading order force on the body is constant, given by wd(t)d'(t)/e* = =/€ .

2.11.3 Flat-Bottomed Wedge

With the main aim of comparing our results with the experimental data of
Driscoll & Lloyd (1982), we consider the impact of a flat-bottomed wedge with

semi-base width @ whose profile is described by

_{0 if |z < a
y_

m(z —a) if |z| > a.
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Figure 2.20: Leading order composite pressure distributions for a parabolic body.

A

D

Figure 2.21: Leading order composite pressure histories for a parabolic body.
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We can write the profile in the form y = f(ez) by choosing f(z) to be

0 if |z] < a
r—a if |z] > a,

Fla) = {

and defining the small parameter ¢ = m. The theory is therefore applicable to
wedges with small deadrise angle such that m < 1. Substituting f(-) into the
solution of the integral equation (2.47) we obtain

t(d) = g/ad(df—:g%%—df=% asin™! (%) + (d2 _a2>';‘ _ ?}

which gives an algebraic relation between t and d(t),

asin™* (%) + (d2 — a2>5 — —721 (t+a)=0, (2.101)

which can be solved for d(¢) with a simple iterative numerical scheme. Differen-
tiating (2.101) with respect to ¢t we obtain an expression for d'(),

d(t)
(d(t)? - a?)?

d'(t) =

?

I

which can be readily evaluated once d(t) is known. Notice that d(0) = a, and
that as t — oo, d'(t) — 7/2 just as for normal wedge impacts. Figure (2.22)
shows the computed solution for d(t) for a particular choice of a. Since d(%) is
only known numerically, we could evaluate the leading order surface shape by
performing a numerical integration of equation (2.38). Similarly, the jet solution
could be obtained by numerically integrating the pair of first order hyperbolic
equations (2.86) and (2.87) governing the leading order solution, as described,
for example, in Morton (1986a). Since the curvature of the wedge face is zero,
the pressure in the jet is identically zero, just as for wedge impacts.

The composite pressure distribution on the wedge can now be evaluated using

equations (2.92) and (2.93), by taking

and Figure (2.23) shows a sequence of pressure distributions at different times.
Figure (2.24) shows a typical set of pressure histories measured at equally spaced

points on the body. At the instant ¢ = 0 the pressure is infinite over [z| < d(t)/,
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Figure 2.22: Computed values of d(t) for flat-bottomed wedges for various values
of the keel width.



Figure 2.23: Leading order composite pressure distributions for a wedge with a

flat keel.

Ar

Figure 2.24: Leading order composite pressure histories for a wedge with a flat

keel.
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and the maximum pressure is

d'(t)?*  w*  d(t)?
2¢2 8e2(d(t)? — a?)’

which decreases from an infinite value at ¢ = 0 and tends to the wedge Limit
of 7?/8¢* as t — oco. The nature of the singularity in the pressure at z = 0 as
t — 0T can be determined by writing d(¢) = a + 6 for 6 < 1. Expanding the

expression for d(t) for small § we obtain

7t

2(2a)%

(M Lo

) as t— 07,

~v

and expanding the expression for d'(t) gives
1
T /a)\?
2(t)~ 2 (%> as & — 0%,
Substituting these asymptotic forms into the formula for the maximum pressure

we deduce that
d'(t)? a
2¢?

and so the pressure at £ = 0 has a 1/t singularity as ¢t — 0%.

as t— 0T,

2.12 More Corriplicated Impact Models

The model described in this chapter can be extended to include a number of the
effects that were neglected on physical grounds in Section 2.1. In fact, we shall
show that the inclusion of most of these phenomena only alters the solution at

second order or lower, thus providing a theoretical justification for our procedure.

2.12.1 The Effect of Gravity

Including the effect of gravity has the result of introducing a non-zero body force
term, ! = gy, into Bernoulli’s equation (2.4), so that in dimensional variables

the pressure matching condition in the full impact problem (2.14) becomes

¢  1|(9s\", (8¢)’
3t " 2 [(8::) i (8—y)

After non-dimensionalizing, the coeflicient of the additional term is the reciprocal

+gh=0 on y=h(z,t).

of the Froude number squared, 1/F? = gl/V?, which we denote by §. We observe
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that our previous neglect of gravity for large Froude number corresponded to
setting g = 0.
If g1s O(1), then the pressure condition in the outer problem (2.20) is modified

(&) - (&)

and so the leading order problem is unchanged and the second order problem is

by gravity to give

0d

€
5t+§ +egH =0,

the same except for equation (2.33), which becomes
0%, 8°®  1((8%.\"  [0%)’
hla NN+ ¢ Sl Y il I i
g By 2 [(ax i ay)
The leading order pressure is unaltered but the second order term becomes
1|(0%:\° (98%,)\°
_p == =8 vxo
1= 3 [(ax) - (ay)
The inner problem is modified by the addition of the term g [eiz(:f:, t) — f(d(t)) + t],

to the pressure matching condition (2.50), and consequently gravity only enters

0%, .
+ Ty + gY.

the problem at third order. -

In order to investigate the role of gravity in the jet region we recall that the
gravitational potential ) is defined so that the body force is given by F = —V{Q,
and so in the curvilinear coordinate system (Z,%) we have

1 _(?9_ _ e f'(ex(Z)) oN _ g
1+ ky Oz

(1+e2f(ex(2))2)8’ 07 (1+ef(ex(3))?)

?

(S

where z and y are the coordinates in the original cartesian system. Since dzZ/dz =

(1+ ezf'(e:c(f))z)% we can integrate these relations to obtain

[N} o)

Q= —g ex(T y } .
? [f )t o))

Furthermore z(Z) = Z + O(€?), and so when we introduce the scaled jet variables

and expand {2 in powers of € we obtain the leading order terms

Q=4 [f(z)+eg+0(F)].
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Substituting this expression into the Bernoulli condition (2.79), we alter its third

order term to give

06, 06008 1[04\ .. .
AT a;z-+'2'(35? ~9rE) =0

and 1ts fourth order term yields

0¢s . Bdo0ds O 0 8o
0 0000 99100 L g (220} g5,
at 0z 0z 0z 0z 0z

Since the third order term is only a function of Z it is identically zero, and so
the first non-zero term in the expansion of the pressure remains the fourth term.
Hence, the leading order solution is unaffected and the leading order pressure
becomes

~ | =r=y~- - 2 - 7 - -~

p3 = [K«(iﬂ)uo(-’ﬁat) - g] (ho(:t,t) - y) 3
as we might expect. For wedge impacts this means that instead of being zero to
all orders there is now a negative O(e) pressure due to gravity on the body,

T P 2
P= 4 [t W]-I—O(e )

indicating that the jet may ];10W separate from the wedge. This conclusion agrees
qualitatively with the evidence of the photographs as Greenhow (1987), one of
which is reproduced in Figure (1.6), which clearly show the jet ‘falling off’ the
wedge face. For parabolic impacts the situation is similar and the effect of gravity

is to make the magnitude of the negative leading order jet pressure larger,

p=-

ortie | z2
75

2;2— + Q} + 0(62)
and hence encourage earlier separation.

2.12.2 The Effect of a Variable Impact Speed

If we let the dimensional impact speed V() vary with time t on an O(1) time

scale then, in dimensionless variables, the position of the body is given by
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where v(t) is the dimensionless speed. Hence, in the full impact problem the

velocity matching condition (2.12) becomes

,, 0o 0O
ef (ex)% — a—j = v(1).

The outer problem is modified through the kinematic condition, and equation (2.18)

becomes

0® 09
f(X)5z = 5 =v(t) on Y =e(f(X)-t),

and so in the leading order outer problem equation (2.24) is replaced by

0%,
—a—? - —’U(t) on Y = 0, IX’ < d(t)

The solution of the leading order problem is now

Bo(X,Y,t) = —v(t) [Y + R(d(t)? - 2°)?], (2.102)

so the leading order free surface elevation is given by

t

(7)
(7))}

Ho(X,t) = —/

0

?

t v
v(r)dr + X/(; X

and the leading order mass conservation matching condition to determine d(t),

equation (2.46), now takes the form

: v(7) _
) [ = & = )

This integral equation can again be solved by writing ¢ as a function of d and
introducing a new integration variable ¢ by 7 = t(¢) so that dr = t'(c)do. The

equation becomes

- bJ

d2 _0.2)’5 d

which is an Abel integral equation which has the solution

/d v(t(o)) L _ fld)
o (

(i)t (o) = 2 [ ( O g,

;T-dO' 0'2 —52)%

provided that the integral exists. Integrating this expression with respect to o

/Ot o(r)dr = %/Od (d_f_(—%—)— de, (2.103)

we obtain
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which is a generalisation of our previous solution (2.47), and again given any body
shape f(-) we can evaluate the corresponding d(t). The leading order pressure on
the plate is still given by equation (2.42) and, substituting in the solution (2.102),
it takes the form

v(t)d(t)d'(t)

Po(X,O,t) = (d(t)2 ~ X2)%

+2/(t)(d(t)? — X?)3. (2.104)

A simple example is a wedge f(X) = |X| impacting with speed given by
v(t) = t" for n > 0. Substituting into (2.103) we obtain t"*1/(n + 1) = 2d/r,

and hence
7l’tn+1

2(n—i—1)’

in accordance with the self-similarity property for power law impact velocities.

d(t) =

Both the inner and the jet problem were formulated in coordinate systems
moving with the body, and so we must take account of the acceleration of the
frame of reference due to the change in velocity. If j denotes the unit vector in
the vertical direction then the statement of conservation of momentum (2.2) now

takes the form

d
E? = —Vp+F — v'(t)], (2.105)

where the additional term is the force due to the acceleration of the body, relative
to which the local coordinate system is fixed. uis measured relative to the moving

frame. Integrating this equation once, we obtain the Bernoulli equation for the

problem,
0 1
gt = 2
In the inner problem the pressure condition (2.30) is modified by the addition of

Vo> +p—'(t)y = 0. (2.106)

a term v'(t) [eh(z,t) — f(d(t)) + t], which affects the third order and higher terms
of the equation. The velocity matching condition on the body (2.50) becomes
F(d(t) + €'¢) [d’(t) + g%} 100
and so the leading order problem is unaltered and the impact speed first enters
the second order problem. The matching procedure is as before, except that the

asymptotic thickness of the jet is now

 ro(t)2d(2) -
bt = $ a7 (2.107)
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In order to solve the problem in the jet region we recall that the cartesian co-

ordinate y can be expressed in terms of the curvilinear coordinate system (Z, 7)

by

= flex{Z)) — g
v ) e e

and that z(Z) = Z + O(e?). When we introduce scaled jet variables and expand

in powers of ¢, the third order term of the Bernoulli equation gives

8¢, , 89002 1 (06
2\ 0z

2
5 T 8z 0z ””) —v(B)f(#) =0,

and the fourth order term gives

08  OdoOds 96108, __1[8\ . ..
5t T 9z 0z | bz a:z”i(“" Tty =0.

oz

The third order term is independent of § and is therefore identically zero, and
so the first non-zero term in the pressure is the fourth term. The leading order

solution is unaltered and the leading order pressure becomes
ps = [R(2)in(2, )" +'(8)] (o(2,1) - 7).

As we would expect, when t.he body is accelerated so that v'(¢) > 0 the pressure
on the body is increased and therefore separation is discouraged. Decelerating
the body so that v'(¢) < 0 has the opposite effect.

In the simple case of a wedge impacting with a power law speed v(t) = " the

pressure due to the jet is

—

. ent™! z 0
=7 [t_ﬂ +0(),

over the region of the jet 7t/2 < & < 7t.
Figures (2.25) and (2.26) show the composite pressure distribution on a wedge
shaped body impacting with a speed linear in t, so that v(¢) = ¢, and a typical

set of composite pressure histories respectively.

2.12.3 The Effect of Surface Tension

The effect of surface tension in the fluid surface can also be included in the model.

If the pressures are pi(z,y,t) and p,(z,y,t) either side of an interface, then
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Figure 2.25: Leading order composite pressure distributions on a wedge shaped
body with v(t) = t.

a simple force balance argument, as presented for example in Milne-Thomson
(1968), gives the relation
P1— P2 = KY

at each point of the interface, where « is the surface tension and « is the local
curvature, whose sign is chosen so that the contribution of the term x+ is directed
towards the local centre of curvature. Using this pressure matching condition at
the free surface and non-dimensionalizing, the coefficient of the new term becomes
v/ plV?, the reciprocal of the Weber number, which we denote by 4. The pressure

matching condition in the full problem (2.14) therefore becomes
3
-3

86 1[[(86\° [8¢\° ar\*| *
5;+5{(5;)+(5§) ”(‘a‘;” =

Assuming that ¥ is O(1), the additional term is O(€®) in the outer problem, and

.0%h
"o

so its effect is only felt at third order, while in the inner problem it is O(¢) and
so it only affects the fourth order problem. In the jet region away form the tip

the new term enters the pressure condition at O(¢’) and so appears first in the
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Figure 2.26: Leading order composite pressure histories on a wedge shaped body
with v(t) = ¢.

seventh order problem. Thus, our earlier neglect of surface tension which was
made because the Weber number was large is in fact valid to leading order for any

Weber number that satisfies ¥ = O(1/¢). We remark again, however, that even

minute amounts of surface tension can have a dominant effect on the solution in

the region of the jet tip and where the jet separates from the body.

2.12.4 Non-Planar Initial Free Surface

The model can be extended to include impacts onto fluids with a non-planar
initial free surface, provided that the initial deformation is not too great. If we
denote the initial free surface shape by Ho(X,0) = n(X), then the outer problem

is unaltered apart from the expression for the leading order free surface (2.38),
which becomes
t X

(X2 —d(r)?)

Ho(X,t) = —t +7(X) + [ dr,

=
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Figure 2.27: Geometry of an initially submerged body at t = 0.

for X > d(t). Applying the matching condition (2.45) and inverting the resulting

integral equation, gives the new expression for ¢(d), namely
9 rd _

Hd) = _/ (&) = (6

mJo (42— ¢2)}

provided that the integral exists. Evidently altering the initial free surface shape

has the consequence of altering the effective body shape. The leading order inner
and jet problems are only altered through the change in d(t).

For example, if the impacting body and the initial free surface are both wedge
shaped, so that f(X) = «|X| and n(X) = —3|X| then we obtain

i

d(t) = 2(a +8)
2.12.5 Bodies Initially in Contact with the Fluid

The theory can also be applied to the situation where the impacting body is
initially submerged in the half-space of quiescent fluid to a depth Yy/e = f(do),
so that the initial plate width is dy/¢, as shown in Figure (2.27).

The outer problem is unaltered apart from the matching condition (2.45),

which becomes

Ho(d(t), 1) = f(d(t)) -t — s,
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Figure 2.28: Impact of a non-symmetric body with small deadrise angle.

and so t(d) is given by

2| s (3]

Again, since no initial conditions are imposed on the leading order inner and jet
problems, they are only altered through the change in d(t).

For example, when the impacting body is a parabola, Y = X?, we obtain

(d* — 2d2) cos™ (‘%’) +do (d” - df,)% — 7t =0,

and d(t) — (2¢)% as t — oo as we expect.

2.12.6 Non-Symmetric Bodies

Thus far only symmetric bodies have been considered, but the theory easily ex-
tends to non-symmetric impacting bodies. In this case, transferring the boundary
conditions in the outer problem gives rise to two unknown points at the edges of
the equivalent plate. Using the subscripts 1,2 to indicate quantities in z < 0 and
z > 0 respectively, we denote these points by —d;(t)/e and d»(t)/€, as shown in
Figure (2.28). We can make the outer problem symmetric by defining the new
space variable X™ = X — (dy(t) — d,(#))/2, and considering a plate whose semi-
width, d”(t), is given by d*(t) = (dy(t) + d(t))/2. The solution to the leading
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order outer problem is, therefore,
L

&o(X,Y,1) = — [Y =R (d(t)? - 27 J ,

where Z* = X~ +1Y. The matching condition (2.45), applied at the edges of the

plate, now takes the form

Hy(=1)'di(t),8) = F((=1)'di()) —t for i=1.2,

(——1)id"(t)/ r = f(-1)d(t)) for i=1.2,

The leading order term in the expansion of the total force is Fy(t) = 7d*(¢)d*'(%).
The leading order inner and jet problems are only altered through the change in
the appropriate function d;(¢) for ¢ = 1, 2.

For example, if the body is a non-symmetric wedge described by f(z) = —az
for £ < 0 and f(z) ——-.ﬂ:c for £ > 0, then di(¢) = 7m/2c and dy(t) = 7/28,

and a typical spatial pressure distribution is shown in Figure (2.29) in the case

B = 2a.

2.12.7 Fluid Compressibility

The inclusion of fluid compressibility presents substantial additional difficulties,
as outlined in Section 1.4.1(c), and no attempt has been made to do this in
the present work. We remark, however, that for ship slamming problems the
time scale over which compressible effects are significant is much shorter than
the typical duration of a slam. To demonstrate this, consider a parabolic body,
y = x?/2l, with radius of curvature [, impacting with speed V. The speed of
the edge of the equivalent plate is d'(t)/e = (V1/t)%, which is of the same order
as the sound speed in the water, c,, when t is O({V/cl). Taking the typical
dimensions of a ship from Section 2.1, this means that the time scale during
which compressibility is important is of order 10™* seconds, which is only one

thousandth of the typical duration of a slam.



*p <7rt w2 )

28¢’ 832¢2

7t w2 :
20c¢’ 8ale? !

| j

Figure 2.29: Typical spatial pressure distribution on a non-symmetric wedge
given by f(z) = —az for ¢ < 0 and f(z) = Bz for z > 0.
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2.12.8 Elastic Properties of the Body

No real ship hull is perfectly rigid and so a more detailed description of ship
slamming would involve a consideration of the effect of the elastic properties of
an impacting body on the solution. A number of numerical studies have been
performed, but theoretical approaches so far are restricted to considering the
effect of a prescribed fluid loading on an elastic shell, as described by Korobkin
(1983).

2.13 Comparison of Theory and Experiment

It was originally intended that the present theoretical work would be accompa-
nied by a series of drop tests using scaled ship hull models, to be performed by the
Admiralty at their Rosslaire site. Unfortunately, the Admiralty have not yet per-
formed these experiments and so we will compare our theory with experimental
data available in the open literature.

Figure (2.30) shows a series of pressure histories recorded during the impact
of a 2m wide model with a 5m radius of curvature onto water reproduced from
Hagiwara & Yuhara (1974a;b). The theoretical predictions of the value and the
position of the maximum pressure for the same body are given for comparison in
Figure (2.31). Evidently the latter is in excellent agreement while the former is
substantially over predicted in the early stages of the impact. This over prediction
may be due to the effects of air cushioning or possibly the difficulties of resolving
the sharp, fast-moving pressure maximum in a small scale experiment.

Figure (2.32) shows a typical set of pressure histories for an approximately
parabolic two-dimensional hull section, reproduced from Nethercote et al. (1984)
and Figure (2.33) shows the corresponding theoretical values for a parabolic body
of similar dimensions. The large variations of the pressure on the keel are due to
air entrapment, and are not represented by our theory which predicts an infinite
pressure there at the instant of impact, but away from the keel the agreement is
good.

The experiments of Driscoll & Lloyd (1982) permit comparison with our the-
ory for flat-bottomed wedges. Two typical pressure histories are shown in Figure

(2.34). On the flat keel they show a primary pressure peak followed by a shallow
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Figure 2.30: Experimental pressure histories for a 2m wide parabolic model with
a radius of curvature of 5m. Reproduced from Hagiwara & Yuhara (1974a,b).
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Figure 2.31: Comparison between experimental data and theory. (a) Maximum
pressure in 10kN/m? and (b) Time to maximum pressure in seconds versus dis-
tance from the centerline in m.
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Figure 2.32: Typical pressure histories for an approximately parabolic model.
Reproduced from Nethercote et al. (1984).

secondary peak, while on the deadrise there is a single, sharp pressure maximum.
The secondary peak on the keel is apparently due to air entrapment, and was
more marked for models with larger keels. Figure (2.35) compares the experi-
mentally observed magnitude and position of the maximum pressure pulse with
the corresponding theoretical values. The predicted size of the maximum pres-
sure is in rough agreement with the experimental data, and the position of the

pressure maximum, calculated from equation (2.101), is well represented.

2.14 Comparison with other Theories

The present theory subsumes and extends the intuitive ideas of Wagner (1932).
The outer solution formally reproduces the flat plate approximation for bodie's
with small deadrise angle, and justifies the inclusion of Wagner’s ‘splash-up’
factor to determine the width of the plate. The inner solution 1s formally derived
and its correct scale obtained by matching. The jet solution and composite

pressure distribution are new. The entire theory, including the expression for the
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Figure 2.33: Theoretically predicted pressure histories for a parabolic body im-
pacting at 201ps.
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Figure 2.34: Typical pressure histories for a flat-bottomed wedge measured (a)
on the flat keel (b) on the deadrise. Reproduced from Driscoll & Lloyd (1982).

total force, is generalized to arbitrary bodies with small deadrise angle, and an
explicit solution of the integral equation to determine the plate width has been
pointed out.

Our leading order pressure calculations can be used to correct the approxima-
tions made by Borg (1959), made using geometrical arguments for small deadrise
wedges. His value of the pressure on the keel of 1/€ should be 7/2¢ ~ 1.571/e,
and his value for the maximum pressure of 1.125/€? should be 72 /8¢ =~ 1.233 /€.

An interesting comparison can be made with the asymptotic theory of Pukhna-
chov & Korobkin (1981) and Korobkin & Pukhnachov (1985), which applies to
the initial stages of the impact of blunt bodies with arbitrary deadrise angle, and
which uses time as the small parameter. Their analysis of the impact of a two-

dimensional parabolic body, y = mz?, at constant speed predicts a maximum

non-dimensional pressure of
Hmaa:

mt

where II,... ~ 0.47, compared to the leading order term in the present small

for tK1,

deadrise approximation of
2(1)
2¢?

1

mt

for m<«l.

o | =
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Figure 2.35: Comparison between experimental data and theory. (a) Maximum
pressure in kN/m® and (b) position of maximum pressure in m versus time after

first impact in seconds.
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Unfortunately, the other properties of their solution are not so easy to compare

and the exact relation between the two theories remains unclear.
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Chapter 3

Three-Dimensional Fluid Impact
Problems

In this chapter we generalize the procedure described in Chapter 2 to three-
dimensional bodies with small deadrise angle. Less analytic progress is possible
but we can obtain solutions to the leading order outer problem in some simple
geometries. A variational formulation of the problem is derived, valid in two or
three dimensions, leading to a fixed domain computational scheme, which can be

implemented using finite elements. Finally, the method is extended to fluid-solid

and fluid-fluid impact problems.

3.1 Problem Formulation

We consider the three-dimensional impact of a rigid body onto a half-space of qui-
escent, inviscid and incompressible fluid. We take cartesian coordinates (z,y, z)
with the y-axis vertically upwards and the z and z-axes in the plane of the
undisturbed fluid surface. Fluid initially fills y < 0 and y > 0 is assumed to
be a vacuum. The effects of surface tension and gravity are again ignored. The
impacting body has shape y = f(z,z), where £(0,0) = 0 and f(z,z) > O for
|z|,|z| > 0 and moves vertically downwards with constant speed V. The instant

t = 0 corresponds to the first moment of impact, and so the position of the body
at time t is given by

y = f(z,z) = Vt.
The fluid velocity u(z,y,z,t) and pressure p(z,v, z,t) satisfy Euler’s equations

(2.1) and (2.2). The flow is irrotational and so we introduce a velocity potential
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¢(z,y,2,t), where u = V¢. The governing equation is again Laplace’s equa-
tion (2.3) and the pressure is determined from Bernoulli's equation (2.4). Onmn
the wetted body surface y = f(z,z) — Vt the condition representing continuity
of normal velocity now takes the form

009 0108 99 _

Oz 8z ' 0z 8z By v (3.1)

On the free surface y = h(z,z,t) we have the kinematic condition

h Ohds 0RO 0p
5t " Bz oz 8z 8z By 0 (3:2)

and from Bernoulli’s equation the requirement of zero pressure gives the relation

86  1|(08\* [39\® [8¢)\°
5 + 5 l:(-é;) + (5;) + 3, = 0. (3.3)
The initial conditions and far-field condition are the same as in two dimensions,

Viz.

¢(z,y,2,0) =0, h(z,z,0)=0, (3.4)

together with

Vé(z,y,2,t) = 0 as (2® +y* +2%)F — oo, (3.5)

3.2 Bodies with Small Deadrise Angle

Once again in order to make progress we restrict our attention to bodies whose
deadrise angle is everywhere small. First, we non-dimensionalize as we did in

Section 2.3 and define the dimensionless z-coordinate, z*, by

2z
Z=-l',

and immediately drop the starred notation for dimensionless variables. The

position of the impacting body is now given by

y = f(ezx,ez) — t,
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and non-dimensionalizing the equations we obtain the full three-dimensional im-

pact problem,

2 2 2
3¢+5¢+3¢>

5z2 | By | 022 = 0 in the flmd, (3.6)
df 8¢ Of8s] ¢ ]
6[8(3 6$+ 8z 62: - 83/ = 1 on y=f(ea:,ez)—t, (3()

6h+6h8¢+6h8¢ P
8t Oz Bz ' 8z 0z Oy

8¢ 1 [[86\> [86\> [04)\°
w5 () (3]

The problem is subject to the initial conditions

= 0 on y=h(z,z1), (3.8)

Il
o

on y = h(z,z,1). (3.9)

gb(:c,y,z,O) =0, h(:c,z,O) =0, (310)
and far-field condition

IVo(z,y,2,t)| = 0 as (z?+y*+ zz)% — 00. (3.11)

3.3 Outer Problem

Following closely the analysis used for the two-dimensional problem in Section
2.4, we investigate the problem in the outer region by introducing scaled outer

variables, with the addition of

Z = €z,

and obtain the full outer problem,
0*P n 5P N 0°®
0X2 9Y* 02?
[(?f 0% JOf 5@] ad
€

= 0 in the fluid, (3.12)

=1 on Y=¢f(X,2Z)-1),

XX " 5z8z| oy
(3.13)

OH OHOP OHIP 0% = 0 on Y =eH(X,Z1), (3.14)

6t+8X8X+8ZBZ_6Y

2 2 2

0 o0

0% |02, _)+<_)
5t 2 |l6x oY EYA

together with the initial conditions

l
o

on Y =¢eH(X,Z,1), (3.15)

&(X,Y,Z,0)=0, H(X,Z,0) =0, (3.16)
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and far-field condition
IV®(X,Y,Z,4)| = 0 as (X2+Y?+ 2% — . (3.17)

We now perform Taylor series expansions of the boundary conditions about ¥ = 0
in order to express them in terms of quantities evaluated on the position of
the undisturbed free surface. As before, this procedure presents no difficulties
provided that the free surface remains single valued, but if it turns over as we
expect then we must once again choose to neglect the thin, fast-moving jet (now
more properly termed a spray sheet) that forms close to the body. Performing
this linearization in two dimensions gives rise to a single unknown point X =
d(t) where the change of boundary conditions occurred; in three dimensions the
geometry is more complicated and it will produce an unknown plane curve in
Y = 0, denoted by t = w(X, Z), representing the boundary of the equivalent flat
plate.

If we now seek regular perturbation solutions for ® and H as asymptotic

series in powers of ¢, then the leading order outer problem is

82¢0 62@0 82@0

5% + G + 377 = 0 in the fluid, (3.18)
%%l = -1 on Y=0, t>w(X,2), (3.19)
%%,9 = 5;120 on Y=0, t<w(lX,2), (3.20)
%2;2 = 0 on Y =0, t<wlX,7Z), (3.21)

with the initial conditions
®(X,Y,2,0) =0, Ho(X,Z,0)=0, (3.22)

and far-field condition

V&o(X,Y,Z,1) =0 as (X2+Y?+2Z%)F — co. (3.23)

If we integrate (3.21) and use the initial condition for @, (3.22a), then we obtain
=0 on Y =0, t<w(X,2Z). (3.24)
The leading order outer problem is summarised in Figure (3.1). Once ¥, has
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Figure 3.1: Leading order outer problem.

been determined the leading order free surface elevation can be calculated from
equation (3.20),

t 9P
Ho(X,Z,t) = ; %?O(X,O,Z,T)d'r for t<w(X,2Z). (3.25)

3.4 Matching Condition to Determine w(X, 7)

By extending the argument presented in Appendix B to three dimensions it is
easy to show that, on the assumption that the volume of fluid in the spray sheet is
small compared to a typical volume based on the outer length scale, the matching
condition to determine the boundary of the equivalent flat plate, t = w(X, Z),

remains

Ho(X,Z,t)=f(X,Z)—t on t=w(X,2Z). (3.26)
Using equation (3.25), this gives the matching condition

9% X 0,2,7)dr = f(X,Z) —t on t=uw(X,Z). (3.27)

o 0Y
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3.5 Variational Formulation of the Problem

Except in the special case of rotationally symmetric bodies, obtaining a general
solution of the leading order outer problem in three dimensions is too difficult.
A great mathematical simplification can be made, in both two and three dimen-
sions, by formulating the problem as a variational inequality. The solution of
this variational formulation can be associated with the minimiser of a variational
integral, providing information about the existence, uniqueness and smoothness
of the solution. This approach also leads to an efficient numerical procedure for
calculating solutions for arbitrary bodies in either two or three dimensions. De-
tails of the theory of variational inequalities and examples of their application to
free and moving boundary problems are contained in Elliott & Ockendon (1982).

In order to write a free boundary problem with a second order field equa-
tion as a variational inequality, we require continuity of the first derivative of
the dependent variable. In the present problem 0®,/0Y is discontinuous across
the curve t = w(X,Z) and so, as it stands, the problem cannot be so written.
The techniques employed to transform such problems into ones having solutions
with continuous first derivatives are usually termed Baiocchi Transformations,
and have been the source of interest in the literature, even before the pioneering
work by C. Baiocchi from whom they take their name. Fortunately, the smooth-
ing transformation that was suggested by Korobkin (1982) for the Lagrangian
formulation of the impact of a blunt body can be applied successfully to the
present problem. Instead of working with the velocity potential ®¢(X,Y, Z,1),
we introduce a displacement potential, ¥o(X,Y, Z,t), defined by

t
Uo(X,Y, Z,8) = = | @o(X,Y,Z,7)dr, (3.28)
0
and since ®, satisfies Laplace’s equation (3.18) then so does ¥y,
V3¥,=0 in Y <0. (3.29)

On the boundary ¥ = 0 when ¢ < w(X, Z) the conditions (3.20) and (3.24) mean

that
%‘f,"(x,o,z,t) = —Ho(X,Z,1), (3.30)
¥o(X,0,2,t) = 0. (3.31)
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When ¢t > w(X, Z) equation (3.19) also holds, and so

81110 t@@()

—(X,0,Z,t) = — [ — ,

3Y( ) 3y (X,Z,7)dr
_ “’8H0 t
= —/(; 5 (X,Z,T)dr—}-/w dr
= —Ho(X,Z,w)+(t —w)

The great advantage of this transformation is that, since the matching condi-
tion (3.26) holds, the first derivative of the new dependent variable, 0¥,/0Y, is

continuous across t = w(X, Z). ¥, satisfies the linear complementarity problem,

Vi¥,=0 in Y <0,

0¥,
\PO(W“t'*'f(X’Z))—O on Y—O,

with
0¥,

ay

We can now write the problem as a variational inequality. First we introduce the

Te >0, ( —t+f(X,Z)>20 on Y =0.

real Sobolev space H!, with. inner product (-,-) and associated norm || - ||. Then

we define the symmetric continuous bilinear form a: H' x H' — R by
a(u,v) = // Vu-VodX dY dZ,
Y<0
and the continuous linear mapping £: H' — R by
f(u) = / /Y o(X,Z,t)udX dz,
=0

where g(X, Z,t) =t — f(X,Z) and the boundary values are defined in the usual
way by the trace operator T, : H' — L*(Y =0). V denotes the set of all v € H!
such that v > 0 in Y < 0. Now for any v € V consider

o(To,v — o) = // V- V(v — Tp)dX dY dZ.
Y <o
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