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Abstract

Background: The maximum clique enumeration (MCE) problem asks that we identify all maximum cliques in a

finite, simple graph. MCE is closely related to two other well-known and widely-studied problems: the maximum

clique optimization problem, which asks us to determine the size of a largest clique, and the maximal clique

enumeration problem, which asks that we compile a listing of all maximal cliques. Naturally, these three problems

are NP -hard, given that they subsume the classic version of the NP -complete clique decision problem. MCE

can be solved in principle with standard enumeration methods due to Bron, Kerbosch, Kose and others.

Unfortunately, these techniques are ill-suited to graphs encountered in our applications. We must solve MCE on

instances deeply seeded in data mining and computational biology, where high-throughput data capture often

creates graphs of extreme size and density. MCE can also be solved in principle using more modern algorithms

based in part on vertex cover and the theory of fixed-parameter tractability (FPT). While FPT is an improvement,

these algorithms too can fail to scale sufficiently well as the sizes and densities of our datasets grow.

Results: An extensive testbed of benchmark graphs are created using publicly available transcriptomic datasets

from the Gene Expression Omnibus (GEO). Empirical testing reveals crucial but latent features of such high-

throughput biological data. In turn, it is shown that these features distinguish real data from random data intended

to reproduce salient topological features. In particular, with real data there tends to be an unusually high degree of

maximum clique overlap. Armed with this knowledge, novel decomposition strategies are tuned to the data and

coupled with the best FPT MCE implementations.

Conclusions: Several algorithmic improvements to MCE are made which progressively decrease the run time on

graphs in the testbed. Frequently the final runtime improvement is several orders of magnitude. As a result,

instances which were once prohibitively time-consuming to solve are brought into the domain of realistic

feasibility.

Background

A clique is a fully-connected subgraph in a finite, simple

graph. The problem of determining whether or not a

graph has a clique of a given size, called simply CLI-

QUE, is one of the best known and most widely studied

combinatorial problems. Although classically formulated

as an NP -complete decision problem [1], where one is

merely asked to determine the existence of a certain size

clique, the search and optimization formulations are

probably most often encountered in practice, where one

is asked to find a clique of given size and largest size

respectively. In computational biology, one needs to

look no farther than PubMed to gauge clique’s utility in

a variety of applications. A notable example is the

search for putative molecular response networks in

high-throughput biological data. Popular clique-centric

tools include clique community algorithms for clustering

[2] and paraclique-based methods for QTL analysis and

noise abatement [3,4].
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A clique is maximal if it cannot be augmented by add-

ing additional vertices. A clique is maximum if it is of

largest size. A maximum clique is particularly useful in

our work on graphs derived from biological datasets. It

provides a dense core that can be extended to produce

plausible biological networks [5]. Other biological applica-

tions include the thresholding of normalized microarray

data [6,7], searching for common cis-regulatory elements

[8], and solving the compatibility problem in phylogeny

[9]. See [10] for a survey of additional applications of max-

imum clique.

Any algorithm that relies on maximum clique, however,

has the potential for inconsistency. This is because graphs

often have more than just one maximum clique. Idiosyn-

crasies between algorithms, or even among different

implementations of the same algorithm, are apt to lead to

an arbitrary choice of cliques. This motivates us to find an

efficient mechanism to enumerate all maximum cliques in

a graph. These can then be examined using a variety of

relevant criteria, for example, by the average weight of

correlations driven by strain or stimulus [11].

We therefore seek to solve the Maximum Clique

Enumeration (MCE) problem. Unlike maximal clique enu-

meration, for which a substantial body of literature exists,

very little seems to be known about MCE. The only excep-

tion we have found is a game-theoretic approach for locat-

ing a predetermined number of largest cliques [12].

While very little prior work seems to have been done

on MCE, the problem of maximal clique enumeration

has been studied extensively. Since any algorithm that

enumerates all maximal cliques also enumerates all maxi-

mum cliques, it is reasonable to approach MCE by

attempting first to adapt existing maximal clique enu-

meration algorithms. An implementation of an existing

maximal clique enumeration algorithm also provides a

useful runtime benchmark that should be improved upon

by any new approach. Besides maximal clique enumera-

tion algorithms, another potential strategy is to compute

the maximum clique size and then test all possible com-

binations of vertices of that size for connectivity. While

this approach may be reasonable for very small clique

sizes, as the maximum clique size increases the runtime

quickly becomes prohibitive, and we mention it only for

completeness, and focus our efforts on modifying and

extending existing algorithms for enumerating maximal

cliques.

Current maximal clique enumeration algorithms can be

classified into two general types: iterative enumeration

(breadth-first traversal of a search tree) and backtracking

(depth-first traversal of a search tree). Iterative enumera-

tion algorithms, such as the method suggested by Kose

et al [13], enumerate all cliques of size k at each stage,

test each one for maximality, then use the remaining cli-

ques of size k to build cliques of size k + 1. The process

is typically initialized for k = 3 by enumerating all vertex

subsets of size 3 and testing for connectivity. In practice,

such an approach can have staggering memory require-

ments, because all cliques of a given size must be

retained at each step. In [14], this approach is improved

by using efficient bitwise operations to prune the number

of cliques that must be saved. Nevertheless, storage needs

can be excessive, since all maximal cliques of one size

must still be made available before moving on to the next

larger size. Figure 1 shows the number of maximal cli-

ques of each size in one of the graphs near the median

size in our testbed. This graphic illustrates the enormous

lower bounds on memory that can be encountered with

iterative enumeration algorithms.

Many variations of backtracking algorithms for maxi-

mal clique enumeration have been published in the lit-

erature. To the best of our knowledge, all can be traced

back to the algorithms of Bron and Kerbosch first pre-

sented in [15]. Some subsequent modifications tweak the

data structures used. Others change the order in which

vertices are traversed. See [16] for a performance com-

parison between several variations of backtracking algo-

rithms. As a basis for improvement, however, we

implemented the original, highly efficient algorithm of

[15]. We made this choice for three reasons. First, an

enormous proportion of the time consumed by enumera-

tion algorithms is spent in outputting the maximal cli-

ques that are generated. This output time is a practical

limitation on any such approach. Second, a graph can

theoretically contain as many as 3(n/3) maximal cliques

[17]. It was shown in [18] that the algorithm in [15]

achieves this bound in the worst case. No algorithm with

a theoretically lower asymptotic runtime can thus exist.

Third, and most importantly, the improvements we

introduce do not depend on the particulars of any one

backtracking algorithm; they can be used in conjunction

with any and all of them.

Results and discussion

Using the seminal maximal clique enumeration algorithm

due to Bron and Kerbosch [15] as a benchmark, we

designed, implemented, and extensively tested three algo-

rithmic improvements, the last based on observations

about the nature of graphs produced by transcriptomic

data. Along with describing these improvements, we will

describe our existing tool for finding a single maximum

clique, based on the theory of fixed-parameter tractability

(FPT) [19,20]. Such a tool is essential for all three

improvements, since the first two rely on knowledge of

the maximum clique size, and the last uses the maximum

clique finding tool as a subroutine. All codes are written in

C/C++ and compiled in Linux. For testing, we use 100

graphs derived from 25 different datasets which are pub-

licly available on GEO. We concentrate on transcriptomic
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data, given its abundance, and eschew synthetic data, hav-

ing learned long ago that effective algorithms for one have

little bearing on the other. (The pathological matchings

noted in [21] for vertex cover can be extended to clique,

but likewise they too are of course hugely irrelevant to real

data.) In an effort to improve performance, we scrutinize

the structure of transcriptomic graphs and explore the

notion of maximum clique covers and essential vertex

sets. Indeed, we find that with the right preprocessing we

are able to tailor algorithms to the sorts of data we routi-

nely encounter, and that we can now solve instances pre-

viously considered unassailable.

Algorithms

In the following sections, we describe each of the MCE

algorithms we implemented and tested. The first is the

algorithm of Bron and Kerbosch [15], which we call

Basic Backtracking and use as a benchmark. Since all

our subsequent improvements make use of an algorithm

that finds a single maximum clique, we next describe

our existing tool, called Maximum Clique Finder (MCF),

which does just that. We next modify the Basic Back-

tracking algorithm to take advantage of the fact that we

only want to find the maximum cliques and can quickly

compute the maximum clique size. We call this

approach Intelligent Backtracking, since it actively

returns early from branches that will not lead to a maxi-

mum clique. We then modify MCF itself to enumerate

all maximum cliques, an approach we call Parameter-

ized Maximum Clique, or Parameterized MC. In a sense

this is another backtracking approach that goes even

further to exploit the fact that we only want to find

maximum cliques. Finally, based on observations about

the properties of biological graphs, we introduce the

concepts maximum clique covers and essential vertex

sets, and apply them to significantly improve the run-

time of backtracking algorithms.

Basic backtracking

The seminal maximal clique publication [15] describes

two algorithms. A detailed presentation of the second,

which is an improved version of the first, is provided. It

is this second, more efficient, method that we imple-

ment and test. We shall refer to it here as Basic Back-

tracking. All maximal cliques are enumerated with a

depth-first search tree traversal. The primary data struc-

tures employed are three global sets of vertices: COMP-

SUB, CANDIDATES and NOT. COMPSUB contains

the vertices in the current clique, and is initially empty.

CANDIDATES contains unexplored vertices that can

extend the current clique, and initially contains all ver-

tices in the graph. NOT contains explored vertices that

cannot extend the current clique, and is initially empty.

Each recursive call performs three steps:

• Select a vertex v in CANDIDATES and move it to

COMPSUB.

• Remove all vertices not adjacent to v from both

CANDIDATES and NOT. At this point, if both

CANDIDATES and NOT are empty, then COMP-

SUB is a maximal clique. If so, output COMPSUB as

a maximal cique and continue the next step. If not,

then recursively call the previous step.

• Move v from COMPSUB to NOT.

Note that NOT is used to keep from generating dupli-

cate maximal cliques. The search tree can be pruned by

terminating a branch early if some vertex of NOT is

connected to all vertices of CANDIDATES.

Vertices are selected in a way that causes this pruning to

occur as soon as possible. We omit the details since they

are not pertinent to our modifications of the algorithm.

The storage requirements of Basic Backtracking are

relatively modest. No information about previous maxi-

mal cliques needs to be retained. In the improvements

Figure 1 Maximal Clique Profile. The maximal clique profile of a graph created from the GDS3672 dataset using a threshold value of 0.81, the

dataset’s second highest threshold. MCE algorithms that are based on a breadth-first traversal of the search tree will retain at each step all

maximal cliques of a given size. This can lead to titanic memory requirements. This graph, for example, contains more than 110 million maximal

cliques of size 70. These sort of memory demands tend to render non-backtracking methods impractical.
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we will test, we focus on speed but also improve mem-

ory usage. Thus, such limitations are in no case prohibi-

tive for any of our tested methods. Nevertheless, in

some environments, memory utilization can be extreme.

We refer the interested reader to [14].

Our Basic Backtracking implementation serves as an

initial benchmark upon which we can now try to

improve.

Finding a single maximum clique

We use the term Maximum Clique Finder (MCF) to

denote the software we have implemented and refined

for finding a single clique of largest size [22]. MCF

employs a suite of preprocessing rules along with a

branching strategy that mirrors the well-known FPT

approach to vertex cover [19,23]. It first invokes a simple

greedy heuristic to find a reasonably large clique rapidly.

This clique is then used for preprocessing, since it puts a

lower bound on the maximum clique size. The heuristic

works by choosing the highest degree vertex, v, then

choosing the highest degree neighbor of v. These two

vertices form an initial clique C, which is then iteratively

extended by choosing the highest degree vertex adjacent

to all of C. On each iteration, any vertex not adjacent to

all of C is removed. The process continues until no more

vertices exist outside C. Since |C| is a lower bound on

the maximum clique size, all vertices with degree less

than |C - 1| can be permanently removed from the origi-

nal graph. Next, all vertices with degree n - 1 are tem-

porarily removed from the graph, but retained in a list

since they must be part of any maximum clique. MCF

exploits a novel form of color preprocessing [22], used

previously in [24] to guide branching. This form of pre-

processing attempts to reduce the graph as follows.

Given a known lower bound k on the size of the maxi-

mum clique, for each vertex v we apply fast greedy color-

ing to v and its neighbors. If these vertices can be colored

with fewer than k colors, then v cannot be part of a

maximum clique and is removed from the graph. Once

the graph is thus reduced, MCF uses standard recursive

branching on vertices, where each branch assumes that

the vertex either is or is not in the maximum clique.

Intelligent backtracking

Given the relative effectiveness with which we can find a

single maximum clique, it seems logical to consider

whether knowledge of that clique’s size can be helpful

in enumerating all maximum cliques. As it turns out,

knowledge of the maximum clique size k leads to a

small, straightforward change in the Basic Backtracking

algorithm. Specifically, at each node in the search tree

we check if there are fewer than k vertices in the union

of COMPSUB and CANDIDATES. If so, that branch

cannot lead to a clique of size k, and so we return. See

Figure 2. While the modification may seem minor, the

resultant pruning of the search tree can lead to a sub-

stantial reduction in the search space. In addition to this

minor change to branching, we apply color preproces-

sing as previously described to reduce the graph before

submitting it to the improved backtracking algorithm.

Color preprocessing combined with the minor branch-

ing change we call Intelligent Backtracking.

Paramaterized enumeration

Given that MCF employs a vertex branching strategy,

we investigated whether it could be modified to enu-

merate not just one, but all maximum cliques. It turns

out that MCF, also, lends itself to a straightforward

modification that results in enumeration of all maxi-

mum cliques. The modification is simply to maintain a

global list of all cliques of the largest size found thus

far. Whenever a larger maximum clique is found, the

list is flushed and refreshed to contain only the new

maximum clique. When the search space has been

exhausted, the list of maximum cliques is output.

We must take special care, however, to note that cer-

tain preprocessing rules used during interleaving are no

Figure 2 Intelligent Backtracking. A minor change to the Bron-Kerbosch algorithm uses the precomputed maximum clique size to trim the

recursion tree. The input graph has typically been reduced using color preprocessing. %endfigure.
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longer valid. Consider, for example, the removal of a leaf

vertex. The clique analogue is to find a vertex with

degree n - 2 and remove its lone non-neighbor. This

rule patently assumes that only a single maximum clique

is desired, because it ignores any clique depending on

the discarded vertex. Therefore this particular prepro-

cessing rule must be omitted once branching has begun.

Maximum clique covers

If we view MCF as a black box subroutine that can be

called repeatedly, it can be used in a simple greedy algo-

rithm for computing a maximal set of disjoint maximum

cliques. We merely compute a maximum clique, remove it

from the graph, and iterate until the size of a maximum

clique decreases. To explore the advantages of computing

such a set, we introduce the following notion:

Definition 1 A maximum clique cover of G = (V, E) is

a set V’ ⊆ V with the property that each maximum cli-

que of G contains some vertex in the cover.

The union of all vertices contained in a maximal set of

disjoint maximum cliques is of course a maximum cli-

que cover (henceforth MCC), because all maximum cli-

ques must overlap with such a set. This leads to a useful

reduction algorithm. Any vertex not adjacent to at least

one member of an MCC cannot be in a maximum cli-

que, and can thus be removed.

In practice, we find that applying MCC before the ear-

lier backtracking algorithms yields only marginal

improvement. The concept of MCC does, however, lead

to a much more powerful approach based on individual

vertices. Since any improvement made by MCC is sub-

sumed by the next approach, we do not test MCC by

itself.

Essential vertex sets

Our investigation of the MCC algorithm revealed that it

typically does not reduce the size of the graph more than

the preprocessing rules already incorporated into MCF.

For example, MCF already quickly finds a lower bound on

the maximum clique size and removes any vertex with

degree lower than this bound. Upon closer examination,

however, we found that for 74 of 75 graphs that we initi-

ally tested for the conference version of this paper, only

one clique was needed in an MCC. That is to say, one

maximum clique covered all other maximum cliques. And

in our current testbed of 100 graphs, in every case a single

maximum clique suffices for an MCC. In fact this coin-

cides closely with our experience, in which we typically see

high overlap among large cliques in the transcriptomic

graphs we encounter on a regular basis. Based on this

observation, we shall now refine the concept of MCC.

Rather than covering maximum cliques with cliques, we

cover maximum cliques with individual vertices.

We define an essential vertex as one that is contained in

every maximum clique. Of course it is possible for a given

graph to have no such vertex, even when it contains many

overlapping maximum cliques. But empirical testing of

large transcriptomic graphs shows that an overwhelming

number contain numerous essential vertices. And for pur-

poses of reducing the graph, even one will suffice. An

essential vertex has the potential to be extremely helpful,

because it allows us to remove all its non-neighbors. We

employ the following observation: for any graph G, ω(G)

>ω(G/v) if and only if v covers all maximum cliques,

where ω(G) is the maximum clique size of G.

We define an essential set to be the set of all essential

vertices. The Essential Set (ES) algorithm, as described

in Figure 3, finds all essential vertices in a graph. It then

reduces the graph by removing, for each essential vertex,

all non-neighbors of that vertex. The ES algorithm can

be run in conjunction with any of the backtracking

MCE algorithms, or indeed prior to any algorithm that

does MCE by any method, since its output is a reduced

graph that still contains all maximum cliques from the

original graph. As our tests show, the runtime improve-

ment offered by the ES algorithm can be dramatic.

Implementation

We implemented all algorithms in either C or C++. The

code was compiled using the GCC 4.4.3 compiler on the

Ubuntu Linux version 10.04.2 operating system as well

as the GCC 3.3.5 compiler under Debian Linux version

3.1. All timings were conducted in the latter Debian

environment on dedicated nodes of a cluster to ensure

no affect on timings from concurrent processes. Each

node had a dual-core Intel Xeon processor running at

3.20 GHz and 4 GB of main memory.

Testing

In the conference version of this paper, we used three dif-

ferent datasets at 25 thresholds each to derive a total of

75 graphs on which to test our algorithmic improve-

ments. While these graphs certainly sufficed as an initial

proof of concept, two concerns could be raised regarding

them. First, one might argue that three datasets are not a

sufficiently large sample size to provide a true sense of

the overall nature of transcriptomic data or an algorith-

mic improvement’s general effectiveness on such data,

the large number of thresholds notwithstanding. And

second, since the three datasets are proprietary and not

publicly available, the results were not as readily reprodu-

cible as they might otherwise have been. Obtaining de-

identified versions, while feasible, was an unnecessary

obtacle to reproducibility.

We address such concerns here by creating a new suite

of transcriptomic graphs on which to test our algorithmic

improvements. The suite consists of graphs derived from

25 datasets obtained from the Gene Expression Omnibus

(GEO) [25], a publicly accessible repository. For each

dataset, graphs were created at four different thresholds,
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for a total of 100 graphs. The datasets were selected to

provide a reasonably diverse sampling of experimental

type, species, and mRNA microarray chip type. They

cover 8 different species and a number of different

experimental conditions such as time series, strain,

dose, and patient. Since our graphs are derived from

thresholding correlation values, we excluded from con-

sideration any dataset with fewer than 12 conditions.

Thresholding correlations calculated using so few con-

ditions can produce unacceptably large rates of false

positives and false negatives. The number of conditions

range from a low of 12 to a high of 153. Nine of the

datasets had not been log-transformed, in which case

we performed log-transformation. Four of the datasets

contained missing values; in these cases we used corre-

lation p-values rather than correlations for the thresh-

old. See Table 1 for a listing of the GEO datasets used

for testing.

From the expression data, we first constructed

weighted graphs in which vertices represented probes

and edge weights were Pearson correlation coefficients

computed across experimental conditions. We then con-

verted the weighted graphs into unweighted graphs by

retaining only those edges whose weights were at or

above some chosen threshold, t. For each dataset, we

chose four values for t. All size/density values were

within the spectrum typically seen in our work with bio-

logical datasets. The smallest graph had 3,828 vertices

and 310,380 edges; the largest had 44,563 vertices and

2,052,228 edges.

The number of maximum cliques for the graphs in our

testbed ranged from 8 to 74486. As seen with our pre-

vious testbed, there was no discernible pattern based on

graph size or density. One might ask why there is such

wide, unpredictable variability. It turns out that the num-

ber of maximum cliques can be extremely sensitive to

small changes in the graph. Even the modification of a

single edge can have a huge effect. Consider, for example,

a graph with a unique maximum clique of size k, along

with a host of disjoint cliques of size k - 1. The removal

of just one edge from what was the largest clique may

now result in many maximum cliques of size k - 1. Edge

addition can of course have similar effects. See Figure 4

for an illustrative example.

For each algorithm on each graph, we conducted tim-

ings on a dedicated node of a cluster to avoid interfer-

ence from other processes. If the algorithm did not

complete within 24 hours, it was halted and the graph

was deemed to have not been solved. We chose thresh-

olds to spread the runtimes of the graphs out over the

five algorithms we were testing. The largest (smallest in

the case of correlation p-value) threshold was selected so

that a majority of the algorithms, if not all, solved the

graph. The smallest (largest in the case of correlation p-

value) threshold was selected so that at least one of the

algorithms, but not all, solved the graph.

On each graph we timed the performance of Basic Back-

tracking, Intelligent Backtracking, and Paramaterized MC.

We then reduced the graphs using ES and retested with

Intelligent Backtracking and Parameterized MC, in which

case the runtimes include both the reduction and the enu-

meration step. As expected, Basic Backtracking was found

to be non-competitive. Both Intelligent Backtracking and

Parameterized MC showed a distinct, often dramatic,

improvement over Basic Backtracking. Figure 5 shows the

runtimes of each of the five methods on all 100 test

graphs. On some of the easier graphs, ones taking less

than three minutes to solve, the overhead of ES actually

caused a minor increase in the overall runtime. But on the

more difficult instances its true benefit became apparent,

reducing runtime by an order of magnitude or more. And

in all cases where two or fewer algorithms solved the

graph, the algorithm was either ES with Intelligent Back-

tracking, ES with Parameterized MC, or both.

Conclusions

ES serves as a practical example of an innovative algo-

rithm tailored to handle a difficult combinatorial problem

by exploiting knowledge of the input space. It succeeds

by exploiting properties of the graphs of interest, in this

Figure 3 The Essential Set (ES) Algorithm. The ES algorithm finds all essential vertices in a graph and removes their non-neighbors.
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case the overlapping nature of maximum cliques. More

broadly, these experiments underscore the importance of

considering graph types when testing algorithms.

It may be useful to examine graph size after applying

MCC and ES, and compare to both the size of the origi-

nal graph and the amount of reduction achieved by

color preprocessing alone. Figures 6 and 7 depict

original and reduced graph sizes for five graphs we ori-

ginally tested.

While MCC seems as if it should produce better

results, in practice we find it not to be the case for two

reasons. First, the vertices in an MCC may collectively

be connected to a large portion of the rest of the graph,

and so very little reduction in graph size takes place.

Table 1 GEO Datasets Used for Testing

DataSet Title Organism

GDS3505 Seedling roots response to auxin and ethylene availability Arabidopsis thaliana

GDS3521 Retina response to hypoxia and subsequent reoxygenation: time course Mus musculus

GDS3538 Age and diet effect on canine skeletal muscles Canis lupus familiaris

GDS3561 Occupational benzene exposure: peripheral blood mononuclear cells (HumanRef-8) Homo sapiens

GDS3579 Fer-1 null mutants Caenorhabditis elegans

GDS3592 Ovarian normal surface epithelia and ovarian cancer epithelial cells Homo sapiens

GDS3595 Macrophage response to H1N1 and H5N1 influenza viral infections Homo sapiens

GDS3603 Renal cancer response to rapamycin analog CCI-779 treatment: Homo sapiens

GDS3605 Spared nerve injury model of peripheral neuropathic pain: dorsal horn of spinal cord Rattus norvegicus

GDS3610 Nasopharyngeal carcinoma Homo sapiens

GDS3622 Nrf2-deficient lung response to cigarette smoke: dose response and time course Mus musculus

GDS3623 Heart regeneration in zebrafish Danio rerio

GDS3639 Male and female fruit flies of various wild-type laboratory strains Drosophila melanogaster

GDS3640 Copper effect on liver cell line: dose response and time course Homo sapiens

GDS3644 Cerebral palsy: wrist muscles Homo sapiens

GDS3646 Celiac disease: primary leukocytes Homo sapiens

GDS3648 Cardiomyocyte response to various types of fatty acids in vitro Rattus norvegicus

GDS3661 Hypertensive heart failure model Rattus norvegicus

GDS3672 Hypertension model: aorta Mus musculus

GDS3690 Atherosclerotic Coronary Artery Disease: circulating mononuclear cell types Homo sapiens

GDS3715 Insulin effect on skeletal muscle Homo sapiens

GDS3716 Breast cancer: histologically normal breast epithelium Homo sapiens

GDS3703 Addictive drugs effect on brain striatum: time course Mus musculus

GDS3707 Acute ethanol exposure: time course Drosophila melanogaster

GDS3692 Lean B6.C-D7Mit353 strain: various tissues Mus musculus

The 25 datasets obtained from the Gene Expression Omnibus (GEO) [25]. All datasets were retrieved between 4-04-2011 and 4-23-2011. Each dataset was log-

transformed if it had not been already. For each dataset, four different correlation thresholds were used to build unweighted graphs.

Figure 4 Maximum Clique Sensitivity. The number of maximum cliques in a graph can be highly subject to perturbations due, for example,

to noise. For example, a graph may contain a single maximum clique C representing a putative network of size k, along with any number of

vertices connected to k - 2 vertices in C. In (a), there is a single maximum clique of size k = 5, with “many” other vertices (only three are shown)

connected to k - 2 = 3 of its nodes. In (b), noise results in the removal of a single edge, creating many maximum cliques now of size k - 1 = 4.
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And second, any reduction in graph size may be redun-

dant with FPT-style preprocessing rules already in place.

Contrast to random graphs

It would have probably been fruitless to test and design

our algorithms around random graphs. (Yet practi-

tioners do just that with some regularity.) In fact it has

long been observed that the topology of graphs derived

from real relationships differs drastically from the

Erdös-Rényi random graph model introduced in [26].

Attempts to characterize the properties of real data

graphs have been made, such as the notion of scale-free

graphs, in which the degrees of the vertices follow a

power-law distribution [27]. While work to develop the

scale-free model into a formal mathematical framework

continues [28], there remains no generally accepted for-

mal definition. More importantly, the scale-free model is

an inadequate description of real data graphs. We have

observed that constructing a graph so the vertices follow

a power law (scale-free) degree distribution, but where

Figure 5 Timings. Timings on various approaches to MCE on the testbed of 100 biological graphs. Timings include all preprocessing, as well as

the time to find the maximum clique size, where applicable. Runs were halted after 24 hours and deemed to have not been solved, as

represented by those shown to take 86400 seconds. The graph instances are sorted first in order of runtimes for Basic Backtracking, then in

order of runtimes for Intelligent Backtracking. This is a reasonable way to visualize the timings, though not perfect, since graphs that are difficult

for one method may not be as difficult for another, hence the subsequent timings are not monotonic.

Figure 6 Reduction in Graph Size. Reduction in graph size thanks to preprocessing on five representative graphs chosen from our testbed.

Each of the four preprocessing methods greatly reduces the graph size.
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edges are placed randomly otherwise using the vertex

degrees as relative probabilities for edge placement, still

results in graphs with numerous small disjoint maxi-

mum cliques. For instance, constructing graphs with the

same degree distribution as each of the 75 biological

graphs in our original testbed resulted in maximum cli-

que sizes no greater than 5 for even the highest density

graphs. Compare this to maximum clique sizes that ran-

ged into hundreds of vertices in the corresponding bio-

logical graphs. Other metrics have been introduced to

attempt to define important properties, such as cluster

coefficient and diameter. Collectively, however, such

metrics remain inadequate to model fully the types of

graphs derived from actual biological data. The notions

of maximum clique cover and essential vertices stem

from the observation that transcriptomic data graphs

tend to have one very large highly-connected region,

and most (very often all) of the maximum cliques lie in

that space. Furthermore, there tends to be a great

amount of overlap between maximum cliques, perhaps

as a natural result of gene pleiotropism. Such overlap is

key to the runtime improvement achieved by the ES

algorithm.

Future research directions

Our efforts with MCE suggest a number of areas with

potential for further investigation. A formal definition of

the class of graphs for which ES achieves runtime

improvements may lead to new theoretical complexity

results, perhaps based upon parameterizing by the

amount of maximum clique overlap. Furthermore, such a

formal definition may form the basis of a new model for

real data graphs. We have noted that the number of dis-

joint maximum cliques that can be extracted provides an

upper bound on the size of an MCC. If we parameterize

by the maximum clique size and the number of maxi-

mum cliques, does an FPT algorithm exist? In addition,

formal mathematical results may be achieved on the sen-

sitivity of the number of maximum cliques to small

changes in the graph.

Note that any MCC forms a hitting set over the set of

maximum cliques, though not necessarily a minimum

one. Also, a set D of disjoint maximum cliques, to

which no additional disjoint maximum clique can be

added, forms a subset cover over the set of all maximum

cliques. That is, any maximum clique C ∉ D contains at

least one v Î D. See Figure 8. To the best of our knowl-

edge, this problem has not previously been studied. All

we have found in the literature is one citation that erro-

neously reported it to be one of Karp’s original

NP -complete problems [29].

For the subset cover problem, we have noted that it is

NP -hard by a simple reduction from hitting set. But in

the context of MCE we have subsets all of the same size.

It may be that this alters the complexity of the problem,

or that one can achieve tighter complexity bounds when

parameterizing by the subset size. Alternately, consider

the problem of finding the minimum subset cover given

a known minimum hitting set. The complexity of this

tangential problem is not at all clear, although we conjec-

ture it to be NP -complete in and of itself. Lastly, as a

practical matter, exploring whether an algorithm that

addresses the memory issues of the subset enumeration

algorithm presented in [13] and improved in [14] may

Figure 7 Reduction in Graph Size. A zoomed view of Figure 6, showing the effectiveness of each preprocessing method at reducing graph

size. ES preprocessing results in the smallest reduced graph, often leaving only a small fraction of the vertices left by other methods.
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also prove fruitful. As we have found here, it may well

depend at least in part on the data.
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