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THE MAXIMIZATION OF ENTROPY OF DISCRETE
DENUMERABLY-VALUED RANDOM VARIABLES
WITH KNOWN MEAN!
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1. Introduction. Let S = {u,} be a set of real numbers. A discrete random
variable will be said to be S-valued if S represents the totality of all possible
values of the random variable. If P[X = u,] = p,, then the entropy of X is
defined tobe H, = — 33, p, log p, where the logarithm is taken to the base 2.
It is of some interest to find the maximum value of H, over the set of all S-
valued random variables.

When S is a finite set consisting of n elements, max H, = logn [1]. How-
ever, if the set S is countably infinite, then an S-valued random variable may
have infinite entropy. Since this is the case, it is natural to place some restric-
tions on the set of random variables and to then determine the maximum
entropy. Again, if S is a finite set, this has been done and the result will be
stated in Theorem 1.

Let S = {u,, ---, u,} be a set of real numbers. Let f,, f,, - - -, f,, (m < n) be
m linearly independent real-valued functions. We define

Z(xyy + o0y Xy) = Dy €Xp{— X7, X, fi(uy)}
and H = max H, where the maximum is taken over the set of S-valued random
variables under the condition that Ef, =f9 j=1,2,---,m, for a fixed
collection of numbers { f;*}.

A

THEOREM 1. (1) H = X7, X, f;© 4 log Z(%,, X,, - - -, %,,) where (%, - - -, X,.)
is the unique solution of the set of equations

%[logZ(xl,n-,xm)]:—fj“”, j=1,2,-...m
i

(i) H= —Xi.plogp, and T p.fiw) = f;*, j=1,2,---,m if and

only if
pk:exp{—l— Z;?‘:l)?jf,-(uk)}, k:l92""$n
where 2 = log Z(%,, %,, - - -, X,,)-

A proof of this result may be found in [2] or [3]. We will use it in the case
m = 1 and f(x) = x.
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542 ROMAN A. MUREIKA

2. Relation of maximum entropy between finite and infinite cases. Let S =
{w, uy, - -+, u,, - - -}. We will assume that S is an increasing sequence of points.
H_, is defined as follows

H,=sup{—2iiplogp|p. =20, Nitipe = 1, i poty = @} .

Then H_, is the supremum of entropy of all S-valued random variables with
mean #. We note here that H_ may be infinite. # will be assumed to be greater
than u, since no S-valued random variable may have mean smaller than , and
@ = u,is trivial. The following theorem relates H,, to the maximum entropy
of random variables taking values in finite subsets of S and having # as their
mean value. Let H, denote the maximum entropy of §’-valued random vari-
ables with mean 4.

THEOREM 2. H,_, = supg.cs Hg, where S’ is a finite subset of S.

Proor. Let §' < S be arbitrary. Since each §’-valued random variable is
also S-valued, we see immediately that Hg, < H_. Hence, it follows that

(2.1) sups.cs Hy < H., .

We set H = sup H,,. It will be shown that equality must hold in (2.1) by
assuming that H < H_ and having this lead to a contradiction of the defini-
tion of H.
Let M be a real number such that H < M < H_. From the definition of
H_, there exists a set of probabilities {p,}, k = 1, 2, - - . such that
—Xiipelogp, > M

and there exists an N such that », , > 0 and
—Ziapelogp, > H.
dy=0— X pu, >0
gy=1— ¥ . p.>0.

To complete the proof, we need only find ¢, =0, ¢, =0 and u,, u, €
{u,|n = N + 1} such that

Let

and

(2.2) Qithn, + Gothn, = dy

and

(2.3) 9+ ¢ =gy

since we would then have a probability distribution for an $’-valued random
variable with mean @ where §" = {u, w,, - - -, uy, u, , u, )} < S and such that

Hg =z — X .p long —qlogq, — q,1logg, > H
which would be a contradiction of the definition of H since H = H,.
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Equations (2.2) and (2.3) have the solution

¢ = (dy — U, qn) (U, — Uy,

9 = (U, 9y — dN)/(unl — Uy,
By choosing u,, = uy,, and u, €{u,|n = N 4 2} where u, > dylq,, we see
that ¢, > 0 and ¢, > 0.

Instead of Theorem 2, we will use the following corollary in our application
of this result:

CoroLLARY 1. H,, = lim,, . H, where H, denotes the maximum entropy of a
random variable taking values in the set S, = {u,, - - -, u,} and having mean value

a.
The proof follows trivially from Theorem 2.
LemMma 1. H, and H_ are invariant under additive shift.

Proor. Here we need only note that if 3 p,u, = @ then ) p,(u, + ¢) =
# + c. Since the entropy is the same in each case, the supremum will give
the same result.

3. Properties of X,. Let S be defined as in Section 2, but with the added
assumption that , > 0 and 4, — + oo asn — +oo. This can be done without
loss of generality by Lemma 1. Then, there exists an N such that u, < 7 <
uy,,- To find H_, we can, by virtue of Corollary 1, examine the sequence H,
forn =N+ 1. Let

Z"'L(x) = Z”’:=1 e—ukx
2,(x) = log Z,(x) .

From Theorem 1, we see that there exists a unique X, (for each n = N 4 1)
such that

(3.1) H, = X,a+ 2,(%,)
which is the entropy of the random variable X where
P[X = u,] = exp{—u, %, — 2,(%,)}, k=1,2,...,n
and X, is the solution of the equation
(3.2) Z/)(x) +aZ,(x)=0.

In this way, we form a sequence {X,}, n = N + 1, N + 2, ... where each %,
satisfies (3.2). A number of lemmas concerning {%,} will be needed.

and

LEMMA 2. There exists N, such that X, > 0 for all n = N,.

Proor. We can rewrite (3.2) for each # as,

— ZZ:I u,e "kt n + u Zz=l ekt = 0
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or
(3-3) L,(%,) = R,(%,)
where

Ly(x) = 2 (1 — w)e v
and

R, (%) = Xiwi (w, — aje i .
Suppose that Lemma 2 is not true and that for each N,, there exists n, > N,

such that X , =0. Let Ny > N(uy,, — u,)/(uy,, — 1) + N. Then, by our
assumption, there exists n, = N, such that X, < 0 and

L,(%.) = N(@ — u;) exp[—%, uy]

and
R, (%,) = (my — N)(uy 1 — 1) exp[—X%, ty..] .

From (3.3), we see that
N@ — u) = (g — N)(uy,, — @) exp[—%, (Uy — uy)] -

Since X, =0,
N@ — u) = (ny — N)(uy,, — @)

or
ny = N(i — w)/(uy,, — @) + N < N,

which contradicts the fact that n, > N, so that ¥, > 0 for n sufficiently large.
LEMMA 3. Thereexistsane > 0 and an N, such that for alln > N,, %, > ¢ > 0.

Proor. It is easy to see that L,(%,) and R,(%,) are bounded sequences of

numbers, since R
L,(%,) = 2 (7 — w)e k?n

= leyzl (ﬂ - uk) =C

for n = N, where N, is given by Lemma 2. Hence,

(3.4) 0 < L,(%,) = C =max{Ly,,(Xy,1), - - -, Ly (¥y,), C'}
and it follows from (3.3) that
(3.5) 0<R(%)=C.

Thus, from (3.4), (3.5) and the definitions of L,(%,) and R,(%,), it follows that
for each n,

C = (a — u;)evsn, I<j<N
and

C = (u; — d@)e~in, N+1<Zj<n

or
C = |u; — i|e~ s, 1<j<n.
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Thus,

(3.6) )éng._log_;a._, 1<j<n.

Since u; — +oo, there exists an N, such that (u, — @)/C > 1 so that
log [uy, — @l/C > 0.

Let ¢ = uy logluy —@/C>0.

Since (3.6) holds for each j < n, fixing j = N,, implies that (3.6) holds for all
n= N, Hencex, =¢>0foralln>N,.

We will need Lemma 3 in the proof of Theorem 3 in the next section.
The following result illustrates some of the relationship between {%,} and H...

LemmA 4. Iflimsup, X, = + oo then H, = -+ co.
Proor. From (2.1), we see that
H, = X,a4 + ,(%,) = log 2, exp{(a — u,)%,} .
Since each of the terms in the above sum is positive, it follows that
H, > logexp[(@ — u)X,] = (& — u,)%,
so that H, > (# — u,)%, foreachn > N + 1.
But lim sup, X, = + oo implies immediately that H,, = + co.

4. Unbounded sets. We may now proceed to find necessary and sufficient
conditions on S for H_ to be finite. It will be seen that the important factor
for this will be the rate at which the sequence {u,} converges infinity. Theo-
rem 3 gives a sufficient condition for H, to be infinite.

Tueorem 3. Iflimsup, log nju, = + oo, then H,, = + co.

Proor. From (3.5), we note that there exists a C > 0 such that for every
n=N+1,C= R,(%,) or
(4.1) Cen 2 Ty, u/e b
where u, = u, — @, k=N + 1, N + 2, .... Furthermore, from Lemma 3,
there exists an N, and ¢ > 0 such that £, > ¢ or ¢* > %, for n > N,. Since
u,’ is increasing, there exists an integer M such that
(4.2) w = et > %, k=M, nzN,.

We note that ue~* is a monotonically decreasing function in u for u > k™
so that for # fixed but arbitrary u,’e$x*+" is strictly decreasing in k for u,’ >
X,7'. (4.1) and (4.2) then imply that for n = 4 = max{N,, M},

Ceon > Y1_ u/e "t n > (n— A + Du,/ e v’
= (1 — A+ 1)(u, — @) exp[—%,(u, — @)]
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or
éntn > (n — A + 1)(u, — @)/C n=A.
Hence
£ = log n n Llog (n— A4+ 1)(u, —a)
u, u, nC
zlogn-f-o(l) as n— +oo.
u

This means that lim sup, £, = +oco and Lemma 4 immediately implies that
H, = 4+ co.

We are now ready to state the following result which together with Theorem
3 provides the necessary and sufficient conditions for H_, to be finite.

THEOREM 4. Letlimsup, logn/u, < +oco. Then H, < + co.

Proor. The first step in the proof is to show that the sequence {%,} is
bounded. We assume that this is not true and show that this contradicts the
inequality @ > u,.

From Lemma 2, it is seen that for # sufficiently large, ¥, > 0. Hence, {X,}
unbounded implies that there exists a subsequence {%, } such that %, — +oo
as j— +oo. We see from Theorem 1, that Hnj is achieved by the set of
probabilities
(4‘3) Pl,nj = exp{_ulfnj - 'ln]()en])}

= exp[_ulx‘\nj]/zgilexp[_ukxAnj]’ l= 1’2’ ”"nj
where 3173, P, u;, =4 .
Then, for/ > 1,
(4'4) Pl,nj é exp[_ulfnj]/exp[_ulfnj]
= exp{(, — w)X, } —0 as n;— +oo
since %, — +oo.

Let 0 < ¢ < 1 be an arbitrary real number. Then there exists an N’ such

that for n; > N', p, ,. < e. This implies that

exp[—uz)é,,j] <e :Llexp[—ukyénj] n; > N’
so that for [ = 2,
(4.5) exp[—u%,,] = (exp[—u%, ]
< elm{yhi exp[—u, X, J} i n; > N'.

From (4.3), (4.4), (4.5) and the fact that p, , . < 1, for all n; it is seen that
(4.6) d < Uy + N, ekt {319, exp [ —u, X, [y
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Now, lim sup, log n/u, < + oo implies that there exists a ¢ > 0 such that for
all n,
4.7 lognju, < c.

This in turn implies that e=**» < n~! or e**» < n~? so that

25—1 e = Z:—l n? < 4oo.

Since x . — 4 o0, there exists an N”” such that %, ;> 2c for n; > N”. Hence
for n, > N"

(4.8)  Xiiexp[—uk, ] < Nriexp[—uX, ] < N e =< oo

Weletp = —loge > 0and ; = log 8. Then using (4.8) we see that (4.6)
becomes
(4.9) a<wu + Xri,u,exp {—pﬁ + <ﬁ — 1);1}

uZ u2

=u + e Yriuexp{—u(n — p)/u}, n, = M = max{N’, N"}.

Let t(¢) = (p — p)/u, = —log eB/u,. Since f is independent of ¢, we see that
7(e) > +oo as ¢ » 0. We limit the range of ¢ to 0 < ¢ < ¢’ where ¢’ is such
that z(¢’) > C/log3 where C is determined from (4.7). By noting that
u, exp[—r(e)u,] is decreasing in k for u, > ¢(e')™, we see from (4.7) and (4.9)
that forn, > M,

u<u + e f‘[uzexp[ u,7(e)] + Drd, logk exp{ [logk:lz_()}]

T(e)/C—
Su 4 et [uz exp[—u,7(e)] + _é_ Z,’;i'3<_i1€> @ 1] R e<e, m=M

since log k < k for k > 2.
Hence, if ¢ is chosen sufficiently small so that 7(e) > 3C, we see that
@ <+ e [uyexp[—u,(e)] + C7F Fpi, (k)"0

= u + e uexp[—ur(e)] + C71 J, (k7o)

=t + 9(¢) < +oo mzM.
Since g(¢) converges for at least one value of ¢ and since 7(¢) — + oo ase — 0,
we see that g(c) — 0 as ¢ — 0 and it follows immediately that 4 < u,. This
contradicts the fact that @ > u, so that {%.} is bounded. For each n, we note
that
(4.10) Tin (@ — e ita = Fin (u, — w)e itn
Since the sequence {X,} is bounded we see that for some constant C and each
n=N-+1,

Cz= 3L (@ — u)e sén = w4 — @) s = (Uy oy — 0) Fpoyyy €k
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or
Clluyyy — @) = Yioyy € ¥n.
Hence for some constant C,,
(4.11) C, = Xp, e kn n=N+1.
But this implies that
H, =x,a+ log 3r_, ekt < X7 4 logC, < Mii + log C, < 4+

where M is an upper bound for the sequence {X,}.
From Corollary 1, we see that H_ = lim,__ H, < + oo, which proves the
theorem.

The previous theorem gives a sufficient condition for H,_, to be finite but
does not provide means to find this value apart from evaluating the limit.

Theorem 5 will provide the means to do this under certain conditions. We
will first need the following lemma:

LEMMA 5. Let limsup, logn/u, = y(< +o0). Then Y e “«* and Y u," e “&*
diverge for x < y and converge for x > y for each integer n.

Proor. We first prove that >, e “+* converges for x > y. Let ¢ > 0 be
arbitrary. Then, by the definition of y, there exists an n(¢c) such that

logkfu, <7y + ¢, k= nye) .
Hence, for any x > 0,
X _logk < u,x, k = nye)
r+e
or
et < (k—-l)x/r+s , k = no(s) .

Thus, for each m > ny(e)
Zl?:no e vi? é Zl?:no (k——l)z/r+e < Zl?:no (k—l)z/r+e .

This implies that Dty € 1 < Ho0 for x > y + ¢. Since ¢ is arbitrary, we
see that the series converges for each x > y. To show that > 7., e *+* diverges
for x < y we will need the following lemma:

LemMA (Kronecker’s lemma). Let {a,} be a sequence of non-decreasing real
numbers such that lim,_,  a, = +oo. Let x, be an arbitrary sequence of real
numbers. If 37, x,/a, converges, then lim,__ 3% x,/a, = 0.

We can assume without loss of generality that y > 0 since for x <0,
2, e #® diverges. Suppose for purpose of reaching a contradiction that
Dir, e vk < 4oo for some x, such that 0 < x, < y. Let a, = e*** and
X, = 1. Then

i Xla, = Np e < Hoo .
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By Kronecker’s lemma this implies that

lim, a7 ,x,=0
or
lim,__ e “x*mn =0 .
Hence forn > N, e %% . n < 1.
Taking the logarithm of both sides, we see that this implies that

log nfu, < x, < 7 n> N,
which contradicts the definition of y. It can be noted here that nothing can
be said about convergence or divergence of 37, e~*#” since examples of both
cases exist. The rest of the lemma now follows easily from what has been
shown.

D e > ut Y ek

implies that the left-hand side diverges for x < y. To prove convergence for
x > 7, we let x’ be some number such that y < x' < x. Then
n AV
Tie s = N e explu(x — x)] 2 D, WE =X pue
n:
- =X

’ Zl;»=l ukne—ukz
n.

since e® = x*/n! for x > 0. The left-hand side of the above inequality con-
verges for x’ > y and hence so does the right-hand side.

THEOREM 5. Suppose that lim sup, lognfu, = v < +oco and 35, u,e " =
+oo. Then there exists an x,, < -+ oo such that

(i) x,=lim,_ %,
(i) H. = ax, + A(x,) where

Ax.) = log Y, e "k and

(iii) H,, is attained by the random variable X where P[X = u,] = exp {—u,x,, —
Ax.)} fork =1,2, --..

Proor. In the proof of Theorem 4, we have already seen that the sequence
{X,} is bounded. Now every bounded sequence of real of numbers has an
accumulation point. Let x, be such a point. We will show first that x, > 7.
Let {X, } be a subsequence of {¥,} which converges to x,. Then for arbitrary
¢ > 0, there exists an n(e) such that

Xng =X te B; = Ne) .

Combining statements (4.10) and (4.11) we see that there exists a constant K
such that for each n,
K= 3. uke—u"g”
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so that for n; > ny(e)
K= Yki uexp[—uy(x, + ¢)]
for each ¢ > 0. Thus letting n, —» + oo gives

K= Y uexp[—u(x, + ¢)], e>0.
Now, for each fixed n
K2 Siuexp[—u(% + o] Z e Tiue™0, >0
or
enK = 37 u e k%, e>0.

Letting ¢ — 0 gives
K= 2k ue e,

This is true for each n, so we see that

2y e kR < oo .
Since we have assumed that 375, u,e " = oo it is easily seen that x, > 7.
Next we show that

2ty (W — @) exp[_“k’enj] — Dy (W — @)er"0

where X, — x,.
Let ¢ > 0 be given. Then there exists N, such that for all n = N,,

2iiea (w — @) exp[—uy(x, + 7)/2] < ¢/3

since the series converges for all x > y. We note that this also implies that
S, (u, — d)e=x® < ¢f3 for all x = (x, + 7)/2. Thus for n = N,

| 2k (W — 1) exp[_“k’enj] — Dy (w — @)e"im|

S | 2y (4 — @)(exp[—u X, ] — e
+ |Z7fi1vl+1 (u, — @) exp[_uk)enj“ + IZI?:Nﬁ—l (4, — @)e™ k"0 .
Since %, — x,, there exists an N, such that for x, = N,, £, = (x, + 7)/2.
Similarly there exists an N, such that the first term on the right-hand side
above is smaller than ¢/3 for n; > N,. Hence for n; > max(¥,, N,, N;) we see
that the right-hand side may be made less than ¢. It can now be shown that
the limit point is unique.

Now, every bounded sequence of real numbers has an accumulation point.
Let x, be such a point. We will show that it is unique: Suppose x, + x, is
also an accumulation point. We may assume without loss of generality that
x, > x;. There must exist subsequences {%, } and {X,, } of {£,} which converge
to x, and x,, respectively. Since

(412) ZZ:I (ﬁ — uk)e—ukgn = ZZL:N-}—I (u — a)e—ukgn

for each n, this is true in particular each n; and m,;. Taking the limits of both
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sides in (4.12) as j — + oo, we see that

(4.13) v @—u)e e = e o (u, — )e k"
and
(4.14) 2k (@ — w)e et = 3 oy (w, — d)eT T

Multiplying (4.13) by e**1 and (4.14) by e"*, and taking the difference, we get

(4.15) XL (@ — w)lexp[(@ — w)x,] — exp[(@ — u)x,]]
= ity (4 — B)exp[(@ — w)x,] — exp[(# — u)x]] .
Since x, > x,, we see that the left side of (4.15) is negative and the right side
is positive. This is a contradiction and the accumulation point is unique.
We now let x., = lim,_,, x, and result (i) has been shown. Now,
H, =X+ log X7, e “kin
implies that, as n — oo
H,—x.a+log Ye e e =H.
To see that A is finite, we note from (4.11) that

Dy € S {uy g — @7 0y (W, — #)eT e < H-oo
We apply Corollary 1 and see that
H,=1lim _H =H< +

which is result (ii). Finally, statement (iii) can be varified by direct calcula-
tion. We can now use Lemma 1 to extend the results of Theorems 3, 4, and 5:

THEOREM 6. Let S = {u,}, n = 1,2, -- . be an arbitrary increasing sequence
of real numbers such that lim,__ u, = + oo and let u, < 4. Then H_, is finite if
and only if lim sup, log nfu, < + co.

The proof of this statement will follow directly from Lemma 1. We note
also that it has been no restriction to consider only increasing sequences of
real numbers. Ifu, — —ocoasn— 4 oo, we need only consider the sequence
of points v, = —u, and ¥ = —u and apply the previous results to this new
set of points.

5. Bounded sequences. If the set of points {u,} is bounded from above as
well as below, the situation becomes somewhat simpler. Theorem 7 gives a
complete solution to this problem.

THEOREM 7. Let S = {u,} be a strictly increasing sequence of real numbers such
that lim,__ u, = C < oo. Let ii be such that u, < 4 < c. Then H, = + .

Proor. We may assume without loss of generality that #, > 0. Since u, — C
as k — + oo, there exists an N such that uy, < 7 < u, ;.



552 ROMAN A. MUREIKA

Let jbe an arbitrary positive integer. We define 7; = (uy,, + - -+ + uy;)/J
and p = (@ — w)/j(7; — w).

Letting
p=1—jp k=1
=p N+1<k<N+j
=0 otherwise ,
we see that
Yo =0—jp)+ Ziapvau=1—jp+jp=1
and

Liapth = (1 — jpyuy + Tty p
= (1 —Jjpyu + pjv;
=u + jp(v; — ) = u + l_‘_ul (U, —w)=1.
1

v, —u

Since 0 < p, < 1 for all k, we see that

H,> -3 plogp, = — i Pyii 108 Py
/D_ - ul} .

u—u ;
u—u

= —jplogp== u{logj-{-log

- %

Since # < 7; < ¢ for all j and since j is arbitrary we see that H, = +oo.
More general bounded sets S may be treated by choosing appropriate sub-
sequences of S and applying the results of Theorem 7 to show that H_, = + o
for S.
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