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ABSTRACT Even if measuring the outcome of binary classifications is a pivotal task in machine learning

and statistics, no consensus has been reached yet about which statistical rate to employ to this end. In the

last century, the computer science and statistics communities have introduced several scores summing up

the correctness of the predictions with respect to the ground truth values. Among these scores, the Matthews

correlation coefficient (MCC) was shown to have several advantages over confusion entropy, accuracy, F1

score, balanced accuracy, bookmaker informedness, markedness, and diagnostic odds ratio: MCC, in fact,

produces a high score only if the majority of the predicted negative data instances and the majority of the

positive data instances are correct, and therefore it results being very trustworthy on imbalanced datasets.

In this study, we compare MCC with two other popular scores: Cohen’s Kappa, a metric that originated in

social sciences, and the Brier score, a strictly proper scoring function which emerged in weather forecasting

studies. After explaining the mathematical properties and the relationships between MCC and each of these

two rates, we report some use cases where these scores generate different values, which lead to discordant

outcomes, where MCC provides a more truthful and informative result. We highlight the reasons why it is

more advisable to use MCC rather that Cohen’s Kappa and the Brier score to evaluate binary classifications.

INDEX TERMS Matthews correlation coefficient; Cohen’s Kappa; binary classification; confusion matrix;

supervised machine learning; Brier score; confusion matrix; applied machine learning
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I. INTRODUCTION1

Two-class binary classification is a popular task in machine2

learning and computational statistics. When the goal of the3

study is to classify or predict elements in groups, usually the4

practitioner assigns labels 0 and 1 to them in the original5

ground truth dataset. The data instances with label 0 are6

usually called negatives, while the data instances labeled 17

are usually called positives.8

A trained classifier then makes a prediction by associating9

a real or binary value to each element of the ground truth10

dataset. If the values are real, they are often made binary11

by assigning the value 0 to the predictions that are below12

a specific cut-off threshold τ (usually equal to 0.5) and by13

assigning the value 1 to the predictions that are greater than14

or equal to that threshold (prediction ≥ τ ). This way, both15

the ground truth elements and the predictions can be split into16

positives and negatives. At this point, a two-class confusion17

matrix can be created:18

• The actual positives that are correctly predicted posi-19

tives are called true positives (TP);20

• The actual positives that are wrongly predicted nega-21

tives are called false negatives (FN);22

• The actual negatives that are correctly predicted nega-23

tives are called true negatives (TN);24

• The actual negatives that are wrongly predicted posi-25

tives are called false positives (FP).26

Each of these four categories contains a quantitative number27

that can be important for the study carried on; considering28

all the four tallies together, however, can be complicated and29

uneasy. For this reason, scientific researchers have invented30

several metrics able to recap the quantitative information of31

a confusion matrix or of the original predictions themselves.32

The Matthews correlation coefficient [1], in particular, is33

a rate that resulted being more informative than confusion34

entropy (CEN) [2], accuracy and F1 score [3], balanced35

accuracy, bookmaker informedness, and markedness [4],36

and diagnostic odds ratio [5] in the past (Supplementary37

Information). In this study, we decided to continue this series38

of comparisons by confronting MCC with another two-class39

confusion matrix rate (Cohen’s Kappa), and with a strictly40

proper score function representing the original predictions of41

a classifier (Brier score).42

43

Matthews correlation coefficient (MCC). The Matthews44

correlation coefficient has been introduced by Brian W.45

Matthews to evaluate the predicted structure of an enzyme,46

in a biochemical study in 1975 [1]. Since then, it has been47

used in several studies, but has never become as popular48

as accuracy and F1 score in the mathematics and computer49

science communities [3]. The situation changed after 2000,50

when MCC was reproposed as a standard metric for binary51

classification by Baldi and colleagues [6] and its spread52

started to grow.53

Since then, for example, MCC has been used as a standard54

metric in several scientific competitions, such as the Kaggle55

competition to detect power line fault detection [7] and the56

DataDriven challenge to identify clogged blood vessels in the 57

brain of mice with Alzheimer’s dementia [8]. Additionally, 58

MCC has been included in DREAMTools [9], a Python 59

package to assess results of collaborative DREAM chal- 60

lenges [10], and can be found on several software packages of 61

free open source programming languages such as Python, 62

R, and TensorFlow. 63

The Matthews correlation coefficient gained popularity 64

when the US Food and Drug Administration (FDA) agency 65

employed it as the main evaluation metric in the MicroArray / 66

Sequencing Quality Control (MAQC/SEQC) comprehensive 67

analyses in 2010 and 2014 [11], [12]. 68

Recently, Boughorbel and colleagues [13] described an 69

enhanced classifier based on the Matthews correlation coef- 70

ficient, while Zhu [14] investigated the behavior of MCC on 71

several imbalanced cases. 72

With the growing spread of the Matthews correlation co- 73

efficient [15], [16], specialized blogs about machine learning 74

and technology started to discuss this rate, too. For example, 75

articles on MCC appeared on the blog of Towards Data 76

Science [17] and on the blog of the graphic designer David 77

Lettier [18]. 78

For 2 × 2 confusion matrices MCC is identical to the 79

phi (φ) coefficient [19]–[21]. Other generalizations of the phi 80

coefficient were proposed in Janson and Vegelius [22] and 81

Gorodkin [23]. As phi coefficient, the Matthews correlation 82

coefficient is employed often in psychometrics [24]. 83

84

Cohen’s Kappa. The Kappa coefficient is a metric for 85

summarizing the agreement between two nominal classifi- 86

cations, based on the same categories. It is extensively used 87

in social, behavioral and medical sciences, as a measure of 88

agreement between two raters [25]–[28]. It was first intro- 89

duced by Jacob Cohen in 1960 as an alternative metric to 90

accuracy that considers agreement due to chance [29]. The 91

Kappa coefficient can be interpreted as a measure of agree- 92

ment beyond chance compared to the maximum possible 93

beyond chance agreement [30], [31]. 94

Originally, Kappa was designed for classifications with 95

more than two classes [29], [32]–[35]. Nevertheless, it 96

is commonly applied to two-class classification problems 97

too [36], [37]. Similar to MCC, Cohen’s Kappa considers 98

all the four categories of the binary classification confusion 99

matrix: true positives, true negatives, false positives, and false 100

negatives. Furthermore, both metrics are balanced measures 101

that summarize the classification problem in one value [38] 102

and have value equal to +1 in the case of perfect prediction 103

(except for indeterminate cases) and 0 if the prediction is 104

random. 105

It can be shown that Cohen’s Kappa is equivalent to the 106

Hubert-Arabie adjusted Rand index [39], that has been em- 107

ployed in cluster analysis for quantifying agreement between 108

two partitions [40]. Furthermore, the relationship between 109

Cohen’s Kappa and operating characteristic curves (ROC) 110

has been explored by Ben-David [41]. 111
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Several authors have presented population models for Co-112

hen’s Kappa [42], [43]. Under several of these models, Kappa113

can be interpreted as an association coefficient. However,114

Kappa is also commonly used as a sample statistic or per-115

formance measure, for example, when calculating Kappa for116

a sample of subjects is one step in a series of research steps,117

or when Kappa is used for analyzing a binary classification.118

In these cases, researchers can usually be interested in the119

agreement in the sample, not in the agreement of a popula-120

tion. In the case of 2 × 2 confusion tables, the test statistic121

for Cohen’s Kappa is the same as Pearson’s chi-squared (χ2)122

test [44]. Tables for sample size determination for a variety123

of common study designs involving Cohen’s Kappa can be124

found in a study of Cantor [45], and standard errors for125

Cohen’s Kappa can be found in works of Garner [46] and126

Shan and Wang [47].127

As a sample statistic, Cohen’s Kappa is known to be128

marginal or prevalence dependent since it takes the class129

sizes into account [48]–[52]. In social sciences, it is well130

known that the value of Kappa depends on the prevalence131

of the class being diagnosed. In the 2 × 2 case values of132

Kappa can be quite low if one class is quite common or very133

rare [53], [54]. Various authors have shown that if two pairs134

of binary classifications have the same accuracy, the pair135

whose class distributions are more similar to each other may136

have a lower Kappa value than the pair with more divergent137

class distributions [53], [55]. Since binary classifications with138

similar class distributions usually have a higher amount of139

agreement expected to occur by chance, a fixed accuracy140

will lead to a lower Kappa value due to the definition of141

the statistic [56]. The dependence of Cohen’s Kappa on the142

class distributions has been studied extensively by means of143

examples of 2 × 2 confusion tables in the literature [50],144

[51], [53], [54]. Warrens [57] presented exact formulations145

of many of these properties and observations. In general,146

the use of Kappa is accepted: its pitfalls can be overcome147

by considering the class distributions. Nevertheless, multiple148

researchers have proposed alternative metrics for 2 × 2 con-149

fusion tables [54], [55], [58].150

The popularity of Cohen’s Kappa has led to the develop-151

ment of various extensions, including weighted Kappa coef-152

ficients for classifications with three or more ordered classes153

[59]–[63], Kappa coefficients for three or more observers or154

classifications [64], and a Kappa coefficient that can handle155

missing data [65]. Inequalities between different weighted156

Kappa variants for ordered classes have been discussed in157

studies of Warrens [28], [34]. Furthermore, various authors158

have found applications of Cohen’s Kappa that are different159

than the original context considered by Cohen. For example,160

Chang [66] used Cohen’s Kappa to capture discrimination in161

the same way as the receiver operating characteristic curve.162

Holle and Rein [67] employed Cohen’s Kappa to assess163

agreement for segmentation and annotation. Vieira and coau-164

thors [68] used Cohen’s Kappa as a performance measure for165

feature selection.166

Other studies describe the drawbacks of Cohen’s Kappa in167

remote sensing [69], [70]. Stein et al. [69] saw the Cohen’s 168

Kappa single-value as a flaw, incapable to express the overall 169

assessment of the classification. Instead, they proposed the 170

Bradley-Terry model, that gives information on the separate 171

categories and not just a single number. The Bradley-Terry 172

model could be useful for the multi-class predictions, but not 173

for binary classifications. 174

Pontius and Millones [70] criticized the Kappa statistic 175

because it can generate values that do not make sense in re- 176

mote sensing, and stated that Kappa coefficient’s statistically 177

expected agreement can be irrelevant for the same domain. 178

Instead, Pontius and Millones [70] proposed two alternative 179

metrics (quantity disagreement and allocation disagreement) 180

as an alternative to Cohen’s Kappa that can be used comple- 181

mentary to accuracy in remote sensing applications [71]. 182

183

Brier score. Unlike Cohen’s Kappa and the Matthews 184

correlation coefficient, the Brier score is a strictly proper 185

scoring rule and hence favours probability forecasts that are 186

well calibrated. Similarly to the area under the curve (AUC) 187

of the receiver operating characteristic (ROC) curve and of 188

the precision-recall (PR) curve, the Brier score does not 189

consider a specific cut-off threshold to split the predicted 190

values into positives and negatives. The predicted values 191

used for the Brier score are usually forecast probabilities, 192

differently from AUC. For example, AUC is unchanged if the 193

probabilities are transformed monotonically. We usually refer 194

to AUC as measuring only discrimination whereas strictly 195

proper scoring rules like the Brier score are influenced by 196

both the discriminating ability of the forecasts and their cali- 197

bration, where calibration here means the relative frequency 198

of observed outcomes [72]. For example, a perfect calibration 199

happens when a claim predicts an event to appear with a 200

70% likelihood, and that event actually occurs 70% of those 201

times [72]. Calibration is important if the forecasts are going 202

to be taken at face value by users. 203

With regard to classification, the Brier score can be in- 204

terpreted as the loss expected for a uniform distribution of 205

cost-loss ratios when the classification is made by applying 206

the Bayes decision rule to the forecasts. Accuracy relates to 207

the loss expected when classification is made using a fixed 208

threshold, and ROC AUC relates to the loss expected for 209

another method of choosing the threshold [73]. Thus the 210

Brier score is a useful measure of the performance of the 211

classifier that we would create if we were to trust the forecast 212

probabilities (that is, if we were to assume that the forecasts 213

are calibrated and so consider the Bayes rule optimal). If 214

the forecasts are not calibrated, however, then it may be 215

possible to achieve better classifier performance by using 216

other decision rules. 217

The Brier score was originally introduced by Glenn W. Brier 218

in 1950 for weather forecasting related to the probability 219

of rain [74]. Several decades later, a few researchers in- 220

vestigated the mathematical details of this cost function: 221

Blattenberger and Lad [75] presented a graphical description 222

of the separation into distinct calibration and refinement com- 223
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ponents of the Brier score, while Murphy and colleagues [76]224

described a decomposition of the Brier score based on225

conditional distributions and mean errors.226

Almost twenty years later, the Brier score came back to227

the attention of the statistics and weather community with228

several articles published in the same period. Ikeda et al. [77]229

studied the relationships between the Brier score and binor-230

mal receiver operating characteristics (ROC) area under the231

curve (AUC), while in his preprint Jewson [78] described232

some clear issues regarding the Brier score in weather fore-233

casting.234

Gerds and Schumacher [79] described their findings when235

employing the Brier score for survival analysis. Another me-236

teorological application regards the study of Casati and col-237

leagues [80], who employed the Brier score to forecast light-238

nings.239

Roulston [81], Stephenson and colleagues [82], and240

Ferro et al. [83] investigated some mathematical properties241

of the Brier score. Bradley and colleagues [84] explored the242

sampling uncertainties of the Brier score and its variant Brier243

skill score [85].244

Rufibach published a short report [86] where he described245

the advantages of the Brier score for binary predictions246

over Spiegelhalter’s z-statistic [87], while Jachan and col-247

leagues [88] described a biomedical case study where they248

used the Brier score to assess predictions of epileptic249

seizures.250

Johansson and coauthors [89] investigated how to use the251

Brier score for existing rule extraction, and applied their252

methods on 26 datasets of the University of California Irvine253

Machine Learning Repository [90].254

The theme of the Brier score decomposition was treated255

again in the correspondence article of Young [91], in an256

correspondence article by Ferro and Fricker [92], in a letter257

by Siegert [93], and in a study by Merkle and Hartman [94].258

Hernandez-Orallo and colleagues [95] proposed a curve259

based on the Brier score as an alternative to traditional260

curves such as receiver operating characteristics (ROC) or261

precision-recall (PR) curve. Lesik and Leake [96] described262

an application of the Brier score to assess the placement of263

students among mathematics courses after Scholastic Assess-264

ment Test (SAT) examinations.265

A recent article by Assel and coauthors [97] claims that266

the Brier score is incapable of predicting diagnostic tests or267

prediction models in clinical environments.268

269

The application fields. Although the three metrics (MCC,270

κ, Brier score) share a common statistically grounded origin271

in their definition, they faced a different evolution in their272

usage in the following years. The κ statistic originated in the273

social sciences and then became of general purpose, being274

commonly used in all research fields whenever the level of275

agreement between two nominal classifications is investi-276

gated. The Brier score was originally introduced in weather277

forecasting studies, but its usage has become increasingly278

widespread as a risk score in survival and prediction models279

in medicine, being nowadays its elective application field. 280

Oppositely, MCC was originally conceived as a performance 281

metric for classifiers in biochemistry and as such it has been 282

used in several biomedical domains in the following years, 283

becoming quite common in bioinformatics and computa- 284

tional biology. In the last years, its popularity has overcome 285

the life science limits, and its use is spreading across all 286

scientific and technological disciplines. 287

To the best of our knowledge, no study comparing MCC, 288

Cohen’s Kappa, and the Brier score has been released in the 289

scientific literature so far; we fill this gap by presenting the 290

current study on these three statistical rates. 291

292

This study. We organized the rest of this article as follows. 293

After this Introduction, we explain the mathematical back- 294

ground of MCC, Cohen’s Kappa, and the Brier score (sec- 295

tion II). Afterwards, we describe the relationship between 296

MCC and Cohen’s Kappa and the relationship between MCC 297

and the Brier score (section III), and discuss some use cases 298

where these pairs of rates give discordant messages (sec- 299

tion IV). At the end of the article, we outline some conclu- 300

sions and future developments (section V). 301

II. MATHEMATICAL BACKGROUND 302

Matthews correlation coefficient. The Matthews correlation 303

coefficient (MCC) [1] is a case of the Cramér’s V [19] 304

applied to a 2 × 2 traditional confusion matrix, having true 305

positives (TP), true negatives (TN), false negatives (FN), and 306

false positives (FP) (Equation 1). The metric is defined as: 307

MCC =
TP · TN − FP · FN

√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(1)

(worst value = −1; best value = +1) 308

MCC is class symmetric: switching positives and negatives 309

would lead to the same result. The minimum value of 310

MCC is –1, meaning perfectly wrong prediction, where a 311

classifier labels all the positives as negatives and all the 312

negatives as positives. The maximum value of MCC is +1, 313

which means perfect classification. If the value of MCC is 314

around 0, it means that the prediction made was similar to 315

random guessing. The Matthews correlation coefficient can 316

be undefined when a pair of confusion matrix values are both 317

0, but these cases can be handled with some mathematical 318

steps [3]. 319

320

Cohen’s Kappa. Cohen’s Kappa [29] was originally pro- 321

posed for quantifying agreement between two observers that 322

judged the same set of persons on a nominal scale, with 323

two or more classes. The metric is also commonly used for 324

two-class classification problems. Using the cells of a 2 × 2 325

traditional confusion matrix Cohen’s Kappa [27], [40], [42] 326

is defined as: 327

κ =
2 · (TP · TN − FP · FN)

(TP + FP ) · (FP + TN) + (TP + FN) · (FN + TN)
(2)
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(worst value = −1; best value = +1)328

Cohen’s Kappa shares various properties with MCC. Both329

these rates are class symmetric, their minimum value is –1330

(perfectly wrong prediction) and their maximum value is +1331

(perfect classification). Furthermore, if κ ≈ 0, the prediction332

made was similar to random guessing. Finally, κ can be333

undefined in some cases, but these cases can be handled with334

mathematical operations similar to the ones needed when335

MCC is undefined [3].336

In 1960, Cohen’s Kappa was originally proposed as337

a chance-corrected measure, more precisely a chance-338

corrected version of accuracy. The metric in Equation 2 is339

equivalent to:340

κ =
accuracy − expected accuracy

1− expected accuracy
(3)

where the formula of accuracy is given by:341

accuracy =
TP + TN

TP + FP + FN + TN
(4)

(worst value = 0; best value = 1)342

and where the formula of expected accuracy is given by:343

expected accuracy =

=
(

TP+FP

N
· TP+FN

N

)

+

+
(

TN+FP

N
· TN+FN

N

)

(5)

where N is the number of samples in the dataset. The344

formula of expected accuracy (Equation 5) is the value of345

accuracy (Equation 4) under statistical independence of the346

observers (or two nominal variables). In inter-rater reliability347

studies, accuracy is generally considered artificially high348

since some agreement might be due to chance. Therefore,349

it makes sense to use a measure that takes this aspect into350

account.351

Various authors later discovered that Cohen’s Kappa may352

be interpreted as chance-corrected version of various mea-353

sures other than accuracy in Equation 4 [33]. In fact, all354

special cases of:355

M(α) =
α · TP + (2− α) · TN

α · TP + FP + FN + (2− α) · TN
(6)

(worst value = 0; best value = 1)356

become Cohen’s Kappa after correction for agreement due357

to chance [33]. Two examples are the F1 score (α = 2) and358

accuracy (α = 1). The special case for α = 0 was studied359

by Cicchetti and Feinstein [54].360

361

Brier score. The Brier score [74] is a strictly proper362

scoring function that is equivalent to the mean squared error:363

BS =
1

N

N
∑

i=1

(xi − yi)
2

(7)

(worst value = 1; best value = 0) 364

where N is the number of samples in the dataset, xi is the 365

predicted value for the ith element and yi is the actual value 366

of the ith element. 367

In the general case when xi is an actual probability, a 368

comparison to MCC and κ can be difficult to interpret, since 369

the two aforementioned measures are applicable only in the 370

hard classification cases when xi is binarized to correspond 371

to one of the two class labels. 372

In particular, reducing to the case where the ground truth 373

values are zeros and ones, since the prediction probability 374

range in the [0, 1] interval, by setting the confusion matrix 375

threshold τ is set to 0.5, the Brier score can be expressed 376

through traditional two-class confusion matrix classes. We 377

call this Brier score binary variant binaryBS: 378

binaryBS =
FP + FN

TP + FP + FN + TN
= 1−accuracy (8)

(worst value = 1; best value = 0) 379

binaryBS is the complementary value of accuracy and, 380

like the original Brier score, has its best value equal to 0 381

(perfect prediction) and its worse value equal to 1 (prediction 382

with maximum errors possible). 383

III. RELATIONSHIPS BETWEEN RATES 384

In this section, we first study the mathematical relationships 385

and correlations between the Matthews correlation coeffi- 386

cient and Cohen’s Kappa, and then between the Matthews 387

correlation coefficient and the Brier score. 388

A. MCC AND COHEN’S KAPPA 389

The formulas of MCC in Equation 1 and Cohen’s Kappa in 390

Equation 2 have a number of features in common. We have 391

MCC = κ if and only if FP = FN , that is, the metrics 392

coincide when the 2× 2 confusion matrix is symmetric. Fur- 393

thermore, MCC and Kappa are, respectively, the geometric 394

mean and harmonic mean of the following quantities: 395

TP · TN − FP · FN

(TP + FP ) · (FP + TN)
and

TP · TN − FP · FN

(TP + FN) · (FN + TN)
. (9)

From the geometric-harmonic-means inequality we obtain 396

the inequality ‖MCC‖ ≥ ‖κ‖ [37], [38]. From this inequality 397

it follows that the Kappa value will always be closer to 0 398

than the MCC value: the Kappa value will always be equal or 399

less extreme. In turn, this implies that, in the case of positive 400

association (that is: TP · TN ≥ FP · FN ), it is impossible 401

that Kappa produces a higher value than MCC in the case of 402

a binary classification [37], [38]. 403

Since MCC = κ if and only if FP = FN , the largest 404

differences between MCC and Kappa are quite likely to 405

be found when FP and FN are very different, which is 406

more likely when the metrics produces negative values. To 407

highlight this aspect, we depicted a scatterplot with all the 408

possible values of the Matthews correlation coefficient on the 409

x axis and all the possible values of Cohen’s Kappa on the y 410

axis (Figure 1), both in the [−1,+1] interval. 411
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FIGURE 1: Relationship between MCC and Cohen’s

Kappa. We computed MCC and Cohen’s Kappa for 103

possible confusion matrices.

As one can notice, MCC and κ have almost identical412

values in the top-right quarter, that is where the values of both413

MCC and κ are positive (Figure 1). In the [0,+1] interval,414

in fact, the two rates are generally concordant, showing the415

same trend and minimal differences between values. The416

top difference of 0.11 can be noticed when MCC equals to417

+0.339 and κ equals to +0.229, as we discuss later (sec-418

tion IV). A difference of 0.11 between MCC and κ means419

a 5% difference in the total range of 2, so we can consider420

that minimal.421

On the contrary, MCC and Cohen’s Kappa show very dif-422

ferent behavior on the bottom-left quarter, that corresponds423

to the values in the [−1, 0] interval (Figure 1). To a MCC of424

–1, for example, can correspond any negative value of κ. This425

ambiguity results being very strong, because both these rates426

have different meanings for 0 and for –1: a value close to427

zero, in fact, means that the prediction is similar to random428

guessing, while a value close to –1 means perfect opposite429

prediction. Note that these values can happen when the430

predictor generated no true positive and no true negative. We431

discuss this scenario later in several use cases (section IV).432

Finally, the inequality ‖MCC‖ ≥ ‖κ‖ does not hold for433

the case of multi-class classification. Delgado and Tibau [38]434

presented various cases in which a worse classifier gets a435

higher Kappa value, differing qualitatively from the MCC436

value, although in most cases the two metrics produce similar437

values.438

B. MCC AND BRIER SCORE439

The Brier score has a huge difference from MCC and Cohen’s440

Kappa: it is a strictly proper score function with values441

ranging from 0 (perfect prediction) to 1 (worst prediction).442

Therefore, the Brier score is not generated by the two-class443

confusion matrix categories, but rather as the cumulative sum444

of the squared mean error computed between the predicted 445

values and the ground truth values (Equation 7). 446

If one wanted to investigate the relationship between MCC 447

and the Brier score through FP, FP, TN, and TP, she/he would 448

therefore need to use binaryBS (Equation 8) instead of the 449

original Brier score. As we mentioned earlier, binaryBS is a 450

variant of accuracy, and therefore has the same properties. 451

The relationships between MCC and accuracy have been 452

already investigated in previous study [3]. 453

For this reason, to investigate the relationship between 454

MCC and the Brier score, we decided to focus on scat- 455

terplots having these two rates on the x axis and y axis. 456

To generate proper scatterplots, we first had to find a way 457

to generate a reasonable set of predictions. Following the 458

example of Cao and colleagues [98] for the MCC-F1 curve, 459

we used Beta distributions [99], that are probability distribu- 460

tions controlled by two shape parameters. Beta distributions 461

generate real values in the [0, 1], like a traditional machine 462

learning classifier. By changing the two shape parameters, 463

we simulated various different classifiers. 464

Figure 2 presents three example classifiers based on the 465

Beta distributions. When the two shape parameters have 466

identical values, for example Beta(4, 4), the beta distribution 467

is symmetric and a majority of simulated prediction scores 468

will be scattered around 0.5. If the shape parameters are quite 469

distinct, the majority of simulated scores will be closer to 0 470

(for example, Beta(9, 15)) or 1 (for example, Beta(15, 8)). 471

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
simulated predictions

d
e

n
s
it
y

Beta(9,15)

Beta(4,4)

Beta(15,8)

FIGURE 2: Beta distributions plot. Three example simu-

lated classifiers based on Beta distributions [99].

Regarding the ground truth, we employed three synthetic 472

datasets: a balanced dataset with 5,000 positives and 5,000 473

negatives; a negatively imbalanced dataset with 1,000 pos- 474

itives and 9,000 negatives; and a positively imbalanced 475

dataset: 9,000 positives and 1,000 negatives. Regarding the 476

simulated classifiers, we generated two groups of predictions: 477

in the first case (symmetric simulated predictions), we asso- 478
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ciated a particular Beta distribution to the positives, and a479

particular Beta distribution to the negatives; in the second480

case (asymmetric simulated predictions), we associated a481

particular Beta distribution to the positives, a particular Beta482

distribution to the first 70% of the negatives, and a particular483

Beta distribution to the last 30% of the negatives.484

485

Symmetric simulated predictions. In this case, we as-486

sociated to the positive data instances the values Beta(a, b)487

distribution and associated to the negative data instances the488

values Beta(c, d) distribution with a, b, c, d ranging from 1489

to 15. Since the worst value of MCC is –1 and the best value490

of MCC is +1, while the Brier score is best when its value is491

0 and worst if the value is +1, we prefered to employ the nor-492

malized MCC and the complementary Brier score for these493

plots. Both the normalized MCC (normMCC = (MCC +494

1)/2) and the complementary Brier score (complBS =495

1 − BS) range in the [0, 1] interval, and have 0 as worst496

possible score and 1 as best possible score.497

We computed all the possible classifiers varying a, b, c, d,498

and depicted the values of MCC and the Brier score in a499

scatterplot (Figure 3).500

As one can notice, both normMCC and complBS have501

different behaviors in the three plots (Figure 3).502

In the balanced dataset plot (Figure 3A), the two measures503

are fairly concordant, generating a thin plot that behaves like504

a x = y function scaled-up on the y axis. This plot shows also505

that complBS is always higher than normMCC in this case.506

Regarding the association between scores, one can notice that507

multiple values of normMCC correspond to few values of508

complBS: when complBS is around 0.6, all the points having509

normMCC in the [0.1, 0.5] range are associated to it. Some510

values of normMCC relate to multiple values of complBS,511

too, but in a smaller interval: when normMCC is around512

0.48, the complBS values range in the [0.45, 0.7] interval.513

This trend means that: multiple values of the Brier score514

correspond to many values of the Matthews correlation co-515

efficient; few values of the Matthews correlation coefficient516

correspond to many values of the Brier score. Both these517

behaviors can generate discordant or ambiguous messages518

about the binary classification assessment, especially regard-519

ing the Brier scores that could mean both excellent MCC and520

poor MCC in the same time. We will deal with this issue more521

in detail in the use cases section (section IV).522

The negatively imbalanced dataset plot (Figure 3B) results523

being identical to the positively imbalanced dataset plot (Fig-524

ure 3C), and this aspect comes with no surprise since both525

the Brier score and the Matthews correlation coefficient are526

class-invariant: differently from F1 score, inverting positives527

with negatives in the original datasets would not change the528

scores for MCC and the Brier score.529

These two plots show several differences from the bal-530

anced dataset plot. Their points occupy almost completely531

the lower-left quadrant, precisely the area where complBS532

is in the [0.2, 0.5] range and normMCC is in the [0.2, 0.5]533

interval. Another area dense of points can be observed where534

normMCC equals to 0: for this normMCC value, complBS 535

can have values that go from 0.8 to 0.2. This aspect means 536

that there is an large multiplicity of normMCC-complBS 537

associations in that area, which can lead again to ambiguous 538

and discordant messages. 539

540

Asymmetric simulated predictions. The previously de- 541

scribed scatterplots between MCC and Brier score (Figure 3) 542

have a symmetry between the positives and the negatives: 543

we associated a particular Beta distribution to all the ground 544

truth positive data instances, and another particular Beta 545

distribution to the ground truth negative data instances. 546

To investigate a different case, similarly to what [98] did, 547

we generated additional simulated classifiers with a change 548

compared to before: we associated the values of a Beta 549

distribution to the first 70% of the negative elements, and the 550

values of a different Beta distribution to the last 30% of the 551

negative elements. While we kept the values of Beta(a, b) as- 552

sociated to the positive data instances, we used the values of 553

Beta(c, d) for the first 70% of the negatives and Beta(e, f) 554

for the last 30% of the negatives, with a, b, c, d, e, f ranging 555

from 1 to 15. 556

We computed all the possible classifiers varying 557

a, b, c, d, e, and f , and depicted the values of MCC and Brier 558

score in a scatterplot (Figure 4). 559

As one can notice, the balanced dataset plot (Figure 4A) 560

looks similar to its corresponding plot in the symmetric 561

case (Figure 3A): a concordant trend scaled up from the 562

x = y line. The negatively imbalanced dataset plot (Fig- 563

ure 4B), also, shows a trend similar to the trend of the 564

symmetric case (Figure 3B). 565

The MCC-Brier score plot of the positively imbalanced 566

dataset has some significant differences from the previous 567

ones (Figure 4C). As one can notice, the scatterplot cloud 568

is wider: that means that a specific value of complBS 569

corresponds to many values of normMCC, although with 570

different widths. When complBS is approximately 0.3, for 571

example, normMCC can range between 0.1 and 0.6. This 572

scatterplot cloud is also longer than the other plots around 573

normMCC = 0.6: this specific value corresponds to all the 574

complBS between 0.625 and 0.8, approximately. 575

To conclude, the plots on the negatively imbalanced 576

dataset (Figure 3B and Figure 4B) and the plots on the 577

positively imbalance datasets (Figure 3C and Figure 4C) 578

show clearly that: 579

• Several values of the Brier score correspond to a huge 580

number of the Matthews correlation coefficients, gener- 581

ating ambiguous messages: cases where the Brier score 582

indicates very good prediction, and MCC indicates poor 583

prediction, and vice versa; 584

• Several values of the Matthews correlation coefficient 585

correspond to many Brier scores, generating ambiguous 586

messages, too: cases where the Brier score indicates 587

very good prediction, and MCC indicates poor predic- 588

tion, and vice versa. 589
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FIGURE 3: Relationship between MCC and the Brier score, with simulated classifiers using same distributions on

positives and negatives. We report all the 50,625 points representing the complementary Brier score the normalized MCC

generated by Beta distribution simulated classifiers on simulated datasets. (A) Balanced dataset: 5,000 positives and 5,000

negatives. (B) Negatively imbalanced dataset: 1,000 positives and 9,000 negatives. (C) Positively imbalanced dataset: 9,000

positives and 1,000 negatives. Simulated classification points associated to the positives: Beta(a, b) with a and b ranging

from 1 to 15. Simulated classification points associated to the negatives: Beta(c, d) with c and d and f ranging from 1 to 15.

normMCC = (MCC + 1)/2. complBS = 1 – BS. The values of both normMCC and complBS lay in the [0, 1] interval, with worst

value equal to 0 and best value equal to 1.

FIGURE 4: Relationship between MCC and Brier score, with simulated classifiers using the different distributions

on positives and negatives. We report 100,000 randomly selected points representing the complementary Brier score the

normalized MCC generated by Beta distribution simulated classifiers on simulated datasets. (A) Balanced dataset: 50 positives

and 50 negatives. (B) Negatively imbalanced dataset: 10 positives and 90 negatives. (C) Positively imbalanced dataset: 90

positives and 10 negatives. Simulated classification points associated to the positives: Beta(a, b) with a and b ranging from 1 to

15. Simulated classification points associated to the negatives: Beta(c, d) for the first 70% and Beta(e, f) for the last 30%, with

c, d, e, and f ranging from 1 to 15. normMCC = (MCC + 1)/2. complBS = 1 – BS. The values of both normMCC and complBS

lay in the [0, 1] interval, with worst value equal to 0 and best value equal to 1.

In the balanced dataset (Figure 3A and Figure 4A), instead,590

both Brier score and MCC show concordant trends, with591

much smaller ambiguity. To each value of the Matthews592

correlation coefficient, in fact, correspond a few values of the593

Brier score.594

1) The ambiguity when the Brier score ≈ 0.25 595

There is a special case of the Brier score where the ambiguity 596

of its message, compared with MCC, is at its maximum: 597

when the Brier score is approximately 0.25. Consider a 598

binary classification tasks on a dataset with n+ positive 599

samples and n− negative samples. To simplify notation when 600

using the Brier score, label the positive class as 1 and the 601

negative class as 0. Let ε be a real number in the interval 602
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[0, 0.5) and suppose the output of a probabilistic classifier is603

1− ε for the samples of the positive class, and 0+ ε for each604

negative sample. Then, by binarizing the output on the two605

classes 0 and 1, classification is perfect, thus MCC = +1606

regardless the value of 0 ≤ ε < 0.5, while BS = ε2. Thus,607

MCC is always one, while the Brier score can range between608

0 and 0.25 (excluded).609

Symmetrically, suppose that another classifier gives 1 − ε610

as the prediction for each negative sample, and 0+ ε for each611

positive sample. Then, in this case, MCC is always –1, while612

BS = (1− ε)2 and thus it can range between 0.25 (excluded)613

and 1.614

It follows that values of the Brier score very close to 0.25615

can correspond to either perfect binary classification or full616

misclassification, as we will show later for the use cases BS7617

and BS8.618

IV. USE CASES619

After having investigated the relationships between MCC and620

Cohen’s Kappa and between MCC and Brier score, here we621

analyze some concrete use cases where each pair of scores622

generates a discordant outcome.623

In these use cases, we consider the values of TP, TN, FP,624

and FN resulting from binary classifications when the thresh-625

old τ that discriminates between positive predictions and626

negative predictions equals 0.5, which is a cut-off commonly627

employed in machine learning and computational statistics.628

Some studies use alternative cut-off thresholds, through a629

phase called reclassification [100]; although interesting, the630

analysis of this topic goes beyond the scope of the present631

study.632

A. MCC AND COHEN’S KAPPA USE CASES633

As mentioned earlier, MCC and κ generate a concordant634

response in the [0,+1] quarter, while they might have discor-635

dant values in the [−1, 0] area of the plot of all the possible636

values.637

To this end, we found six use cases where the classifier had638

no true positive and no true negative, and the value of MCC639

was –1 (K1, K2, K3, K5, and K6 in Table 1).640

In K1, for example, MCC equals to –1, while κ equals to641

0. In this case, the two rates generate a discordant message:642

the Matthews correlation coefficient states that the classifier643

made a prediction that is the opposite of the ground truth,644

while Cohen’s κ states it was similar to random guessing.645

Checking the confusion matrix, we can see that TP, FP,646

and TN are all zero, and therefore we can confirm that the647

classification was perfectly wrong. In this case, MCC gave a648

more informative and truthful response than Cohen’s Kappa.649

The use cases K2 and K3 show a trend similar to K1: MCC650

is still –1, but κ equals to –0.22 and –0.471, respectively.651

Again, MCC suggests perfect wrong prediction, while κ652

suggests a prediction similar to random guessing. In these653

two use cases, there are many FN and FP, but true negatives654

and true positives are zero, so we can conclude that this655

prediction was totally wrong, and not similar to random656

guessing. Also in these two cases, we can state that MCC 657

gave a more informative response than Cohen’s Kappa. 658

In the use cases K5 and K6, instead, we can observe 659

concordant values for MCC and κ, both at –1 or close to it. 660

Cohen’s Kappa “reaches” MCC, by confirming its message 661

of perfect wrong classification. The absence of true positives 662

and true negatives, also in these cases, suggests that the 663

prediction was wrongly trained to recognize data instances, 664

rather than behave like random guessing. 665

As previously observed, the largest differences between 666

MCC and Kappa are quite likely to be found when FP and 667

FN are very different, as for instance in the cases K12 and 668

K15 (Table 1). If both MCC and κ are positive, the difference 669

∆(MCC, κ) is smaller than 0.12 (for example, in the use case 670

K17). 671

We have MCC = –1.0 if TP = 0 and TN = 0, regardless 672

of the values of FP and FN (for example, the K1 and K6 673

cases Table 1). But if TP = 0 and TN = 0, Kappa may produce 674

values between 0.0 and –1.0. For example, we have Kappa = 675

0 if either FP = 0 or FN = 0 as in case K1, and we have Kappa 676

= –1.0 if and only if FP = FN as in case K6. 677

Finally, consider occurring whenever a low value for 678

Kappa and MCC is matched by an high agreement (accu- 679

racy) [53]–[55], as in the use cases K11 and K16: in these 680

cases the low values of MCC and Kappa are welcomed, 681

since the binary classification is far from being perfect. 682

Formal proofs of these properties can be found in a study 683

by Warrens [57]. 684

We can therefore conclude the analysis of these use cases 685

stating that MCC and κ generate similar and concordant 686

positive scores, but they can generate discordant negative 687

scores, on the same confusion matrices. When MCC and 688

Cohen’s Kappa generate negative discordant scores, the value 689

produced by MCC is more reliable and informative of the real 690

status of the corresponding confusion matrix. 691

B. MCC AND BRIER SCORE USE CASES 692

As mentioned earlier, we took advantage of Beta distributions 693

to produce simulated classifiers to use to generate values of 694

MCC and Brier score. 695

From all the possible classifiers generated earlier for the 696

scatterplots (Figure 3 and Figure 4), we selected the ones with 697

the highest difference between normMCC and complBS as 698

use cases to analyze here. We reported the parameters and 699

quantitative characteristics of these use use cases in Table 2 700

and Table 3. 701

We reported these differences as ∆(c, n) in Table 4. As 702

one can notice, the Brier score (BS) generate discordant 703

values from MCC for six presented use cases BS1, BS2, BS3, 704

BS4, BS5, and BS6. The Matthews correlation coefficient 705

ranges from –0.843 to –0.73, indicating a poor prediction 706

performance close to a perfectly wrong prediction, where 707

the classifier almost completely confused positives with neg- 708

atives. On the contrary, the values of the Brier score range 709

from 0.414 to 0.486 interval, indicating quite a slightly good 710

prediction. The perfect value for the Brier score would be 711
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use case TP FN FP TN MCC κ ∆(MCC, κ)

K1 0 100 0 0 –1.000 0.000 1.000

K2 0 90 10 0 –1.000 –0.220 0.780

K3 0 80 20 0 –1.000 –0.471 0.529

K4 0 70 30 0 –1.000 –0.724 0.276

K5 0 60 40 0 –1.000 –0.923 0.077

K6 0 50 50 0 –1.000 –1.000 0.000

K7 27 45 1 27 +0.339 +0.229 0.110

K8 40 45 1 14 +0.293 +0.183 0.110

K9 20 59 1 20 +0.206 +0.102 0.103

K10 15 69 1 15 +0.116 +0.043 0.073

K11 90 1 9 0 –0.031 –0.018 0.013

K12 5 70 6 19 –0.240 –0.094 0.146

K13 47 3 45 5 +0.074 +0.040 0.034

K14 10 40 4 46 +0.173 +0.120 0.053

K15 9 1 89 1 –0.190 –0.018 0.172

K16 2 9 1 88 +0.313 +0.250 0.063

K17 30 40 0 30 +0.429 +0.310 0.118

TABLE 1: Use cases for MCC and Cohen’s Kappa. MCC: Matthews correlation coefficient (Equation 1). κ: Cohen’s

Kappa (Equation 2). MCC and κ have worst value equal to –1 and best value equal to +1. ∆(MCC, κ): absolute difference

between MCC and κ. TP: true positives. TN: true negatives. FP: false positives. FN: false negatives. Threshold cut-off for

predictions: τ = 0.5.

BS1 BS2 BS3
ground truth balanced negatively imbalanced positively imbalanced

positives Beta(9, 15) Beta(6, 15) Beta(7, 15)
negatives Beta(15, 8) Beta(15, 8) Beta(15, 7)

# positives 5,000 9,000 1,000
# negatives 5,000 1,000 9,000
% positives 50% 90% 10%
% negatives 50% 10% 90%

TABLE 2: Use cases BS1, BS2, and BS3: score distributions used for the three simulated classifiers and summary

statistics for the datasets. We listed the Beta distributions generated for the ground truth positives and negatives, in the three

use cases BS1, BS2, and BS3. For example, we associated the real values generated by Beta(9, 15) to the BS1 positive data

instances.

BS4 BS5 BS6
ground truth balanced negatively imbalanced positively imbalanced

positives Beta(9, 15) Beta(7, 15) Beta(7, 15)

negatives
Beta(9, 15) for first 70% Beta(8, 14) for first 70% Beta(7, 15) for first 70%
Beta(12, 7) for last 30% Beta(15, 8) for last 30% Beta(14, 6) for last 30%

# positives 50 90 10
# negatives 50 10 90
% positives 50% 90% 10%
% negatives 50% 10% 90%

TABLE 3: Use cases BS4, BS5, and BS6: score distributions used for the three simulated classifiers and summary

statistics for the datasets. We listed the Beta distributions generated for the ground truth positives and negatives, in the three

use cases BS4, BS5, and BS6. For example, we associated the real values generated by Beta(9, 15) to the BS4 positive data

instances.

zero. To highlight these differences, we represent them as712

barplots in Figure 5.713

Another interesting aspect to notice is that the binary Brier714

score (binaryBS) results are concordant with MCC, having715

values very close to 1 that indicate poor performance, and in716

contrast with the original Brier score values.717

By taking a closer look to the corresponding confusion 718

matrices (Table 4), we can see that in all the six BS1, ..., 719

BS6 use cases there is a large majority of false positives 720

and false negatives over true positives and true negatives. 721

In BS1, for example, the false negatives are almost 9 times 722

the true positives, while the false positives are 16 times 723
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case TP FN FP TN binBS BS complBS MCC normMCC ∆(c, n)

BS1 511 4,489 4,706 294 0.920 0.419 0.581 –0.840 0.080 0.501

BS2 18 982 8,455 545 0.944 0.442 0.558 –0.769 0.116 0.442

BS3 323 8,677 962 38 0.964 0.476 0.524 –0.830 0.085 0.439

BS4 2 48 44 6 0.920 0.414 0.586 –0.843 0.079 0.507

BS5 1 9 85 5 0.940 0.444 0.556 –0.730 0.135 0.421

BS6 3 87 10 0 0.970 0.486 0.500 –0.862 0.069 0.446

BS7 1 4 4 1 0.800 0.251 0.749 –0.600 0.200 0.549

BS8 4 1 1 4 0.200 0.249 0.751 +0.600 0.800 0.049

TABLE 4: Use cases for MCC and Brier score. BS: Brier score (Equation 7). binBS: binaryBS, binary Brier score (Equa-

tion 8). MCC: Matthews correlation coefficient (Equation 1). normMCC: normalizedMCC = (MCC + 1) / 2. complBS:

complementaryBS = 1 – BS. TP: true positives. TN: true negatives. FP: false positives. FN: false negatives. Threshold cut-

off for predictions: τ = 0.5. ∆(c, n): absolute difference between complBS and normMCC. We described the details of the

simulated datasets and the simulated classifications BS1, B2, B3, B4, B5, and BS6 in Table 2 and Table 3.
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FIGURE 5: Results of MCC and Brier score for the BS1, BS2, BS3, BS4, BS5, and BS6 use cases.

normMCC = (MCC + 1)/2. complBS = 1 – BS. The values of both normMCC and complBS lay in the [0, 1] interval, with

worst value equal to 0 and best value equal to 1. We reported the details of these use cases in Table 4.

the true negatives. In this framework, it is clear that an724

informative rate would generate a negative response. MCC,725

in fact, produces a value of –0.84, confirming the poor ratio726

of positives with respect to negatives. On the contrary, the727

Brier score has a value of 0.419, which is closer to 0 (perfect728

prediction) than to 1 (worst prediction). Similar trends can729

be observed in the other use cases (BS2, BS3, BS4, BS5, and730

BS6).731

We can therefore state that the Matthews correlation co-732

efficient produces a more capable and informative outcome733

than the Brier score.734

At this point, someone could rebut this statement by stating735

that the confusion matrix categories are not included in the736

Brier score computation, and therefore might be improper737

to use them here in this comparison. Even if we know that738

the Brier score does not produce and is not produced by739

two-class confusion matrices with a strict cut-off threshold,740

we believe that it is necessary to consider them for binary741

classification, because a clear distinction between positives742

and negatives is fundamental for experiment validation. In743

a clinical setting, for example, rates based on two-class 744

confusion matrix scores must be employed when a clear 745

distinction between healthy controls (negatives) and patients 746

with disease (positives) need to be made. 747

748

The BS ≈ 0.25 ambiguity. As mentioned earlier (subsub- 749

section III-B1), a strong discordance between the Brier score 750

and MCC can happen when the Brier score has values around 751

0.25. This situation can happen especially when the classifier 752

predicts values around the cut-off threshold for the confusion 753

matrix, that traditionally is set to 0.5 in machine learning and 754

statistics. 755

Let us consider now the use case BS7 with a dataset with 756

10 elements, having the following binary ground truth values: 757

758

ground truth values: (0, 0, 0, 0, 0, 1, 1, 1, 759

1, 1) 760

761

This dataset is perfectly balanced, with 5 negatives and 762

5 positives. And let us suppose that a classifier predicts the 763
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following values for them:764

765

BS7 predictions: (0.501, 0.501, 0.501, 0.499, 0.501,766

0.499, 0.501, 0.499, 0.499, 0.499)767

768

This classifier would get Brier score = 0.251, meaning769

good outcome, and MCC = –0.6, meaning very bad perfor-770

mance (Table 4).771

And let us consider now the use case BS8, with the772

same ground truth dataset of BS7, but with the following773

predictions:774

775

BS8 predictions: (0.499, 0.499, 0.501, 0.499, 0.499,776

0.499, 0.501, 0.501, 0.501, 0.501)777

778

Regarding this performance, the value of the Brier score779

would be 0.249, meaning good prediction, and the coefficient780

of the Matthews correlation would be +0.6, meaning good781

prediction too (Table 4).782

As one can notice and as we described earlier (subsubsec-783

tion III-B1), a Brier score close to 0.25 has an ambiguous784

meaning: it could be associated to a prediction evaluated as785

poor like in the BS7 use case, or it could be associated to a786

prediction evaluated as good like in the BS8 use case.787

V. CONCLUSIONS788

Assessing binary evaluations is a key task in machine learn-789

ing and computational statistics. The Matthews correlation790

coefficient (MCC), Cohen’s Kappa, and the Brier score are791

three common rates employed to evaluate the predictions792

made by the classifier in relation to the corresponding dataset793

ground truth.794

In our study, we showed that MCC is more informative,795

truthful, and reliable than Cohen’s Kappa and the Brier score796

to this end. Cohen’s Kappa, in fact, can provide misleading797

information in some particular cases, especially when true798

positives and true negatives are zero. On the other side, the799

Brier score can generate an ambiguous outcome when its800

value is close to 0.25, which can correspond both to a very801

good prediction and to a very bad prediction. The Matthews802

correlation coefficient, instead, does not have these flaws.803

Although generally MCC is more informative than κ804

statistic and the Brier score, there are some cases where these805

rates are equally reliable. When the classifier is better than806

random (MCC and κ > 0) the correlation between the two807

metrics is very high; the difference when using MCC or κ808

is negligible (Figure 1). When the classifier is worse than809

random, the situation is quite symmetric. Given a specific810

MCC value, there is a wide range of different κ values811

that can be used to discriminate (Figure 1), and the same812

happens oppositely: for a given κ value, there are many MCC813

values (Figure 1). Thus, in this situation, using MCC or κ814

provides the same level of reliability.815

Instead, the correlation between MCC and the Brier score816

is quite limited, so choosing one of the two heavily depends817

on their properties (Figure 3 and Figure 4). In fact, to a818

given value of MCC corresponds a quite broad range of BS 819

values, and vice versa, thus there is no specific situation 820

where MCC should not be preferred to BS. However, BS can 821

be useful in discriminating situations sharing the same MCC. 822

For instance, consider the use case with ground truth: 823

(0, 0, 0, 0, 0, 1, 1, 1, 1, 1). 824

When the predicted values are (0.499, 0.499, 825

0.501, 0.499, 0.499, 0.499, 0.501, 0.501, 826

0.501, 0.501), we have MCC = +0.6 and BS = 0.249. 827

If instead the predictions are (0.001, 0.001, 828

0.501, 0.001, 0.001, 0.499, 0.999, 0.999, 829

0.999, 0.999), we obtain MCC = +0.6 again, but 830

BS = 0.05, highlighting a different prediction with respect 831

to the previous case. If a machine learning practitioner had 832

to select a predictive algorithm by observing the predictions 833

in the two cases, she/he could choose the first one, because it 834

generated a higher Brier score than the second one. 835

Our results and statements about Cohen’s Kappa confirm 836

what was claimed by Delgado and Tibau [38] in their study: 837

these authors showed that if marginal probabilities are really 838

small, the distribution of a misclassification also affects κ. 839

This way, worse classification results can achieve higher val- 840

ues of this score, which would therefore provide a misleading 841

outcome. The authors claim that these drawbacks of Cohen’s 842

Kappa can be especially dramatic in clinical perspective, and 843

we agree with them. 844

Our results and considerations regarding the Brier score 845

are in line with what was highlighted by Assel and col- 846

leagues [97], who stated that the Brier score is unsuitable in 847

clinical tests evaluation because it provides counter-intuitive 848

results in several situations. As a major example, the Brier 849

score will favor a test with high specificity if it is the case that 850

prevalence is low even when the clinical context requires high 851

sensitivity. Furthermore, the Brier score favours continuous 852

models over binary tests even if the test is proven to be more 853

effective. This is due to the fact that the Brier score mea- 854

sures the quality of prediction independently of the clinical 855

scenario, thus issuing a caveat for its application [97]. 856

For the reasons described in our article, we therefore sug- 857

gest any machine learning practitioner to use the Matthews 858

correlation coefficient rather than Cohen’s Kappa or the Brier 859

score to assess binary classification experiments. 860

In the future, we plan to make additional comparative 861

analyses between the Matthews correlation coefficient and 862

other rates, such as the Fowlkes-Mallows index [101], the 863

prevalence threshold [102], and the Jaccard index [103], 864

[104]. 865

LIST OF ABBREVIATIONS 866

AUC: area under the curve. binaryBS: binary Brier score. BS: 867

Brier score. complBS: complementary Brier score. DOR: 868

diagnostic odds ratio. FDA: USA Food and Drug Adminis- 869

tration (FDA) agency. FN: false negatives. FP: false positives. 870

κ: Cohen’s Kappa. MAQC/SEQC: MicroArray / Sequenc- 871

ing Quality Control. MCC: Matthews correlation coefficient. 872

normMCC: normalized Matthews correlation coefficient. PR: 873
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