
The Max k-Cut Game and its Strong Equilibria⋆

Laurent Gourvès and Jérôme Monnot
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Abstract. An instance of the max k−cut game is an edge weighted graph. Every
vertex is controlled by an autonomous agent with strategy space [1..k]. Given a
player i, his payoff is defined as the total weight of the edges [i, j] such that player
j’s strategy is different from player i’s strategy. The social welfare is defined as
the weight of the cut, i.e. half the sum of the players payoff. It is known that this
game always has a pure strategy Nash equilibrium, a state from which no single
player can deviate. Instead we focus on strong equilibria, a robust refinement of
the pure Nash equilibrium which is resilient to deviations by coalitions of any size.
We study the strong equilibria of the max k−cut game under two perspectives:
existence and worst case social welfare compared to a social optimum.

1 Introduction

Given a graph G = (V,E) and a weight function w : E → R+, the max k−cut problem
is to partition V into k sets V1, V2 . . .Vk such that the sum of the weight of the edges
having their endpoints not in the same part of the partition is maximum. In this paper
we study a strategic game defined upon max k−cut. Each vertex is controlled by a
player with strategy set {1, 2, . . . , k}. A player’s utility is the total weight of the edges
incident to her and such that her neighbor has a different strategy.

The game models a large class of situations where there are k available facilities and
every agent must choose one. The facilities are inherently similar but their number is
typically smaller than the number of agents (e.g. compartments in a train). Then the
agents must share the facilities. In this game every agent is “hindered” by the other
agents but solely by those who chose the same facility. So every agent makes his choice
according to the agents that he wants to avoid. In the max k−cut game, the weight of
an edge [i, j] represents the strength of interference that agents i and j exert on each
others if they choose the same facility. The social welfare for a given state is defined as
the total weight of the edges with corresponding endpoint agents making distinct choices
of a facility (i.e. half the sum of the player’s utility).

This paper is devoted to the existence and the quality of pure1 equilibria in the max

k−cut game. Our work is motivated by the study of large scale distributed systems
which usually lack a central control authority. Instead these systems are operated by
self interested entities. Though the uncoordinated decisions made by the entities often
end up in a stable configuration (an equilibrium), these configurations are rarely socially

⋆ This work is supported by French National Agency (ANR), project COCA ANR-09-JCJC-
0066-01.

1 We only consider pure strategies so we often omit the word pure.
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optimal. Two main questions naturally arise in this context: For which instances an
equilibrium exists? How far from the social optimum these equilibria can be?

When the focus is on pure Nash equilibria in the max k−cut game, the answer to
these two questions is known. For every instance (and every k) an optimal cut is a pure
Nash equilibrium. Furthermore, the price of anarchy (PoA in short) [1], defined as the
worst case ratio between the social welfare of a Nash equilibrium and the optimal social
welfare, is k−1

k
[2]. This paper is devoted to the (even more) appealing concept of strong

equilibrium (SE in short) [3]. This notion refines the NE because it considers deviations
by coalitions of any size whereas NE are restricted to deviations by a single player. When
it exists, a SE is a very robust state of the game, it is also more sustainable than a NE.
Strong equilibria are the topic of many recent articles including [4–8].

We are interested in the existence of SE in the max k−cut game and their quality
with respect to socially optimal configurations. In particular, we resort to the strong

price of anarchy (SPoA in short) [4] which is the price of anarchy restricted to strong
equilibria.

Previous related work and Contribution The max k−cut game or similar games
like the party affiliation game, the interference game or the consensus game have been
studied in [9, 10, 5, 6, 2] from different perspectives: existence of a pure equilibrium, con-
vergence time to an equilibrium, complexity for computing an equilibrium and worst case
quality of an equilibrium. In this paper we only deal with the existence and the worst
case quality of a pure equilibrium.

For the max 2−cut game, the picture is complete. A SE always exists because the
state corresponding to an optimal cut is a SE. The PoA is 1/2 by a well known result
from local search theory and the SPoA is 2/3 [5]. From now on we consider that k ≥ 3.
A NE always exists because the state corresponding to an optimal cut is a NE. In [2] it
is shown that the PoA of the unweighted max k−cut game is k−1

k
and one can easily

extend the result to the weighted case. In [5] it is shown that an optimal cut is not
necessarily a SE but the instance presented admits another optimal cut which turns out
to be a SE. The state corresponding to an optimal cut is a 3-strong equilibrium (a state
immune to deviations by coalitions of at most 3 players) but not necessarily a 4-strong
equilibrium [5].

In Section 2 we provide some useful definitions and notations. The results presented
in this paper deal with the existence of a SE (Section 3) and if a SE exists, we bound
its quality compared to a social optimum (Section 4). In Section 3 we do not prove or
disprove that every instance of the max k−cut game admits a SE. Instead we give
both negative and positive results related to this question. In Section 4 we give an upper
bound of 2k−2

2k−1 and a matching lower bound on the SPoA. It is noteworthy that the upper
bound is derived without any assumption on the instance so it applies every time a SE
exists. We conclude in Section 5. We conjecture that a SE always exists for the max

k−cut game, but we are not able to prove this for the moment.

2 Definitions and notations

A strategic game is a tuple 〈N, (Σi)i∈N , (ui)i∈N 〉 where N is the set of players (we suppose
that |N | = n), Σi is the set of strategies of player i and ui : ×iΣi → R is player i’s utility
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function. A pure state or pure strategy profile of the game is an element of Σ := ×iΣi.
Although players may choose a probability distribution over their strategy set, we only
consider pure strategy profiles in this paper. Players are supposed to be rational, i.e.
each of them plays in order to maximize his utility.

Given a state a ∈ Σ, (a−i, bi) denotes the state where ai is replaced by bi in a while
the strategy of the other players remains unchanged. A state a is a Nash equilibrium

(NE) if there no player i ∈ N and a strategy bi ∈ Ai such that ui

(

(a−i, bi)
)

> ui(a).
Given two states a, a′ and a coalition C ⊆ N , (a−C , a′) denotes the state where ai

is replaced by a′
i in a for all i ∈ C. A state a is a strong equilibrium (SE) if there is no

non-empty coalition C ⊆ N and a profile a′ ∈ A such that ui

(

(a−C , a′)
)

> ui(a) for
all i ∈ C. A state a is an r-strong equilibrium (r-SE) if there is no non-empty coalition
C ⊆ N of size at most r and a profile a′ ∈ A such that ui

(

(a−C , a′)
)

> ui(a) for all
i ∈ C. Therefore a SE is a NE, a NE is a 1-SE and a n-SE is SE (n is the number of
players).

The price of anarchy (PoA) measures the performance of decentralized systems [1]
via its Nash equilibria. More formally, let Γ be a family of strategic games, let γ be an
instance of Γ , let Aγ be the strategy space of γ, let Q : Aγ → R+ be the social welfare, let
E(γ) be the set of all pure Nash equilibria of γ and let oγ be a social optimum for γ (i.e.
oγ = argmaxa∈Aγ

Q(a)). The pure price of anarchy of Γ is minγ∈Γ mina∈E(γ) Q(a)/Q(oγ).
If SE(γ) denotes the set of all strong equilibria of γ then the strong price of anarchy
(SPoA) [4] is minγ∈Γ mina∈SE(γ) Q(a)/Q(oγ).

3 On the existence of strong equilibria

This section contains both negative and positive results on the existence of a SE in the
max k−cut game. The negative results are (often non trivial) observations that all proof
techniques that we are aware of, to show the existence of a SE, fail. The positive results
are (often tight) sufficient conditions for the existence of a SE, and the existence of a
good approximation of it in every instance.

Negative results The strategy profiles which correspond to optimal cuts play an im-
portant role because they are often stable states. When k = 2 and k ≥ 3, optimal cuts
are respectively strong equilibria and 3-strong equilibria [5]. An instance presented in [5]
admits two optimal cuts: one is a SE while the other is not a 4-SE. It shows that an
optimal cut is not necessarily a SE but it does not prevent (at least) one optimal cut
to be a SE. In this paper we propose a new and simpler instance in which the unique
optimal cut is not a SE. Consider the instance given on the left part of Figure 1. An
exhaustive search can show that the given 3-cut is the only optimal solution. However,
it is not a SE as nodes a, b, c and f can modify their strategy and benefit (see the right
part of Figure 1).

A second way to prove the existence of a SE is to exhibit a strong potential function
ΦS and an order ≺ such that ΦS(σ) ≺ ΦS(σ′) holds for every improving pair of strategy
profiles (σ, σ′)2 [6]. This technique captures the fact that the players naturally converge

2 The cost (resp. the payoff) in σ of every player having a distinct strategy in σ′ strictly
decreases (resp. strictly increases) when switching to σ′.
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Fig. 1. Left: An optimal 3-cut with value 37. Right: Starting from the left configuration, vertices
a, b, c and f can move and benefit but the value of the cut is 36.

to a SE (a state σ∗ such that ΦS(σ∗) is locally maximum for ≺) since every sequence of
improvements is finite. However no pair (ΦS ,≺) can exist for the max k−cut game since
the dynamics can cycle. We are given an instance of the max 3−cut with 4 nodes and
three strategy profiles (see Figure 2). At each deviation by a coalition, the utility of every
member strictly increases but the three configurations form a cycle. It is noteworthy that
the interference game studied by Harks, Klimm and Möhring [6], and for which they prove
the existence of a SE by the strong potential function, is slightly different to the max

k-cut game. The slight difference makes both results (existence of a strong potential
function for the interference game, and non existence of a strong potential function for
the max k−cut game) consistent.
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Fig. 2. A cycle disproving the existence of a strong potential function.

A last attempt is to observe that the max k−cut game is a congestion game [11,
12]. Congestion games are extensively studied for two reasons, they always admit a pure
strategy Nash equilibrium and they are general models for resource sharing in networks.
Sufficient conditions on the strategy space to show the existence of a SE were derived
[7, 8]. These works are based on the notion of bad configurations in the strategy space.
An instance of a congestion game without any bad configuration admits a SE (but a
bad configuration does not prevent some instances to admit a SE). If we turn the max

k−cut game into a congestion game and consider the clique on 3 nodes then we get a
bad configuration.
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Positive results A direct observation is that every k-colorable graph admits a SE:
a k coloration induces a state σ∗, where every vertex with color c plays c, such that
ui(σ

∗) =
∑

[i,j]∈E w([i, j]) for all i ∈ V . However this condition is not necessary: take a
clique of size 3 for the max 2-cut game. In every state σ there is a node i which satisfies
ui(σ) <

∑

[i,j]∈E w([i, j]) but this instance admits a SE.
Another direction to prove the existence of a SE is to limit the number players.

Proposition 1. If |V | ≤ k + 2 then an optimal state of the max k-cut game is a SE.

Proof. Let σ be an optimal state. Hence σ is a NE. Suppose there is j ∈ {1, . . . , k} and
no player i such that σ(i) = j. For every pair of nodes i, i′ such that σ(i) = σ(i′), it must
be w([i, i′]) = 0 since otherwise σ is not optimal. Thus G is k − 1 colorable and σ must
be a SE.

Now suppose that for every j ∈ {1, . . . , k}, there is at least one player i such that
σ(i) = j. By contradiction, suppose that there is a coalition C ⊆ V of players who can
modify their strategy and benefit. Let σ′ be the resulting strategy profile. A result of [5]
states that an optimal state is a 3-SE, i.e. |C| > 3.

Let V1, . . . , Vk (resp. V ′
1 , . . . , V ′

k) be the k partition corresponding to σ (resp. σ′). By
hypothesis |Vj | ≥ 1 for j = 1..k. Since |V | ≤ k + 2, we can consider two cases:

– |V1| = 3 and |Vj | = 1 for j = 2, . . . , k. For every i ∈ V2 ∪ . . . ∪ Vk, we know that
i /∈ C because ui(σ) is maximum. Then C ⊂ V1, |C| ≤ |V1| = 3, contradiction with
|C| > 3.

– |V1| = |V2| = 2 and |Vj | = 1 for j = 3..k. For every i ∈ V3∪. . .∪Vk, we know that i /∈ C
because ui(σ) is maximum. If V1∩

(

V ′
3∪. . .∪V ′

k

)

6= ∅ or V2∩
(

V ′
3∪. . .∪V ′

k

)

6= ∅ then it

contradicts the fact that σ is a NE. Indeed, if a player i belongs to V1∩
(

V ′
3∪ . . .∪V ′

k

)

,
then it means that it can deviate unilaterally and improve its utility, contradiction
with the fact that σ is a NE. Thus σ(i) ∈ {1, 2} ⇒ σ′(i) ∈ {1, 2}. If V1 ⊆ C then
ui(σ) ≥ ui(σ

′) holds for every i ∈ V1. We deduce that V1 6⊆ C. It follows that
|C| ≤ |V1| − 1 + |V2| = 3, contradiction with |C| > 3. ⊓⊔

One can observe that Proposition 1 is tight when k = 3. Every instance with 5 nodes
and k = 3 admits a SE by the proposition, but one cannot go beyond since for the 6
nodes instance of Figure 1, the optimal cut is not a SE.

Our last positive result is about the existence of an approximate strong equilibrium
in every instance. Given a real ǫ ≥ 0, a state a is an ǫ-approximate strong equilibrium if
there is no non-empty coalition C ⊆ N and a profile a′ ∈ A such that ui

(

(a−C , a′)
)

>
(1 + ǫ)ui(a) for all i ∈ C. Therefore a 0-approximate SE is a SE. Approximate equilibria
are appealing concepts in game theory. They capture the fact a player does not deviate
if his gain is negligible. Approximate equilibria are the topic of many recent articles
including [13–15].

Theorem 1. Every NE of the max k-cut game is a 1
k−1 -approximate SE.

Proof. Let σ be a NE. Take a player p and suppose w.l.o.g. that σ(p) = k. Let E(p, σ, i)
be the set of edges [p, q] such that σ(q) = i. Let W (p, σ, i) =

∑

e∈E(p,σ,i) w(e) when

E(p, σ, i) 6= ∅ and W (p, σ, i) = 0 otherwise. The utility of p under σ is equal to
∑k−1

i=1 W (p, σ, i).

If p unilaterally replaces his strategy by j then his utility becomes
∑k

i=1
i6=j

W (p, σ, i).
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Since σ is a NE,
∑k−1

i=1 W (p, σ, i) ≥
∑k

i=1
i6=j

W (p, σ, i), which is equivalent to W (p, σ, j) ≥

W (p, σ, k) for every j ∈ {1, . . . , k−1}. Sum up this inequality for every j ∈ {1, . . . , k−1}

to get that 1
k−1

∑k−1
i=1 W (p, σ, i) ≥ W (p, σ, k). The utility of p in any state σ′ is at most

∑k
i=1 W (p, σ, i). We deduce that

up(σ
′) ≤

k−1
∑

i=1

W (p, σ, i) + W (p, σ, k) ≤ (1 +
1

k − 1
)

k−1
∑

i=1

W (p, σ, i) = (1 +
1

k − 1
)up(σ).

It follows that σ must be a 1
k−1 -approximate SE. ⊓⊔

Since the max k−cut game always possesses a NE, the existence of a 1
k−1 -approximate

SE is guaranteed. Interestingly Theorem 1 is tight because there are instances where a
NE is a 1

k−1 -approximate SE but not an ǫ-approximate SE for some ǫ < 1
k−1 .

4 On the quality of strong equilibria

In the previous section we identified some cases where a SE exists. Here we bound the
strong price of anarchy but we do not make any assumption on the instance so the result
applies for every instance admitting a SE.

Theorem 2. When k ≥ 3, the SPoA of the max k−cut game is at least 2k−2
2k−1 .

Proof. Let k ≥ 3 and G = (V,E) be an instance of the max k−cut game. Let σ be a
SE of G. Let σ∗ be an optimal state of G.

Let EOS (resp. EOO) be the set of edges which are only in cut induced by σ (resp.
σ∗). Let ECOM be the set of edges which are in common. Let OS, OO and COM be
the weight of EOS , EOO and ECOM respectively. Suppose that the following inequality
holds.

COM + kOS ≥ (2k − 2)OO (1)

Add (2k − 2)COM on both sides to get (2k − 1)COM + kOS ≥ (2k − 2)(OO + COM).
Since k ≥ 1 ⇔ k ≤ 2k−1, we deduce that (2k−1)(COM +OS) ≥ (2k−2)(OO+COM).
Using COM + OS = Q(σ) and COM + OO = Q(σ∗), the result follows.

Now let us prove inequality (1). We partition V into k2 sets Xi,j := {v ∈ V : σ(v) =
i and σ∗(v) = j} for i, j = 1, . . . , k (see Figure 3 for an illustration). Given two disjoint
sets X ⊆ V and Y ⊆ V , w(X,Y ) denotes

∑

x∈X

∑

y∈Y w([x, y]). Similarly, w(x, Y )
denotes

∑

y∈Y w([x, y]) where Y ⊂ V and x ∈ V \ Y .
Let π be a permutation of {1, · · · , k}. One can list k! optimal cuts representing the

same state σ∗, one per permutation, if σ∗(v) is replaced by π(σ∗(v)) for all v ∈ V . Let us
denote by π(σ∗) the optimum state associated with π. Let Vπ be the nodes of V which
are misplaced according to π(σ∗), i.e. v ∈ Vπ if σ(v) 6= π(σ∗(v)). Let rπ = |Vπ|. We are
going to rename the nodes of Vπ so that Vπ = {v1, · · · , vrπ

}.
Since σ is a SE, there is at least one node v ∈ Vπ such that uv(σ) ≥ uv(σ−Vπ

, π(σ∗)).
In other words, v does not benefit if all nodes of Vπ replace their strategy in σ by their
strategy in π(σ∗). Rename v by v1. Again, since σ is a SE, there is at least one node
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X1,2

X1,1

X1,3

X2,1

X2,2

X2,3

X3,1

X3,3

X3,2

Fig. 3. Partition of V into k2 sets according to σ and σ∗, case k = 3. Dashed edges belong
to the cut induced by σ but they are not in the cut induced by σ∗. Solid edges belong to the
cut induced by σ∗ but they are not in the cut induced by σ. Non represented edges are in the
intersection.

v ∈ Vπ \ {v1} such that uv(σ) ≥ uv(σ−Vπ\{v1}, π(σ∗)). Rename v by v2. The procedure
is run until all nodes of Vπ are renamed, that is Vπ = {v1, · · · , vrπ

}.
Let us define V ℓ

π as {vℓ, vℓ+1, · · · , vrπ
} for 1 ≤ ℓ ≤ rπ. For every vℓ ∈ Vπ, one has

uvℓ
(σ) ≥ uvℓ

(σ−V ℓ
π
, π(σ∗)) (2)

Take a vertex vℓ ∈ Vπ and suppose that vℓ ∈ Xiℓ,jℓ
. There are three cases where the

weight of an edge [vℓ, y] is present in uvℓ
(σ) but not in uvℓ

(σ−V ℓ
π
, π(σ∗)):

– CASE 1. y is not misplaced and he plays in σ the strategy that vℓ plays in π(σ∗).
In other words, y ∈ Xi′,j′ where i′ = π(j′) and i′ = π(jℓ); thus, j′ = jℓ since π is a
permutation. In this case [vℓ, y] ∈ EOS .

– CASE 2. y is misplaced, he was renamed after vℓ, he does not play the same strategy
as vℓ in σ but he plays the same strategy as vℓ in π(σ∗). In other words, y ∈
Xi′,j′ ∩ V ℓ+1

π where i′ 6= π(j′), i′ 6= iℓ and j′ = jℓ. In this case [vℓ, y] ∈ EOS .
– CASE 3. y is misplaced, he was renamed before vℓ, he plays in σ the strategy that

vℓ plays in π(σ∗). In other words, y ∈ Xi′,j′ ∩ (Vπ \ V ℓ
π ) where i′ 6= π(j′), i′ 6= iℓ and

i′ = π(jℓ) (hence, j′ 6= jℓ). In this case [vℓ, y] ∈ ECOM .

There are three cases where the weight of an edge [vℓ, y] is present in uvℓ
(σ−V ℓ

π
, π(σ∗))

but not in uvℓ
(σ):

– CASE 4. y is not misplaced and he plays the same strategy as vℓ in σ. In other
words, y ∈ Xi′,j′ where π(j′) = i′ and i′ = iℓ. In this case [vℓ, y] ∈ EOO.

– CASE 5. y is misplaced, he was renamed after vℓ, he plays the same strategy as
vℓ in σ but he does not play the same strategy as vℓ in π(σ∗). In other words,
y ∈ Xi′,j′ ∩ V ℓ+1

π where i′ = iℓ, j′ 6= jℓ and i′ 6= π(j′). In this case [vℓ, y] ∈ EOO.
– CASE 6. y is misplaced, he was renamed before vℓ and he plays the same strategy

as vℓ in σ. In other words, y ∈ Xi′,j′ ∩ (Vπ \ V ℓ
π ) where i′ 6= π(j′) and i′ = iℓ. In this

case [vℓ, y] /∈ EOO ∪ ECOM ∪ EOS if y plays the same strategy as vℓ in π(σ∗), i.e.
j′ = jℓ, otherwise [vℓ, y] ∈ EOO.
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Using cases 1 to 6, one can rewrite inequality (2) as follows.

w(vℓ,Xπ(jℓ),jℓ
) +

k
∑

i′=1,i′ 6=iℓ,i′ 6=π(jℓ)

w(vℓ,Xi′,jℓ
∩ V ℓ+1

π ) +

k
∑

j′=1,j′ 6=jℓ

w(vℓ,Xπ(jℓ),j′ ∩ (Vπ \ V ℓ
π )) ≥

k
∑

j′=1

w(vℓ,Xiℓ,π−1(iℓ)) +

k
∑

j′=1,j′ 6=jℓ,j′ 6=π−1(iℓ)

w(vℓ,Xiℓ,j′ ∩ V ℓ+1
π ) +

k
∑

j′=1,j′ 6=π−1(iℓ)

w(vℓ,Xiℓ,j′ ∩ (Vπ \ V ℓ
π )) (3)

Using w(vℓ,Xiℓ,j′ ∩ (Vπ \V ℓ
π )) ≥ 0 (the weight of an edge is always non negative) and

the previous inequality, we get that:

w(vℓ,Xπ(jℓ),jℓ
) +

k
∑

i′=1,i′ 6=iℓ,i′ 6=π(jℓ)

w(vℓ,Xi′,jℓ
∩ V ℓ+1

π ) +

k
∑

j′=1,j′ 6=jℓ

w(vℓ,Xπ(jℓ),j′ ∩ (Vπ \ V ℓ
π )) ≥

k
∑

j′=1

w(vℓ,Xiℓ,π−1(iℓ)) +

k
∑

j′=1,j′ 6=jℓ,j′ 6=π−1(iℓ)

w(vℓ,Xiℓ,j′ ∩ V ℓ+1
π ) +

k
∑

j′=1,j′ 6=π−1(iℓ),j′ 6=jℓ

w(vℓ,Xiℓ,j′ ∩ (Vπ \ V ℓ
π )) (4)

Actually, we have “removed” the weight of edges [vℓ, y] /∈ EOO ∪ ECOM ∪ EOS which
appear on Case 6. Observe that the last two terms of inequality (4) can be grouped as
follows:

w(vℓ,Xπ(jℓ),jℓ
) +

k
∑

i′=1,i′ 6=iℓ,i′ 6=π(jℓ)

w(vℓ,Xi′,jℓ
∩ V ℓ+1

π ) +

k
∑

j′=1,j′ 6=jℓ

w(vℓ,Xπ(jℓ),j′ ∩ (Vπ \ V ℓ
π )) ≥

k
∑

j′=1

w(vℓ,Xiℓ,π−1(iℓ)) +

k
∑

j′=1,j′ 6=jℓ,j′ 6=π−1(iℓ)

w(vℓ,Xiℓ,j′ ∩ Vπ) (5)

Summing inequality (5) for ℓ = 1, · · · , rπ, i.e. for each vℓ ∈ Vπ, we get that

rπ
∑

ℓ=1

(

w(vℓ,Xπ(jℓ),jℓ
) +

k
∑

i′=1,i′ 6=iℓ,i′ 6=π(jℓ)

w(vℓ,Xi′,jℓ
∩ V ℓ+1

π ) +

k
∑

j′=1,j′ 6=jℓ

w(vℓ,Xπ(jℓ),j′ ∩ (Vπ \ V ℓ
π ))

)

≥
rπ
∑

ℓ=1

(

k
∑

j′=1

w(vℓ,Xiℓ,π−1(iℓ)) +

k
∑

j′=1,j′ 6=jℓ,j′ 6=π−1(iℓ)

w(vℓ,Xiℓ,j′ ∩ Vπ)
)

(6)
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Now we give an intermediate property (proof in the appendix).

Property 1. For any edge [x, y], if w([x, y]) appears in the left-hand part of inequality
(6) then it appears once.

Cases 1 and 2 state that if w[x, y] appears in the left-hand part of inequality (6)
then [x, y] ∈ EOS . Using the fact that w[x, y] appears at most once (by Property 1), we
deduce that

rπ
∑

ℓ=1

(

w(vℓ,Xπ(jℓ),jℓ
) +

k
∑

i′=1,i′ 6=iℓ,i′ 6=π(jℓ)

w(vℓ,Xi′,jℓ
∩ V ℓ+1

π )
)

≤ OS (7)

Case 3 states that if w[x, y] appears in the left-hand part of inequality (6) then [x, y] ∈
ECOM and {x, y} ⊆ Vπ. Moreover w([x, y]) appears at most once, we deduce that

rπ
∑

ℓ=1

(

k
∑

j′=1,j′ 6=jℓ

w(vℓ,Xπ(jℓ),j′ ∩ (Vπ \ V ℓ
π ))

)

≤
k

∑

i=1

k
∑

j=1,j 6=π−1(i)

k
∑

j′=1,j′ 6=j

w(Xi,j ,Xπ(j),j′)

(8)
Using inequalities (7) and (8), we obtain the following upper bound on the left-hand

part of inequality (6):

OS +

k
∑

i=1

k
∑

j=1,j 6=π−1(i)

k
∑

j′=1,j′ 6=j

w(Xi,j ,Xπ(j),j′) (9)

Now we give a second intermediate property (proof in the appendix).

Property 2. Let x and y be two vertices of Xi,j and Xi′,j′ respectively. Among the k!
possible permutations π of {1, · · · , k}, exactly (k − 1)! of them satisfy simultaneously:
π(j) 6= i, π(j′) 6= i′ and i′ = π(j).

Now sum up inequality (9) for all permutations π of {1, . . . , k}. We can give the
following upper bound of the result: k!OS + (k − 1)!COM . Indeed every edge in EOS

appears exactly once for each permutation π. Concerning the edges [x, y] ∈ ECOM , each
one appears at most (k − 1)! times by Property 2.

Now we focus on the right part of inequality (6). Take an edge [x, y] such that x ∈ Xi,j

and y ∈ Xi′,j′ . The weight of [x, y] does not appear in the right part of inequality (6)
if i 6= i′. w([x, y]) appears once in the right part of inequality (6) if π(j) = i = i′ and
π(j′) 6= i′; in this case x /∈ Vπ whereas y ∈ Vπ. w([x, y]) appears twice in the right part
of inequality (6) if i 6= i′, π(j) 6= i and π(j′) 6= i′; in this case x, y ∈ Vπ.

By definition a vertex which is not in Vπ must be in Xi,π−1(i) for some i ∈ {1, · · · , k}.
Then inequality (6) is equal to

k
∑

i=1

(

k
∑

j=1,j 6=π−1(i)

w(Xi,π−1(i),Xi,j) +

k
∑

j=1,j 6=π−1(i)

k
∑

j′=1,,j′ 6=π−1(i)

w(Xi,j ,Xi,j′)
)

. (10)

If we sum up inequality (10) over the k! permutations of {1, · · · , k} then every term
w(Xi,j ,Xi,j′), for j 6= j′, appears exactly (k − 1)!(2k − 2) times. Indeed, a set Xi,j
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satisfies π(j) = i exactly (k − 1)! times, whereas π(j) 6= i holds k! − (k − 1)! times. In
addition it can not be π(j) = π(j′) = i because j 6= j′: 2(k − 1)! + 2(k! − 2(k − 1)!) =
(k − 1)!(2k − 2). Therefore summing up inequality (10) over the k! permutations of
{1, · · · , k} gives (k − 1)!(2k − 2)OO.

Finally, summing up inequality (6) over all possible permutations of {1, · · · , k}, we
get that k!OS + (k − 1)!COM ≥ (k − 1)!(2k − 2)OO which is equivalent to inequality
(1). ⊓⊔

The following matching upper bound on the SPoA of the max k−cut game can be
derived.

Proposition 2. The SPoA of the max k−cut game is at most (2k − 2)/(2k − 1).

Proof. Consider an instance with 2k vertices {v1, · · · , vk}∪{u1, · · · , uk} and the following
2k − 1 edges of weight 1: [v1, vi] for i = 2..k, [uk, ui] for i = 1..k − 1 and [v1, uk]. See
Figure 4. If every vi plays i while every uj plays j then the state is optimal and it has
weight 2k − 1. If every vi plays i while every uj plays j + 1 mod k (i.e. uk plays 1, u1

plays 2, etc) then the state is a SE of weight 2k − 2. Indeed every node in {v2, · · · , vk}∪
{u1, · · · , uk−1} has the maximum utility that he can expect in this instance so none of
them has incentive to deviate. Now if v1 or uk moves then one of his incident edge would
not be the cut anymore while only [v1, uk] can enter the cut. Then v1 and uk can not
alone or together increase their utility. ⊓⊔

u1

u2

uk−1

uk

v2

v3

vk

v1

Fig. 4. An instance for the upper bound on the SPoA.

5 Concluding remarks and open questions

The main question remaining open is to prove or disprove that every instance of the
max k−cut game possesses a strong equilibrium. The technique used by Harks, Klimm
and Möhring [6] considers all improving pairs of strategies while Holzman and Law-Yone
[7] require minimal improving pairs of strategies (an improving pair of strategies is not
minimal if a proper subset of the coalition can also perform an improvement). The cycle
presented in Figure 2 is made of three improvements which are not minimal. Then it
would be interesting to investigate the existence of a strong potential function restricted
to minimal improvements.

A Nash equilibrium of the max k-cut game a 1
k−1 -approximate SE, can we prove

the existence of an ǫ-approximate SE for some ǫ < 1
k−1? It is known from [5] that every

instance of the game possesses a 3-SE, a stronger notion of equilibrium than the NE.
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However, it is not difficult to build an instance containing a 3-SE σ which is also a 1
k−1 -

approximate SE, but σ is not an ǫ′-approximate SE for ǫ′ < 1
k−1 . A promising direction

would be to bound the ǫ such that every optimal cut is an ǫ-approximate SE. This ǫ
cannot be 0 since an optimal cut is not necessarily a SE and a better lower bound on
this ǫ can be derived from the instance of Figure 1.

The price of stability (PoS) is a well studied ratio whose definition is close to the
price of anarchy [13]. It is the worst case ratio between the social welfare of the best NE
and a socially optimal state. Since an optimal cut is a NE in the max k−cut game, the
PoS is 1. It is natural to restrict this notion to strong equilibria [4]. We know that the
price of stability for strong equilibria is 1 when k = 2 and strictly less than 1 when k ≥ 3
(see the instance of Figure 1). It would be interesting to give an explicit lower bound for
the case k ≥ 3.
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Appendix

Property 1. For any edge [x, y], if w([x, y]) appears in the left-hand part of inequality (6)
then it appears once.

Proof. – If neither x nor y belong to Vπ then w([x, y]) can not appear since in this case
[x, y] ∈ ECOM or [x, y] /∈ ECOM ∪ EOS ∪ EOO.

– If only x (or only y) is in Vπ then w([x, y]) can appear at most once, in the term
w(vℓ∗ ,Xπ(jℓ∗ ),jℓ∗

) where x = vℓ∗ .
– If x and y both belong to Vπ then there are ℓ∗ and ℓ∗∗ such that x = vℓ∗ and

y = vℓ∗∗ . Without loss of generality, suppose that ℓ∗ < ℓ∗∗, vℓ∗ ∈ Xiℓ∗ ,jℓ∗
and vℓ∗∗ ∈

Xiℓ∗∗ ,jℓ∗∗
. w([vℓ∗ , vℓ∗∗ ]) can appear when ℓ = ℓ∗ and when ℓ = ℓ∗∗, i.e. in the terms

∑k
i′=1,i′ 6=iℓ∗ ,i′ 6=π(jℓ∗ ) w(vℓ∗ ,Xi′,jℓ∗

∩V ℓ∗+1
π ) and

∑k
j′=1,j′ 6=jℓ∗∗

w(vℓ∗∗ ,Xπ(jℓ∗∗ ),j′∩(Vπ\

V ℓ∗∗

π )). However the first term imposes jℓ∗∗ = jℓ∗ whereas the second one imposes
jℓ∗∗ 6= jℓ∗ , contradiction. ⊓⊔

Property 2. Let x and y be two vertices of Xi,j and Xi′,j′ respectively. Among the k!
possible permutations π of {1, · · · , k}, exactly (k − 1)! of them satisfy simultaneously:
π(j) 6= i, π(j′) 6= i′ and i′ = π(j).

Proof. We first observe that j 6= j′ by π(j′) 6= i′ and i′ = π(j). Moreover i 6= i′ by
π(j) 6= i and i′ = π(j). Then we conduct a case study where i 6= i′ and j 6= j′. Let
a, b, c, d are four distinct elements of {1, · · · , k}:

– Case i = a, j = a, i′ = b and j′ = b. π must satisfy b = π(a). Since a permutation is a
bijection, it follows that π(b) 6= b and π(a) 6= a. Then π satisfies the three assertions
iff b = π(a) and there are (k − 1)! permutations satisfying b = π(a).

– Case i = a, j = b, i′ = b and j′ = a. π must satisfy b = π(b). It follows that π(b) 6= a
and π(a) 6= b. Then π satisfies the three assertions iff b = π(b).

– Case i = a, j = b, i′ = b and j′ = c. π must satisfy b = π(b). It follows that π(b) 6= a
and π(c) 6= b. Then π satisfies the three assertions iff b = π(b).

– Case i = b, j = c, i′ = a and j′ = b. π must satisfy a = π(c). It follows that π(b) 6= a
and π(c) 6= b. Then π satisfies the three assertions iff a = π(c).

– Case i = a, j = b, i′ = c and j′ = c. π must satisfy c = π(b). It follows that π(c) 6= c
and π(b) 6= a. Then π satisfies the three assertions iff c = π(b).

– Case i = c, j = c, i′ = a and j′ = b. π must satisfy a = π(c). It follows that π(c) 6= c
and π(b) 6= a. Then π satisfies the three assertions iff a = π(c).

– Case i = a, j = b, i′ = c and j′ = d. π must satisfy c = π(b). It follows that π(d) 6= c
and π(b) 6= a. Then π satisfies the three assertions iff c = π(b). ⊓⊔


