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The Maximally Achievable Accuracy of Linear 
Optimal  Regulators  and Linear Optimal Filters 

Absfract-A linear  system with a quadratic cost  function, which is 
a weighted s u m  of the  integral  square regulation  error and  the  inte- 
gral  square input, is considered. What happens to the integral square 
regulation error as  the relative weight of the  integral  square  input 
reduces to zero is investigated. In other words,  what is the maximum 
accuracy one can  achieve  when there  are no limitations on the input? 
It turns out  that  the necessary and sufEcient condition for  reducing 
the regulation error  to zero is that 1) the  number of inputs  be  at  least 
as  large as  the  number of controlled variables, and 2 )  the system 
possess no right-half plane zeros. These  results  are  also  ‘Ldualized” 
to  the optimal filtering problem. 

I 
INTRODUCTION 

N designing a  control syst.em, it, is  usually necessary to 
make  a t,radeoff between achieving bett,er  performance 

and using  smaller  act,uating forces. Namely, if one is willing 
to use higher power (or amplitude)  levels at  the input of a 
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plant.,  one  can  usually achieve smaller  deviations of the 
controlled variable  from  its desired trajectory.  The follow- 
ing  question thus comes up. Assuming that  the input. power 
is not. limit,ed,  can  one achieve perfect performa.nce, or is 
t.here a loxver bound on  the performance that cannot. be 
surpassed? In  t.his paper  this  question will be answered; in 
fact, syst,ems will be classified into  the  tn-o following 
groups. 

1) Systems  with unlimited accuracy are  those  for which 
the performance  index  can  be  reduced  to zero if the ampli- 
tudes of t.he input  are allowed  t.o increase indefinitely. 

2) Syst.ems w-ith limited accuracy are those for which the 
performance  index  cannot  be  reduced beyond a  cert.ain 
value,  even if the  input  amplitudes  are allowed to in- 
crease indefinitely. 

Our  nlain  result, is that. sgst.ems for which the number of 
inputs  are larger than or equal to  the number of controlled 
variables, a.nd which  possess the pr0pert.y  t.hat the transfer 
matrix of the system  has no zeros in  the right-half complex 
plane, comprise the class of systems  with  unlimited ac- 
curacy. This  result agrees with t.he well-known fact,  tha.t 
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systems  with right-half plane zeros have  certain defi- 
ciencies that make them less easy to control zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I]. 

We shall consider the linear  time-invariant  quadratic 
cost optimal regulat.or problem. The  system equations are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

20) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ax@) + Bu(t), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% ( t o )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx0 (1) 

z ( t )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADx(t) (2) 

where z(t), the st,at.e, is an n-dimensional vector;  u(t),  the 
input, is a k-dimensional vector;  z(t),  the controlled vari- 
able, is a p-dimensiona,l vector;  and x. is the  initial  state 
at  time to. 

Let C be t,he performance criterion to be minimized, 

a.nd systems of limited  accuracy, for which 

In  t,he last section, we shall dualize the notions and re- 
sults of this paper t.0 t.he optimal filtering problem  where 
we shall classify filters as filters with  unlimited  accuracy 
and filt.ers with limited accuracy. 

The results of this  paper  are  related to t.hose of Friedla.nd 
[3] and  Kn-akernaak  [4], where the effect of taking  the 
limit p 4 0 on the form of the  optimal cont,rol law is dis- 
cussed. 

C = iom [ zT ( t )R~( t )  + uT(t)R2u(t)1 dt (3) RESULTS AND INTERPRETATION 

Before stating  the main results of this pa.per, we intro- 

where Ra and RZ are symmet.ric positive-definite matrices. 
It nil1 be convenient to rewrite the criterion as  follow 

duce the notions of numator  polynomial and zeros of a 
multi-input,  multi-output  linear  time-invariant.  system  for 
systems where the number of inputs  are  the  same  as t,he 
number of controlled variables. 

(4) Dejinition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5 ] ,  [GI: Consider the  system (l), (2) for t.he 
case that k = p,  and  denote  by where C,(t), 

e&> = zT(t)&.4t), 

is the square  regulation  error; C,(t), the IC X k t.ransfer matrix of t,his system. Let +(s) denote 
the characteristic polynomial of A and  write 

C,(t) = u'(t)Nu(t), (6) 

is the  square  input;  and p is a positive  scalar which deter- 
mines the relative weight of C,(t) and C,(t). It. follows that 

R z  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApN (7) 

\ i t h  N a  symmetric posit,ive-definite matrix. 
A t.ypical design procedure for a regulator would be as 

follows. First. one solves the optimization  problem for a 
given set of values of RS, N and p [2]. The next step  in  the 
design is to eva.1uat.e separately  the integral square regula- 
tion mor 

(8) 

where $(s) is a polynomial in s of degree n - k or less. 
Then $(s) is called the numerator polynomial of t.he  system 
and  its roots are called the zeros of the system. 

N0t.e t.hat  in the special case where the system is single- 
input single-out.put, $(s)  is just. the  numerator of the trans- 
fer  function, and  its roots are commonly referred  to as t.he 
zeros of the t,ransfer function, provided no cancellations 
occur. 

We are now ready  to  state  our main  result. 

THEOREM 

and the integral square input 

/-m 

Consider the t.ime-invariant stabilizable and  detectable 
linear syst.em 

(9) k(t) = Az(t) + Bu(t) 

for t.he optimally designed system. If it, turns  out  that  the 
integral  square regulation error  is too large, we decrease p with  dim (u) 5 dim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x), dim (2) 5 dim (x), and where B 
and again solve the optimization problem. This will result and D are assumed to have full rank. Consider also the 
in a lower integral  square regulat.ion error at  the expense of criterion 
a larger  integral  square  input. 

z(t)  = Dz(t) (15) 

In t.his paper we shall  invest,igate the limit. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJbm [zT(t)Rdt) + uT(t)%4t) 1 dt (16) 

lim 1 ~ , ( t >  dt (10) where R3 and Rz are positive-definit.e symmet.ric matrices. 

and classify system of unlimited accuracy, for which R2 = p N  (17) 

P 1 0  Let 

lim lom ce(t) at = 0, for all xo, 
nith N positive definite and p a  positive  scalar, and  let 

P ?  0 be  the  steadystate solution of t.he Riccat.i equation 
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- j ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= DTR3D - P(t)BRs-'BTP(t) + ATP(t) + P(t)A, 

P(t1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. (18) 

Then  the following facts hold. 
Fact I :  The limit 

l i m p  = (19) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

exists. 

lator, 
Fact 2: For the closed-loop steady-state  opt,imal regu- 

lim Jam xT(t)R3z(t) dt = z~(to)~G(to).  (20) 
P i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Fact 3: If dim (2) > dim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u), t.hen PO # 0. 
Fact 4: If dim ( z )  = dim (u) and t.he  numerator poly- 

nomia.1 #(s) of the open-loop t,ransfer  matrix H(s)  = 

D(s1 - A)-'B is nonzero, PO = 0 if a.nd only if all the 
zeros of the numerator  polynomial $(s) have nonposibive 
real  pa.rts. 

Fact 5: If dim ( x )  < dim (u), then Po = 0 if there exists 
a rectangular mat.rix &I such  tjhat. the numerator poly- 
nomial #'(s) of t.he  square  transfer  matrix D(s1 - A)-'BM 
is nonzero and  has zeros with  nonpositive  real parts only. 

It. is recalled that  the system (15) is  st,abilizable if t,here 
exists  a  constant  matrix F such that  the matrix A - BF 
has  all  its cha,racterist.ic  values  in the left-half complex 
plane [7]. Similarly, the syst,em (15) is  detectable if there 
exists a. constant  matrix K such  t,hat the ma,trix A - KD 
has  all  its  characteristic  values in  the left,-half complex 
plane. 

A discussion of the significance of the various parts of 
the theorem now follows. Fact 1 states  that  as we let  the 
m-eighting  coefficient of the  input p decrease the minima.1 
value of the criterion, 

lo- [ZTU)R34t) + puT(t)Nu(t) 1 dt = sT(h)Pdh), 

(21) 

Next.,  using t.he notat.ion ( 5 ) ,  (6), i t  follonrs from Fact 2 
approaches the limit sT(tO)P~(to) as p 5 0. 

of the t,heorem that 

lim { p ,lIoa C,(Q d t )  = 0, (22) 

so t.hat  in t.he limit as p 4 0 the integral  square  regulating 
error  fully  a,ccounts  for the cost C (4). 

Facts 3, 4, and 5 of the theorem are concerned wit.h t.he 
condit,ions under which Po = 0. I t  is  under  these  conditions 
t.hat  ultimately perfect, regulation is achieved  since 

P10 

lim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ce(t> clt = 0, for  all so. (23) 

Fact. 3 of the theorem states  t,hat, if the dimension of t.he 
controlled  variable is great,er  t.han that of the  input, perfect, 
regulation  is impossible. This is very  reasonable since in 
t.his case the number of degrees of freedom t,o control the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 1 0  

system is too small. In order to det.ermine the maximal 
accuracy tha,t may be achieved, Po must, be  computed. I n  
the section on the filtering  problem we  sha.11 give a hint 
how PO may  be  found. 

In  Fact 4 t,he case is considered  where t.he number of 
degrees of freedom are sufficient,, i.e.,  t,he  input,  and the con- 
trolled  variable  have the same dimensions. Here the maxi- 
mally  achievable  accuracy is dependent  upon the proper- 
ties of the open-loop system  transfer  matrix H(s) .  Perfect 
regulation is only possible provided the numerator poly- 
nomial $(s) of the tra.nsfer  mat,rix  has no right-ha.lf pla,ne 
zeros (assuming that $(s) is not  identical  to  zero).  This 
may  be  made  int,uitively  plausible  by  considering the 
limiting  situation  when p = 0. Let t o  = 0- and suppose 
t.hat at time 0- the system is in  t.he  init,ial state xo. Then 
in terms of Laplace  transforms the response of the con- 
trolled  variable  may  be expressed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Z(S) = H(s)U(s) + D(s1 - A)-'.o (24) 

where Z(s) and U(s) are  the Laplace  transforms of x and 
u, respectively. The time  function z ( t )  can  be  made  identi- 
cal to zero for t 2 0 by choosing 

U(s) = -H-'(s)D(sl - A)-'zo. (25) 

The  input u(t) is  actually  made  up of &functions and de- 
rivatives of &functions at time t = 0. These  &functions 
instantaneously  transfer the  stat.e x0 at time 0- to a state 
s(0) at time 0, which has t,he  pr0pert.y that z(0) = Dz(0) 
= 0 and t,hat. z(t)  can be maint.ained at 0 for 0 I t < a 

[8]. Note t,ha.t, in  general the  state x( t )  will undergo  a 
&function  and  derivat.ive of 6-funct.ion t,ype of t*rajectory 
but z ( t ) ,  as can  be  seen by insert.ing (26) into (24), will 
move from z(0-) = Dzo to z(0) = 0 direct.ly,  with no 
infinite excursions. 

This input (25) will lead to a stable behavior of the  input 
only if the inverse  transfer  matrix H-l(s) is stable,  namely, 
if t.he  numerator  polynomial $(s) of H ( s )  has no right-half 
plane zeros. 

The reason that,  the  input (26) cannot,  be used in t,he 
case where H-l(s) has unst.able poles is that  the  input u(t) 
as given by (26) will drive z( t )  to zero without. z ( t )  having 
any b-funct.ions, and  t,his u(t) will also maint,ain z(t> at zero 
for t 1 0, but. u(t) will have to grow indefinit,ely  since (25) 
has  right-half  plane zeros [9]. By our  problem formulaOion 
and also by  considerations of practical  applicability,  such 
inputs a.re ruled out so t.hat  in  this case (25) is not, the 
1imit.ing input  as p 4 0, and  in fa.ct.,  cost.less regulation  can- 
not  be a.chieved. 

However,  note t.hat if R2 = 0 from the  outset [lo], we 
do not,  rule  out an indefinitely grom-ing input and u(t) given 
by (25) is t,he  solut,ion  irrespective of t.he  location of t,he 
zeros of the system,  as long as H-l (s)  exists.  Such  a,problem 
formula.t,ion,  however,  has 1it.t.le practical significance. 

Mote that  for single-input  single-output,  systems the con- 
dition  t.hat.  all zeros be in the left-half  plane  amounts to t,he 
requirement that t.he  syst.em transfer func th  have no 
right-half  plane zeros. It is well known to control engineem 
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[l] that. systems  with right-half pla.ne zeros possess in- 
herent limitations that cannot, be overcome by  “tightening 
the feedback loop.” 

The results of this  part of the theorem  agree  with  a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAre- 
lated  fact  that.  has been discussed elsewhere [ I l l ,  and 
which  concerns the  asymptotic behavior of the closed-loop 
regulator poles, i.e., the characteristic  values of the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- BR2-lBTP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs it. turns  out, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthose closed-loop poles 
that do not go to infinit.y as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 0 approach the numbers 
V I ,  z = 1, 2, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, which a.re relat.ed to the zeros zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv l ,  i = 

1, 2, . , m, of t.he numerat.or  polynomial +(s) as follon-s: 

A -  

i;j = { v i  if Re (vi) 5 0 
-v i  if Re (v i )  > 0 

(This is  a generalizat.ion of a  fact.  t.hat is well known in the 
single-input single-out.put case [12].) Thus, if the system 
has no right-half plane zeros, in  the limit a.s p 4 0, exact.ly 
m closed-loop poles coincide with t.he system zeros v i ,  i = 
1, 2, . . . , m .  Apparently,  these  nea.rbypoles  are “cancelled11 
by  the  system zeros, and  the response of the controlled 
variable is completely  determined by t.he far-away closed- 
loop poles, result.ing in  an arbit,rarily fast. response. On the 
other  hand, if the  system possesses one  or more right-half 
plane zeros, cancellation does not. take place a.nd the speed 
of response, and hence the accuracy of t.he  regulator, is 
1imit.ed. 

Fina.lly, in Fact 5 of the theorem we state a sufficient 
condition  for Po to be zero for the case where the number 
of input.s are larger than  the  number of outputs.  The idea 
is to replace the  input u with  an  input u‘, 

u’(t) = Mu(t) (27) 

where u‘ is a linea.r t.ransformation of u, the dimension of 
which is t,he same  as  the dimension of the output..’ 

The results of the theorem  pert.ain  to the deterministic 
linear  optimal  regulator problem. They  are also of interest. 
for  related  problems  such as t.he  stochast,ic  linear  optimal 
regulator  problem and  the linea.r opt.imal tracking  prob- 
lem, since t,hey are closely associated with the determin- 
istic  regulator problem. 

dt}. 

Clearly as a function of p this expression has zero as a 
lower bound.  Moreover, this expression is monotonically 
nonincreasing  with decreasing p. This may be seen as fol- 
lows. Suppose that  the minimization is ca.rried out  for a. 
particular  value of p. Then if p is decreased and  the  same 

it may  be shown by a counterexample that.  the condit.ion in Fact 5 of 
1 Moore and Silverman [17] have point.ed out  to  the  authors  that, 

the theorem is sufficient but. not necessary. 

solution is maintained, t.he expression in braces decreases. 
If the minimization is repeated  for  this  smaller  value of p, 

only an even  smaller  value  can  result. Thus (28) is non- 
increasing nit.h decreasing p; because it also has a lower 
bound it must. have  a limit. as p 4 0. Since this  limit exists 
for all z(to), P must  have  a  limit  t.hat we denote  as Po. 

In  the folloning,  let u,(i), t 2 to ,  denote the input.  that. 
is opt.ima,l for  a given initial state (which is fixed) and a 
given  value of p. Similarly, z P ( t ) ,  i 2 tu, denotes the result- 
ing  behavior of the controlled  variable. Fact 2 of the 
theorem is now proved  as follon-s. The  integral  square 
reguhtion error 

has zero as a Iower bound.  Moreover, it. is nonincreasing 
nit,h decreasing p since a. smaller  value of p results in a 
larger  integral  square  input  and  thus  in a. smaller  integral 
square regulat,ion error. Hence, (29) has a limit for p 4 0. 
Since for all p, p > 0,  

we must  have 
n m  

Suppose that  this is a strict  inequality;  then  there  mmt, 
exist an E > 0 such that 

lim zpT(t)Rgp(t) di = z’(to)PDz(to) - E. (32) 
P ?  0 

Then we can  always find a value of p, say pol such that 

Jam ZDJT(t)R3zZW(t) dt = zT(to)&m - ;. (33) 

1; U r n T ( ~ W U , , ( t )  dt (34) 

Since 

is finite, =-e can  always select a  positive p, such that 
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less t.han zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxT(to)P&(&). Hence t.he inequa1it.y sign in (31) rank (DTR3D) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 
cannot. hold and  Fact 2 of the theorem is true. 

To prove Fa,cts 3,4, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, we h t  consider t.he algebraic 
or equivalent,ly, if and only if 

Riccati  equation rank (R3]12D) 5 k. 
But since R3II2 is square  and  nonsingular, rank (R31/2D) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

= DTR3D P PBN-lBTP + P A  ATP. (38) rank (D) ,  and  consequently, (46) has a solution if and only 
if 

We shall invest,igate the hypot.hesis t,hat, as p + 0, P ap- 
proaches Po = 0. Since t.he first. term of (38) is independent, rank (D)  5 k. (50) 

of P and is finite a'nd, according to t'he hJTothesis, the last' Since bJ7 assumption D ha,s full  rank, it follows t,hat, (46) 
t,m-o terms approach zero, we have ha.s a solution if and only if 

P P 
lim - BN-lBT - - D T R a .  
P 1 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 6- (39) 

Since N is nonsingular, t.he limit 

P 
L = lim BT ~ ~ 

P i 0  6 (40) 

must exist,. For L we have the equality 

LTN-'L = DTR3D. (41) 

We shall  investigate  under which conditions this  equation 
has  a solution for L. We first, state  the following  fa.ct. from 
mat.rix thexy. 

Lemma: Consider the mat,rix equa.t.ion 

XTX = c (42) 

where X is an  unknoun p X q rnat,rix with p 5 q and C a 
known q X q nonnegative-definite symmetric  matrix. This 
equa.t.ion has a solut,ion if and only if 

rank ( C )  _< p .  (43) 

If this condition is satisfied the general solut.ion of (42) 
may be expressed as 

x = UY 

dim (2) 5 dim (u), (51) 

i.e., the number of components of t,he cont,rolled variable 
must  not exceed the number of components of t.he input 
variable. Now, if t.he condition (51) is violated, (46) does 
not  have  a solution L. This means that (39) ca.nnot be 
t.rue, which implies that  the hypothesis that Po = 0 is 
false. Thus we have shown that if we attempt, to regu1at.e 
a.  contarrolled variable of higher dimension t.han the input,, 
it is never possible to achieve an arbit.rarily sma.11 value of 
t.he opt.imizat.ion criterion. This proves Fact 3 of the 
t,heorem. 

We continue the analysis  under t.he assumption that 

dim ( x )  = dim (u). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( W  

Then we can  write for t.he solution of (46) 

hT-1/2L = UR31/2D (53) 

where U is an arbit,rary  unit.ary  matrix. To see whether  this 
expression is st,ill consistent v.4t.h  hhe hypothesis Po = 0, 
let. us consider the closed-loop characterist,ic polynomial 
as p 1 0. We int.roduce t,he not.at.ion 

(54) 

where the p X q matrix Y is any solution of (42) and U is and uTit,e 
a.n arbitrary p X p unitary mat,rix. 

We recall that. U is a unit,a.ry matrix if det (SI - A + BF) 

UTU = I .  (45) = det (SI - A )  det, [I + BF(sI - A ) - l ]  

This  lemma is easily proved by first. reducing C t.0 diagona.1 
form and  then  to  the  unit mat.rix. Let us apply t,his result 
to (41), which we first. rewrite as 

= det. (SI - A )  det, [I + F(s1 - A)- lB]  

= det(s1 - A )  det N--IBTP(sI - A)- lB]  
1 

(N-1/2L)T(N-1/2L) = (R31/2D)T(R31/20). (46) = det, (81 - A )  

Here if ill is  a nonnegat.ive-definite synlmet,ric  matrix, &11/2 1 P 
is t,he unique nonnegative-definite matrix  that. sat,isfies dP 
M1/2Aif1~2 = M; furt,hermore, i W 1 / 2  = (A4-1)1/2 = 

N-'BT __ (SI - A)-%].  (55) 

Now It is seen from (55) that. t,hose closed-loop characterist,ic 
values that  stay finit.e as p J. 0 approach the roots of 

P 
/- (47) det (SI - A )  det. [N-'L(sI - A)- 'B] ,  (56) N-1/2L = lim N-l/ZBT ~ 

p-0 V P  

has  the dimensions k X n, --here k is the dimension of the 
since under our hypothesis 

system  and n that of the  stat,e x. We see therefore from 
the lemma t.hat. (46) has a solution L if and only if 
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With (53) it follows that  the nea,rby closed-loop character- 
ist,ic values are  the zeros of 

det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(SI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA )  det [N-1/2UR3112D(sI - A ) - J B ]  

= det (N-1'2LrR3112)$(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(58) 

where #(s) is t.he numerator polynomial of the transfer 
mat,rix H(s) ,  Le., 

det [ H ( s ) ]  = --. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ds) 

(59) 

We know t,hat. the closed-loop characteristic  values are in 
the left.-half complex plane since the closed-loop system is 
asymptot.ically  stable [7]. Our present, conclusion is that 
the nearby closed-loop poles are  the zeros of the transfer 
matrix H(s).  This conclusion can  only be correct. if H ( s  )has 
left-half plane zeros only. If H(s)  possesses one or more 
right-ha.lf plane zeros, our conclusion is wrong and  the 
hypothesis  that, Po = 0 is false. Thus we ha.ve shown t,ha.t, 
if dim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u) = dim (z)  but H(s)  has right-ha.lf plane zeros, 
PO # 0. This proves one direction of Fact. 4 of the theorem. 

We have now shown that Po # 0 in t,he following cases: 
1) dim (u) < dim (z ) ,  and 2) dim ( u )  = dim ( z )  and  the 
numerator of the open-loop t.ransfer matrix D(s1 - A)-IB 
is nonzero and  has one or more right-half plane zeros. 

We shall now constructively show when PO = 0. We let 
dim (u) = dim ( x )  and  assume that H ( s )  = D(sI - A)-'B 
has left-half plane zeros only, including the imaginary axis. 
If dim (u) > dim ( z ) ,  we assume  t.hat t.here exists a mat.rix 
A9 such that  the numerator of t.he square  transfer  matrix 
D(sI - A )  -'BM is nonzero and  has left-half plane zeros 
only, including t.he imaginary axis. Since the  latter case is 
equivalent to replacing t.he input u(t) wit.h an  input u'(t) 
such that 

Z(s) = H(s)U(s) + D ( J  - L4)-15?0. (63) 

Now suppose t.ha.t we choose 

U(s) = -H- l (s )D(d  - A)-40. (64) 

Then (63) shows tha.t. me obtain a response z(t )  0, t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0. 
The input. charact,erized by (64), however, will usually not 
be physically rea.lizable (it  contains  delta  functions and 
derivatives of  de1t.a functions) since the expression (64) has 
terms  in  the numerator of a higher degree in s than  the 
denominator. We t,herefore consider the  input with Laplace 
t,ransform 

UJS) = H-l(s)K,(s)D(sl - A)-4o (65) 

where Xa(s)  is of the form 

Here the integer I is so chosen t.hat. t.he degree of the de- 
nominator of (65) is higher than  that. of the numerat.or, 
and a is  a positive real scalar. Now (66) represents t.he 
Laplace transform of a realizable input.. I n  order to prove. 
that.  the limit. of the nlinimal cost is zero, i.e., 

lim min C = 0, 
P 1 0  u 

we shall show that. for every E > 0 there exist. an a* and a 
p * ( a * )  so that C(a, p )  < E for CY = CY* and 0 < p < p*(a*) .  

With (63) n-e  find the response to  the input. U,(s) to be 

Z,(s) = [I - K,(s) ]D(sl  - A)-120 

u(t) = 1lfu'(t), (60) From Parseval's  theorem it follows 

we need only consider t,he case where dim ( x )  = dim (u). lrn Z,T( t )R$,( t )  dt = Za'(-j2Tf)R,Z,(j2Tj) df 
Furthermore, we assume that.  the open-loop system is 

asymptotically st.able, i.e., t,he matrix A has  all its charac- 
teristic values in 6he left-half complex plane (wit.hout. the = J-rnrn 11 - ( j w  + a>' 

imaginary axis). If this is not  the ca.se, due  to t.he assump- 
t.ion of stabilizabi1it.y it. is  always possible to connect a 
feedback law .DTR3D(jwl - A)- 'z~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdf (6s) 

u(t) = -Fx( t )  + u'(t) (61) where w = 2rf. This equa1it.g is valid since by a.ssumption 

CYz r 
.20'( -&I - AT)-I 

t,hat stabilizes t.he system. This feedback la\{- leaves the It, is not difficult to prove that t,his expression 
A has left-half plane  characteristic  values only a n d  a is 

numerator polynomial of the transfer  matrix unchanged, may be made a,rbit.rarily  small by ma.liing a large enough. 
(see [16, proposition 21). Let. us choose CY* so that. for CY = CY* the first term  in t.he 

criterion Consider now the response of the  system 

to  an arbit.rary  initial state x(O-) = x0. Laplace transfor- is smaller t.han e/2. With t.he input. (65) and a = CY* we 

mation yields can  write, for the second term, 
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lm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,2”(t)R2u,*(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdf = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zoT(--jwl- AT)-’ s--- 
-Ko*T( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- j w )  [H-’( - j w )  1‘ 
NH-’ ( jw)  

*K,*(JLJ)(~coI- A)-ko zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdf 

(70) 

where we have  replaced R, with phr. This  step is allowed 
since by assumption A is st.able, K,*(s) has left-half plane 
poles, and H-l(s) has left-half pla.ne poles only by t.he 
assumption that  the numerator of H(s )  has left.-half plane 
zeros only. (If H-’(s) ha.s poles on the imaginary axis, we 
can ma,ke a slight, pert,urbation to bring them int,o t.he left.- 
half plane; t.his does not, essentially change the argument.) 
Since the integral  on t,he right-hand  side  is fkit.e, we can 
now  choose p* so that  the right-hand  side of (70) is less 
tha,n e/2. Thus we have  proved that under t.he assumpt,ions 
stated  the criterion (21) may be made  arbit.rarily close to 
zero by making p sma.11. This shon-s t,hat the minimum 
value of (21) approaches zero as p 1 0 and, consequenbly, 
that Po = 0. This ternlina.tes the proof of Fact. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 of t.he 
theorem  and also proves Fact) 5. 

FILTERING WITH LIMITED ACCURACY AND 

FILTERING WITH UhZIMITED A C C u R A c Y  

We shall very briefly t.ransfer the above  results  to the 
filter  problem, which is  dual  to  the  reguhtor problem [13]. 

Consider the  system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*(t) = Az(t )  + B@(t) (71) 

~ ( t )  = Dz(t) + q(f) (72) 

where t’l and v2 are uncorrelat.ed whit,e-noise processes wit.h 
intenskies IF1 and IFp. It. is assumed that.  both V 1  and IT2 

are posit.ive definite. It is well  known [lo] that. using the 
optima,l  filter, 

lim E { e T ( t ) e ( t ) }  = t.r (0) (73) 

where e is the est,imation  error a.nd Q is the nonnega,t.ive- 
definite solut.ion of the equation 

t -m  

A 0  + QAT + BVIBT - ODTVp-’D~ = 0. (74) 

Let. us denot,e 

Vp = p N  (75) 

and  investigate the limit. 

Iim tr  (0). (76) 

Namely, let us find out how far  the  estimation error  can be 
reduced if  we are wiilling to perfect. t.he measuring equip 
ment up  to  the point  where  it.  is  practically noise free. In 
part.icular, let, us find out,  whether the mean-square esti- 
mat,ion error t r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0) reduces to zero as t.he measurement 
noise decreases to zero. The following corollary states  the 
condit,ions under which 0 tends t.0 the zero mat.rix. 

P 1 0  

CoroUary: If A, B, and D of  a. fikering  problem are 
identical  to the AT, DT, and BT, respect,ively, of a  regula- 
t,ion problem, then 

lim Q 
P I  0 

(77) 

equa.ls the zero matrix if and only if Po of t.he  regulation 
problem equa,ls the zero matrix. 

Thus, roughly, we can state  that t.he esthation error  can 
be reduced to zero by reducing the measurement) noise to 
zero if a,nd only if 1) the  number of observed variables 
[ = dim  (y)]  are at, least. as large as the number of disturb- 
ing variables [ = dim (%)] and (2)  when the  number of 
observed variables equa.1 the number of disturbing  vari- 
a.bles, the zeros of the square t.ransfer matrix D(s1 - A)- ’B 
a.re a.11 in  t.he left-half complex plane. 

We  conclude this sect,ion by point.ing out  that  the limit. 
(77) may  be  computed  by solving the singular  optimal 
filtering  problem  [14] that results  from setting V 2  = 0. 
Simila.rly, for the regulation  problem the limit Po may be 
computed by det.ermining the  dual filtering  problem [5] 
and solving t.he s inguh  dual  filtering  problem that.  results 
by  setting Rz = 0. The  papers of Butman  [15] a.nd Fried- 
land  [3]  contain  cont,ributions ho these  problems. 

COKCLUSION 

This  paper  has established the connect,ion bet.ween the 
maximally achievable  accuracy and t.he minimally achiev- 
able  estimation  error  with the location of the  system zeros. 
In  concluding, it.  is necessary to emphasize that  the u1t.i- 
nmte  accuracy ca.n, of course, never be achieved  since this 
would involve  infinite  feedback  gains and infinite ampli- 
t,udes. The  results of t,his paper, however, give an idea of 
the ideal  performance of which the  system is capable. In 
practice,  these  limits sometimes map  not be closely ap- 
proximated beca.use of the  constraints  on the input. a.mpli- 
t.udes, or t.he presence of measurement noise. 
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Instability of Slowly Varying Systems 

dbstmct-;Instability criteria are  obtained for systems described 
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 = A (t)x when  the  parameters  are slowly varying. In particular 
it is shown that, when A ( t )  has eigenvalues in the right-half plane 
and all  eigenvalues are  bounded away from  the imaginary  axis, 
then if supt 20 I I A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t ) ] l  is sufficiently small, the  system  has  unbounded 
solutions. Results  are also given for systems of the form f = A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t ) x  
+ f(r, t ) ,  and  the dichotomy of solutions is  studied in both the  linear 
and  nonlinear cases. 

I 
I. INTRODUCTION 

h’ tjhis  paper the question of instability is considered 
for systenls described by i = A(i)z in which the 

paramet,ers are “slowly varying.” In  partkular, it. is our 
aim to  obtain conditions  under which the stability prop- 
erties of t,he t.ime-varying system can be predicted from 
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t.he stability  properties of t.he frozen-time systems [i.e., 
from  the eigenvalues of A(t) ] .  Regarding  stability, it is 
known that, if the eigenvalues of A(t )  lie in Re X < no < 0 
for  all t and l lA(t)ll is sufficient.ly small, then all 
solut.ions of 5 = ~ i ( t ) z  go to zero as t 3 co (c.f., [11-[31). 
One Ivould intuitively  expect a.lso tha,t, if A(t) had eigen- 
values  in the right-half plane,  t,hen t.he syst.em would have 
unbounded  solutions if sup, Lo 1 1  A ( 0 1 1  was sufEcient,ly 
small. It is shown here  t,hat,  t,his is indeed tjhe case provided 
t.hat no  eigenvalues cross the imaginary axis. It is also 
shown b:: an example (Section 111) that, if t.he eigenvalues 
are allowed t.0 Cross the imaginary axis, then even  though 
there  is always an eigenvalue  Ttit,h posit,ive real part., the 
syst.em  can be asymptotically  stable  for  arbitmrily 
snlall supt2o IIA(t)lI. Thus,  t.hk a.dditiona1 rest,riction is 
unavoidable for t,he preceding type of result to hold. 
These  result,s are also extended in a  straightforward 
manner  to nonlinear  syst,ems of the form 2 = A(i).2: + 
f(z, t )  where Ilf(z, t)ll/l lzll + 0 as llrll 3 0. 

The main  result is proved  along lines similar to  the 
proof of the  stability  criteria of [l]-[3] in which Lyapunov 
methods were used. However, t,he met,hod of const,ruct,ing 
a  Lyapunov  function used in El]-[3] cannot be used in  the 




