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ABSTRACT 

The purpose of this report  i s  to provide an alternate statement of the 
Pontryagin maximum principle as  applied to systems which a re  most 
conveniently and natura.lly described by matrix,  ra ther  than vector, 
differential o r  difference equations. 
facilitates the manipulation of the resultant equations. 
applied to the solution of a simple optimization problem. 

The use of gradient mat r ices  
The theory is 
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I. INTRODUCTION 

The purpose of this report  is  to provide (with no proofs) a 
statement of the necessary conditions for  optimality for a c lass  

of problems that appear to be important a s  evidenced by recent 

research  efforts. 

the fact that the plant equations a r e  most conveniently described 

by matr ix  differential equations. F o r  such problems, it i s  im- 

portant to have a compact statement of the minimum principle 

s o  as  to aid both intuition and mathematical manipulations; this 

provided the motivation €or this study. 

This c lass  of problems is distinguished by 

In the remainder of this report  the following topics a r e  treated: 

1. the relation of the matr ix  minimum principle 
to the ordinary minimum principle; 

2. a statement of the necessary conditions for  
optimality a s  provided by the matr ix  mini- 
m-Jm principle; 

3 .  the solution of a very simple problem which 
involves the determination of the l inear time - 
varying gains which optimlze the response of 
a linear system with quadratic performance 
index. 

The most  common fo rm of the minimum principle pertains to the 

optimal control of systems described by vector differential equations 
- c  Cl., c',.., 
VI L A I C  IVI111 

(where - x( t )  is  a column n-vector, - u(t)  is  a column r-vector ,  and - f ( . )  

i s  a vector-valued function). 

by Pontryagin e t  a l .  

with modern control theory. The description of plants by Eq. 1 is a 

very  common one; however, there a r e  problems in which the 

evolution-in-time of their variables is  most  naturally described by 

means of matr ix  differential equations. 

conQider a system -phose state variables a r e  x 

These a re  the type of systems considered 
1 ::: 

and treated in most  of the available books dealing 

To make this more prec ise ,  

with i = 1 , 2 , .  . . ,a i j '  

4- -8 .  

Superscripts re fer  to numbered items in the References. 
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and j = 1,  2, . . . , m ,  and whose control variables a r e  u a 

a = 1, 2,. . . , r and p = 1 , 2 ,  . . . , q .  

think of the "state matrix' '  - X(t)  whose elements a r e  the state 

variables x..(t) and of the "control matrix' '  - U(t)  whose elements 

, with 

In such problems, one may 

1.1 
a r e  the con<rol variables u ( t ) ;  these a r e  assumed to be related aP 
by the matrix differential equation 

- %t) = - -  F[X(t),U(t), t l  (2) 

where - F[.] is a matrix-valued function of its arguments.  

As an example of a system with this type of description consider 

a l inear system 

where v(t) is a white noise process with zero mean and covariance - 
E (v( - -  t) V' ( T) }= 6 ( t- T)Q - ( t) (4) 

If we denote by - Z ( t )  the covariance of the state vector - x(t) ,  i. e . ,  

then it can be shown that - Z(t )  satisfies the linear mat r ix  differential 

equation 

which i s  in the form of Eq. 2.  Indeed, there have been some 

applications of the matr ix  minimum principle to problems of 

filtering, control, and signal design ( see  References 2 through 1 1 .  

In these types of problems one is interested in minimizing a 

scalar-valued function of the covariance matr ix  - C(t)  and the 

"control variables" a r e  some of the elements of the matr ix  

- A ( t )  and/or  - Q(t). 

- \  

If the system equations are naturally given by Eq. 2,  it i s  

easy  to visualize an  optimization problem. For example, consider 

a fixed-terminal time optimization problem with a cos t  functional 
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where K[ e ]  and L[ - 3  a re  scalar-valued functions of their  argument. 

One may seek the optimal control-matrix g* ( t ) ,  which may be con- 

strained by 

which minimizes the cost functional - JC). 
It should be clear  that the tools a r e  available to  tackle this opti- 

mization problem. 

fir st order  equations 

After all, one can decompose Eq. 2 into a se t  of 

and proceed with the application of the familiar minimum principle. 

What happens, however, is that one may get los t  i n  a lot  of equations 

and it may become almost impossible to determine any structure and 

propert ies  of the solution. 

forest  f r o m  the t rees"  which has  provided the motivation for dealing 

with problems involving the time -evolution of mat r ices  by constructing 

a systematic notational approach. 

It i s  this  possibility that "one may lose the 

The first step towards this goal is to realize that the se t  of all ,  

say,  n x m  real  matr ices  forms a l inear vector space with well- 

defined operations of addition and multiplication. Denote this vector 

space by S . Then, it i s  possible to  define an inner product nm 
this space. 

- BE snm, their  inner product is defined by the trace operation 

Thus, if _A and ,B are n x m  matr ices ,  i .  e . ,  ,AE 

n m  - -  
&_B) = t r [AB ' ]  -_  = 1 a. .b ij i j  

It is tr ivial  to ver i fy  that Eq. 10 indeed defines an inner product. 

Using this notation one can form the Hamiltonian function for the opti- 

mization problem. 

var iable  associated with x. .(t) then the Hamiltonian must take the 

f o r m  

First of all, note that i f  p..(t) i s  the costate 
1J 

1J 

n n  

H = L[_X(t), g(t), t1 -t 1 A .  .(t)p. .(t) (1  1) 
lJ 1J 

i=l  j=1 
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Using Eq. 10, i t  follows that the Hamiltonian can be written a s  

where - P(t)  i s  the costate matr ix  associated with the state matr ix  

X(t), in the sense that the costate variable p..(t) is  the ijth element 
1J 

- 
of l?(t). 

Using the notation of Athans and Falb,  it i s  known that the costate 

variables satisfy the differential equations 

This type of equation leads to  the definition of the so-called gradient 

m a t r i ~ . ~  Indeed i t  may be argued that the use of gradient matr ices  for  

purely manipulatory purposes i s  the key concept that makes the use 

of the matr ix  minimum principle suitable and straightforward. 

A gradient matr ix  i s  defined a s  follows: Suppose that f(X) - i s  a 

scalar-valued function of the elements x . .  of 5 .  Then the gradient 

mat r ix  of 
1.l 

i s  denoted by 

and it i s  a matr ix  whose ijth element is simply given by 

r 1 

A brief table of some gradient matrices i s  given in Appendix A.  

Using the notion of the gradient matrix,  it i s  readily seen that 

Eq. 13 can be written as 

since the Hamiltonian H is  a scalar-valued function. 

Once this notation has been established, one can state all the known 

necessary  conditions f o r  optimality for vector -type problems to the 

equivalent statements for the matrix-type problems. In the following 
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section, the necessary  conditions for optimality a r e  stated for the 

fixed-time optimization problem with terminal  cost. 



11. THE MATRIX MINIMUM PRINCIPLE (CONTINUOUS TIME) 

Consider a system with "state matrix" - X(t), "control matrix' '  

- U(t) E S2 described by the matr ix  differential equation 

Consider the cost functional 

T 

0 
t 

where K[ .] and L[ .] a re  scalar-valued functions of their argument 

satisfying the usual differentiability conditions. 

Le t  ,P(t) denote the costate matrix. Define the scalar  Hamiltonian 

function H by 

If - U*(t) i s  the optimal control, in the sense that it minimizes J ,  

and i f  - X*(t) i s  the corresponding state, then there exists a costate 

ma t r ix  ,P'(t) 
.I. 

such that the following conditions hold 

(i) Canonical Equations: 

- ax" a (t) t r [ g g ( t ) ,  - u*(t) ,  t)P*'(t)]  - - 

(ii) Boundary Conditions : 

At the initial t ime 
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At the terminal t ime (transversali ty conditions) 

(iii) Minimization of the Hamiltonian: 

for every _V E and for each t E[ to ,  T] . (24) 
Note that if  - U ( t )  i s  unconstrained, then Eq. 24  i m -  

plies the necessary condition 

i .  e . ,  the gradient matrix of the Hamiltonian with respect 

to the control matr ix  _V must vanish. 



111. THE MATRIX MINIMUM PRINCIPLE (DISCRETE TIME) 

There a r e  problems for  which the evolution of the pertinent variables 

is most naturally described by a se t  of matr ix  difference equations. 

F o r  such problems, it i s  possible to extend the resul ts  of the "vector" 

discrete minimum principle 

discrete mat r ix  minimum principle, 

to obtain the equivalent form of the 

Consider the discrete optimization problem defined by a sys tem of 

mat r ix  difference equations 

Consider the scalar  
4 3 '  

with - UkR I ,  zk E Snm for all k ,  and - Uk E S 

cost functional 

N -1 
P 

It is assumed that F (.), _K(.), and L ( - )  satisfy the conditions r e -  

quired by the discrete minimum principle. 
-k k 

Define the Hamiltonian function 

where Zk is the costate matr ix .  

is  the optimal state,  then the discrete mat r ix  minimum principle 

states that there exists a costate matrix E:, k=O, 1, . . . , N, such that 

the following relations hold 

Tf U?; k=O, 1: .  . . ,N-1 is the optimal control and Xz, k=O, 1 , .  . . , N, -k - A  

(i) Canonical Equations: 

p* p* = aH 

* -kt1 -k 

- 8 -  
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(ii) Boundary Conditions : 

At the initial "time" (k=O) 

x* = x 
-0 -0 

At the terminal "time" (k=N) 

(iii) Minimization of the Hamiltonian: 

For every ,V E R and each k=O, 1 , .  . . , N-1 

If the - Uk a r e  unconstrained then Eq. 3 3  yields the neces-  

s a r y  condition 



IV. JUSTIFICATION OF THE MATRIX MINIMUM PRINCIPLE 

X l m  

x2 1 

x2 2 

.. . 
X 2m 

... 

. . .  
X nm - - 

The extension of the vector minimum principle to the matr ix  case 

F r o m  a theoretical point of view i t  hinges on the i s  straightforward. 

existence of a mapping which relates the set  of n x m  real  matr ices  

to the se t  of (nm)-dimensional vectors. 

As before, l e t  Snm denote the set of all real  nXm matr ices .  Let 

R denote the (nm) -dimensional Euclidean vector space. Define 
(nm) 

into R 
nm (nm) a mapping z+b f rom S 

(nm) 
z+b : Snm+ R 

so that i f  - X E  Snm i s  the matr ix  

x =  - 

of 
(nm) 

then the image X E  R 

dimensional column vector 

lm  X12 ... x 11 
X 

x2 1 x22 .. . x 2m 

. . . . . . . . . . . . . 
X X ... x n l  n2 nm 

x =  - 

X under - 

(3 5) 

the mapping z+b i s  the (nm)- 

(3 7) 

- 10- 
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It i s  easy to verify that: 

1) $(a) is a l inear  mapping 

2 )  $(.) i s  one-to-one and onto, hence $-l exists 

3)  $ ( - )  preserves  the inner product because i f  ,X, , Y E  S and 
nm 

5 , y E  R so that 5 = $(X),y = $(z), then the inner product 

is: 
(nm) 

while the inner product in R 

n m  

e , y >  = 

i = 1  j=1  
( 3  9 )  

and R a r e  algebraically and topo- Thus, the two spaces Snm 

logically equivalent. 
(nm) 

In the continuous time case,  one s t a r t s  f rom the matr ix  differential 

e quation 

Through the mapping -~ $ this equation becomes 

- 2 = J ( 5 , g ; t )  (42) 

Similarly the integrand of the cost functional L[,X, ,V, t] 

into L[ x, ,V, t] . 
t he re  i s  a costate vector EE R 

i s  changed 

Then, by the ordinary vector minimum principle, 

Let 
(nm) 

associated with 5 E R 
(nm) 
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E = 

Then the Hamiltonian 

- - 
p11 

p12 

P lm 

P21 

p2 2 

P2m 

... 

... 

. . .  

. .. 
Pnm - - 

function in the vector 

(43) 

case i s  

H = L(x ,U , t )  - t < k , ~ >  - (44) 

-1 PE 'nm Since $ (.) exists one can find a unique costate matr ix  

so that the Hamiltonian H can be written as  

iii the riiatri;i 2862. Thus , the  fact that ,!I preserves  the inner product 

(involved in the definition of the Hamiltonian) coupled with the specific 

definition of the gradient matr ices  yields the matr ix  minimum principle 

in the continuous -time case.  

Caution: If - X i s  constrained to be symmetr ic ,  then the mapping 

$(* )  i s  not invertible. 

ma t r i ces  and the formulae of Appendix A a r e  notvalid so  that the state- 

ments  in Sections 2 and 3 must be modified in order  to obtain the cor -  

r e c t  answers .  

In this case, the definitions of the gradient 



V. APPLICATION TO A LINEAR CONTROL PROBLEM 

In this section the mat r ix  minimum principle is used to determine 

the solution to the simple optimal l inear regulator problem. 

a l inear  time-varying system with state vector x(t) 
- u (t) related by the vector differential equation 

Consider 

and control vector 

- k (t) = - A ( t ) s ( t )  t - -  B(t) u (t) (4 7) 

where - A(t) is  an nxn  matr ix  and ,B(t) an n x r  matr ix .  Consider 

the quadratic cost functional 

where - Q(t) and _R(t) a re  symmetric positive definite mat r ices .  The 

standard optimization problem is to find the control u (t), t < t < T,  

so  as to minimize the cost functional J. 
0- - - 

Instead of dealing with this standard problem, consider the fol- 

lowing variation. Suppose that one imposes the constraint that the 

control - u (t) be generated by using a l inear  time-varying feedback law 

of the form 

---I---.. P I + \  is 22 r)in tirAe-y.rar)eng ~ l g ~ i f i l ~  m-a-trix !the elements of Wl1GJ.G _ u \ L I  

- G(t) specify the time-varying feedback gains which multiply the ap- 

propriate state variables).  In this case,  the system satisfies the 

close d -loop equation 

- = [_AM -B(t)_G(t)l g t )  

and the cost functional J reduces to 

- 1 3 -  
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To complete the transformation of the problem into the framework 

required by the matr ix  minimum principle, define the n x m  "state 

matr ix ' '  z(t) as  the outer vector product of the state vector x(t) 
with itself, i .  e.  , 

Noting that 

E O ,  t F(t)x(t)  - = tr[_F(t)_X(t)] = tr[S(t)_F(t)] (54) 

it follows f rom Eqs .  52 and 50 that 

T 

T - f tr[ Q!t)tG'It)_R(t)_G(t))g(t)] - dt (58) 
" J  

The system (56) and the cost functional (58) a re  in the form r e -  

quired to use the matr ix  minimum principle. So le t  ,P(t) be the 

n x n  costate mat r ix  associated with z(t). 
H for  this problem is* 

The Hamiltonian function 

H = tr[ - Qg t tr[ S 'RGX]  --- t tr[ --c AXPI] - tr[ c--- BGXP'] t tr[ -c X A ' P ' ]  - - tr[ -- XG'B'P'] - - 
(5 9) 

.l. e,. 

The time dependence i s  suppressed for simplicity 
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The canonical equations yield (using the gradient matr ix  formulae of Ap- 

pendix A) 

The boundary conditions a re  

- X(to) = %(to)  x '( to) ; = 0 

Since _G i s  unconstrained, i t  i s  necessary that 

Note that both - X(t) and - P( t )  a r e  symmetric.  To see this,  note that 

the solution of Eq. 60 is: 

where - +(t, to) i s  the transition matrix of [ _A(t)-B(t)G(t)] - -  . The sym- 

m e t r y  of X ( t )  follows from Eq. 64 and the symmetry of X ( t  ) .  A 

similar argument can be used to establish the symmetry of _P(t). 
symmetry properties and Eq. 63 yield 

0 - - 
These 

* 
If this equation i s  to hold for all z ( t ) ,  then one deduces 

_G(t) = _R-l(t)s'(t)_p(t) (66) 

To completely specify the gain matr ix  _G(t) one must  determine 

the costate mat r ix  - P(t). By substituting Eq. 66  into Eq.  61 one finds 

that the costate matr ix  - P( t )  is the solution of the familiar Riccati 

ma t r ix  differential equation 

4. -4. 

This  i s  the same argument that one uses  in the vector case to obtain 
the feedback solution; see Ref. 8, p.  761. 



- P(T) = 0 (6 8) 

It should be clear  that the necessary conditions provided by the 

mat r ix  minimum principle yield the same answer that one would obtain 

in  the vector formulation. It is ,  of course,  well known that the answer 

is indeed the unique optimal one. 

The fact that the costate matrix - P(t) is the solution of the Ric-  

cati equation sheds some light in i ts  physical interpretation. 

view, as required by the Hamilton-Jacobi-Bellman theory, the costate 

matrix as the gradient matr ix  of the cost with respect to the state,  i . e .  , 

If we 

it is evident that the Riccati equation defines the evolution of the partial 

derivatives aJ/ax. .(t) for tc[ to, T] . 
1J 

reached as readily in the vector formulation of the problem. 

This conclusion cannot be 



VI. CONCLUSIONS 

It has been shown that systems described by mat r ix  differential 

and difference equations can be optimized by the matr ix  version of the 

minimum principle of Pontryagin. 

mat r ix  of a scalar-valued function of a mat r ix  facilitates the manipu- 

lation of the necessary conditions for  optimality as i l lustrated by the 

problem of optimizing the gains of a l inear  system. 

The definition of the gradient 

-17- 



APPENDIX A 

A PARTIAL LIST OF GRADLENT MATRICES 

The formulae appearing below have been calculated in the un- 

published report  by Athans and Schweppe.' Some of them have also 

been calculated by Kleinman using a different approach (Appendix F of 

Reference 5). The interested reader should consult these reports for 

details. The results are stated in this appendix for the sake of refer-  

ence; the calculations involved are  straightforward but lengthy. 

In the formulae below ,X i s  an n x m  matrix. The reader is 

cautioned that the formulae are not valid if  the elements xij of - X are  

not independent.. 

-tr[X] a =L 
ax - 

-tr[AX] a =,A'  ax -- 
-tr[ a A X ' ]  =,A 
ax -- 
a 

ax --- 

- 

- 

-tr[ AX B] = _A'_B' 
- 
a 

ax - - -  - tr[ AX'B] = -- BA 
- 

-tr[AX] a =,A 
a g  -- 
a 

ax! - - tr[ AX!] = - A' -- 

-tr[AXB] a =El3 
a_xl --- 
- a tr[AX'B] =,A'EJ' 
ax! - -- 

a 
ax -- - tr[ XX] 2 x 1  - 
- 
a 

ax -- - ~ ~ [ x x I ]  = 2~ - 
- 

(A. 16) a X X' - tr[ e-] = e-  ax - 

-tr[ a x-l] =-(X -1 X -1 ) '=-(X -2 ) '  (A. 17) - - -  ax - - 
a 

ax -- - -tr[ AX-lB] =-(X-'BAX-')I - --- (A, 18) - 

(A. 20) -log a det [ X] =(X-')' ax - - -  

adet[ AXB] =(det[ AXB])(_X-')' (A.21) ax --- - 

--et[ a Xn] =n(det[ X])n(X-l)' (A. 23) 
a_x - - - 

- 18- 



REFERENCES 

1. Pontryagin, L .  S.  e t  al., The Mathematical Theory of Optimal 
P rocesses ,  New York, Wiley, 1962. 

2 .  Athans, M. ,  and Tse ,  E . ,  "A Direct Derivation of the Optimal 
WEE Trans .  on Linear  F i l te r  Using the Maximum Principle ,  

Automatic Control, Vol. AC-12, No. 6,  December 1967, (to 
appear) .  

3. Athans, M. ,  and Schweppe, F. C . ,  "On Optimal Waveform De- 
sign via Control Theoretic Concepts, ' '  Information and Control, 
Vol. 10 ,  April 1967, pp. 335-377. 

4. Schweppe, F. C . ,  "Optimization of Signals, M. I. T .  Lincoln 
Laboratory Report 1965-4 (unpublished) Lexington, Mass . ,  1965. 

5 .  Kleinman, D. L . ,  "Suboptimal Design of Linear  Regulator 
Systems Subject to Computer Storage Limitations,  ' I  Ph.  D. 
Thesis ,  Dept. of Electrical  Engineering, M.I.  T . ,  February 
1967;also M. I. T .  Electronic Systems Laboratory Report  
ESL-R-297, Cambridge, Mass . ,  February ,  1967. 

6.  Schweppe, F. C . ,  "On the Distance Between Gaussian P rocesses ,  
submitted to Information and Control. 

7 .  Tse ,  E . ,  "Application of Pontraygin's Minimum Principle to 
Fi l ter ing Problems,  S .  M. Thesis,  Dept. of Electrical  Engine- 
e r ing ,  M . I . T . ,  Cambridge, M a s s . ,  June 1967. 

8.  Athans, M . ,  and Falb,  P. L . ,  Optimal Control, New York, 
McGraw Hill Book Go., 1966. 

9. Athans, M . ,  and Schweppe, F. C. ,  "Gradient Matrices and 
h.43tr ix  Calciilations, M.I.T. Lincoln Lab.  Technical Note 1965-53, 
Lexington, M a s s . ,  November, 1965, (unpublished). 

10. Kleinman, D. L . ,  and Athans, M . ,  "The Discrete Minimum 
Principle with Application to  the Linear  Regulator Problem, 
M. I. T.  Electronic Systems Laboratory Report  ESL-R-260, 
Cambridge, Mass . , 1 966. 

11. Holtzman, J .  M . ,  and Halkin, H . ,  "Directional Convexity and 
Maximum Principle for Discrete Systems,  
Vol. 4, No. 2,  May 1966, pp. 263-275. 

J .  SIAM on Control, 

12. Holtzman, J .  M . ,  "Convexity and the Maximum Principle for 
Discrete  Systems,  I '  IEEE Trans.  on Automatic Control, Vol, 
AC-11; January 1966, pp. 30-35. 

-19- 


