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The Maximally Achievable Accuracy of Linear

Optimal Regulators and Linear Optimal Filters

HUIBERT KWAKERNAAK, MEMBER, IEEE, AND RAPHAEL SIVAN

Abstract—A linear system with a quadratic cost function, which is
a weighted sum of the integral square regulation error and the inte-
gral square input, is considered. What happens to the integral square
regulation error as the relative weight of the integral square input
reduces to zero is investigated. In other words, what is the mazimum
accuracy one can achieve when there are no limitations on the input?
It turns out that the necessary and sufficient condition for reducing
the regulation error to zero is that 1) the number of inputs be atleast
as large as the number of controlled variables, and 2) the system
possess no right-half plane zeros, These results are also ‘‘dualized”’
to the optimal filtering problem.

InTRODUCTION
N designing a control system, it is usually necessary to
make a tradeoff between achieving better performance
and using smaller actuating foreces. Namely, if one is willing
to use higher power (or amplitude) levels at the input of a
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plant, one can usually achieve smaller deviations of the
controlled variable from its desired trajectory. The follow-
ing question thus comes up. Assuming that. the input power
is not limited, can one achieve perfeet performance, or is
there a lower bound on the performance that cannot be
surpassed? In this paper this question will be answered; in
fact, systems will be classified into the two following
groups.

1) Systems with unlimited accuracy are those for which
the performance index can be reduced to zero if the ampli-
tudes of the input are allowed to inerease indefinitely.

2) Systems with limifed aceuracy are those for which the
performance index cannot be reduced beyond a certain
value, even if the input amplitudes are allowed to in-
crease indefinitely.

Our main result is that systems for which the number of
inputs are larger than or equal to the number of controlled
variables, and which possess the property that the transfer
matrix of the system has no zeros in the right-half complex
plane, comprise the class of systems with unlimited ac-
curacy. This result agrees with the well-known fact that
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systems with right-half plane zeros have certain defi-
ciencies that make them less easy to control [1].

We shall consider the linear time-invariant quadratic
cost optimal regulator problem. The system equations are

() = Az(®) + Bu(t), () = xo 1)
2(t) = Dux(t) 2

where z(f), the state, is an n-dimensional veetor; u(f), the
input, is a k-dimensional vector; 2(f), the controlled vari-
able, is a p-dimensional veetor; and z, is the initial state
at time 4.

Let C be the performance criterion to be minimized,

C= f T FOR2@) + CORa® & (3)

where R; and R, are symmetric positive-definite matrices.
It will be convenient to rewrite the criterion as follows

¢ = [T 100 + souolat 0)
to
where C,(%),
Co(l) = 27()Rz(d), ®)
is the square regulation error; C,(f),
Cu(t) = u"(ONu(®), (6)

is the square input; and p is a positive scalar which deter-
mines the relative weight of C,(f) and C,(¢). It follows that

By, = pN (7)

with N a symmetric positive-definite matrix.

A typical design procedure for a regulator would be as
follows. First one solves the optimization problem for a
given set of values of B3, N and p [2]. The next step in the
design is to evaluate separately the integral square regula-
tion error

"o dt

to

®)

and the integral square input
f Cuh) dt ©)
to

for the optimally designed system. If it turns out that the
integral square regulation error is too large, we decrease p
and again solve the optimization problem. This will result
in a lower integral square regulation error at the expense of
a larger integral square input.

In this paper we shall investigate the limit

lim | €. dt
pl0

(10)
and classify systems of unlimited accuracy, for which

lim | €. dt =0,

pl0 Jt

(11

for all z,,
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and systems of limited accuraey, for which

lim C.(6) dt > 0, for some .

pl0J i

(12)

In the last section, we shall dualize the notions and re-
sults of this paper to the optimal filtering problem where
we shall classify filters as filters with unlimited accuracy
and filters with limited aceuracy.

The results of this paper are related to those of Friedland
[3] and Kwakernaak [4], where the effect of taking the
limit p 4 O on the form of the optimal control law is dis-
cussed.

RESULTS AND INTERPRETATION

Before stating the main results of this paper, we intro-
duce the notions of numerator polynomial and zeros of a
multi-input multi-output linear time-invariant system for
systems where the number of inputs are the same as the
number of controlled variables.

Definition [5], [6]: Consider the system (1), (2) for the
case that £ = p, and denote by

H(s) = D(sl — A)B, (13)

the & X k transfer matrix of this system. Let ¢(s) denote
the characteristic polynomial of 4 and write

o)
509

where ¥(s) is a polynomial in s of degree n — k& or less.
Then ¥(s) is called the numerator polynomial of the system
and its roots are called the zeros of the system.

Note that in the special case where the system is single-
input single-output, ¥(s) is just the numerator of the trans-
fer function, and its roots are commonly referred to as the
zeros of the transfer function, provided no cancellations
0CCUr.

We are now ready to state our main result.

det [H(s)] = (14)

THEOREM
Consider the time-invariant stabilizable and detectable

linear system

() = Az(t) + Bu(®)

() = Dz(}) (15)
with dim (u) < dim (2), dim (¢) < dim (z), and where B
and D are assumed to have full rank. Consider also the
criterion

[T R + v O R @ (16)
to

where R; and R, are positive-definite symmetricr madtrices.
Let

R, = PN (17)

with N positive definite and p a positive scalar, and let P
be the steady-state solution of the Riceati equation
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—P(f) = D'R:D — P({)BR,~'BTP(t) + ATP(f) + P(1)A,

P(t) = 0. (18)
Then the following faets hold.
Fact 1: The limit
lim P = P, (19)
pl0

exists.

Fact 2: For the closed-loop steady-state optimal regu-

lator,
liP% 2T Raz(t) di = 27 () Pox (o).
pl o

Fact 3: If dim (z) > dim (u), then Py = 0.

Fact 4: If dim (2) = dim (%) and the numerator poly-
nomial ¥(s) of the open-loop transfer matrix H(s) =
D(sI — A)—B is nonzero, Py = 0 if and only if all the
zeros of the numerator polynomial y¥(s) have nonpositive
real parts.

Fact 5: If dim (2) < dim (u), then Py = 0 if there exists
a rectangular matrix M such that the numerator poly-
nomial ¥’(s) of the square transfer matrix D(sI — A) 'BM
is nonzero and has zeros with nonpositive real parts only.

It is recalied that the system (15) is stabilizable if there
exists a constant matrix F such that the matrix A — BF
has all its characteristic values in the left-half complex
plane [7]. Similarly, the system (15) is detectable if there
exists a constant matrix K such that the matrix A — KD
has all its characteristic values in the left-half complex
plane.

A discussion of the significance of the various parts of
the theorem now follows. Fact 1 states that as we let the
weighting coefficient of the input p decrease the minimal
value of the criterion,

(20)

min j:m [ZZ(O) Rsz(t) + puT @) Nu®) ] dt = 27 (t) Pz (o),

(21)

approaches the limit 27(f) Pox(t) as p | O.
Next, using the notation (3), (6), it follows from Fact 2
of the theorem that
Hm {p C.(0) dt} = 0, (22)
pl0 to
so that in the limit as p ¢ 0 the integral square regulating
error fully accounts for the cost C' (4).
Faets 3, 4, and 5 of the theorem are concerned with the
conditions under which P, = 0. It is under these conditions
that ultimately perfect regulation is achieved since

©

lim C.(t) dt = 0,
pl0J 1o

for all x,. (23)
Faet 3 of the theorem states that, if the dimension of the
controlled variable is greater than that of the input, perfect
regulation is impossible. This is very reasonable since in
this case the number of degrees of freedom to control the

system is too small. In order to determine the maximal
accuracy that may be achieved, Py must be computed. In
the section on the filtering problem we shall give a hint
how P, may be found.

In Fact 4 the case is considered where the number of
degrees of freedom are sufficient, i.e., the input and the con-
trolled variable have the same dimensions. Here the maxi-
mally achievable accuracy is dependent upon the proper-
ties of the open-loop system transfer matrix H(s). Perfect
regulation is only possible provided the numerator poly-
nomial ¥(s) of the transfer matrix has no right-half plane
zeros (assuming that y¥(s) is not identical to zero). This
may be made intuitively plausible by considering the
limiting situation when p = 0. Let {, = 0~ and suppose
that at time 0~ the system is in the initial state z;. Then
in terms of Laplace transforms the response of the con-
trolled variable may be expressed as

Z(s) = H()U(s) + D(sI — A)—'xy (24)

where Z(s) and U(s) are the Laplace transforms of z and
u, respectively. The time function 2(¢) can be made identi-
cal to zero for ¢ > 0 by choosing

Uls) = —H-Ys)D(sl — A) . (25)
The input u(t) is actually made up of é-functions and de- .
rivatives of é-functions at time £ = 0. These é-functions
instantaneously transfer the state zp at time 0~ to a state
2(0) at time 0, which has the property that z(0) = Dz(0)
= 0 and that 2(t) can be maintained at 0 for 0 < t < «
[8]. Note that in general the state z(f) will undergo a
s-function and derivative of 3-function type of trajectory
but z(f), as can be seen by inserting (25) into (24), will
move from 2(0~) = Dxp to 2(0) = 0 directly, with no
infinite exeursions.

This input (25) will lead to a stable behavior of the input
only if the inverse transfer matrix H—(s) is stable, namely,
if the numerator polynomial ¥(s) of H(s) has no right-half
plane zeros.

The reason that the input (25) cannot be used in the
case where H—(s) has unstable poles is that the input % (%)
as given by (25) will drive z(t) to zero without z(¢) having
any s-functions, and this »(¢) will also maintain 2(¢) at zero
for ¢ > 0, but u(t) will have to grow indefinitely since (25)
has right-half plane zeros [9]. By our problem formulation
and also by considerations of practical applicability, such
inputs are ruled out so that in this case (25) is not the
limiting input as p ¥ 0, and in fact, costless regulation can-
not be achieved.

However, note that if B2 = 0 from the outset [10], we
do not rule out an indefinitely growing input and u(f) given
by (25) is the solution irrespective of the location of the
zeros of the system, as long as H—1(s) exists. Such a problem
formulation, however, has little practical significance.

Note that for single-input single-output systems the con-
dition that all zeros be in the left-half plane amounts to the
requirement that the system transfer function have no
right-half plane zeros. It is well known to control engineers
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[1] that systems with right-half plane zeros possess in-
herent limitations that cannot be overcome by “tightening
the feedback loop.”

The results of this part of the theorem agree with a re-
lated fact that has been discussed elsewhere [11], and
which concerns the asymptotic behavior of the closed-loop
regulator poles, i.e., the characteristic values of the matrix
A — BR,"'BTP. As it turns out, those closed-loop poles
that do not go to infinity as p § O approach the numbers
P, 7 = 1,2, - -+, m, which are related to the zeros v;, 7 =
1, 2, - -+, m, of the numerator polynomial ¢(s) as follows:

. { vi
¥, =
—
(This is a generalization of a fact that is well known in the
single-input single-output case [12].) Thus, if the system
has no right-half plane zeros, in the limit as p § 0, exactly
m closed-loop poles coincide with the system zeros »;, 7 =
1,2, - -+, m. Apparently, these nearby poles are “cancelled”
by the system zercs, and the response of the controlled
variable is completely determined by the far-away closed-
loop poles, resulting in an arbitrarily fast response. On the
other hand, if the system possesses one or more right-half
plane zeros, cancellation does not take place and the speed
of response, and hence the aceuracy of the regulator, is
limited.

Finally, in Faet 5 of the theorem we state a sufficient
condition for Py to be zero for the case where the number
of inputs are larger than the number of outputs. The idea
is to replace the input « with an input «/,

W) = Mu(d)

if Re (vy) < 0}_

if Re (s) > 0 (26)

(27)

where 4’ is a linear transformation of %, the dimension of
which is the same as the dimension of the output.!

The results of the theorem pertain to the deterministic
linear optimal regulator problem. They are also of interest
for related problems such as the stochastic linear optimal
regulator problem and the linear optimal tracking prob-
lem, since they are closely associated with the determin-
istie regulator problem.

Proor or THE THEOREM
First we consider Fact 1. P is defined by
min

{um,%}{f: [%T(t)Rgz(t)

+ puT(H)Nu(?)] dt}. (28)

2T (i) Pa(ty) =

Clearly as a function of p this expression has zero as a
lower bound. Moreover, this expression is monotonically
noninecreasing with decreasing p. This may be seen as fol-
lows. Suppose that the minimization is carried out for a
particular value of p. Then if p is decreased and the same

.t Moore and Silverman [17] have pointed out to the authors that
it may be shown by a counterexample that the condition in Fact 5 of
the theorem is sufficient but not necessary.
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solution is maintained, the expression in braces decreases.
If the minimization is repeated for this smaller value of p,
only an even smaller value can result. Thus (28) is non-
increasing with decreasing p; because it also has a lower
bound it must have a limit as p | 0. Since this limit exists
for all z(f), P must have a limit that we denote as P,

In the following, let w,(f), ¢ > f, denote the input that
is optimal for a given initial state (which is fixed) and a
given value of p. Similarly, z,(3), ¢ > #, denotes the result-
ing behavior of the controlled variable. Fact 2 of the
theorem 1s now proved as follows. The integral square
regulation error

f 2," (D Rz, (t) dt (29)
o

has zero as a lower bound. Moreover, it is noninereasing
with decreasing p since a smaller value of p results in a
larger integral square input and thus in a smaller integral
square regulation error. Hence, (29) has a limit for p § 0.
Since for all p, p > 0,

J:o [z, () Bz, (t) + pu, () Nu, ()] di

> J: 2, (O Rz,(B) dt, (30)

we must have

@

2,T(E) Raz, () dt < 2T(to) Poz(ty). (31)
to

Lim
pl0

Suppose that this is a striet inequality; then there must
exist an ¢ > 0 such that

litr(ll ) 2 TRz () dt = 2T()Pox(fe) — e (32)
pl to

Then we can always find a value of p, say g, such that

|7 e 0Ren0 @ = StPa) = 5 G3)
Since
f, nm w,T(O)Nu, (&) dt (34)
is finite, we can always select a positive p; such that
o J: j U T ONu(0) 8t < 5. (35)

Then we have

L T BT DR D) + o, O Nun(l)]

< 27 (1) Poe(te) — ; + i < 2Tt Pex(te).  (36)

This is a contradietion since for no positive value of p there
exists an input that makes

|7 e oRe + mroRa@I 0 @D
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less than x7(f)Pex(ty). Hence the inequality sign in (31)
cannot hold and Fact 2 of the theorem is true.
To prove Facts 3, 4, and 5, we first consider the algebraic
Riccati equation
1 . _ _ L
0 = DR;D — - PBN'BTP 4+ PA + ATP. (38)
p
We shall investigate the hypothesis that as p | 0, P ap-
proaches Py = 0. Since the first term of (38) is independent
of p and is finite and, according to the hypothesis, the last
two terms a.pproach zero, we have

lim —= BN~'BT —= = D*R,D. (39)
plo f \/—
Since N is nonsingular, the limit
P
L = lim BT —,= 40
pl 0 \/P ( )
must exist. For L we have the equality
L*N-L = DTR,;D. (41)

We shall investigate under which conditions this equation
has a solution for L. We first state the following faet from
matrix theory.

Lemma: Consider the matrix equation

XX =C (42)
where X is an unknown p X ¢ matrix with p < gand C a
known ¢ X g nonnegative-definite symmetric matrix. This
equation has a solution if and only if

rank (C) < p. (43)

If this condition is satisfied the general solution of (42)
may be expressed as

X =Uy (44)

where the p X ¢ matrix Y is any solution of (42) and U is
an arbitrary p X p unitary matrix.
We recall that U is a unitary matrix if

Uty = 1. (45)
This lemma is easily proved by first reducing C to diagonal
form and then to the unit matrix. Let us apply this result

to (41), which we first rewrite as
(N-BLYT(N=33L) = (BOED)N(RD).  (46)

Hereif M is anonnegative-definite symmetric matrix, M Y/?
is the unique nonnegative-definite matrix that satisfies

MY = M furthermore, M~V? = (M-H)V: =
(MY?%)~1 Now
. P
N-2L = Jim N-12BT —= 47)
p—0 \/P

has the dimensions k X n, where k is the dimension of the
system and n that of the state z. We see therefore from
the lemma that (46) has a solution L if and only if

rank (D7R;D) < k (48)
or equivalently, if and only if
rank (R;'/2D) < k. (49)

But sinee R;!'? is square and nonsingular, rank (RB;'V2D) =
rank (D), and consequently, (46) has a solution if and only
if

rank (D) < k. (50)

Since by assumption D has full rank, it follows that (46)
has a solution if and only if

dim (2) < dim (w), (51)

i.e., the number of components of the controlled variable
must not exceed the number of components of the input
variable. Now, if the condition (51) is violated, (46) does
not have a solution L. This means that (39) cannot be
true, which implies that the hypothesis that P, = 0 is
false. Thus we have shown that if we attempt to regulate
a controlled variable of higher dimension than the input,
it is never possible to achieve an arbitrarily small value of
the optimization criterion. This proves Fact 3 of the
theorem.
We continue the analysis under the assumption that

dim (2) = dim (u). (52)
Then we can write for the solution of (46)
N-1], = URsV?D (53)

where U is an arbitrary unitary matrix. To see whether this
expression is still consistent with the hypothesis P, = 0,
let us consider the closed-loop characteristic polynomial
as p | 0. We introduce the notation

= lAf—lBTP (54)
p
and write
det (s — A + BF)
= det (sI — A) det [T + BF(sI — A)™1]
= det (sI — A) det [I + F(sI] — A)—'B]
= det(s] — A) det [I + 1N‘IB7”1-=’(81 — A)“B:I
P
= det (sf — A)
-det |:I + — N BT (sl — A)- IB] (55)
\/ p

It is seen from (55) that those closed-loop characteristic
values that stay finite as p | 0 approach the roots of

det (s — A) det [N—1L(sIl — A)~'B], (56)
since under our hypothesis
lim BT —= (57)

\/p

pl0
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With (53) it follows that the nearby closed-loop character-
istic values are the zeros of

det (sI — A) det [N-12UR;2D(s] — A)~1B]
= det (N=V2UR;2)y(s) (58)

where ¢(s) is the numerator polynomial of the transfer
matrix H(s), i.e.,

det [H(s)] = %

We know that the closed-loop characteristic values are in
the left-half complex plane since the closed-loop system is
agymptotically stable [7]. Our present conclusion is that
the nearby closed-loop poles are the zeros of the transfer
matrix H(s). This conclusion can only be correet, if H(s )has
left-half plane zeros only. If H(s) possesses one or more
right-half plane zeros, our conclusion is wrong and the
hypothesis that Py, = 0 is false. Thus we have shown that
if dim (%) = dim (2) but H(s) has right-half plane zeros,
Py # 0, This proves one direction of Fact 4 of the theorem.

We have now shown that P, # 0 in the following cases:
1) dim () < dim (2), and 2) dim () = dim (z) and the
numerator of the open-loop transfer matrix D(sI — A)—'B
is nonzero and has one or more right-half plane zeros.

We shall now constructively show when Py = 0. We let
dim (4) = dim (z) and assume that H(s) = D(sl — A)—B
has left-half plane zeros only, including the imaginary axis.
If dim (u) > dim (2), we assume that there exists a matrix
M sueh that the numerator of the square transfer matrix
D(sI — A)—'BM is nonzero and has left-half plane zeros
only, including the imaginary axis. Since the latter case is
equivalent to replacing the input «(f) with an input »'()
such that

(59)

u{t) = Mu'(?), (60)

we need only consider the case where dim (2) = dim ().

Furthermore, we assume that the open-loop system is
asymptotically stable, i.e., the matrix A has all its charac-
teristic values in the left-half complex plane (without the
imaginary axis). If this is not the case, due to the assump-
tion of stabilizability it is always possible to connect a
feedback law

w(t) = —Fz(t) + v/ (@) (61)

that stabilizes the system. This feedback law leaves the
numerator polynomial of the transfer matrix unchanged,
(see [16, proposition 2}).
Consider now the response of the system
() = Az(t) + Buli)
2(f) = Dz(¥) (62)

to an arbitrary initial state x(0—) = a,. Laplace transfor-
mation yields
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Z(s) = HS)U(s) + D(sI — A)~,. (63)
Now suppose that we choose
U(s) = —H-Ys)D(sI — A) . (64)

Then (63) shows that we obtain a response z(t) =0, ¢ > 0.
The input characterized by (64), however, will usually not
be physically realizable (it contains delta functions and
derivatives of delta functions) since the expression (64) has
terms in the numerator of a higher degree in s than the
denominator. We therefore consider the input with Laplace
transform

U.(s) =.H_1(8)KQ(S)D(SI — A)" 1z (65)
where K (s) is of the form
O P (66)

Here the integer ! is so chosen that the degree of the de-
nominator of (65) is higher than that of the numerator,
and « is a positive real scalar. Now (66) represents the
Laplace transform of a realizable input. In order to prove:
that the limit of the minimal cost is zero, i.e.,

lim min C' = 0,
pl0 u
we shall show that for every e > 0 there exist an o«* and a
p*(a*) so that C(a, p) < efor & = o* and 0 < p < p*(a™).
With (63) we find the response to the input U,(s) to be

Z,(s) = [I — K. (8)ID(sI — A)~zo

al
- _ _ —1
[1 Gt a)’] D(sI — A)lx,. (67)
From Parseval’s theorem it follows
[Ferorea= [~ 22parz e a
0 w .
_ f ® ot
S T ok
2T (—jwl — AT)!
-DTR:D(jl — A)~lzy df

2

1 —

(63)

where w = 2xf. This equality is valid since by assumption
A has left-half plane characteristic values only and « is
positive. It is not difficult to prove that this expression
may be made arbitrarily small by making « large enough.
Let us choose o* so that for o = o* the first term in the
criterion

|7 eroRe® + wioRm@Ia ©9)

0

is smaller than ¢/2. With the input (65) and « = o* we
can write, for the second term,
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f W () Rouo(t) df = p f w7 (—jel — AT)
0 o

K " (— o) [H(—jw) I
NH~1(je)
K s(Geo) (Gl — A)'xe df

(70)

where we have replaced R, with pN. This step is allowed
since by assumption A is stable, K «(s) has left-half plane
poles, and H~1(s) has left-half plane poles only by the
assumption that the numerator of H(s) has left-half plane
zeros only. (If H—1(s) has poles on the imaginary axis, we
can make a slight perturbation to bring them into the left-
half plane; this does not, essentially change the argument.)
Since the integral on the right-hand side is finite, we can
now choose p* so that the right-hand side of (70) is less
than ¢/2. Thus we have proved that under the assumptions
stated the criterion (21) may be made arbitrarily close to
zero by making p small. This shows that the minimum
value of (21) approaches zero as p | 0 and, consequently,
that P, = 0. This terminates the proof of Fact 4 of the
theorem and also proves Fact 5.

FiurErING WiTH LIMITED ACCURACY AND
FivrerinGg witeE UNLIMITED ACCURACY

We shall very briefly transfer the above results to the
filter problem, which is dual to the regulator problem [13].
Consider the system

%(t) = Az()) + Bu(®) (71)
y(@) = Dz(®) + v (72)

where # and v, are uncorrelated white-noise processes with
intensities V; and V,. It is assumed that both Vy and V,
are positive definite. It is well known [10] that using the
optimal filter,

lim E{eT(te(t)} = tr () (73)

where ¢ is the estimation error and Q is the nonnegative-
definite solution of the equation

AQ + QAT + BV B” — QDTV,"'DJ = 0. (74)
Let us denote
V. = pN (75)
and investigate the limit
lim tr (0). (76)
ploO

Namely, let us find out how far the estimation error can be
reduced if we are willing to perfect the measuring equip-
ment up to the point where it is practically noise free. In
particular, let us find out whether the mean-square esti-
mation error tr (@) reduces to zero as the measurement
noise decreases to zero. The following corollary states the
conditions under which Q tends to the zero matrix.

Corollary: 1f A, B, and D of a filtering problem are
identical to the AT, D, and B7, respectively, of a regula-
tion problem, then

lim O
el0

(77)

equals the zero matrix if and only if P, of the regulation
problem equals the zero matrix.

Thus, roughly, we can state that the estimation error can
be reduced to zero by reducing the measurement noise to
zero if and only if 1) the number of observed variables
[= dim (y)] are at least as large as the number of disturb-
ing variables [= dim (»)] and (2) when the number of
observed variables equal the number of disturbing vari-
ables, the zeros of the square transfer matrix D(sl — A)—'B
are all in the left-half complex plane.

We conclude this section by pointing out that the limit
(77) may be computed by solving the singular optimal
filtering problem [14] that results from setting V, = 0
Similarly, for the regulation problem the limit P, may be
computed by determining the dual filtering problem [5]
and solving the singular dual filtering problem that results
by setting B> = 0. The papers of Butman [15] and Fried-
land [3] contain contributions to these problems.

CoONCLUSION

This paper has established the conneection between the
maximally achievable accuracy and the minimally achiev-
able estimation error with the location of the system zeros.
In concluding, it is necessary to emphasize that the ulti-
mate accuracy can, of course, never be achieved since this
would involve infinite feedback gains and infinite ampli-
tudes. The results of this paper, however, give an idea of
the ideal performance of which the system is capable. In
practice, these limits sometimes may not be closely ap-
proximated because of the constraints on the input ampli-
tudes, or the presence of measurement noise.
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Instability of Slowly Varying Systems

RONALD A. SKOOG, MEmBER, 1EEE, AND CLIFFORD G. Y. LAU, STUDENT MEMBER, IEEE

Abstract—]Instability criteria are obtained for systems described
by # = A({)z when the parameters are slowly varying. In particular
it is shown that, when A(¢) has eigenvalues in the right-half plane
and all eigenvalues are bounded away from the imaginary axis,
then if sup; >0 || 4 ¢)] is sufficiently small, the system has unbounded
solutions. Results are also given for systems of the form & = A(f)z
+ f(z, t), and the dichotomy of solutions is studied in both the linear
and nonlinear cases.

1. InTRODUCTION

N this paper the question of instability is considered
for systems described by # = A(d)z in which the
parameters are “slowly varying.” In particular, it is our
aim to obtain conditions under which the stability prop-
erties of the time-varying system can be predicted from
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the stability properties of the frozen-time systems [i.e.,
from the eigenvalues of A{f)]. Regarding stability, it is
kknown that, if the eigenvalues of A(t) liein Re A < 69 < 0
for all ¢ and sup;»e HA(t)H is sufficiently small, then all
solutions of £ = A(f)x go to zero as ¢ > « (e.f., [1]-[3]).
One would intuitively expect also that, if A(#) had eigen-
values in the right-half plane, then the system would have
unbounded solutions if sup;»o ||A(@)|| was sufficiently
small. Tt is shown here that this is indeed the case provided
that no eigenvalues cross the imaginary axis. It is also
shown by an example (Section III) that, if the eigenvalues
are allowed to cross the imaginary axis, then even though
there is always an eigenvalue with positive real part, the
system can be asymptotically stable for arbitrarily
small sup;so ||A(#)||. Thus, this additional restriction is
unavoidable for the preceding type of result to hold.
These results are also extended in a straightforward
manner to nonlinear systems of the form & = A{)z +
f(z, t) where ||f(z, O||/||z]]| = 0 as||=|| - 0.

The main result is proved along lines similar to the
proof of the stability criteria of [1]-[3]in which Lyapunov
methods were used. However, the method of constructing
a Lyapunov function used in [1]-[3] cannot be used in the





