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In a one-parameter model for evolution of random trees, which also includes the
Barabási–Albert random graph [1], law of large numbers and central limit theorem
are proved for the maximal degree. In the proofs martingale methods are applied.

1. Introduction

In the classical Erdős–Rényi model of random graphs, when the number of edges
is proportional to the number of vertices, the degree distribution is approximately
Poisson with a tail decreasing even faster than exponentially. However, in many real
life networks power law degree distributions were observed with different exponents.
To introduce a more realistic model for the evolution of random networks, Barabási
and Albert [1] proposed the following one, which they called scale free.

In the beginning, at the first step, we only have a single edge. At every further
step we start a new (undirected) edge from one of the vertices created so far. The
other endpoint of the edge is a new vertex, while the starting point is chosen from
the existing vertices at random, in such a way that each vertex is selected with
probability proportional to its degree (in other words, to choose an existing vertex
we first choose one of the edges with equal probability, then one of the endpoints
of that edge). In this model the asymptotic proportion of vertices with degree k
decreases as k−3, which is the same power law that was observed in the World Wide
Web. A couple of papers has recently been devoted to the study of this random
graph as well as to other similar models, all different from the classical Erdős–Rényi
construction. Here we only mention [2].

A generalization of this model was investigated in [9]. There, at the n-th step, a
vertex of degree k was chosen with probability proportional to k + β, where β was
a fixed parameter of the model, β > −1. Thus, a vertex of degree k was selected

with probability
k + β

Sn
, where Sn denoted the sum of weights over all vertices of the

random tree with n edges and n+1 vertices; that is, Sn = 2n+(n+1)β = (2+β)n+β.
In [9] the proportion of vertices of degree k was shown to converge almost surely
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to a limit ck, which, as a function of k, decreased at the rate k−(3+β). It turned
out, in addition, that the number of degree k vertices had an asymptotic normal
distribution around nck with variance of order n.

The aim of the present note is to show that maximal degree Mn of the random

tree, divided by n
1

2+β , converges a.s. to a positive random variable, as n tends to
infinity. In Erdős-Rényi graphs of n vertices and cn edges Mn is asymptotically
equal to log n/ log log n.

2. Basic martingales

Our starting point is common with [2] to a certain extent: we first consider the
degree sequences of individual vertices. Let the vertices of the only edge existing
at start be labelled by 0 and 1, then every new vertex is labelled by step number
when it is born. Let X[n, j] denote the weight (= degree + β) of vertex j after the
n-th step, with initial values X[n, j] = 0 for n < j, X[j, j] = 1 + β for j > 0, and
X[1, 0] = 1 + β. Let ∆[n + 1, j] denote the increment X[n + 1, j]−X[n, j].

Let us introduce a double sequence of normalizing constants by

c[n, k] =
Γ
(
n+ β

2+β

)

Γ
(
n+ k+β

2+β

) , n ≥ 1, k ≥ 0. (2.1)

Then we clearly have
c[n + 1, k]

c[n, k]
=

Sn

Sn + k
;

and c[n, k] = n
− k

2+β
(
1 + O

(
n−1

))
, for fixed k, as n →∞.

Finally, let Fn denote the σ-field generated by the first n (random) steps.
The degree process is driven by the basic dynamics

P
(
∆[n + 1, j] = 1

∣∣Fn

)
= 1− P

(
∆[n + 1, j] = 0

∣∣Fn

)
=

X[n, j]
Sn

. (2.2)

Hence one immediately gets that

E
(
X[n + 1, j]

∣∣Fn

)
= X[n, j]

(
1 +

1
Sn

)
= X[n, j]

c[n, 1]
c[n + 1, 1]

.

Thus (
c[n, 1]X[n, j], Fn

)
, n ≥ max{j, 1} (2.3)

is a positive martingale, which is known to converge a.s. to a random variable ζj .
This is surely not new; in the case of β = 0 this martingale was also considered

in [2], but even that was not the first place where it appeared. When β is an integer
number, X[n, j] can be considered as the number of white balls in a generalized
Pólya–Eggenberger urn model after n − j draws, where the urn initially contains
2j−1+ jβ black balls and 1+β white ones; having drawn a white ball we return it
into the urn together with one white and 1+β black balls, while in case of drawing
a black ball we only put into the urn 2 + β additional black balls and no white
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ones. Generalized Pólya–Eggenberger urns have been studied exhaustively in the
last decades. Section 4.3 of the monograph [6] is devoted to certain particular cases
of the general model, but it still does not cover our case. [3] applies martingale
methods for a.s. limit results for the proportion of white balls as the number of
draws goes to infinity. In our case the limit of the proportion is clearly 0; the real
question is the proper order of magnitude. That can be found e.g. in [4] and [5].
Martingale techniques are quite common in all these papers.

The martingale property in (2.3) is just a particular case of the following, more
general result.

Theorem 2.1. Let r be a positive integer, k1, . . . kr and 0 ≤ j1 < · · · < jr arbitrary
nonnegative integers. Introduce

Z[n; j1, . . . , jr, k1, . . . , kr] = c[n, k1 + · · ·+ kr]
r∏

i=1

(
X[n, ji] + ki − 1

ki

)
.

Then (
Z[n; j1, . . . , jr, k1, . . . , kr], Fn

)
, n ≥ max{jr, 1}

is a martingale.

Proof. It can be assumed that each ki is positive. Clearly,

(
X[n + 1, j] + k − 1

k

)
=

(
X[n, j] + k − 1

k

)
+ ∆[n, j]

(
X[n, j] + k − 1

k − 1

)

=
(

X[n, j] + k − 1
k

)(
1 +

k∆[n, j]
X[n, j]

)
,

hence

r∏

i=1

(
X[n + 1, ji] + ki − 1

ki

)
=

r∏

i=1

(
X[n, ji] + ki − 1

ki

) (
1 +

r∑

i=1

∆[n, ji]ki

X[n, ji]

)
,

because at most one of the increments ∆[n, ji] can differ from 0 at the same time.
Consequently,

E

(
Z[n + 1; j1, . . . , jr, k1, . . . , kr]

∣∣∣∣Fn

)
=

= Z[n; j1, . . . , jr, k1, . . . , kr]
c[n + 1, k1 + · · ·+ kr]

c[n, k1 + · · ·+ kr]

(
1 +

k1 + · · ·+ kr

Sn

)

= Z[n; j1, . . . , jr, k1, . . . , kr],

as claimed.

Being a nonnegative martingale, Z[n; j1, . . . , jr, k1, . . . , kr] is bounded in L1. It
converges a.s. to

ζk1
j1

. . . ζkr
jr

k1! . . . kr!
,
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whatever the exponents ki be. Since

Z[n; j1, . . . , jr, k1, . . . , kr]2 ≤ C Z[n; j1, . . . , jr, 2k1, . . . , 2kr],

where the constant C does not depend on n, this martingale is bounded in L2 as
well. This implies that it converges in L1, too. Using that fact one can easily write
down all moments and mixed moments of the random variables ζ0, ζ1, . . . , together
with their joint Laplace transform (or characteristic function).

Eζk
j

k!
= lim

n→∞
EZ[n; j, k] = EZ[j; j, k] = c[j, k]

(
k + β

k

)
, j ≥ 1, (2.4)

particularly

Eζj = (1 + β)c[j, 1], (2.5)

var ζj = (1 + β)(2 + β)c[j, 2]− (1 + β)2c[j, 1]2

= (Eζj)2
( c[j, 2]

c[j, 1]2
− 1

)
+ (1 + β)c[j, 2], (2.6)

E exp(−tζj) =
∞∑

k=0

c[j, k]
(

k + β

k

)
(−t)k =

∞∑

k=0

c[j, k]
(−β

k

)
tk. (2.7)

Note that ζ0 and ζ1 have the same distribution (and, in fact, the two random
variables are interchangeable in the sequence ζ0, ζ1, ζ2, . . . ).

The mixed moments can be computed by iteration.

Eζk0
0 ζk1

1 . . . ζkr
r

k0!k1! . . . kr!
= EZ[r; 0, . . . , r, k0 . . . , kr]

=
c[r; k0 + · · ·+ kr]

c[r; k0 + · · ·+ kr−1]

(
kr + β

kr

)
EZ[r; 0, . . . , r − 1, k0, . . . kr−1]

=
c[r; k0 + · · ·+ kr]

c[r; k0 + · · ·+ kr−1]

(
kr + β

kr

)
EZ[r − 1; 0, . . . , r − 1, k0, . . . kr−1]

= · · · =
r∏

i=0

(
ki + β

ki

) r∏

i=1

c[i; k0 + · · ·+ ki]
c[i; k0 + · · ·+ ki−1]

c[1, k0]. (2.8)

Hence the covariances are

cov(ζi, ζj) = EζiEζj

( c[j, 2]
c[j, 1]2

− 1
)
, 0 ≤ i < j. (2.9)

By the convexity of the function ψ(z) = log Γ(z) it follows that the random variables
ζ0, ζ1, ζ2, . . . are negatively correlated, as expected.

3. Almost sure convergence of the maximal degree

Let Mn denote the maximal degree appearing in our random tree after n steps,
and for n ≥ j let M [n, j] = max{Z[n; i, 1] : 0 ≤ i ≤ j}. In these terms M [n, n] =
c[n, 1](Mn + β). Define µ(j) = max{ζi : 0 ≤ i ≤ j}, and µ = µ(∞) = supj≥0 ζj .
First we show that
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Theorem 3.1. With probability 1 we have

lim
n→∞

n
− 1

2+β Mn = µ;

the limit is a.s. positive and finite, and it has an absolutely continuous distribution.
The convergence also holds in Lp, for all p, 1 ≤ p < ∞.

Proof. Being the maximum of martingales,
(
M [n, n], Fn

)
is a (non-negative) sub-

martingale, for which

EM [n, n]k ≤
n∑

j=0

EZ[n; j, 1]k ≤
∞∑

j=0

Eζk
j = k!

(
k+β

k

) ∞∑

j=0

c[j, k] < ∞,

if k is large enough (k > 2 + β). Here c[0, k] is defined to be equal to c[1, k]. Thus,
our submartingale is bounded in Lk for every positive integer k, which implies not
only almost sure convergence but convergence in Lp, p ≥ 1, as well.

Let again k > 2 + β, fixed. Then clearly

E
(
M [n, n]−M [n, j]

)k ≤
n∑

i=j+1

EZ[n; i, 1]k,

for ≥ k. The limit as n →∞ of the left-hand side is equal to

E
(

lim
n→∞

n
− 1

2+β Mn − µ(j)
)k

;

while the right-hand side converges increasingly to
∞∑

i=j+1

Eζk
i = k!

(
k + β

k

) ∞∑

i=j+1

c[i, k],

which can be arbitrarily small if j is large enough. Hence the limit of n
− 1

2+β Mn is
just µ, as claimed.

The positivity of µ can be proved, e.g., by showing that any of the Laplacians
(2.7) tends to 0 as t →∞. Instead, we choose another, more direct way, which also
provides a lower estimation of the probabilities P (ζj > t). By the equivalence of ζ0

and ζ1 we can assume j > 0. We are going to prove the following estimation.

Lemma 3.1. Let the random variable ξ have a positive stable distribution with
characteristic exponent 1/(2 + β); more precisely, let the Laplace transform of ξ be
of the form exp

(−κt1/(2+β)
)
, t ≥ 0, where

κ =
∫ ∞

0

(
1− exp

(−y−2−β
))

.

Case (i): β ≥ 0. Then ζj is minorized stochastically by (jξ)−
1

2+β .

Case (ii): β < 0. Then ζj is minorized stochastically by %
(
(j + 1)ξ

)− 1
2+β , where %

is independent of ξ, and P (% ≤ t) = t1+β , 0 ≤ t ≤ 1.

Recall that random variable Y1 is said to minorize Y2 stochastically (or equiva-
lently, Y2 majorizes Y1), if for every real t we have P (Y1 > t) ≤ P (Y2 > t).
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Proof of Lemma 3.1. Let T [j, k] denote the number of steps needed until the degree
of vertex j reaches k. Then T [j, 1] = j; and for arbitrary β > −1 and t > n we
have

P
(
T [j, k + 1] > t

∣∣ T [j, k] = n
)

=
btc−1∏

i=n

(
1− k + β

Si

)
.

On the right-hand side we have

1− k + β

Si
≤

(
exp

(2 + β

Si

))−k+β
2+β

≤
(

1 +
2 + β

Si

)−k+β
2+β

=
(

Si

Si+1

)k+β
2+β

,

hence

P
(
T [j, k + 1] > t

∣∣ T [j, k] = n
) ≤

(
Sn

Sbtc

)k+β
2+β

≤
(

(2 + β)n + β

(2 + β)(t− 1) + β

)k+β
2+β

.

Introduce U [j, k] = (2 + β)T [j, k] + β. Then, for t > 1 we can write

P
(
U [j, k + 1]− 2− β > tU [j, k]

∣∣ U [j, k]
) ≤ t

−k+β
2+β = P (exp(ηk) > t) ,

where ηk denotes an exponentially distributed random variable with parameter
k+β
2+β . In other words, U [j, k + 1] is majorized stochastically by

2 + β + U [j, k] exp(ηk),

where ηk is independent of U [j, k]. After some iteration we obtain that U [j, k + 1]
is majorized stochastically by

((2 + β)j + β) exp (η1 + · · ·+ ηk) + (2 + β)
k∑

i=1

exp (ηi+1 + · · ·+ ηk) , (3.1)

with independent variables ηi.
In Case (i) (3.1) can be majorized by decreasing the parameter of each ηi to

i
2+β . From (3.1) one easily obtains that T [j, k + 1] is majorized stochastically by

2
2 + β

+ j

k∑

i=1

exp (ηi + · · ·+ ηk) , (3.2(i))

where η1, . . . , ηk are independent, exponentially distributed random variables, and
this time ηi with parameter i

2+β . It is well known that the joint distribution of

η1 + · · ·+ ηk, η2 + · · ·+ ηk, . . . , ηk

coincides with that of a (decreasingly) ordered sample of size k from the exponen-
tial distribution with parameter 1/(2 + β). Hence the second term of (3.2(i)) is,
in distribution, just j times the sum of k i.i.d. random variables with the same
distribution as exp η1 (namely, Pareto(2 + β)). That distribution belongs to the
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domain of attraction of the distribution of ξ; more precisely, (3.2(i)), divided by
n2+β , converges in distribution to jξ.

Let us turn to ζj . Clearly, P (X[n, j] < k + β) = P (T [j, k] > n), hence, with the
notation k = dn1/(2+β)t− βe we can write

P (ζj < t) = P
(

lim
n→∞

n−1/(2+β)X[n, j] < t
)

≤ lim inf
n→∞

P
(
X[n, j] < n1/(2+β)t

)

= lim inf
n→∞

P
(
T [j, k] > n

)

= lim inf
k→∞

P
(
k−2−βT [j, k] > t−2−β(1 + o(1))

)

≤ P
(
jξ ≥ t−2−β

)
,

and the proof is completed.
In case (ii) (3.1) can be majorized by decreasing the parameter of ηi, i ≥ 2, to

i−1
2+β , but this time η1 does not change. From (3.1) we obtain that T [j, k + 1] is
majorized stochastically by the following modification of (3.2(i)).

2
2 + β

+ (j + 1) exp(η1)
k∑

i=2

exp (ηi + · · ·+ ηk) , (3.2(ii))

From this point the proof can be completed in the same way as in Case(i). Note

that % =
(
exp(η1)

)− 1
2+β .

Finally, the absolute continuity of µ is a corollary of the following assertions.

Lemma 3.2. µ = max{ζj : j ≥ 0} with probability 1.

Lemma 3.3. For j = 1, 2, . . . the distribution of the random variable

τj =
ζ0 + · · ·+ ζj−1

ζ0 + · · ·+ ζj
(3.3)

is Beta
(
j(2+β)−1, 1+β

)
. In addition, τ1, τ2 . . . , τj , ζ0+ζ1 · · ·+ζj are independent.

Indeed, by Lemma 3.3 and the positivity of the sums ζ0 + · · ·+ ζj it follows that
ζ0, ζ1, . . . , ζj have absolutely continuous (joint) distribution for every j = 1, 2, . . . .
It is easy to see that µ, being the maximum of (a countable number of) absolutely
continuous random variables by Lemma 3.2, is absolutely continuous. Let Aj ,
j = 0, 1, . . . be the event that min{i : µ(i) = µ} = j; they are pairwise disjoint,
and P (∪Aj) = 1. Since µ = ζj on Aj , it has a density equal to the density of ζj

a.e. on Aj .

Proof of Lemma 3.2. For arbitrary real t > 0, and integers j > 0, k > 2 + β we can
write

P (µ 6= µ(j)) ≤ P (ζ0 ≤ t) +
∑

i>j

P (ζi > t) ≤ P (ζ0 ≤ t) + t−k
∑

i>j

Eζk
i

≤ P (ζ0 ≤ t) + t−kk!
(

k + β

k

) ∞∑

i=j+1

c[i, k].
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Here on the right-hand side the first probability can be arbitrarily small if t is small
enough, and for fixed t the infinite sum can be arbitrarily small with a sufficiently
large j.

Proof of Lemma 3.3. Let us look at the process only at steps where one of the
vertices 0, 1, . . . , j is selected. Then it can be interpreted as a Pólya–Eggenberger
urn process in the following way. Suppose we have Sj balls in an urn, 1 + β of
them are white, the others are black (this has meaning only for integer values of β
in this context, but the results we want to refer to are also valid for arbitrary real
β > −1). Balls are drawn from the urn one after another, the ball drawn is always
returned to the urn together with an additional ball of the same color. Drawing of
a white ball corresponds to the selection of vertex j, while drawings of black balls
are interpreted as selections of any of vertices 0, 1, . . . , j − 1. The proportion of
black balls in the urn after n drawings is equal to the ratio

Z[m; 0, 1] + · · ·+ Z[m; j − 1, 1]
Z[m; 0, 1] + · · ·+ Z[m; j, 1]

(3.4)

at the (random) moment m when it occurs for the nth time that a vertex from
0, 1, . . . , j is selected. This proportion is known to converge a.s., and the limit
is Beta

(
Sj − 1 − β, 1 + β

)
distributed (see e.g. Section 6.3.3 of [6]); while (3.4)

converges to (3.3) as n →∞. The embedded process is transparently independent
of the moments of embedding.

4. Central limit theorem for the maximal degree

In this section we will prove the following limit theorem, which enhances the
description, given in Theorem 3.1, of the asymptotic behaviour of the maximal
degree.

Theorem 4.1.
(i) The normalized maximal degree

n
1

2(2+β)
(
n
− 1

2+β Mn − µ
)

converges in distribution to the normal mixture N(0, µ) defined as the distribution
of the product

√
µN , where N is a standard normal random variable, independent

of µ.
(ii) Furthermore,

n
1

2(2+β) µ−1/2
(
n
− 1

2+β Mn − µ
)

converges in distribution to the standard normal law N(0, 1), as n →∞.

Proof. Consider the Doob–Meyer decomposition of the submartingale M [n, n] into
a convergent martingale and a predictable increasing process. We shall see that the
martingale obeys the central limit theorem, and the increasing process will turn
out to be negligible.

Define Ln as the multiplicity of the maximal degree, that is,

Ln = # {0 ≤ j ≤ n : M [n, n] = Z[n; j, 1]} .
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From Lemma 3.2 it follows that P
(
ζi = ζj for some i 6= j

)
= 0; thus, with proba-

bility 1 we eventually have Ln = 1. Let

dn = M [n, n]− E
(
M [n, n]

∣∣ Fn−1

)
= M [n, n]−M [n− 1, n− 1]

Sn−1 + Ln−1

Sn−1 + 1
;

these are martingale differences with respect to the filtration
(Fn

)
. Further, let

an = E
(
M [n, n]

∣∣ Fn−1

)−M [n− 1, n− 1] = M [n− 1, n− 1]
Ln−1 − 1
Sn−1 + 1

;

this is non-negative and predictable. Clearly,

µ−M [n, n] =
∞∑

i=n+1

di +
∞∑

i=n+1

ai. (4.1)

The second sum on the right-hand side has only finitely many terms different from
0, hence

lim
n→∞

n
1

2(2+β)

∞∑

i=n+1

ai = 0. (4.2)

Let us apply Corollary 4.2.1 of [7] to the martingale difference array

{(
n

1
2(2+β) di, Fi

)
, i = n + 1, n + 2, . . .

}
, n = 1, 2, . . . , (4.3)

and Theorem 4.2.1 of [7] to the array

{(
n

1
2(2+β) M [n, n]−1/2di, Fi

)
, i = n + 1, n + 2, . . .

}
, n = 1, 2, . . . . (4.4)

For the sake of brevity let c, L, M , and S stand for c[i, 1], Li−1, Mi−1 + β, and
Si−1, resp. Then the conditional distribution of the difference di is given by

P
(
di = −c ML

S

∣∣∣ Fi−1

)
= 1− ML

S ,

P
(
di = c

(
1− ML

S

) ∣∣∣ Fi−1

)
= ML

S .
(4.5)

Hence the conditional variance of di is

E
(
d2

i

∣∣ Fi−1

)
= c2 ML

S

(
1− ML

S

)
,

which is asymptotically equal to
(
(2 + β)i

1
2+β +1

)−1

µ as i → ∞. Thus the sum
of conditional variances in the nth row of the martingale difference array (4.3)
converges to µ as n →∞. As to the Lindeberg condition, that is,

∞∑

i=n+1

E
(
n

1
2+β d2

i I
(∣∣∣n

1
2(2+β) di

∣∣∣ > ε
) ∣∣∣ Fi−1

)
→ 0
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in probability as n → ∞, for every positive ε, it is obviously implied by the in-
equality

sup
{∣∣∣n

1
2(2+β) di

∣∣∣ : n < i < ∞
}
≤ n

1
2(2+β) c[n + 1, 1] ∼ n

− 1
2(2+β) .

All conditions of Corollary 4.2.1 of [7] are satisfied, thus

n
1

2(2+β)

∞∑

i=n+1

di

converges in distribution to N(0, µ). By (4.1) and (4.2) the proof of part (i) is
completed.

The proof of part (ii) follows the same lines, therefore all its details will be
omitted.
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