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Abstract We present a new algorithm for Bayesian network structure learning, called

Max-Min Hill-Climbing (MMHC). The algorithm combines ideas from local learning,

constraint-based, and search-and-score techniques in a principled and effective way. It first

reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy

hill-climbing search to orient the edges. In our extensive empirical evaluation MMHC out-

performs on average and in terms of various metrics several prototypical and state-of-the-art

algorithms, namely the PC, Sparse Candidate, Three Phase Dependency Analysis, Optimal

Reinsertion, Greedy Equivalence Search, and Greedy Search. These are the first empirical re-

sults simultaneously comparing most of the major Bayesian network algorithms against each

other. MMHC offers certain theoretical advantages, specifically over the Sparse Candidate

algorithm, corroborated by our experiments. MMHC and detailed results of our study are

publicly available at http://www.dsl-lab.org/supplements/mmhc paper/mmhc index.html.

Keywords Bayesian networks · Graphical models · Structure learning

1. Introduction

A Bayesian network is a mathematical construct that compactly represents a joint probability

distribution P among a set variables V . Bayesian networks are frequently employed for

modeling domain knowledge in Decision Support Systems, particularly in medicine (Beinlich

et al., 1989; Cowell et al., 1999; Andreassen et al., 1989).
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Learning a Bayesian network from observational data is an important problem that has

been studied extensively during the last decade. One reason for this is because it can be used to

automatically construct Decision Support Systems. In addition, while still controversial (see

Dash, 2005 for a recent discussion) learning Bayesian networks is being used for inferring

possible causal relations since, under certain conditions (Spirtes, Glymour & Scheines, 2000)

the edges in the graph of a Bayesian network have causal semantics (ı.e. they represent direct

causal influences). For example, in bioinformatics learning Bayesian networks have been

used for the interpretation and discovery of gene regulatory pathways (Friedman et al., 2000).

In addition, the theory of learning Bayesian networks has deep connections with variable

selection for classification (Tsamardinos & Aliferis, 2003) and has been used to design

algorithms that optimally solve the problem under certain conditions (Aliferis, Tsamardinos

& Statnikov, 2003b; Tsamardinos, Aliferis & Statnikov, 2003c). Finally, Bayesian network

learning has been used in information retrieval (Baeze-Yates & Ribiero-Neto, 1999), natural

language processing (Chapman et al., 2001), and for the analysis of a medical service’s

performance for management decisions (Acid et al., 2004).

The recent explosion of high dimensionality data sets in the biomedical realm and other

domains, owing in part to new proteomics profiling and micro-array gene expression tech-

niques that produce data sets with tens or hundreds of thousands of variables, has posed a

serious challenge to existing Bayesian network learning algorithms. Current state-of-the-art

algorithms do not reliably scale up to thousands of variables in reasonable time. In addition,

improving the accuracy of the generated causal hypotheses is arguably more important now

since it is being used to suggest expensive and time-consuming experiments.

Learning (the most probable a posteriori under certain conditions) Bayesian network from

data is an NP-Hard problem (Chickering, 1996; Chickering, Meek & Heckerman, 2004). In

practice, the difficulty of the problem of learning large Bayesian networks from data as

perceived by the community is perhaps best captured in this relatively recent quote:

“In our view, inferring complete causal models (i.e., causal Bayesian networks) is

essentially impossible in large-scale data mining applications with thousands of vari-

ables” (Silverstein et al., 2000).

In this paper we present an algorithm, called Max-Min Hill-Climbing (MMHC) that is

able to overcome the perceived limitations. The algorithm is able to scale to distributions

with thousands of variables and pushes the envelope of reliable Bayesian network learning

in both terms of time and quality in a large variety of representative domains.

In general, there are two main approaches for learning Bayesian networks from data. The

search-and-score approach attempts to identify the network that maximizes a score function

indicating how well the network fits the data. One such score metric is the a posteriori prob-

ability of a network N given the data D and prior knowledge K , i.e., arg maxN P(N |D, K )

(Cooper & Herskovits, 1992; Heckerman, Geiger & Chickering, 1995). Algorithms in this

category search the space of all possible structures for the one that maximizes the score using

greedy, local, or some other search algorithm.

The second approach for learning Bayesian networks is constraint-based (Spirtes, Gly-

mour & Scheines, 2000). Algorithms following this approach estimate from the data whether

certain conditional independencies between the variables hold. Typically, this estimation is

performed using statistical or information theoretic measures. The conditional independence

constraints are propagated throughout the graph and the networks that are inconsistent with

them are eliminated from further consideration. A sound strategy for performing conditional

independence tests ultimately retains (and returns) only the statistically equivalent networks

consistent with the tests.
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The Max-Min Hill-Climbing (MMHC) algorithm can be categorized as a hybrid method,

using concepts and techniques from both approaches. MMHC first learns the skeleton (i.e., the

edges without their orientation) of a Bayesian network using a local discovery algorithm called

Max-Min Parents and Children (MMPC), a first version of which (that did not incorporate the

symmetry correction, see Section 3.3) was introduced in Tsamardinos, Aliferis and Statnikov

(2003a). It then orients the skeleton using a greedy Bayesian-scoring hill-climbing search.

MMHC’s skeleton identification phase is sound in the sample limit while the orientation

phase does not provide any theoretical guarantees.

MMHC can be viewed as a particular instantiation of the Sparse Candidate algorithm (SC)

(Friedman, Nachman & Pe’er, 1999; Friedman et al., 2000), one of the first Bayesian network

learning algorithms to be successfully applied to datasets with several hundred variables. In

a similar fashion to MMHC, Sparse Candidate constrains the search of a search-and-score

algorithm: each variable X is allowed to have parents only from within a predetermined

candidate parents set C(X ) of size at most k, where k is defined by the user. Initially, the can-

didate parent sets are heuristically estimated, and then hill-climbing (or other instantiations

of the general algorithm) is used to identify a network that (locally) maximizes the score

metric. Subsequently, the candidate parent sets are re-estimated and another hill-climbing

search round is initiated. A cycle of candidate sets estimation and hill-climbing is called

an iteration. Sparse Candidate iterates until there is no change in the candidate sets or a

given number of iterations have passed with no improvement in the network score. Experi-

ments with the Sparse Candidate have shown that constraining the greedy search results in

significant computational gains.

However, there are three main problems with the Sparse Candidate algorithm. The first

is that the estimation of the candidate sets is not sound (i.e., may not identify the true

set of parents) and that it may take a number of iterations to converge to an acceptable

approximation of the true set of parents. The second problem with the algorithm is that the

user has to guess the parameter k, i.e., the maximum number of parents allowed for any

node in the network. If the user overestimates k, the algorithm will take unnecessarily long

to finish and may even be rendered intractable for large datasets. If the user underestimates

k, there is a risk of discovering a suboptimal network. Finally, the parameter k imposes a

uniform sparseness constraint on the network. While the connectivity of the network within a

subgraph may be relatively large, the network may be quite sparse within some other area. A

common parameter k for all nodes will have to sacrifice either efficiency (if it is chosen large

enough to accommodate both areas) or quality of reconstruction. Unfortunately, the effects

of underestimating k affect quality in a non-local fashion. As we show in our experiments, if

a variable has m > k parents, then not only the node will be missing at least m − k parents

in the reconstructed network, but the errors may propagate to the rest of the network.

Max-Min Hill-Climbing (MMHC) alleviates all of the three problems listed above. By

learning the skeleton of the Bayesian network, MMHC estimates the candidate parent sets: a

candidate parent of X is any other variable Y sharing an edge with X . The difference from

Sparse Candidate is that this identification is performed in a sound manner (given enough

sample) and without requiring the user to estimate the parameter k. Essentially the maximum

number of parents k is discovered and is set individually for each variable in the network.

MMHC is accurate enough in estimating the candidate sets that only one iteration is required,

rendering MMHC computationally less intensive than Sparse Candidate.

To identify the skeleton, MMHC employs tests of conditional independence, seeking

variable subsets Z that render a pair of variables X and Y conditionally independent. This is

performed in a similar fashion to PC (Spirtes, Glymour & Scheines, 2000), a prototypical

constraint-based algorithm. The key difference between the skeleton identification phase of
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the two algorithms is that they employ different search strategies for these variable subsets.

We show that MMHC’s strategy on average performs significantly fewer test than PC and

thus, is computationally more efficient.

In this paper, we provide an extensive evaluation of MMHC against a wide cross-section of

other prototypical or state-of-the-art Bayesian network learning algorithm on reconstructing

several Bayesian networks employed in real decision support systems from data. This is

the first study of this scope providing a valuable comparison of existing algorithms for

various networks and sample sizes. Our study includes PC (Spirtes, Glymour & Scheines,

2000), Three Phase Dependency Analysis (Cheng et al., 2002), Sparse Candidate (Friedman,

Nachman & Pe’er, 1999), Optimal Reinsertion (Moore & Wong, 2003), Greedy Equivalent

Search (Chickering, 2002b) and Greedy Search. In total, 4,290 networks were learned from

data using a year’s single-CPU time.

MMHC is released as part of Causal Explorer 1.3 (see Aliferis et al., 2003a, for a de-

scription of Causal Explorer 1.0), a tool library of local causal discovery and Bayesian

network learning algorithms. Detailed results, scripts, and code are publicly available at

http://www.dsl-lab.org/supplements/mmhc paper/mmhc index.html to facilitate further in-

dependent analysis and comparisons with future algorithms.

In our experiments, MMHC outperformed on average and subject to the selected imple-

mentations all other algorithms in terms of computational efficiency except for Three Phase

Dependency Analysis, TPDA, for sample size 5000. For three algorithms (Greedy Search,

PC, and Three Phase Dependency Analysis) we counted the number of statistical calls as an

implementation-independent measure of efficiency. MMHC performed fewer calls on aver-

age than all of the three algorithms (again, except for the Three Phase Dependency Analysis

algorithm for sample size 5000). Finally, in terms of the quality of reconstruction MMHC

outperformed on average all other algorithms (except for Greedy Equivalent Search, GES,

for sample size 1000), as measured by the number of structural errors.

Specifically, MMHC outperforms Sparse Candidate even though the latter is allowed sev-

eral iterations to estimate the candidate parent sets and is provided with a good estimate of the

k parameter. A theoretical explanation of the results is provided. Compared to the PC algo-

rithm, MMHC’s strategy identifies the skeleton with higher accuracy while performing fewer

tests of conditional independence. Additionally, unlike PC, MMHC does not break down

when the available sample size is relatively small. The counter-intuitive behavior of PC on

small sample datasets is illustrated and explained. Against the unconstrained Greedy Search,

we show that MMHC converges to a higher quality network by searching a significantly

smaller space.

The Three Phase Dependency Analysis algorithm is polynomial to the number of variables

and so it asymptotically becomes faster than MMHC as sample size increases. However, the

quality of reconstruction is never on par with that of MMHC.

The Greedy Equivalent Search algorithm is guaranteed to find the maximally probable a

posteriori network in the sample limit, however, it is still outperformed by MMHC on the

finite samples we have tried. Greedy Equivalent Search is also less efficient than MMHC:

despite the fact that it performs a greedy search, the branching factor in its search space is

potentially exponential to the number of variables.

Finally, the Optimal Reinsertion algorithm has the advantage of being implemented as an

anytime algorithm and also of being able to identify functions violating faithfulness; never-

theless, its quality performance is still not on par with MMHC within the scope of our study.

Our experimental results on MMHC corroborate and improve on the idea, introduced by

Sparse Candidate, that constraining a (Bayesian) scoring search improves the efficiency of

learning. While tests of conditional independence have been employed before by several
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algorithms, MMHC offers new insight in the use of such tests that push the envelope of

Bayesian network learning.

2. Background

We denote a variable with an upper-case letter (e.g., A, Vi ) and a state or value of that

variable by the same lower-case letter (e.g., a, vi ). We denote a set of variables by upper-

case bold-face (e.g., Z, Pai) and we use the corresponding lower-case bold-face symbol to

denote an assignment of state or value to each variable in the given set (e.g., z, pai). We use

calligraphic fonts for special sets of variables such as the set of all variables considered V .

In this paper we deal with discrete probability distributions and complete datasets only (i.e.,

all modelled variables in all training instances obtain an observed known value).

Definition 1. Two variables X and Y are conditionally independent given Z with respect to

a probability distribution P , denoted as IndP (X ; Y |Z), if ∀x, y, z where P(Z = z) > 0,

P(X = x, Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z)

or

P(X, Y | Z) = P(X | Z)P(Y | Z)

for short. We denote and define dependence as

DepP (X ; Y | Z) ≡ ¬I nd P (X ; Y | Z)

Definition 2. Let P be a discrete joint probability distribution of the random variables1 in

some set V and G = 〈V, E〉 be a Directed Acyclic Graph (DAG). We call 〈G, P〉 a (discrete)

Bayesian network if 〈G, P〉 satisfies the Markov Condition: every variable is independent of

any subset of its non-descendant variables conditioned on its parents (Pearl, 1988; Spirtes,

Glymour & Scheines, 1993, 2000; Glymour and Cooper, 1999; Pearl, 2000; Neapolitan,

2003).

We denote the set of the parents of variable Vi in the graph G as PaG
i . By utilizing the

Markov Condition, it is easy to prove that for a Bayesian network 〈G, P〉 the distribution P

of the variables V can be factored as follows:

P(V) = P(V1, . . . , Vn) =
∏

Vi ∈V

P
(

Vi | PaGi
)

To represent a Bayesian network the structure (i.e., the BN graph) and the joint probability

distribution have to be encoded; for the latter, and according to the above equation, one is

required to only specify the conditional probabilities P(Vi = vi | PaGi = paj) for each variable

Vi , each possible value vi of Vi , and each possible joint instantiation pa j of its parents PaG
i .

The graph of a network in conjunction with the Markov Condition directly encode some

of the independencies of the probability distribution and entail others (see Neapolitan, 2003,

pp. 70 for a definition of entailment). A graphical criterion for entailment is that of d-

separation (Pearl, 1988, 2000). It is defined on the basis of blocked paths:

Definition 3. A node W of a path p is a collider if p contains two incoming edges into W .

1 Variables are also interchangeably called nodes or vertices in the context of a Bayesian network.
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Definition 4. A path p from node X to node Y is blocked by a set of nodes Z, if there is a

node W on p for which one of the following two conditions hold:

1. W is not a collider and W ∈ Z, or

2. W is a collider and neither W or its descendants are in Z (Pearl, 1988).

Definition 5. Two nodes X and Y are d-separated by Z in graph G (denoted as

DsepG(X ; Y | Z)) if and only if every path from X to Y is blocked by Z. Two nodes are

d-connected if they are not d-separated.

In Verma and Pearl (1988) it is proven that a pair of nodes d-separated by a variable

set in network 〈G, P〉 is also conditionally independent in P given the set. The faithfulness

condition below, asserts that the conditional independencies observed in the distribution of

a network are not accidental properties of the distribution, but instead due to the structure of

the network.

Definition 6. If all and only the conditional independencies true in the distribution P are

entailed by the Markov condition applied to G, we will say that P and G are faithful to

each other (Spirtes, Glymour & Scheines, 1993, 2000; Neapolitan, 2003). Furthermore, a

distribution P is faithful if there exists a graph, G, to which it is faithful.

Definition 7. A Bayesian network 〈G, P〉 satisfies the faithfulness condition if P embodies

only independencies that can be represented in the DAG G (Spirtes, Glymour & Scheines,

1993). We will call such a Bayesian network a faithful network.

Theorem 1. In a faithful BN 〈G, P〉 (Pearl, 1988)

DsepG(X ; Y | Z) ⇔ I nd P (X ; Y | Z)

We assume faithfulness of the network to learn in the rest of the paper. Because of the the-

orem and the faithfulness assumption, the terms d-separation and conditional independence

are used interchangeably in the rest of the paper.

Notice that, there are distributions P for which there is no faithful Bayesian network

〈G, P〉 (however, these distributions are “rare”; see Meek, 1995, for details). Also, there may

be more than one graph faithful to the same distribution P .

Learning the structure (graph) of a Bayesian network from statistical data D following a

distribution P is an important, on-going research problem. When learning the graph structure

under certain conditions (Spirtes, Glymour & Scheines, 2000; Pearl, 2000) (that include

faithfulness) one can attribute a causal interpretation to the edges of the graphG: an edge X →

Y corresponds to a direct2 causal effect; manipulating X will affect the observed distribution

of Y . Because of this property of Bayesian networks, they have been used for generating

causal hypotheses, particularly in bioinformatics (Friedman et al., 2000) and developmental

and cognitive psychology (Glymour, 2001).

Since there may be numerous graphs G such that for a specific P 〈G, P〉 is a Bayesian

network, several definitions are possible for the problem of learning the structure of a Bayesian

2 Direct in this context is meant relatively to the rest of the variables in the model; for example, the direct causal

relation X → Y may be rendered indirect once the model is extended to include a new mediating variable Z :

X → Z → Y .
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network, giving preference to inducing different structures. Here, we follow Neapolitan

(2003), pp. 533:

Definition 8. Let P be a faithful distribution and D a statistical sample following P . The

problem of learning the structure of a Bayesian network given D is to induce a graph G so

that 〈G, P〉 is a faithful Bayesian network.

The following theorem is utilized in most constraint-based algorithms:

Theorem 2. In a faithful BN 〈G, P〉 on variables V there is an edge between the pair of

nodes X and Y in V iff DepP (X ; Y | Z), for all Z ⊆ V (Spirtes, Glymour & Scheines, 1993).

Algorithms following the constraint-based approach estimate from the data whether

certain conditional independencies between the variables hold using statistical or

information-theoretic tests (Glymour & Cooper, 1999; Cheng et al., 2002). If for a pair

of variables X and Y it is deemed that Ind P (X ; Y | Z) conditioned on some set of vari-

ables Z, and assuming the network to be reconstructed is faithful, then there should not

be an edge between X and Y in the network according to Theorem 2. In the rest of the

paper, we drop the subscripts and superscripts P and G when they can be inferred by the

context.

3. The max-min parents and children algorithm

The Bayesian network learning algorithm presented in this paper is based on the local dis-

covery algorithm called Max-Min Parents and Children (MMPC) (a version of MMPC

was published in Tsamardinos, Aliferis and Statnikov, 2003c). The Max-Min part of the

algorithm name refers to the heuristic the algorithm uses, while the parents and chil-

dren part refers to its output. MMPC is used by MMHC to reconstruct the skeleton

of the Bayesian network before a constrained greedy search is performed to orient the

edges.

We will denote the set of parents and children of T in a graph G as PCG
T (not to be

confused with the parents of T in G denoted as PaG
T ). If 〈G, P〉 and 〈G ′, P〉 are two faithful

Bayesian networks (to the same distribution), then for any variable T , it is the case that

PCG
T = PCG ′

T (Verma & Pearl, 1990; Pearl & Verma, 1991; Tsamardinos, Aliferis & Statnikov,

2003c). Thus, the set of parents and children of T is unique among all Bayesian networks

faithful to the same distribution and so we will drop the superscript and denote it simply

as PCT . Given a target variable of interest T and statistical data D, MMPC returns PCT ,

provided there is a graph faithful to the data distribution and the statistical tests performed

return reliable results. Notice that, a node may be a parent of T in one network and a child

of T in another, e.g., the graphs X ← T and X → T may both be faithful to the same

distribution. However, the set of parents and children of T , i.e., {X}, remains the same in

both.

MMPC run on target T provides a way to identify the existence of edges to and from T

(but without being able to identify the orientation of the edges). By invoking MMPC with

each variable as the target one can identify all the edges (in an un-oriented fashion) in the

network, i.e., identify the skeleton of the Bayesian network. To fully reconstruct the network

one has to further orient the edges; this is discussed in Section 5 and gives rise to the Max-Min

Hill-Climbing (MMHC) algorithm.
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3.1. MMPC

For clarity of presentation, we first describe a simplified version of the algorithm we call

MMPC that may return false positives depending on the structure, i.e., it may return a superset

of PCT . We then present the complete and sound MMPC.

MMPC (pseudo-code shown in Algorithm 1) invokes the function for testing Ind(X ; T |Z),

that returns true if X and T are conditionally independent given Z as estimated by a statistical

test on the training data D.3 Function Assoc(X ; T |Z) is an estimate of the strength of associa-

tion (dependency) of X and T given Z. We assume that Ind(X ; T |Z) ⇔ (Assoc(X ; T |Z) = 0).

Details on the functions’ implementation are given in Section 4.

Definition 9. We define the minimum association of X and T relative to a feature subset Z,

denoted as MinAssoc(X ; T |Z), as

MinAssoc(X ; T |Z) = min
S⊆Z

Assoc(X ; T |S)

i.e., as the minimum association achieved between X and T over all subsets of Z.

3 For simplicity of notation, D is omitted from the parameter list of all functions that use the data.
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Recall that according to Theorem 2, if one identifies a subset of variables Z such that

Ind(X ; T |Z), then there is no edge between X and T in the induced graph. For each variable

X , MMPC attempts to quickly identify a conditioning set Z for which the independency with

T holds and thus prove that X does not belong in PCT .

MMPC discovers PCT using a two-phase scheme. In phase I, the forward phase, variables

enter sequentially a candidate PCT , called CPC by use of a heuristic function. In each

iteration, CPC is augmented according to the following:

Max-Min Heuristic: select the variable that maximizes the minimum association with

T relative to CPC.

(hence the name of the algorithm). The heuristic is admissible in the sense that all variables

with an edge to or from T and possibly more will eventually enter CPC. The intuitive

justification for the heuristic is to select the variable that remains highly associated with T

despite our best efforts (i.e., after conditioning on all subsets of CPC) to make the variable

independent of T . Phase I stops when all remaining variables are independent of the target

T given some subset of CPC, i.e., the maximum minimum association reaches zero.

In phase II, MMPC attempts to remove the false positives that may have entered in the

first phase. This is achieved by testing whether Ind(X ; T |S) for some subset S ⊆ CPC. If the

condition holds, X is removed from CPC.

In practice, the search over all subsets in Lines 10, 17, and 18 in the algorithm is limited

by the available sample. In Section 4 we include a detailed discussion for the justification of

the restriction and its theoretical implications, while Section 7 discusses the computational

complexity ramifications.

3.2. Example trace

We now provide an example trace of MMPC with target node T shown in Fig. 1(a). We

assume that the dataD given to the algorithm are sampled from the distribution of the network

in Fig. 1(a) and additionally, that the network is faithful. We assume that the sample size is

large enough for the results of all tests of conditional independence performed by MMPC to

return the correct result. Thus, the results of each call to Ind(X ; T |Z) can be assessed simply

by looking at the graph of Fig. 1(a) and determining whether Dsep(X ; T | Z) or not.

In the Figs. 1(b–m) the candidate parents and children set CPC is the set of nodes in

the dashed texture. The variable selected by the Max-Min heuristic is denoted with a circle

around it.

It is easy to see that S1 ⊆ S2 ⇒ Min Assoc(X ; Y | S1) ≥ Min Assoc(X ; Y | S2). Thus, as

the CPC increases the minimum association relative to CPC can only be reduced. For this

reason, a variable that achieves zero minimum association with T (i.e., becomes independent

of T given some subset of CPC) can never enter CPC, is crossed out with an X mark in the

figures, and not considered again by the algorithm.

Initially (Fig. 1(b)) CPC = ∅ for the target variable T and let us assume that variable A

is selected by the Max-Min Heuristic. During the evaluation of the heuristic, nodes B and

E are found to have a zero minimum association and are crossed out. In Fig. 1(c), A enters

CPC. In the next iteration, D is selected by MMPC’s heuristic (Fig. 1(d)). In Fig. 1(e), D

enters CPC which now becomes {A, D}.

In the next iteration (Fig. 1(f)), variables H and J are found to be independent of T

conditioned on some subset of CPC, namely {D}, and get crossed out and C is selected by

the heuristic. It enters CPC in Fig. 1(g).
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In the fourth iteration, I is selected (Fig. 1(h)) and enters the CPC (Fig. 1(i)). Finally, in

Fig. 1(j) all remaining variables reach a minimum association of zero and are crossed out, at

which point the forward phase completes.

The algorithm now enters the second (backward) phase. The current CPC is

{A, C, D, I } (Fig. 1(k)). Phase II will discover that Ind(A; T | {C, D}) (Fig. 1(l)) and will

remove A from the CPC as a false positive. MMPC will return the PCT = {C, D, I }

(Fig. 1(m)).

Fig. 1 Part 1: (a) Example trace of MMPC, forward phase
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Fig. 1 Part 2: (b) Example trace of MMPC, backward phase

BA

T

C

Fig. 2 An example where

MMPC will return false positives

when run for target T

3.3. MMPC

Assuming faithfulness, MMPC will return no false negatives, i.e., will include all members

of PCT in its output. However, there is a case where MMPC may return false positives. This

case is shown in Fig. 2. In this network, notice that C will enter and remain in the output

of MMPC. This is because C is dependent on T conditioned on all subsets of T ’s parents

and children, namely both {A} and the empty set. The problem is that by conditioning on

the empty set, the path T → A → C d-connects T and C ; conditioning on {A}, the path

T → A ← B → C d-connects T and C .

The only way to d-separate T and C would be to condition on both A and B simultaneously.

However, B will be removed from CPC since it is independent from T given the empty set.

So, the algorithm will not condition on the set {A, B}.

MMPC corrects for this case and is shown in Algorithm 2. Notice that in the example of

Fig. 2, even though MMPC(T,D) will falsely return C ∈ PCT , when run with target C , it

will not include T in the output, i.e., T �∈ PCC . Since the relation PC should be symmetric,

this break of symmetry in the output of the algorithm is an indication of a false positive

member.4 Algorithm MMPC checks whether T ∈ MMPC(X,D) for all X ∈ MMPC(T,D);

if this is not the case it removes X from its output.

4 The break of symmetry may be used to direct certain edges, i.e., in our example C has to be a descendant of

T (see Lemma 2) as pointed out to us by one of the anonymous reviewers.
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In Appendix A we prove the correctness of the algorithm under the following three

assumptions:

1. The distribution of the data D is faithful.

2. For any X and Z, Assoc(X ; T |Z) ≥ 0 with equality holding if and only if Ind(X ; T |Z).

3. The tests Ind(X ; T |Z) as estimated by the data D return IndP(X; T | Z).

Theorem 3. Algorithm MMPC(T,D) will return PCT .

4. Tests of conditional independence and measures of association

The algorithm is based on tests of conditional independence and measures of the strength of

association between a pair of variables. We now describe how such tests are implemented.

First consider the test Ind(X i ; X j | Xk). To implement the test we calculate the G2 statistic

as in Spirtes, Glymour and Scheines (2000), under the null hypothesis of the conditional

independence holding. Let Sabc
i jk be the number of times in the data where X i = a, X j = b

and Xk = c. We define in a similar fashion, Sac
ik , Sbc

jk , and Sc
k . Then, the G2 statistic is defined

as (Spirtes, Glymour & Scheines, 2000; Neapolitan, 2003)

G2 = 2
∑

a,b,c

Sabc
i jk ln

Sabc
i jk Sc

k

Sac
ik Sbc

jk

.

The G2 statistic is asymptotically distributed as χ2 with appropriate degrees of freedom.

Assuming no structural zeros the number of degrees of freedom is:

d f = ( | D(X i ) | − 1)( | D(X j )| − 1)
∏

Xl∈Xk

| D(Xl )|

where D(X ) is the domain (number of distinct values) of variable X . As a heuristic, Spirtes,

Glymour & Scheines (2000) reduce the number of degrees of freedom by one for each cell

of the contingency tables of the expected (under the independence hypothesis) distribution

(i.e., for each Sac
ik Sbc

jk product) that is equal to zero. In our implementation we calculate the

degrees of freedom following Steck & Jaakkola (2002) instead (see calculation of Effective

Number of Parameters).

The χ2 test returns a p-value that corresponds to the probability of falsely rejecting the

null hypothesis given that it is true. If the p-value is less than a significance level α (set to 0.05

in our experiments) the null hypothesis is rejected. If the independence hypothesis cannot be

rejected, it is accepted instead. A more detailed discussion on this use of independence tests

is in Neapolitan (2003) pp. 593.
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As a measure of association, i.e., function Assoc in the pseudo-code, we used the negative

p-value returned by the G2 test of independence: the smaller the p-value, the higher the

association. To break the ties among equal p-values we used the G2 statistic. Again, a p

value less than the 0.05 threshold is considered to indicate a zero association.

The value of G2 requires computing the number of occurrences of all different possible

patterns of variables X i , X j , and Xk , i.e., Sabc
i jk , ∀a, b, c. For example, if Xk contains five

binary variables, and X i and X j are also binary, the number of possible patterns is 27. This

implies that the number of training samples required to accurately estimate the expected value

of these counts is exponential to the size of the conditioning set. Following the practice used in

Spirtes, Glymour and Scheines (2000) in our experiments we do not perform an independence

test (i.e., we assume independence) unless there are at least five training instances on average

per parameter (count) to be estimated.

The implications of this restriction is that at Lines 10, 17, and 18 in Algorithm 1 only

a limited number of subsets of CPC actually participate to the calls to functions Ind and

Assoc. When sample is limited this method may allow false positives to be included in the

output (in the worst case all other nodes). This is the case, for example, if a variable, X

requires conditioning on at least two other variables to be made d-separated from T , but the

available sample suffices to condition only on one other variable. Note that limiting the size

of the conditioning set does not limit the number of candidate parents of a node, as in the

Sparse Candidate algorithm. Rather it limits the size of the subsets of CPC used in the tests

of conditional independence. For example, T might have ten variables in the CPC but the

conditioning set sizes in the tests might be limited to pairwise independence with T .

In order to compute the G2 statistic and count the possible patterns of the variables of

each test, we create an array storing each count, then traverse the training sample once to

compute them. The non-zero counts are identified and used in the G2 formula. This technique

is exponential to the number of variables in the conditional set and linear to the number of

training cases. Better algorithms exist that only take time linear to the number of training

instances, independent of the size of the conditioning set. Also, advanced data structures

(Moore & Wong, 2003) can be employed to improve the time complexity.

Our implementation uses a χ2 test to assess conditional independence and strength of

association. We selected it because it is a statistical test (in contrast to the estimated mutual

information for example, see Section 13), it is asymptotically correct for a general discrete

multinomial distribution (e.g., it does not assume ordinal variables), and relatively easy to

compute (unlike for example a permutation test).

Any other reliable, parametric or non-parametric test to assess conditional independence

and strength of association could be used. For example, the Three Phase Dependency Analysis

algorithm included in our experiments uses tests based on the estimated mutual information.

We have conducted experiments (not reported here) with a Bayesian test of conditional inde-

pendence published in Margaritis and Thrun (2001) (preliminary results were inconclusive)

as well as a linear continuous conditional independence test (Fisher’s z-test; see Spirtes,

Glymour & Scheines, 2000, for details; preliminary results are very encouraging). Also,

proper sample-power calculations could be used when deciding to accept the null hypoth-

esis of conditional independence tests whenever distributional assumptions allow for such

calculations.

5. The Max-Min Hill-Climbing algorithm

In this section, we present the Max-Min Hill-Climbing algorithm (MMHC) for learning the

structure of a Bayesian network (Brown, Tsamardinos & Aliferis, 2004). The algorithm first
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identifies the parents and children set of each variable, then performs a greedy hill-climbing

search in the space of Bayesian networks. The search begins with an empty graph. The

edge addition, deletion, or direction reversal that leads to the largest increase in score (the

BDeu score was used) is taken and the search continues in a similar fashion recursively. The

important difference from standard greedy search is that the search is constrained to only

consider adding an edge if it was discovered by MMPC in the first phase. In our experiments,

we followed the Sparse Candidate implementation (also to allow for a fair comparison) and

extended the greedy search with a TABU list (Friedman, Nachman & Pe’er, 1999). The list

keeps the last 100 structures explored. Instead of applying the best local change, the best

local change that results in a structure not on the list is performed in an attempt to escape

local maxima. This change may actually reduce the score. When 15 changes occur without

an increase in the maximum score ever encountered during search, the algorithm terminates.

The overall best scoring structure is then returned.

The idea of constraining the search to improve time-efficiency first appeared in the Sparse

Candidate algorithm (Friedman, Nachman & Pe’er, 1999). Experiments showed that it results

in efficiency improvements over the (unconstrained) greedy search. MMHC builds on this

idea, but employs a sound algorithm (MMPC) for identifying the candidate parent sets.

Notice that MMHC initializes the candidate parents sets to the sets of parents and children.

This is because, it is not always possible in general to distinguish whether X is a parent or a

child of T locally, without considering other parts and variables of the network.

When the sample size is so small that only pairwise tests of independence can be performed,

MMHC will start the greedy search with a network that contains all edges that correspond to

a detectable pairwise association.

MMHC is an instance of a general Bayesian network learning algorithmic template.

For example, the Max-Min Heuristic could be replaced with a different heuristic as

long as it returns a variable with non-zero pair-wise association with T if such a vari-

able exist among the remaining variables. The resulting algorithm will still be sound

if assumptions 1–3 in Section 3.3 hold. In the sample limit, the effect of the heuris-

tic is only in terms of computational efficiency: the more false positives the heuris-

tic allows to enter CPC, the more computational strain will be imposed in Phase II of

MMPC. Other variants may include interleaving Phases I and II of MMPC in a simi-

lar fashion to the variants of the Incremental Association Markov Blanket algorithm in

Tsamardinos, Aliferis and Statnikov (2003b).

An example of a successful variant of MMPC is the HITON algorithm (Aliferis, Tsamardi-

nos & Statnikov, 2003b). HITON is a feature selection algorithm that first identifies the
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Markov Blanket5 of a target variable T in a similar fashion to MMPC by employing a heuris-

tic based on pairwise associations only and interleaving Phases I and II. In addition, HITON

performs a backward variable elimination wrapping phase based on Support Vector Machine

classification or regression. HITON outperformed several other state-of-the-art variable se-

lection algorithms on a wide variety high-dimensional (up to 140,000 variables) datasets in

biomedicine.

Similarly, the greedy search-and-score method for orienting the edges could be substituted

with other search methods, as long as the search can be constrained to the edges identified

by MMPC; for example, it could be substituted by constrained versions of the Optimal Rein-

sertion and the Greedy Equivalent Search. Alternatively, one could use the constraint-based

edge orientation criteria such as the ones employed by PC and the Three Phase Dependency

Analysis algorithms. These criteria are sound and guarantee that if a DAG faithful to the data

distribution exists, they will correctly orient the compelled edges in the sample limit. Thus,

they could be used to construct a sound version of MMHC.

The large sample behavior however, does not guarantee better performance in practice.

In anecdotal experiments we have found that the constraint-based criteria under-perform in

finite sample relative to the greedy-search currently used by MMHC for orientation, despite

their theoretical advantages. We intend to investigate the differences between the various

approaches for edges orientation in the future.

6. Optimizing the computational performance

A set of optimizations improves a single call MMPC(T,D).

1. As mentioned, once a variable reaches a minimum association of zero with T (and gets

crossed out in Figs. 1 of the example) it is not considered again by the algorithm. In

our experiments most variables were eliminated in the first few iterations. Also, notice

that in Lines 17 and 18 (Algorithm 1) as soon as a conditioning set S is discovered such

that Ind(X ; T |S), there is no need to keep trying other subsets that achieve a smaller

association. Similarly, in Line 10.

2. Computations between subsequent calls to the Max-Min Heuristic are shared as follows.

Suppose that in iteration n variable Y is added to CPC, so that CPCn+1 = CPCn ∪ {Y },

where the index denotes the iteration. The minimum association for any X ∈ V with T

conditioned on any subset of CPCn+1 can be written as

min
(

min
S⊆CPCn

Assoc(X, T | S), min
S⊆CPCn

Assoc(X, T | S ∪ {Y })
)

That is, the minimum over all subsets of CPCn+1 is the minimum between the mini-

mum achieved with all subsets that do not include the new element Y and the mini-

mum achieved with all subsets that include Y . The first part minS⊆CPCn
Assoc(X, T | S)

is calculated and can be cached in iteration n. In other words, only the newly cre-

ated subsets by the addition of Y need to be tested for further minimizing the

association.

A second set of optimizations shares computation among multiple calls to MMPC.

5 The Markov Blanket of a node T (Markov Boundary in Pearl’s terminology) in a faithful network coincides

with the set of parents, children, and spouses of T .
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3. The results of the calls to MMPC are cached for use by MMPC.

4. If a previous call MMPC(X,D) has not returned T , then remove X from considera-

tion during the invocation MMPC(T,D): a subset Z has already been found such that

Ind(X ; T |Z).

5. If a previous call MMPC(X,D) has returned T , then it is possible X also belongs in

PCT . As a heuristic instead of starting with an empty CPC during the call MMPC(T,D),

include X in the CPC at Line 2 of MMPC (Algorithm 1).

None of the optimizations alters the final output (and thus the correctness) of the algorithms

but they significantly improve efficiency.

7. Time complexity of the algorithms

Typically, the performance of Bayesian network-induction algorithms based on tests of con-

ditional independence is measured in the number of association calculations and conditional

independence (CI) tests executed (Spirtes, Glymour & Scheines, 2000; Margaritis & Thrun,

1999). Since in our implementation they both take exactly the same time (both calculate the

p-value of the G2 statistic) we will not differentiate between the two.

In the first phase, and when using the optimization for caching the results of the Max-Min

Heuristic described in the previous section, MMPC will calculate the association of every

variable with the target conditioned on all subsets of CPC (in the worst case). Thus, the

number of tests in the first phase is bounded by O(|V | · 2 | CPC | ). In the second phase the

algorithm tests for the independence of any variable in the CPC with the target conditioned

on all subsets of the rest of the variables in the CPC, i.e., it performs at most O( | CPC | ·

2 | CPC|−1) tests. Thus, the total number of tests in both phases is bounded by O(|V | · 2 | CPC|).

However, as we explained in Section 4 the size of the conditioning subsets is limited

according to the available sample size and the domains of the variables. If we assume that

instead of conditioning on all subsets of the CPC we condition on all subsets of sizes up to

l, the number of tests is bound by O(|V| · |CPC|l+1).

In the worst case, CPC may grow to include all variables. The worst-case complexity

is prohibitive for all but the smallest problems. However, in practice (see timing results in

Section 9.2.1), we observed that the Max-Min Heuristic is powerful enough so that CPC

is of the order of |PC|. With this assumption, the order of the complexity becomes O(|V| ·

|PC|l+1). With caching all the calls to MMPC the overall cost of identifying the skeleton of

the Bayesian network (i.e., calling MMPC with all targets) is O(|V|2|PC|l+1), where PC is

the largest set of parents and children over all variables in V .

8. Related work

The literature in Bayesian network learning is extensive. Several of the algorithms detailed

here will be included in our empirical evaluation, found in Section 9. As mentioned in

Section1, the three main approaches to the problem are search-and-score, constrained based,

and hybrid.

Search-and-score methods search over a space of structures employing a scoring function

to guide the search. Some of the standard scoring functions are Bayesian Dirichlet (specifi-

cally BDe with uniform priors, BDeu) (Heckerman,Geiger & Chickering, 1995), Bayesian

Information Criterion (BIC) (Schwarz, 1978), Akaike Information Criterion (AIC) (Akaike,
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1974), Minimum Description Length (MDL) (Rissanen, 1978, 1987), and K2 (Cooper &

Herskovits, 1992). None has been proven to be superior and so for our experiments we se-

lected the widely used BDeu scoring. BDeu scoring has the attractive property that it gives

the same score to equivalent structures (Heckerman, Geiger & Chickering, 1995, Theorem

6), i.e., structures that are statistically indistinguishable (unlike the K2 scoring metric).

One of the most basic of the search algorithms is a local greedy hill-climbing search over

all DAG structures. A basic greedy search can be augmented with methods for escaping local,

sub-optimal maxima. For instance, random restarts, simulated annealing, or incorporation

of a TABU list are often added to a search procedure (Chickering, Geiger & Heckerman,

1995; Bouckaert, 1995). In our evaluation we use a greedy hill-climbing search algorithm

with a TABU list referred to as Greedy Search (GS) in Section 9 (see Section 5 for a detailed

description).

The size of the search space of greedy search (i.e., the number of possible DAGs) is super-

exponential to the number of variables. Two distinct approaches have emerged to improve

the efficiency of these methods. The first approach reduces the complexity of the search

by transforming the search space itself. For example, the Greedy Bayesian Pattern Search

(GBPS) algorithm transforms the traditional search over DAGs to a search over equivalence

classes of DAGs, called PDAGs (Spirtes & Meek, 1995) (see Section 9.1.4). The algorithm

in Acid and de Campos (2003) locally searches in the space of restricted acyclic partially

directed graphs (RPDAGs). One of the most prominent algorithms in this class is the Greedy

Equivalent Search (GES) algorithm (Meek, 1997; Chickering, 2002a,b), (included in our

evaluation). Greedy Equivalent Search, like greedy Bayesian pattern search (GBPS), also

searches in the space of equivalence classes (PDAGs), however, it has the attractive property

that it is guaranteed to identify in the sample limit the most probable a posteriori Bayesian

network provided that the data distribution is faithful. A similar algorithm has been proposed

in Kocka, Bouckaert and Studeny (2001) and a version that provides a trade-off between

greediness and randomness has also been proposed (Nielson, Kocka & Pena, 2003).

The second approach to improve efficiency of the search uses constraints placed on the

search. The K2 algorithm (Cooper & Herskovits, 1992) combines the K2 metric with a greedy

hill-climbing search and requires a total variable ordering. The ordering constrains the search

for parents of a node to nodes appearing earlier in the ordering. Another example is the Sparse

Candidate algorithm (Friedman, Nachman & Pe’er, 1999), which only allows a variable to

have a maximum of up to k parents (before the greedy search a set of candidate parents of

each node is estimated). Sparse Candidate is included in our evaluation in Section 9.

The same idea using a quite different approach is taken in the Optimal Reinsertion (OR)

algorithm (Moore & Wong, 2003) (also included in our evaluation). Starting from an initial

structure a target node is chosen and all arcs into and out of the node are severed. Subject to

constraints, the optimal set of arcs directed in and out of the target are reinserted. This search

operator is applied repeatedly until no additional changes can be made to the DAG structure.

Optimal Reinsertion makes use of specialized data-structures involving AD-search (Moore

& Schneider, 2002), an extension of AD-trees (Moore & Lee, 1998; Komarek & Moore,

2000) to make tractable the evaluation of search operators. Optimal Reinsertion is one of the

few algorithms that can identify parents that are connected to a node via a parity, or some

other non-faithful function.

The second main approach to Bayesian network learning are constraint-based techniques.

In general, constraint-based algorithms use tests of conditional independence and measures

of association to impose constraints on the network structure and infer the final DAG. A

prototypical constraint-based algorithm is the PC algorithm (from the first names of the

inventors, Peter Spirtes and Clark Glymour) (Spirtes, Glymour & Scheines, 2000) which
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evolved from the SGS (Spirtes, Glymour, Scheines) algorithm (Spirtes, Glymour & Scheines,

1990). The Three Phase Dependency Analysis (TPDA) algorithm (Cheng et al., 2002) follows

the constraint-based paradigm and introduces the idea of using an information theoretic metric

to search and test for conditional independencies. Both the PC and Three Phase Dependency

Analysis algorithms are considered in the empirical evaluation.

Hybrid algorithms combine the search-and-score and constraint-based techniques. The

first hybrid algorithm to appear is the CB algorithm (Singh and Valtorta, 1993). CB generates

a node ordering using SGS and then invokes K2 to orient the edges. The PC+GBPS algorithm

(Spirtes & Meek, 1995) employs the PC algorithm to establish an initial pattern that is used

as the basis of a search-and-score procedure. The Essential Graph Search (EGS) (Dash and

Druzdzel, 1999) algorithm repeatedly invokes PC with random node orderings and thresholds.

The BENEDICT method (BElief NEtworks DIscovery using Cut-set Techniques, in Acid and

de Campos, 2001) uses the concept of d-separation and cut-sets to define a search score metric

measuring the discrepancy between the graphical independence relationships and the data.

Recently an exact algorithm has been proposed that is guaranteed to identify the most

probable a posteriori network (even for finite sample size) (Kovisto and Sood, 2004). This

algorithm does not scale to datasets with more than a few dozen of variables. Also, an

algorithm for learning Bayesian networks from sparse data using frequent sets has been

explored (Goldenberg & Moore, 2004). This approach is able to scale to restricted types

of networks with hundreds of thousand of variables. Other methods proposed for Bayesian

network learning include variational methods (Jordan et al., 1999). Variational methods

for learning the graphical model structure have mainly been applied to restrictive models

(Ghahramani & Beal, 2001), run on very small networks (Friedman, 1998), or used to develop

scoring functions (Ghahramani & Beal, 2003), and therefore are not included in this study.

9. Empirical evaluation

In this section, we present an extensive, comparative study among a wide range of prototypical

and state-of-the-art algorithms, including MMHC. To the best of our knowledge this is the

first study of this magnitude, with 4,290 networks induced in total using a year’s single-CPU

time. We examine the relative time-efficiency of the algorithms and the quality of structure

identification over a range of different networks, sample sizes, and number of variables.

In this study, we sample training cases from the distributions of known networks; the

algorithms are asked to reconstruct the original networks from the data. This is so that a

gold-standard is known to quantify the structural quality of reconstruction. Our network

collection consists of several networks employed in real decision support systems in the

hope that these best represent the kind of distributions most frequently encountered in

practice.

9.1. Experimental design

9.1.1. Algorithms

We selected the following algorithms for inclusion in the study:

– Sparse Candidate (SC, Friedman, Nachman & Pe’er, 1999)

– PC (Spirtes, Glymour & Scheines, 2000)

– Three Phase Dependency Analysis (TPDA, Cheng et al., 2002)
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– Optimal Reinsertion (OR, Moore and Wong, 2003)

– Greedy Hill-Climbing Search (GS, using the BDeu scoring)

– Greedy Equivalent Search (GES, Chickering, 2002a)

– Max-Min Hill-Climbing (MMHC, our novel hybrid algorithm, Brown, Tsamardinos &

Aliferis, 2004)

A more detailed description of the algorithms is provided in Section 8. While this selection

includes most prototypical and state-of-the-art algorithms, it is by no means exhaustive.

In terms of specific implementations, we followed the following protocol: (1) We preferred

the authors’ implementation whenever available and whenever it satisfied our experimental

needs, namely, could run on our experimental platform, posed no variable size limitation on

the input, and output at least a minimal set of required statistics we needed for our evaluation.

(2) If the above conditions were not met, we used the best publicly available implementation

of the algorithm that meets the conditions. (3) Otherwise, we re-implemented the algorithm

and used our version.

Specifically, we used the Sparse Candidate (SC) and the Optimal Reinsertion (OR) au-

thors’ implementation. Tetrad 4.3.1’s Greedy Equivalent Search (GES) implementation (the

authors of Greedy Equivalent Search have not released an implementation of the algorithm)

and our implementations of MMHC, Greedy Search (GS), PC (following Spirtes, Glymour

& Scheines, 2000, and Tetrad 4.3.1, re-implemented due to number of variables of input lim-

itations), and Three Phase Dependency Analysis (TPDA) (re-implemented due to platform

and number of variables of input limitations) in Matlab 6.5.6 All of the Matlab algorithm

implementations are available in the Causal Explorer system (Aliferis et al., 2003a). Every

effort was taken for our implementations to match the originals: the output and computation

effort of our versions closely match the originals in all networks the latter could accept. In

reviewing the implementation of the Greedy Equivalent Search (GES) in Tetrad we noted

that many optimizations suggested in Chickering (2002a) were not implemented, therefore

the timing results for this algorithm are an upper bound.

For the Sparse Candidate (SC) we used the Bayesian scoring heuristic (called Score in

Friedman, Nachman and Pe’er, 1999) and an equivalent sample size of 10. The maximum

allowed size for the candidate parents’ sets k was set to k = 5 and k = 10. The above choices

follow the Sparse Candidate authors’ usage and best performing parameter values in their

published work (Friedman, Nachman & Pe’er, 1999; Friedman et al., 2000).

For the Greedy Search (GS), Greedy Equivalent Search (GES) and MMHC we used the

BDeu score with equivalent sample size 10. MMHC’s and PC’s statistical threshold for the

χ2 p-values were set to the standard 5% and Three Phase Dependency Analysis’ (TPDA)

mutual information threshold was set to 1% as suggested by the authors.

Optimal Reinsertion (OR) requires two parameters, one which is similar to the parameter

k of the Sparse Candidate (SC) and corresponds to the maximum number of parents allowed

for a node, and the other is the maximum allowed time for the algorithm to run, (since it is an

anytime algorithm). We vary the first parameter within the set {5, 10, 20} as suggested by the

authors, while the time parameter was set to be one and two times the time used by MMHC on

the corresponding dataset (the algorithm will be labeled as OR1 and OR2 respectively). The

scoring function used for Optimal Reinsertion (OR) was the BDeu scoring and the algorithm

6 Sparse Candidate is available at http://www.cs.huji.ac.il/∼nirf/LibB.html.

Optimal Reinsertion is available at http://www.autonlab.org/autonweb/-showSoftware/149/.

Tetrad 4.3.1 with Greedy Equivalent Search is available at http://www.phil.cmu.edu/projects/tetrad/index.html.

The version of MMHC used in this paper is in the on-line supplement while the most up-to-date version is

part of the Causal Explorer system at http://www.dsl-lab.org/sw alg techtransf.html.
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was set to use hill climbing to optimize the final network, as in the original publication of

the algorithm. The released OR implementation does not accept an equivalent sample size

parameter and uses an internally calculated default value.

The network priors in the BDeu score of Sparse Candidate (SC) are calculated as in

Heckerman, Geiger and Chickering (1995) where kappa κ = 1/(ESS + 1) and ESS is the

equivalent sample size. We follow the same practice in our implementations of the BDeu

score in MMHC and Greedy Search (GS). The network priors in Greedy Equivalent Search

(GES) are calculated following Chickering (2002a), while the method used to calculate them

in the Optimal Reinsertion (OR) implementation is unknown.

9.1.2. Networks

The networks used in the evaluation are mainly obtained from real decision support sys-

tems that cover a wide range of real life applications, such as medicine, agriculture, weather

forecasting, financial modeling and animal breeding7. The networks are from the follow-

ing references: CHILD (Cowell et al., 1999), INSURANCE (Binder et al., 1997), ALARM

(Beinlich et al., 1989), HAILFINDER (Jensen & Jensen, 1996), MILDEW (Jensen & Jensen,

1996), BARLEY (Kristensen & Rasmussen, 2002), MUNIN (Andreassen et al., 1989), PIGS

(Jensen, 1997), and LINK (Jensen & Kong, 1996). We also constructed and used a Bayesian

network, we call GENE using the Sparse Candidate (SC) algorithm on gene expression mi-

croarray data (Spellman et al., 1998) with the same procedure as in Friedman et al. (2000).

We also desired to experiment with larger networks than what is available in the public

domain. In prior work (Tsamardinos et al., 2006; Statnikov, Tsamardinos & Aliferis, 2003),

we have developed a method that generates large Bayesian networks by tiling several copies

of smaller Bayesian networks until we reach a desired number of variables. The tiling is

performed in a way that maintains the structural and probabilistic properties of the original

network in the tiled network. Using this method we are able to examine the behavior of an

algorithm as the number of variables increases, while the difficulty of learning the network

remains the same.

Using the tiling algorithm we created versions of several of the smaller networks. The

new Bayesian networks contained 3, 5, and 10 copies of the originals and are indicated with

the number of tiles next to the name of a network. Information on all networks included in

the study is given in Table 1.

9.1.3. Datasets

From each of the networks we randomly sampled 5 datasets with 500, 1000, and 5000 training

cases each (all datasets are available on the associated web-page online). The number of

training cases in a dataset is hereafter referred to as the sample size (SS). Each reported

statistic is the average over the 5 runs of an algorithm on these different samples from the

distribution of the corresponding network, unless otherwise stated.

9.1.4. Measures of performance

We employ two metrics to compare the algorithms in terms of execution speed. The first

such metric is the execution time which is dependent on the specific implementation, but

7All networks and data are available from the on-line supplement. Most of the data sets used are also available

at the Bayesian Network Repository, http://www.cs.huji.ac.il/labs/compbio/Repository.
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Table 1 Bayesian networks used in the evaluation study

Num. Num. Max In/Out- Min/Max Domain

Network vars edges degree |PCset | range

Child 20 25 2 / 7 1 / 8 2–6

Child3 60 79 3 / 7 1 / 8 2–6

Child5 100 126 2 / 7 1 / 8 2–6

Child10 200 257 2 / 7 1 / 8 2–6

Insurance 27 52 3 / 7 1 / 9 2–5

Insurance3 81 163 4 / 7 1 / 9 2–5

Insurance5 135 281 5 / 8 1 / 10 2–5

Insurance10 270 556 5 / 8 1 / 11 2–5

Alarm 37 46 4 / 5 1 / 6 2–4

Alarm3 111 149 4 / 5 1 / 6 2–4

Alarm5 185 265 4 / 6 1 / 8 2–4

Alarm10 370 570 4 / 7 1 / 9 2–4

Hailfinder 56 66 4 / 16 1 / 17 2–11

Hailfinder3 168 283 5 / 18 1 / 19 2–11

Hailfinder5 280 458 5 / 18 1 / 19 2–11

Hailfinder10 560 1017 5 / 20 1 / 21 2–11

Mildew 35 46 3 / 3 1 / 5 3–100

Barley 48 84 4 / 5 1 / 8 2–67

Munin 189 282 3 / 15 1 / 15 1–21

Pigs 441 592 2 / 39 1 / 41 3–3

Link 724 1125 3 / 14 0 / 17 2–4

Gene 801 972 4 / 10 0 / 11 3–5

nevertheless captures all computations performed by an algorithm and can be defined on all

present and future algorithms.

The second metric indicating computational efficiency is the total number of calls to

tests of independence Ind(X ; T |Z), measures of association Assoc(X ; T |Z), and calculations

of local scores (i.e., the score component of a node given its parents) Score(T, {X} ∪ Z).

Calculating Ind(X ; T |Z), Assoc(X ; T |Z), and Score(T, {X} ∪ Z) can be computed at roughly

the same time and several algorithms spent most of their time performing such calls. We call

this metric the number of statistical calls performed by an algorithm and we report it only

for the algorithms that we have implemented, namely Greedy Search (GS), Three Phase

Dependency Analysis (TPDA), PC, and Max-Min Hill Climbing (MMHC). We remind the

reader that MMHC calls all of the above functions, while for example pure constraint-based

algorithms such as the PC may only use tests of independence. While the number of statistical

calls is implementation independent, it can perhaps capture most but not necessarily all the

different computations performed by an algorithm.

In comparing the quality of reconstruction, there are several measures proposed in the

literature. One such popular metric is the BDeu score (Heckerman, Geiger & Chickering,

1995). Under certain assumptions it corresponds to the a posteriori probability (after having
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seen the data) of the structure learned. It penalizes for the number of parameters (and edges)

used in the network according to an arbitrary parameter called the equivalent sample size.

The BDeu scores reported in this paper are calculated on a separate test set sampled from

the gold-standard network containing 5000 samples. The equivalent sample size (ESS) used

is 10 and the network priors are calculated as in Heckerman, Geiger and Chickering (1995)

where κ = 1/(ESS + 1) (in a similar fashion as in the implementations of MMHC, Greedy

Search (GS), and Sparse Candidate (SC) in Section 9.1.1). Notice that, the BDeu reported

is calculated in a uniform fashion across all different algorithms, even though some of them

may use different network priors or equivalent sample sizes internally to learn the output

network.

One of the attractive properties of the BDeu score is that it assigns the same score to the net-

works that capture the same set of dependencies and independencies and thus are statistically

indistinguishable from observational data only. Such sets of statistically indistinguishable

networks are called Markov Equivalent:

Definition 10. Two DAGs G1 and G2 on the same set of nodes are Markov Equivalent if

for every three mutually disjoint subsets A, B, C ⊆ V , IndG1
(A, B|C) ⇔ IndG2

(A, B|C). We

will call compelled edges all the edges with the same orientation in all DAGs in the same

equivalence class. A DAG pattern for a Markov Equivalence class, also called PDAG, is a

graph with the same edges as the DAGs in the equivalence class, but has oriented all and

only the compelled edges (Spirtes, Glymour & Scheines, 2000; Neapolitan, 2003).

The PC and TPDA algorithm returns a PDAG; to score a PDAG, a DAG extension of

the PDAG is found (using the algorithm described in Dor and Tarsi, 1992) and is scored (as

mentioned all such extensions have the same BDeu score).

Notice, that using the BDeu score as a metric of reconstruction quality has the following

two problems. First, the score corresponds to the a posteriori probability of a network only

under certain conditions (e.g., a Dirichlet distribution of the hyperparameters); it is unknown

to what degree these assumptions hold in distributions encountered in practice. Second, the

score depends on the equivalent sample size and network priors used. Since, typically, the

same arbitrary value of this parameter is used both during learning and for scoring the learned

network, the metric favors algorithms that use the BDeu score for learning. In fact, the BDeu

score does not rely on the structure of the original, gold standard network at all; instead it

employs several assumptions to score the networks.

For those reasons, in addition to the BDeu score we report a metric that we call the Struc-

tural Hamming Distance (SHD). The Structural Hamming Distance directly compares the

structure of the learned and the original networks and its use is fully oriented toward discov-

ery, rather than inference. We define the Structural Hamming Distance between two PDAGs

as the number of the following operators required to make the PDAGs match: add or delete

an undirected edge, and add, remove, or reverse the orientation of an edge (Algorithm 4).

Thus, an algorithm will be penalized by an increase of the score by 1 for learning a PDAG

with an extra un-oriented edge and by 1 for not orienting an edge that should have been

oriented (more examples are shown in Fig. 3). Algorithms that return a DAG are converted to

the corresponding PDAG before calculating this measure (using the algorithm in Chickering,

1995). The reason for defining the SHD on PDAGs instead of DAGs is so that we do not

penalize for structural differences that cannot be statistically distinguished.
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While the SHD directly compares the reconstructed network with the gold standard, penal-

izing both for extra and missing edges, it arbitrarily penalizes errors by the same amount.

Nevertheless, penalizing for structural errors has a direct intuitive interpretation. bias an al-

gorithm towards sensitivity of identifying edges versus specificity, either by changing the

BDeu equivalent sample size or the threshold in the tests of conditional independence. Thus,

it would be preferable to compare the Receiver Operating Curve (Peterson,TG & Fox, 1954)

of the sensitivity and specificity of an algorithm over all possible thresholds. However,

calculating the Receiver Operating Curves for all algorithms to compare against is, with
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Fig. 3 Two examples of

calculating Structural Hamming

Distance (SHD). A hypothetical

true DAG and its corresponding

PDAG are shown in Fig. 3(a).

Figure 3(b) shows a learned DAG

(from data sampled from the true

DAG) and its corresponding

PDAG with SHD = 0 (notice that,

the actual DAGs are different). In

3(c), PDAG #2 has a SHD = 2: it

can match the true PDAG by

adding one edge direction and by

reversing another
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current techniques, highly computationally expensive and was not performed as part of this

study.

Another metric of quality of learning is the Kullback-Leibler divergence or KL-divergence

(Kullback & Leibler, 1951) between the distribution of the reconstructed network and the

original. This metric is important when the network is used for inference. However, the

KL-divergence does not directly penalize for extraneous edges and parameters.8 Moreover,

in the literature, it is typically the empirical KL-divergence that is calculated (i.e., the KL-

divergence as estimated from a data sample) instead of the actual KL-divergence. This is

because the latter requires numerous probabilistic inferences to be made using the net-

works compared, each of which takes in the worst case time exponential to the number of

variables.

We calculate a transformation of the KL-divergence following Acid and de Campos (2003)

using the equation

K L(PT , PL ) = −HPT
(V) +

∑

Vi ∈V

HPT
(Vi ) −

∑

Vi ∈V,PaL (Vi ) �=∅

M IPT
(Vi , PaL (Vi )), (1)

where PT is the empirical joint probability distribution of the True network in the test set and

PL is the distribution of the learned network. HP (Z) is the Shannon entropy with respect

to P for the variables Z, and MI PT
(Vi , PaL (Vi )) is the mutual information between Vi and

PaL (Vi ) in PT . The Shannon entropy values do not depend upon the graph, therefore we

calculate and report only the final term of the equation, following Acid and de Campos (2003).

The calculations were preformed using 5000 new test cases from the network distribution.

Since the last term appears with a negative sign, the results should be interpreted as follows:

the higher the value, the smaller the KL-divergence and the closer the network fits the data.

The KL-divergence results are included in the supplemental web appendices.

9.2. Results of evaluation

All algorithms were run on Pentium Xeons, 2.4 GHz, 2 GB RAM running Linux. Complete

tables of all results are found in supplemental Appendices B, C, and D.9 Some statistics

are missing due to the fact that certain implementations refused to run on a specific dataset

(probably due to high memory requirements) or did not complete their computations within

two days running time.

9.2.1. Timing results

A summary of the timing results of the execution of all algorithms is in Table 2. We

normalize the times reported by dividing by the corresponding running time of MMHC on

the same dataset and report the averages over sample sizes and networks. Thus, a normalized

running time of greater than one implies a slower algorithm than MMHC on the same learning

task. The normalization essentially gives the same weight in the average to each network

8Adding extraneous edges however, may increase the KL-divergence indirectly, because the estimation of

parameters becomes less accurate for a given sample.

9 The supplemental Appendices are available on the Discovery System Laboratory web-page http://www.dsl-

lab.org/supplements/mmhc paper/mmhc index.html
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Table 2 Average normalized time results

Sample size (SS)

Algorithm 500 1000 5000 Average over SS

MMHC 1.00 (22/ 0) 1.00 (22/ 0) 1.00 (22/ 0) 1.00

OR1 k = 5 1.29 (19/ 0) 1.16 (18/ 0) 1.18 (17/ 0) 1.21*

OR1 k = 10 1.29 (19/ 0) 1.20 (18/ 0) 1.41 (16/ 0) 1.30*

OR1 k = 20 1.30 (19/ 0) 1.20 (18/ 0) 1.35 (16/ 0) 1.29*

OR2 k = 5 2.41 (19/ 0) 2.24 (18/ 0) 2.30 (16/ 0) 2.32*

OR2 k = 10 2.43 (18/ 0) 2.29 (18/ 0) 2.37 (16/ 0) 2.36*

OR2 k = 20 2.51 (18/ 0) 2.43 (18/ 0) 2.40 (16/ 0) 2.44*

SC k = 5 9.00 (21/ 0) 12.13 (22/ 0) 12.88 (18/ 2) 11.33

SC k = 10 10.46 (13/ 0) 14.15 (13/ 0) 15.08 (13/ 0) 13.23

GS 10.94 (20/ 2) 11.20 (20/ 2) 8.13 (20/ 2) 10.09

PC 31.68 (18/ 4) 23.81 (18/ 4) 68.57 (20/ 2) 41.35

TPDA 20.05 (21/ 1) 6.89 (21/ 1) 0.71 (22/ 0) 9.21

GES 1128.77 (7/15) 343.55 ( 6/16) 167.06 ( 6/16) 546.46

Normalized time is the running time of each algorithm for a particular sample size and

network divided by the corresponding running time of MMHC. The first term in the

parentheses is the number of networks the algorithm was averaged across and the second

is the number of networks the algorithm hit the 2 day time threshold and was stopped.

If those numbers do not add to 22 the algorithms refused to run on the remaining ones.

Average normalized time values smaller than one correspond to an algorithm with faster

running times than MMHC. The *reminds the reader that the Optimal Reinsertion (OR)

algorithms running time was set to be 1 or 2 times that of MMHC. Also, recall the GES

implementation did not contain all optimizations described by the original authors.

irrespective of their size, both in terms of sample and variables, but also difficulty of learning;

without it, the average would be dominated by the largest or hardest to learn networks. The

first number in the parentheses in the table indicates the total number of networks included in

an average, while the second denotes the number of networks on which the algorithm hit the

2 day time ceiling. Those results are excluded from the average so that the results are a lower

bound on the performance of MMHC versus the other algorithms on these datasets. Some

of the provided implementations of the algorithms refused to run on several datasets due

to memory limitations or unknown reasons explaining why the numbers in the parentheses

do not add to 22. The complete timing results can be found in the online supplemental

Appendix B.

No conclusion should be drawn on the timing results of Optimal Reinsertion (OR) since,

as an anytime algorithm, it was instructed to run for 1 (OR1) and 2 (OR2) times the running

time of MMHC on the corresponding dataset. OR periodically checks whether the time limit

imposed has been exceeded and may actually take longer than the preset time to terminate.

Execution Time Conclusions. For every algorithm and sample size, MMHC is faster on

average (subject to the selected implementations). As we can see, both other constraint-based

algorithms, namely PC and Three Phase Dependency Analysis (TPDA) face problems when

the sample is low (500) and perform over 30 and 20 times slower than MMHC on average.
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Table 3 Average normalized

number of statistical calls

performed

Sample size (SS)

Algorithm 500 1000 5000 Average over SS

MMHC 1.00 (22) 1.00 (22) 1.00 (22) 1.00

GS 2.94 (20) 2.54 (20) 1.55 (20) 2.34

PC 21.33 (18) 4.94 (18) 1.38 (20) 9.22

TPDA 2.41 (21) 1.33 (21) 0.42 (22) 1.38

Normalized number of statistical calls is the number of statistical calls

performed by each algorithm (number of tests of conditional indepen-

dence and/or number of calls to the scoring function) for a particular

sample size and network divided by MMHC’s calls on the same dataset.

The term in parentheses is the number of networks the algorithm was av-

eraged across. Average normalized values greater than one correspond

to an algorithm performing more statistical calls than MMHC.

Sparse Candidate (SC) is only about 10 times slower at low sample, but the difference

increases with higher sample, as MMHC is able to assess independencies more accurately.

That is, for sample size 5000 Sparse Candidate (SC) becomes more than 15 times slower.

TPDA improves its performance and it is the only algorithm that is faster than MMHC at

5000 sample.

9.2.2. Statistical calls results

Table 3 contains the normalized number of statistical calls performed for the algorithms

we have implemented (excluding the cases where the 2 day limit was reached). The results

analytically can be found in the online supplemental Appendix B.

The execution time and the number of statistical calls of an algorithm are not strictly

proportional for various reasons. First, different implementations may use different data

structures for representing and performing graph operations that affect execution time.

Second, while the number of statistical calls is indicative of the computational efforts spent,

typically the effort to compute a test of independence or score also depends on the size

of the conditioning or parent set. Thus, not only the number, but the average size of the

conditioning set determines the actual computational effort spent. Finally, all algorithms

perform additional operations, such as checks for acyclicity or storing and retrieving SepSets

(for the PC algorithm), with different frequency and of varying difficulty.

Statistical Calls Conclusions. In general, MMHC performs the least number of statistical

calls on average, except for sample size 5000 against the TPDA algorithm.

9.2.3. Bayesian score results

The Bayesian score results are summarized in Table 4 (analytical results are in online Ap-

pendix C). We normalize the scores reported by dividing by the corresponding score of

MMHC on the same dataset and report the averages over sample sizes and networks. Nor-

malized scores are positive numbers; normalized scores less than one indicate a learned

network that is more a posteriori probable (under the scoring assumptions) than that learned

by MMHC on the same dataset. The term in the parentheses is the number of networks an

algorithm was averaged across (the algorithm finished within two days).
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Table 4 Average normalized

bayesian score results Sample size (SS)

Algorithm 500 1000 5000

Average

over SS

MMHC 1.000 (22) 1.000 (22) 1.000 (22) 1.000

OR1 k = 5 1.016 (19) 1.019 (18) 1.021 (17) 1.019

OR1 k = 10 1.014 (19) 1.016 (18) 1.023 (16) 1.018

OR1 k = 20 1.016 (19) 1.022 (18) 1.022 (16) 1.020

OR2 k = 5 1.005 (19) 1.009 (18) 1.011 (16) 1.008

OR2 k = 10 1.000 (18) 1.009 (18) 1.003 (16) 1.004

OR2 k = 20 1.009 (18) 1.010 (18) 1.006 (16) 1.009

SC k = 5 0.999 (21) 0.996 (22) 1.016 (18) 1.004

SC k = 10 1.010 (13) 1.016 (13) 1.014 (13) 1.013

GS 0.976 (20) 0.983 (20) 0.991 (20) 0.984

PC 1.275 (18) 1.234 (18) 1.195 (20) 1.235

TPDA 1.406 (21) 1.367 (21) 1.206 (22) 1.326

GES 1.083 ( 7) 1.007 ( 6) 1.118 ( 6) 1.070

Empty Graph 1.498 (22) 1.520 (22) 1.546 (22) 1.521

True Graph 0.977 (22) 0.990 (22) 1.007 (22) 0.991

We normalize the scores reported

by dividing by the corresponding

score of MMHC on the same

dataset. Normalized scores are

positive numbers; normalized

scores less than one indicate a

learned network that is more a

posteriori probable (under the

scoring assumptions) than that

learned by MMHC on the same

dataset. The term in the

parentheses is the number of

networks an algorithm was

averaged across (the algorithm

finished within two days).

Bayesian Score Conclusions. Overall, MMHC is on par, or better than all algorithms. The

only algorithm that outperforms MMHC on average is the Greedy Search (GS). Optimal

Reinsertion (OR) and Sparse Candidate (SC) obtain approximately the same scores on aver-

age. The constraint-based algorithms, PC and Three Phase Dependency Analysis (TPDA),

both have worse normalized scores (although both show improvement with as the sample

size increases). Notice that Greedy Search (GS) is outperforming even the score of the data-

generating network (denoted by True Graph in the table) showing signs of overfitting.

9.2.4. Structural hamming distance results

A summary of the Structural Hamming Distance results is presented in Table 5 (analytical

results in online supplemental Appendix C). We normalize the SHD reported by dividing

by the SHD of MMHC on the same learning task. The term in parentheses is the number of

networks the algorithm was averaged across. Average normalized SHD values greater than

one correspond to learned structures with more structural errors than those reconstructed by

MMHC. For the CHILD and PIGS networks, MMHC finds the network exactly with no errors

reported. In this case, the ratio of the SHD is undefined and was not included in taking the

average over all networks (thus favoring all other algorithms, which did have errors on these

networks).

Structural Hamming Distance Conclusions. MMHC outperforms all other algorithms for

all sample sizes and networks, except for Greedy Equivalent Search (GES) at sample size

1000. Optimal Reinsertion (OR), Sparse Candidate (SC), and the Greedy Equivalence Search

(GES) are the only algorithms that on average report structural errors within a 50% of

MMHC’s SHD. It is worth noting that MMHC outperforms Sparse Candidate (SC) even for

the GENE network (for sample sizes greater or equal to 1000), despite the fact that GENE was
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Table 5 Average normalized

structural hamming distance

results

Sample size (SS)

Algorithm 500 1000 5000

Average

over SS

MMHC 1.00 (22) 1.00 (22) 1.00 (22) 1.00

OR1 k = 5 1.30 (19) 1.45 (18) 1.70 (17) 1.48

OR1 k = 10 1.29 (19) 1.37 (18) 1.78 (16) 1.48

OR1 k = 20 1.31 (19) 1.45 (18) 1.86 (16) 1.54

OR2 k = 5 1.18 (19) 1.33 (18) 1.66 (16) 1.39

OR2 k = 10 1.19 (18) 1.34 (18) 1.65 (16) 1.39

OR2 k = 20 1.22 (18) 1.34 (18) 1.71 (16) 1.42

SC k = 5 1.13 (21) 1.28 (22) 1.57 (18) 1.33

SC k = 10 1.18 (13) 1.28 (13) 1.35 (13) 1.27

GS 1.62 (20) 2.08 (20) 1.86 (20) 1.85

PC 8.85 (18) 10.07 (18) 2.82 (20) 7.25

TPDA 9.63 (21) 10.22 (21) 1.76 (22) 7.21

GES 1.18 ( 7) 0.94 ( 6) 1.19 ( 6) 1.10

Normalized Structural Hamming

Distance (SHD) is the SHD of

each algorithm for a particular

sample size and network divided

by MMHC’s SHD on the same

sample size and network. The

term in parentheses is the number

of networks the algorithm was

averaged across. Average

normalized SHD values greater

than one correspond to an

algorithm with more structural

errors than MMHC.

constructed from data using Sparse Candidate (SC) and thus, exactly matches its inductive

bias. The performance of MMHC improves with increased sample size relative to all other

algorithms (and in absolute terms) except for PC, Three Phase Dependency Analysis (TPDA),

and the Greedy Equivalence Search (GES).

9.2.5. Simultaneous comparison of time and quality

In this section we explore the trade-off between quality and time efficiency of each algorithm.

An algorithm may choose to sacrifice quality to gain time efficiency; similarly, by searching

larger portions of possible structures, an algorithm trades off time for the possibility of

increasing quality.

Figures 4–6 plot the logarithm of the normalized SHD versus the logarithm of the nor-

malized time for sample sizes 500, 1000, and 5000 respectively. Each point in the graphs

represent the performance in those two metrics of a given algorithm on reconstructing a

specific network. Since we are using normalized measures MMHC’s performance always

falls on point (1,1).

A normalized SHD less than one means fewer structural errors than MMHC on the same

task. Thus, any points in the graphs falling below the horizontal dashed line where SHD = 1

indicate cases where MMHC was dominated in quality by some other algorithm. Similarly,

points on the left of the vertical line where Time = 1 indicate cases where MMHC was less

efficient than some other algorithm. The points in the gray area correspond to learning tasks

where MMHC is dominated both in terms of quality of reconstruction and time efficiency.

Table 6 summarizes the above results: overall, there are 5 instances of an algorithm on

a particular network outperforming MMHC in both time and quality out of a possible 792

cases (approximately 0.63% of the time, the 792 cases from comparing MMHC against the

12 other algorithms over 22 networks and 3 samples sizes, 12 × 22 × 3 = 792). In the rest

of the cases MMHC outperforms the other algorithms in at least one metric.
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Fig. 4 Normalized time vs. normalized SHD at sample size 500
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Fig. 5 Normalized time vs. normalized SHD at sample size 1000

Conclusions. MMHC typically outperforms all other algorithms in terms of both metrics. A

detailed analysis of the timing results also reveals that in most cases that MMHC is not as

efficient as some other algorithm is in some of the smallest networks (e.g., CHILD) where the

constant of the time-complexity becomes more important.

For sample size 500 (Fig. 4), there is only one instance (1/264–0.38%) of an algorithm that

outperforms MMHC in terms of both time and quality. That is Sparse Candidate (SC) k = 5

on the MUNIN network. For sample size 1000, (Fig. 5), there is again one such case (1/264–

0.38%): Greedy Search (GS) on the CHILD network. For sample size 5000, (Fig. 6), there are

three such cases (3/264–1.14%): Sparse Candidate (SC) k = 5 and Greedy Search (GS) on

HAILFINDER, and Three Phase Dependency Algorithm (TPDA) on the ALARM5 network.

MMHC is never dominated in both metrics by PC, Sparse Candidate (SC) k = 10, and

the Optimal Reinsertion (OR2) algorithms for any network or sample size.

In Tables 2 and 5 we showed that MMHC outperforms on average all other algorithms in

terms of time and Structural Hamming Distance. Figures 4–6 show pictorially that MMHC’s

average statistics are not inflated due to a few outliers where the algorithm performs especially

well relatively to the other algorithms. Additional tables reporting normalized median results
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Fig. 6 Normalized time vs. normalized SHD at sample size 5000

Table 6 Summary of time and structural hamming distance (SHD) results

Number of learning tasks where

reconstruction by MMHC was

Sample Slower and

size Slower Less accurate less accurate

500 6 / 264 (2.27%) 35 / 264 (13.26%) 1 / 264 (0.38%)

1000 13 / 264 (4.92%) 22 / 264 (8.33%) 1 / 264 (0.38%)

5000 36 / 264 (13.64%) 16 / 264 (6.06%) 3 / 264 (1.14%)

Total 55 / 792 (6.94%) 73 / 792 (9.22%) 5 / 792 (0.63%)

and graphs with error bars are also included in online Appendices B and C to provide a better

sense of the distribution of the timing and quality of learning results.

9.2.6. Large sample

To explore the timing behavior of the algorithms as sample increases we ran a limited set of

experiments with datasets comprising of 20,000 records. To reduce the computation time

required, we selected three representative networks out of the 22 network candidates to

experiment with. The three networks whose average reconstruction time (over all algorithms

for sample size 5000) was closer to the average reconstruction time of all networks for

sample size 5000 were selected. These are the CHILD5, CHILD10, and ALARM5 networks.

To further reduce computation time the set of parameters for the OR and the SC algorithms

were set to the values that exhibited the best results at sample size 5000. Table 7 summarizes

the results of these computational experiments (only one dataset for each network of size

20,000 was sampled).

Large Sample Conclusions. The execution time, number of statistical calls, and quality

of learning of MMHC remain competitive versus all other algorithms as the sample size

grows. The algorithm that seems to benefit the most in terms of computational effort from

the increased sample is TPDA, while GS and SC are still slower than MMHC. In terms of
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Table 7 Normalized time,

statistical calls, and structural

hamming distance for averaged

on the CHILD5, CHILD10, and

ALARM5 Networks for Sample

Sizes 500, 1000, 5000, 20000

Normalized time

Algorithm SS = 500 SS = 1000 SS = 5000 SS = 20000

MMHC 1.00 1.00 1.00 1.00

Best OR1 1.12 1.18 1.12 1.07

Best OR2 2.21 2.14 2.13 2.07

Best SC 6.64 10.46 17.35 28.34

GS 9.18 9.13 11.10 15.92

PC 30.46 0.97 0.83 0.96

TPDA 15.37 5.77 0.62 0.51

Normalized number of statistical calls

MMHC 1.00 1.00 1.00 1.00

GS 3.86 3.41 2.91 2.65

PC 50.36 0.82 1.05 1.12

TPDA 3.10 1.49 0.57 0.42

Normalized structural hamming distance

MMHC 1.00 1.00 1.00 1.00

Best OR1 1.46 1.46 1.60 2.98

Best OR2 1.25 1.37 1.29 2.69

Best SC 1.07 1.06 0.94 1.26

GS 1.48 1.56 1.52 1.97

PC 3.16 2.45 1.54 1.87

TPDA 5.24 5.03 2.25 2.39

quality of reconstruction MMHC’s difference in performance from sample size 5000 to 20000

grows even larger showing a better utilization of the additional sample.

9.2.7. Scaling to thousands of variables

As a proof-of-concept experiment illustrating the ability of MMHC to scale up to thou-

sands of variables we created a tiled version of the ALARM network with approximately

5000 variables (135 tiles, 4995 variables) and 6845 edges and sampled 5000 instances

from its distribution. MMHC reconstructed the tiled ALARM-5000 in approximately 13

days total time. The reconstructed network had 1340 extra edges (specificity 99.9%),

1076 missing edges (sensitivity 84%), and 1468 wrongly oriented edges. Compare this

to ALARM and ALARM10 where the reconstruction had an average of 0.8 and 27.2 extra

edges and 0.8 and 109.0 missing edges respectively. The skeleton reconstruction phase

took approximately 19 hours and the rest was spent on edge orientation. The sensitivity

and specificity of skeleton reconstruction are calculated as in Tsamardinos et al. (2003a):

sensitivity is the number of correctly identified edges over the total number of edges

and specificity is the number of correctly identified non-edges over the total number of

non-edges.
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Fig. 7 Comparison of the True and Learned Networks around Node 53 in a tiled Alarm network with 5000

variables from 5000 samples. Node 53 was chosen as a representative example because the sensitivity and

specificity in learning its Markov Blanket is the closest to the average sensitivity and specificity of learning

Markov Blankets over all nodes

To get an intuitive sense of the accuracy of reconstruction of the network, we graph the

true and the learned network around a prototypical node (with index 53) in Fig. 7. The

neighborhoods of the graphs around a radius of two edges away from node 53 are plotted.

Node 53 was chosen as a representative example because the sensitivity and specificity

in learning its Markov Blanket is the closest to the average sensitivity and specificity of

learning Markov Blankets over all nodes (the selection process is similar to the one used in

Tsamardinos et al., 2003a).

Additional evidence of the scalability of MMHC is found in a previously reported ex-

periment in Tsamardinos et al. (2003a). MMPC was run on each node and reconstructed the

skeleton of a tiled-ALARM network with approximately 10,000 variables from 1000 training

instances using the same hardware as above in 62 hours of single-CPU time (the task was

completed in approximately 16 hours of real time by parallelizing the skeleton identification

algorithm using 4 CPUs). In this experiment the sensitivity and specificity are found to

be 81% (2572 missing edges out of 13640) and 99.9% (11068 extra edges) respectively.

To our knowledge these are the largest unrestricted Bayesian Networks reconstructed so

far (see Goldenberg and Moore, 2004, for reconstructing larger networks but of restricted

form).

9.2.8. Relative performance of the algorithms

In the results above, we calculate the normalized averages of an algorithm A based on the set

of networks on which A terminated within the two day limit. This allows a direct comparison

with MMHC that terminated on all networks using all available data points. However, the

reader should exercise caution when comparing the averages of two algorithms A and B
with each other as they are possibly calculated on different sets of networks. To facilitate

performance comparisons among any pair of algorithms, we present in on-line Appendix

D the same results as above calculated on the intersection of networks of a given sample

size on which all algorithms terminated (typically 10 to 12 networks out of 22 candidates).

From this intersection we excluded GES because it causes the intersection to drop to a size

of 3 networks. The results in Appendix D are consistent with the conclusions drawn in the

previous sections.
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Fig. 8 Performance of MMHC and GS on the MILDEW networks. The SHD and BDeu score are plotted versus

running time and number of statistical/scoring calls made for both algorithms

10. Greedy search vs. MMHC

In this section, we show that MMHC’s strategy of constraining the search, results in compu-

tational savings, particularly in sparse and large networks. This analysis is similar to the one

performed for the Sparse Candidate (Friedman, Nachman & Pe’er, 1999).

We selected three representative networks on which we graphically compare the two

algorithms. To select the networks, the average normalized ratio of the number of statistics

for GS and for sample size 5000 was calculated over all networks. The three networks closest

to this average were chosen (MILDEW, CHILD3, HAILFINDER10). The SHD and the BDeu

score are plotted against time for one run (sampling) of both Greedy Search and MMHC.10

In addition, the SHD and the BDeu score are plotted versus the number of statistical calls.

The three representative cases are shown in Figs. 8–10.

Note that the search procedure and the scoring function implementations are common

between the two algorithms; they differ only in that MMHC includes a calculation of candidate

parent sets by invoking MMPC for each node.

Each data point plotted is sampled from when an edge is added, deleted or reversed in the

current DAG. In the first column of each figure, the SHD is plotted versus running time (top)

or number of statistics (bottom) for each network. The second column of the figure plots the

BDeu score versus the running time (top) or the number of statistics (bottom).

10 The time of these results does not match the ones reported in supplemental Appendix B, because of the

additional calculations of the SHD and the BDeu scoring metrics for every search operator application.
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Fig. 9 Performance of MMHC and GS on the CHILD3 networks. The SHD and BDeu score are plotted versus

running time and number of statistical/scoring calls made for both algorithms

Greedy Search exhibits an initial lag before the first search operator application because

initially it calculates the scores for each possible edge addition; the subsequent score calcu-

lations are incremental and consequently much more efficient. MMHC also has an initial lag

taking the time to run MMPC on each variable.

The graphs illustrate the sharp learning curve for MMHC to reconstruct the network once

the candidate parent sets are determined. MMHC is shown to quickly reach a minimum SHD

(first column) or a maximum BDeu score (second column). The overhead of constraining the

search by calculating candidate parent sets results in large computational savings overall. For

example, on the CHILD3 network, MMHC may take longer to initiate the search, but once it

does, a minimum SHD (maximum BDeu score) is achieved rapidly.

It is interesting to note that, while Greedy Search (GS) may find a higher scoring network

(see graph on MILDEW), the graphical structure of the DAG is not closer to the true graph as

measured by SHD. The non-correspondence of SHD to the BDeu score is also shown by the

fact that the SHD curve is non-monotonic in several instances.

A theoretical analysis of the empirical results now follows. Let us ignore for simplicity

the edge reversals and deletions of Greedy Search. Then, to add k parents to a node T

Greedy Search will perform (n − 1) + (n − 2) + · · · + (n − k) calls to the scoring function,

where n = |V | (we also ignore the fact that some of the scores may not be computed due to

acyclicity constraints) which is equal to kn − k(k−1)

2
. Thus, for node T Greedy Search will

perform statistical calls on the order of kn.

In contrast, MMHC on that node will in the worst case perform (n − 1) + 20(n − 2) +

· · · + 2pc−2(n − pc) calls to function Assoc, where pc ≥ k is the size of the parents and

children set of T . In the best case, all other nodes will be removed after the first iteration of
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Fig. 10 Performance of MMHC and GS on the HAILFINDER10 networks. The SHD and BDeu score are plotted

versus running time and number of statistical/scoring calls made for both algorithms

MMPC on T and the number of calls to Assoc will be (n − 1) + 20(pc − 1) + · · · + 2pc−21

which is equal to (n − 1) +
∑pc−1

i=0 (pc − 1 − i)2i = (n − 1) + 2pc − (pc + 1), which is

equal to (n − pc − 2) + 2pc. In addition, MMHC will perform k · pc − k(k−1)

2
scores to

add the k parents out of the pc candidates in the edge orientation phase for a total of

(n − pc − 2) + k · pc − k(k−1)

2
+ 2pc statistical calls, which is of the order of n + 2pc.

We see that Greedy Search considers for addition to the parents set a variable again and

again even if it may never show signs of increasing the score. In contrast, MMHC is typically

able to remove from consideration a variable after the first couple of iterations, as soon as it

discovers a d-separating set from T . Most variables in sparse networks have small such sets

even in cases where the parents and children sets are large (e.g., in a tree-like structure the

d-separating sets have size 1 independent of the number of children).

In general, if the connectivity of a network remains the same (i.e., the number pc of the

parents and children set) as n is increasing, MMHC’s performance will also be improving over

the Greedy Search. For pc = 10, k = 5, and n = 500 and according to the above equations

the two algorithms will perform about

n + 2pc = 1024 + 500 = 1524 < nk = 500 · 5 = 2500

statistical calls to add k parents to some node, i.e., MMHC will perform about 40% less calls.

When n increases to 1000 MMHC performs about 60% less calls.

The above statement is corroborated by our experiments. Let us consider a series of

tiled networks, e.g., ALARM, ALARM3, ALARM5, and ALARM10. In each such series the
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Fig. 11 Relative performance of GS on the four series of tiled networks: ALARM, CHILD INSURANCE, and

HAILFINDER. Each series comprises of the original network, and 3, 5, and 10 tiled versions of it. (a) Normalized

Structural Hamming Distance plotted against the number of variables in the networks. (b) Normalized number

of statistical calls performed plotted against the number of variables in the networks. While the relative learning

performance of GS remains the same as the number of variables increases (a), the relative number of statistical

calls increase with increased problem size (b)

difficulty in learning the network and its connectivity remains the same by construction

while the number of variables increases. This is graphically depicted in Fig. 11(a) where the

normalized Structural Hamming Distance of Greedy Search is plotted versus the number of

variables for each series: the relative quality of learning the networks remains the same as

the size increases (with an outlier for ALARM).

However, the number of statistical calls is greatly affected by the network size. In Fig.

11(b) we plot the normalized number of statistical calls of Greedy Search versus the number

of variables for each series of tiled networks and sample size 5000. As we can see, in some of

the small networks Greedy Search performs fewer statistical calls than MMHC (normalized

number of calls is less than 1). As the number of variables grow, Greedy Search performs

more and more calls relative to MMHC. On-line Appendix E contains similar curves for all

other algorithms, sample sizes, and performance metrics.

11. PC vs. MMHC

In this section, we show that MMHC is not a trivial extension of PC, where the edge orientation

phase has been replaced with a search-and-score procedure. Instead, we show that the two

algorithms employ different strategies for identifying d-separating subsets and reconstructing

the skeleton.

Table 8 shows the number of association calculations and conditional independence (CI)

tests (completed calls to Ind and Assoc) per variable averaged out over all networks for both

MMHC and PC. The final column of this table also presents the ratio of the number of CIs

performed by PC compared to that for MMHC. The average ratio is 24.2, 5.7, and 1.5 for

the sample sizes of 500, 1000, and 5000 respectively. Over all the networks and sample sizes

there are 30 cases where PC performs fewer statistical tests of Ind and Assoc than MMHC.

In each of these cases, MMHC returns a higher quality network.

There are two main differences in the strategy for performing independence tests between

the two algorithms. The first one is the Max-Min Heuristic employed by MMHC versus the

heuristic employed by PC (see Heuristic 3, Spirtes, Glymour and Scheines, 2000, pp. 90).
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Fig. 12 An example network illustrating the different strategies for performing tests of independence and

measures of strength of association between PC and MMHC. We assume nodes Di require conditioning on at

least two nodes to be d-separated from T and that both algorithms are equipped with perfect heuristics for this

particular case. The column on the left is the list of tests of the form Ind(C ; T |S), for some subset S performed

by PC until it removes edge T ↔ C from further consideration (and the output skeleton). Notice that the tests

are ordered by the size of the conditioning set. The column on the right is the list of measures of associations

of the form Assoc(C ; T |S) performed by MMHC to remove the same edge

PC’s heuristic decides which conditional test to perform next based on pairwise associations

only, not conditional ones.

The second main difference is that PC exhausts all possible tests with conditioning set

size n, before performing any test with conditioning set size n + 1. In contrast, MMHC does

not restrict itself to perform the tests in order of increasing conditioning set size.

Here follows an example illustrating the above argument. In Fig. 12 a network is shown

where variable T is connected to node C via nodes A and B. In addition, the structure is

such that nodes D1, . . . , Dn can only be d-separated from T by conditioning on at least two

other variables. Let us concentrate on the independence tests and measures of association of

the form Ind(C ; T |S) and Assoc(C ; T |S), where S is some subset of variables, the algorithms

attempt to remove the edge T ↔ C from the skeleton. We will assume that both algorithms

are equipped with optimal heuristics i.e., will perform the least number of tests possible given

their search strategies.

PC will first perform the test Ind(C ; T |∅) (and all other tests with conditioning set size

of zero). It will then perform the tests Ind(C ; T |A), Ind(C ; T |B) and Ind(C ; T |Di ) for all

i = 1, . . . , n.11 All these tests will fail. Next, it will perform the test Ind(C ; T |A, B), which

will succeed, and the edge will be removed. Thus, edge T ↔ C requires PC a total of n + 4

tests of the form Ind(C ; T |S) to be removed from the skeleton.

MMHC will call MMPC(T,D) to determine whether there should be an edge T ↔ C

in the output. MMPC(T,D) will first calculate Assoc(C ; T |∅) during the evaluation of the

Table 8 Average Number of

Statistical Tests per Variable for

the MMHC and PC algorithms at

the Sample Sizes of 500, 1000,

and 5000. Ratio of Number of

Statistical Tests per Variable

performed by MMHC and PC

Ratio

Sample size MMHC PC PC/MMHC

500 147.4 3048.8 24.2

1000 179.5 851.0 5.7

5000 948.1 1200.6 1.5

11 This is because all edges T ↔ Di are still in the graph at this point, since we assumed no Di can be

d-separated from T conditioned on only one node.
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Max-Min Heuristic in the first iteration. CPC will then be increased by the variable selected

by the heuristic, e.g., A. The algorithm will then calculate Assoc(C ; T |A) during the second

iteration and increase CPC by one more variable, say B.12 The next evaluation of the Max-

Min Heuristic will invoke Assoc(C ; T |B) and Assoc(C ; T |A, B), at which point variable C

becomes independent of T and is never considered again by the algorithm (optimization 1

Section 6). The total number of tests of the form Assoc(C ; T |S) to remove the edge T ↔ C

for the call MMPC(T,D) is 4. When calling MMPC(C,D), and provided the optimization

(4) in Section 6 is in effect, T should already have been removed from consideration by the

algorithm. Thus, in total MMHC performs 4 conditional measures of association calculations

versus the n + 4 tests required by PC.

The above discussion illustrates the difference between the PC and the MMHC approaches

in reconstructing the skeleton. PC focuses on a specific conditioning set size before moving

on to consider larger sizes. MMHC focuses on a specific variable before considering the next

one.

11.1. A theoretical analysis of behavior of the PC for low sample cases

While the previous section explains the performance difference between the PC and MMHC,

this section focuses on the difference in quality of reconstruction.

Constraint-based methods have been criticized for performing poorly when the available

sample is relatively low. As shown in our experiments, PC indeed exhibits such behavior (see

Dash and Druzdzel, 2003, for a discussion and a suggested solution based on a robust test

of conditional independence), especially in networks, such as MUNIN, where the domains of

certain variables are large relative to the available sample. We now provide an explanation of

this behavior. We show that this property of PC is not representative of all constraint-based

methods; for example MMHC has excellent performance in low sample.

PC first identifies the skeleton of a Bayesian network and then orients the edges. It starts

with a complete graph, and then removes an edge X—Y if and when a subset S is found

such that Ind P (X ; Y | S). A subtle but important detail of PC is that the choice to start

with a complete graph (i.e., it assumes that any pair of variables is dependent by default)

in combination with the details of how the conditional tests are implemented introduces a

non-linearity relative to the available sample in the results of the conditional independence

tests. This observation is elaborated below.

Like many constraint-based algorithm, PC does not perform a test if there is not enough

sample: a test Ind P (X ; Y | Z) is not performed unless there are at least 10 data samples per

different possible patterns of X , Y , and Z (e.g., if Z contains two binary variables, and X , Y

also binary at least 24 × 10 samples are required). This is necessary because a large enough

conditioning set will always render the χ2 test unable to reliably reject the independence

hypothesis.

Now, assume that X and Y are actually dependent given the empty set. When the available

sample is low, PC will not be able to perform a test of independence and so it will assume

dependence (since it starts with a complete graph). As sample increases PC will perform the

test Ind P (X ; Y | ∅), but if the association is low enough relatively to the available sample, the

independence hypothesis will not be rejected by the χ2 test and it will be accepted instead.

As the available sample increases, the test will be able to reject the independency hypothesis

and retain the edge. The example is presented pictorially in Fig. 13.

12 Notice that the test Assoc(C ; T |∅) will not be repeated when optimization (2) in Section 6 is in effect.
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Fig. 13 An example of the non-linear behavior of the PC algorithm. X and Y are dependent; the results of

the test Ind P (X ; Y | ∅) non-linearly depend on the available sample

The consequences of such non-linearities may be catastrophic. If a variable X has a large

domain size relative to the available sample no test of independence that contains X can

be performed; in that case PC will output a network where X has an edge to every other

variable. It also still blindly considers X during computations and slows down significantly.

MMHC on the other hand does not exhibit such non-linearities because in essence it starts

with an empty graph, only inserting variables into candidate parents and children sets when

a dependency has been established.

Finally, we also observe that the edge orientation phase of PC is similarly impaired.

Suppose that there is no available sample to perform any test of independence that includes

variable X . Then, as discussed above, X will be connected to any other variable. In the

orientation phase, for any triplet of nodes Y − X − Z , where Y and Z are not connected to

each other, X is considered as a potential collider by PC. X does not belong in the SepSet(Y ,

Z ) or any other SepSet since we cannot include the node in any test (see description of

the algorithm, Spirtes, Glymour & Scheines, 2000), and so PC will orient Y → X ← Z . In

other words, for a variable X with a high domain count (relative to the available sample),

all other nodes will have an edge pointing to X (except for nodes also connected to all other

ones).

Again, this problem is not inherent to constraint-based methods, but a peculiarity of the

specific choices of the PC algorithm regarding the use of the results of the statistical tests.

12. A theoretical analysis of the sparse candidate

Similarly to MMHC, Sparse Candidate (SC) first estimates for each variable X , a candidate

set of parents C(X ) (in MMHC this is the parents and children set as returned by MMPC) of

at most size k, where k is provided by the user. It then performs a constrained greedy hill-

climbing search in the space of all Bayesian networks starting from the empty network. Once

hill-climbing reaches a local maximum, the candidate sets are re-estimated and hill-climbing

search is performed again. The original Sparse Candidate paper (Friedman, Nachman & Pe’er,

1999) provides several heuristic methods for estimating the candidate sets C(X ). We will call

the cycle of candidate sets estimation and hill-climbing an iteration. Sparse Candidate iterates

Springer



70 Mach Learn (2006) 65:31–78

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

SHD vs k for SC and MMHC Algorithms

Maximum Size of Candidate Parent Set k

S
tr

u
c
tu

ra
l 
H

a
m

m
in

g
 D

is
ta

n
c
e

 (
S

H
D

)

SC
MMHC

0 2 4 6 8 10 12
10

1

10
2

10
3

10
4

Time vs. k for SC and MMHC Algorithms

Maximum Size of Candidate Parent Set k

T
im

e
 (

s
e

c
o

n
d

s
)

SC
MMHC

Fig. 14 Performance of the Sparse Candidate as k increases on reconstructing Alarm from 5000 cases

until there is no change in the candidate sets or a given number of iterations is performed

with no improvement in the network score.

There are three main problems with Sparse Candidate. The first is that the estimation of

the candidate sets is heuristic (may not identify the true set of parents), and it may take a

number of iterations to converge to an approximation of the true set of parents. The second

problem is that the user has to guess the parameter k, i.e., the maximum number of parents

allowed for any node in the network. If the user overestimates k the algorithm will take

unnecessarily long to finish and may even be rendered intractable for large datasets. If the

user underestimates k there is a risk of discovering a suboptimal network. The final problem

is the parameter k imposes a constraint of uniform sparseness on the network.

Figure 14 plots the average number of structural errors and running time over ten runs

of Sparse Candidate on 5000-instance datasets sampled from ALARM as k increases. The

SHD and running time of MMHC is also plotted as a baseline comparison (MMHC does not

depend on k and is just plotted at all values of k for reference). As we can see, the number

of errors highly depends on the value of k. Notice also that, Sparse Candidate exhibits a

significant number of errors, even for relative large k values, despite the fact that all variables

in ALARM have less than or equal to four parents. The cost of increasing the number of

candidate parents is slower running times; running times which explode as k gets large. In

fact, the Sparse Candidate’s implementation we used will only run up to k = 11 on this

problem.

Unfortunately, if a node has m > k parents, then not only the node will be missing at

least m − k parents in the resulting network, but the errors may propagate to the rest of the

network. A theoretical interpretation of this dependence follows.

Consider a node X with several parents, including Y (i.e., Y → X ) and let us assume Y

failed to enter the candidate parents set of X , e.g., because X has more than k parents. Since

Y is a parent of X , it has an association with X (if the network is faithful). That means that

the hill-climbing search will erroneously tend to add the reverse edge X → Y to explain the

association between the nodes. This in turn may prohibit other true edges from being added

because they create cycles with the erroneously directed edge. In other words, we expect

errors created by over-constraining the search (i.e., setting a low value for k) to propagate to

other parts of the network.

Figure 15 shows a representative example. Sparse Candidate with the Score candidate par-

ents selection method was run on 5000 instances sampled from the distribution of the ALARM

network. Figure 15(a) shows a piece of the ALARM network structure around variable with
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(a) Alarm Network PDAG

around node 14

(b) PDAG structure learned by

MMHC around node 14

(c) PDAG structure learned by

SC, k=8 around node 14

(d) PDAG structure learned by

SC, k=9 around node 14

29

Fig. 15 The gold-standard network around node 14. Reconstructed area around node 14 of Alarm by MMHC

(b) and by Sparse Candidate when k = 8 (c) and when k = 9 (d). Bold edges indicate the structural orientation

errors made, dotted ovals indicate missing edges

index 14, which is the variable with the maximum in-degree of 4. The portion of the network

shown is extracted from the PDAG representation of the network; the comparison here be-

tween structures is analogous to how the SHD metric is calculated. Parts (c) and (d) of the

figure show the reconstructed networks (converted to PDAGs) learned by Sparse Candidate

with k = 8 and k = 9 respectively after 3 iterations in each case. The bold edges denote

structural errors. When k = 8, not one but all four of the parents {15, 16, 18, 31} of variable

14 are erroneously reported as children. The errors are propagated to other nodes, such as

variable 19 and a number of other false positive edges are added to the structure. When k is

increased to 9, the number of structural errors falls from 11 to 4, a sharp reduction. In contrast,

for variable 14, the candidate parent set as estimated by MMPC is the set {15, 16, 18, 31, 13}

that includes all the parents (and all children as it is supposed to). This allows hill-climbing

to discover the correct structure (Fig. 15(b)) within one iteration with only one missing edge

15 → 14.

In general, Sparse Candidate uses simpler heuristics than MMHC to estimate the candidate

sets, however, it requires iterating between search and re-estimation of the sets. MMHC on

the other hand puts more effort in the initial selection of candidate sets so that only one search

Springer



72 Mach Learn (2006) 65:31–78

cycle is adequate.13 Our experiments indicate that the different strategy pays off not only in

identifying better structures but also in significant computational savings.

13. Discussion, limitations, and future work

MMHC is a Bayesian network learning algorithm based on MMPC, an efficient and theoret-

ically sound local learning algorithm. MMPC, and its extension MMMB, Max-Min Markov

Blanket an algorithm for reconstructing Markov Blankets, were compared against other local

learning algorithms, namely the Grow-Shrink (Margaritis & Thrun, 1999), the Koller-Sahami

(Koller & Sahami, 1996), and the Incremental Association Markov Blanket (Tsamardinos,

Aliferis & Statnikov, 2003b) and its variants. Compared to most of these algorithms, MMPC

trades-off time for reduced sample size requirements (except the Koller-Sahami algorithm

which is slower than MMPC and MMMB): Grow-Shrink and the Incremental Association

Markov Blanket algorithms require sample size exponential the size of the local neighbor-

hood learnt; in contrast, MMPC sample requirements depends on the connectivity of the

structure learnt.

The local nature of MMHC has several advantages. First, each call to MMPC(T,D) con-

siders edges only to and from T and thus, the skeleton identification phase naturally only

requires one-dimensional tables to maintain the current list of edges considered. In contrast,

some global methods begin with a two-dimensional connectivity matrix simultaneously con-

sidering all possible edges in the network. Once the skeleton has been identified, the graph

of the network is stored as adjacency lists with very low memory requirements for sparse

networks. This helps explain why MMHC is able to run on all networks in our experiments,

while several other algorithms face memory problems on high-dimensional datasets.

A second advantage of the local approach method is that it can easily be modified to selec-

tively reconstruct only a part of the network, when time constraints or increased complexity

in a local area of the network forbids global reconstruction. In Tsamardinos et al. (2003a)

we experimented with a variant of MMHC to reconstruct local regions of the network of

an increasing radius edge-distance from a target node T . We intend to explore this research

avenue further.

MMHC’s heuristic heavily depends on measuring the strength of conditional association

between a pair of variables, similar to the Three Phase Dependency Analysis algorithm.

However, the latter uses the estimated mutual information to this end, instead of a statistical

test, such as the χ2. Both techniques use a cut-off threshold value, below or above which

(depending on the metric) the strength of association is considered to be zero. Unfortunately,

the estimated mutual information requires the use of a threshold that has no intuitive sta-

tistical meaning and depends on the available sample relative to the conditioning set size

(degrees of freedom). For example, an estimated mutual information threshold value of 0.01

may be reasonable for the test Ind(X ; T | {A, B, C}) when the available sample size is 1000.

That is, let us assume that most likely, if X and T are indeed independent given {A, B, C}

their estimated mutual information from our sample will be lower than 0.01 and vice-versa.

However, if the sample size drops to 100 cases, the 0.01 threshold may be too low since

due to an increase in the variance of the estimation, the estimated mutual information is

likely to be above 0.01 even when X and T are independent given {A, B, C}. The situa-

tion is similar when one fixes the available sample size but considers different conditioning

13 In unreported experiments, we have allowed MMHC to continue iterating (re-estimate candidate parent sets

using different methods), without any significant improvement in quality of reconstruction.
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sets (or to be precise different degrees of freedom): an estimated mutual information value

of 0.01 for the test Ind(X ; T | {A, B, C}) is not comparable to the same value for the test

Ind(X ; T | {A, B, C, E}). In contrast the χ2 test considers both the available sample and

the degrees of freedom and the p values returned are comparable in all cases. In our ex-

periments, the 5% threshold was used throughout for the χ2 test with reliable and robust

results.

Our experimental evaluation is extensive. Seven prototypical or state-of-the-art algo-

rithms (thirteen different variations) were compared across twenty-two networks at three

different samples sizes. Even so, some restrictions were made in terms of algorithms se-

lected, scoring functions used by the algorithms, networks included in the study, sample

sizes used, and the metrics used to quantify the evaluation results. We did not optimize

the parameters of each algorithm for performance, or even better, compared the algorithms

over a range of parameter values in a similar fashion to creating the Receiver Operating

Curve.

In addition to the choice of algorithm, the implementation of each algorithm must also

be considered. In Section 9.1.1, the implementation details of each algorithm are discussed.

We mention that several possible optimizations suggested by Chickering (2002a) were not

included in the version of the GES algorithm that was used in this study. In the future, we

would like to replace this version of the GES algorithm by one by the original authors.

In this study, when a scoring function is used to quantify the network quality the BDeu

scoring function is chosen with an equivalent sample size of 10. This choice has become fairly

standard practice taken by many algorithm implementations in the literature (Heckerman,

Geiger & Chickering, 1995; Friedman, Nachman and Pe’er, 1999; Chickering, 2002b). In

Acid et al. (2004), several scoring functions are compared. Future work could include a

similar study of the effects of scoring function for each algorithm.

The networks that were chosen for this study were mainly taken from real decision sup-

port systems. The hope is that these networks well represent the kind of distributions most

frequently encountered in practice. The networks selected are all fairly sparse. Additional

networks that are more dense (whether taken from the real-world or manually constructed)

could be considered in future work.

The sample sizes analyzed is limited: 500, 1000, 5000 and a smaller set of tests at

20,000. An interesting study would be to analyze the behavior of the algorithms with

extremely small sample (100 or less) and explore adjustments of the algorithms for very

small sample. Data sets with very limited sample are abundant, especially new data sets

coming from biology with the advent of wide-spread use of genomic and proteomic

data.

MMHC is a promising new algorithm that outperformed all others included in our exper-

iments. Nevertheless, the algorithms still has several limitations to consider.

The first limitation is that the algorithm requires a network to be faithful, or close to

faithful, to reconstruct. The faithfulness assumption can be relaxed from what stated: MM-

PC’s proof of correctness would still be valid if we require a limited and local form of

faithfulness, where a network is locally-faithful if for every pair of nodes connected by an

edge, the nodes are associated conditioned on any other subset of variables. However, even

with this relaxation the algorithm will still not be able to identify the parents of a variable

connected to it via a parity or similar function. In the future, we intend to work on relaxing

this assumption.

Other possible extensions to the algorithm are to incorporate statistical tests targeting spe-

cific distributions, employing parametric assumptions, or incorporate background knowledge.
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For example, parametric assumptions could lead to more statistically powerful tests (requiring

less sample size) and allow a power analysis of the tests of independence.

In preliminary work we have evaluated a polynomial version MMPC with promising

results (Brown, Tsamardinos & Aliferis, 2005). The resulting version of MMHC using poly-

nomial MMPC scales up better with increased sample and is more efficient while it maintains

the same quality of learning. We intend to explore further polynomial extensions of MMHC

and identify conditions of correctness similar to monotone faithfulness (Cheng, Bell & Liu,

1998).

Other interesting research avenues to explore are extensions and modifications to the

greedy search-and-score procedure used for edge orientation. One could couple the sound

edge identification constraint-based method we use with a sound search and score technique,

such as the Greedy Equivalence Search to obtain a sound algorithm in the sample limit. We

also note and remind, that in our experiment with a 5000-variable tiled-ALARM network

(Section 9.2.7) the skeleton reconstruction phase took about 19 hours, while the search-

and-score part required another 12 days time approximately. This indicates, that the most

promising part to optimize, in terms of computational gains, is the edge orientation phase.

14. Conclusion

In this paper we presented a new algorithm for Bayesian network structure learning, called

Max-Min Hill-Climbing (MMHC). The algorithm combines ideas from local learning,

constraint-based, and search-and-score techniques in a principled and effective way. It first

reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy

hill-climbing search to orient the edges. MMHC pushes the envelope of Bayesian network

learning to datasets with thousands of variables while simultaneously improving the recon-

struction quality over existing algorithms. In our experiments, on average, MMHC outper-

formed both in terms of time efficiency (subject to the implementations selected) and quality

of reconstruction the PC, the Sparse Candidate, the Three Phase Dependency Analysis, the

Optimal Reinsertion, the Greedy Equivalence Search, and the Greedy Search algorithms on

a variety of networks, sample sizes, and parameter values.

As a constraint-based algorithm, MMHC improves the search strategy for conditional

independencies of the PC algorithm by employing a more powerful heuristic and by lifting

the restriction to perform constraint-based tests in order of increasing conditioning set size.

In addition, it corrects several problems of PC when the sample is low, indicating that PC’s

counter-intuitive behavior in low samples is not inherent to constraint-based methods.

As a hybrid algorithm, MMHC improves on the ideas by Sparse Candidate by employing a

sound method to constrain a subsequent search-and-score edge orientation phase. As a result,

the user is not required to estimate the parameter k of the maximum number of parents allowed

for a node and the network does not have to be uniformly sparse to reconstruct. We show that

underestimating the parameter k in Sparse Candidate may lead to errors propagating to other

parts of the reconstructed network, while overestimating k leads to increased computational

efforts spend. Finally, unlike the Sparse Candidate, MMHC only requires one iteration of

candidate parent estimation and search to learn a network, leading to significant computational

savings.

Our extensive experimental evaluation is one of the first simultaneously comparing most

of the major Bayesian network algorithms against each other. The results support our theoret-

ical analysis stated above regarding PC and Sparse Candidate. The detailed results, datasets,

algorithms, experimentation scripts, code to compute the performance metrics used, and
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other useful information are available on-line to facilitate researchers to repeat the exper-

iments with new algorithms and/or implementations (http://www.dsl-lab.org/supplements/

mmhc paper/mmhc index.html). The version of MMHC used in our experiments is available

at the same URL as above, and as part of the Causal Explorer 1.3 and its future versions.

Appendix A: Proof of correctness

Lemma 1. PCT ⊆ MMPC(T,D).

Proof: If X ∈ PCT then because of faithfulness (Theorem 2), Dep(X ; T |Z) and

Assoc(X ; T |Z) > 0, for any Z. Thus, X will be selected by the Max-Min Heuristic in some

iteration before the algorithm moves to the Phase II and it will eventually enter CPC; once

it enters it can never be removed because the independence tests will always fail for X

(Algorithm 1 Line 10). �

Lemma 2. If X ∈ MMPC(T ;D) and X �∈ PCT , then X is a descendant of T in all networks

G faithful to the distribution of the data.

Proof: Let G be the graph of any Bayesian network that faithfully captures the distribution

of the data D (there has to be at least one since we assume a faithful distribution). By Lemma

1 the following holds: PaG
T ⊆ PCT ⊆ MMPC(T; D).

In Phase II of MMPC we condition on at least all subsets of the output MMPC(T ;D), and

so at some point we will condition on PaG
T . By the Markov Condition in G we know that

Ind(X ; T | PaG
T ) for any non-descendant variable X ∈ V \ PaG

T . Thus, if X ∈ MMPC(T ;D)

then either X ∈ PaG
T or X is a descendant of T in G. The latter condition has to hold since

we assumed X �∈ PCT . �

Theorem 3. Algorithm MMPC(T,D) will return PCT .

Proof: If X ∈ PCT , then T ∈ PCX and by Lemma 1, X ∈ MMPC(T ;D) and T ∈

MMPC(X ;D). Thus, X will be included in CPC at Line 2 of MMPC (Algorithm 2, and

the condition at Line 4 will fail; in the end X will be included in MMPC(T ;D). Thus, MMPC

returns all members of PCT .

Let us now suppose that X is returned by MMPC(T,D) and that X �∈ PCT (and so

T �∈ PCX ). Since X passed the test at Line 4 (Algorithm 2), X ∈ MMPC(T,D) and

T ∈ MMPC(X,D).

Thus, by Lemma 2 X is a descendent of T in any G faithful to the distribution of the data.

By the same Lemma T is also a descendent of X in T . Since, Bayesian networks are acyclic

this is a contradiction and so X cannot be returned by MMPC(T,D) unless X ∈ PCT . Thus,

MMPC returns only members of PCT . �
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