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Abstract: The Maximum Entropy Production (MEP) principle has been remarkably

successful in producing accurate predictions for non-equilibrium states. We argue that this

is because the MEP principle is an effective inference procedure that produces the best

predictions from the available information. Since all Earth system processes are subject

to the conservation of energy, mass and momentum, we argue that in practical terms

the MEP principle should be applied to Earth system processes in terms of the already

established framework of non-equilibrium thermodynamics, with the assumption of local

thermodynamic equilibrium at the appropriate scales.
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1. Introduction

The proposed Maximum Entropy Production (MEP) principle states that sufficiently complex systems

are characterized by a non-equilibrium thermodynamic state in which the rate of thermodynamic entropy

production is maximized [1–4]. Several examples have demonstrated the feasibility of the MEP

principle. For example, the prediction of atmospheric heat transport from simple considerations [5,6]

and rates of mantle convection within the Earth [7]. The explanatory power of the MEP principle is not

always fully appreciated. In the example of planetary heat transport [6] a two-box model is astonishingly
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simple and yet able to provide predictions of poleward heat transport that are consistent with observations

for several planetary settings.

In this paper we attempt to answer the questions: Why does the MEP principle work? How can the

MEP principle be used to increase our knowledge of the Earth system? In doing so we will consider the

theoretical basis of the MEP principle in the face of what may appear to be two conflicting interpretations:

first, that the MEP principle is a natural law that provides a description of real world systems; second,

that the MEP principle is an inference procedure that can robustly increase our information about certain

systems. We will argue that the inference procedure is the interpretation that is consistent with the

existing applications and derivations of the MEP principle recently proposed by Dewar [8]. Much of our

argument follows from the theories of E. T. Jaynes and Dewar’s attempted extension of Jaynes’ MaxEnt

procedure to non-equilibrium systems. The particular utility of our contribution is to address some of

the more conceptual or philosophical aspects and issues that arise when attempting to interpret the MEP

principle as an inference procedure. Part of our argument will be to highlight a number of assumptions

that may lead one to initially conclude that the MEP principle is a natural law. Making these assumptions

explicit will allow us to untangle a number of seemingly confusing aspects of the MEP principle that can

only be fully resolved within a conception of science which is centrally about increasing our information

about systems and therefore sits naturally within an information theoretic formulation of entropy which

can be defined as the amount of information or “surprise” that a message contains.

After these conceptual issues we consider what their significance is for scientists who wish to apply

the MEP principle to real world systems. Many systems of the Earth are in non-equilibrium states

and therefore ripe for being described in terms of thermodynamics which sets the foundations for the

application of the MEP principle. We argue that for physical processes occurring on the Earth, such

considerations can be effectively carried out in the absence of informational concepts because when we

deal with processes occurring within the Earth system, energy and mass balances are always a central

foundation, either to describe the process under consideration directly, and/or to describe the nature of

the boundaries and their sensitivity to which the process is subjected to. We argue that this effectively

translates the information theory based MEP principle into a thermodynamic MEP principle. In doing

so, we acknowledge that there will be instances in which the conservation of energy and mass are of

less relevance (for instance in linguistics, or in purely statistical analyses of data in which the MaxEnt

approach is also used). In such cases, the purely information theory based MaxEnt approach would not

translate into thermodynamics, and the maximization of physical entropy production has little relevance

to such applications.

We structure the paper with the following sections. In Section 2 we introduce the concept of entropy

in equilibrium systems in terms of the relationship between microscopic and macroscopic properties of

systems. We then show how to calculate rates of entropy production for simple non-equilibrium states.

In Section 3 we present the MEP principle as a predictive tool that assumes certain systems will be in

states of maximum entropy production. We review a number of open issues with the MEP principle,

in particular whether the theory can be falsified and consequently whether is it a scientific theory. In

Section 4 we continue with the issue of falsification via a discussion of the Popperian formulation of

science. In Section 5 we specify what we mean by the term probability and argue that the natural

law interpretation of the MEP principle is based on a frequentist interpretation. We present the Bayesian
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interpretation and outline the process of Bayesian inference. In Section 6 we give an overview of Dewar’s

information theoretic derivation of the MEP principle and how it can be seen as extending the MaxEnt

inference procedure to a class of systems that have non-equilibrium states. In Section 7 we argue that

as all real world systems must conserve energy and matter, we can safely translate information theoretic

concepts into thermodynamic ones when modelling the Earth system. We show how systems that have

states that are further from thermodynamic equilibrium will require more information in order to model

accurately which is equivalent to specifying more boundary conditions for the MEP principle procedure.

We propose that the MEP principle can be used to better incorporate sub-grid scale processes without a

commensurate increase in computational cost. We conclude the paper in Section 8 with a discussion.

2. What is Entropy and Entropy Production?

2.1. Equilibrium States

Statistical mechanics is the application of probability to physical theories. It explains the macroscopic

properties of systems such as temperature and pressure in terms of the microscopic arrangements of the

elements that comprise the system. Real world systems typically have a very large number of individual

molecules. For an isolated system (a system that does not exchange energy or mass with its surroundings)

at equilibrium, we should expect it to be in the most probable macroscopic state which corresponds to

the greatest number of different ways that the individual molecules can rearrange themselves. This

probabilistic feature becomes effectively a law when we deal with systems that have extremely large

numbers of individual elements. The Gibbs configuration entropy of a system is a measure of the

number of different ways that the microscopic elements can arrange themselves so as to produce the

same macroscopic property [9]. Figure 1 gives a spatial demonstration of this probabilistic basis of

entropy during the evolution from an initial low entropy to maximum entropy state in a rigid box that

contains a number of gas molecules. It was Bolzmann who showed at thermodynamic equilibrium, one

can compute the entropy of a system with:

S = kB ln Ω (1)

where kB is the Boltzmann constant and translates the microscopic energy of particles to the macroscopic

property of temperature and Ω is the number of different microstates possible for a particular macrostate.

In Figure 1, the two macrostates have all the gas molecules in one side of the box or evenly distributed

throughout the box. As the number of molecules increases, the difference in Ω for these two different

macrostates increases. When we deal with the number of molecules that would be contained within a

litre of air at room temperature and sea level pressure, the difference in entropy becomes extremely large

and the probability of all molecules being in one side of the box is so small as to be safely ignored. It

is the fact that many real world systems of interest are composed of a very large number of individual

elements that leads to the power of statistical mechanics.
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Figure 1. Entropy at equilibrium in an isolated system. Diagrams A and B represent a rigid

box that is isolated from the rest of the universe in that it is impermeable to energy and matter.

A similarly impermeable partition bisects the box. To the left of the partition are a number

of gas molecules. Diagram A shows the situation immediately after a dividing partition is

removed (removed instantaneously and without disturbing any of the molecules). Given the

particular properties of the individual gas molecules, there will be a particular number of

ways that they can rearrange themselves so that all of them remain in the left hand side of

the box. This number will be much less than the different arrangements of having an equal

number of molecules in both sides of the box as shown in diagram B which is the expected

distribution of molecules at equilibrium.

A B

2.2. Non-Equilibrium States

The situation changes dramatically when we move from isolated systems to closed and open systems

that exchange energy and/or matter with their surroundings as shown in Figure 2. Now suppose that

the left and right hand sides of the box are connected to heat reservoirs. The left hand side reservoir is

hotter than the right hand side. The left hand side will impart energy to gas molecules via conduction

when a molecule hits that side of the box (we ignore the effects of radiation). This will produce an

energy gradient where heated molecules on the left have more energy and so velocity than the cooler

molecules on the right. Rather than an equal number of molecules on each side of the box we will

typically observe fewer faster moving molecules on the left and more, slower moving molecules on the

right hand side. Now, let us suppose that the temperatures of the hot and cold reservoirs can vary. As

the molecules transfer heat, the temperature of the hot reservoir will decrease and the cold reservoir

increase. Furthermore let us suppose that we can alter the flux of heat transported by the molecules. This

could be achieved in two ways. First, we could vary the physical properties of the molecules so that they

conduct more or less heat. Alternatively we could alter the amount of heat that is transferred from the

heat reservoir to the molecules. In order to do that, imagine that we have a dial at our disposal that alters

the amount of heat delivered from the reservoir to the left hand side of the box by raising or lowering

an insulating barrier. The dial can turn from 0 to 10 where 0 represents no heat transferred to 10 where

maximum heat is transferred. When the dial is set to 0 the box will be uniformly at the temperature of

the cold reservoir. At equilibrium, the molecules will be at a maximum entropy state as the box can be

considered an isolated system and so the molecules will be uniformly distributed. We now increase the

dial to its maximum value. Furthermore, we assume that the molecules can transfer this heat arbitrarily

fast so that there is no temperature difference between left and right sides of the box. This leads to a



Entropy 2010, 12 617

uniform distribution of molecules as once again there is no heat gradient and so the system has maximum

entropy. Processes operating on the Earth are not isolated in that they exchange energy and/or matter

with their surroundings. Also, the fluxes of heat through them are finite. Consequently they will be at

non-equilibrium states which cannot be predicted from classical thermodynamics as it can no longer be

assumed that these states will be maximum entropy states.

Figure 2. Entropy in non-isolated systems. A rigid box that contains a number of gas

molecules is connected to a hot and cold reservoir. In diagram A, an insulating partition

separates the hot reservoir and the box. At equilibrium the molecules will be in a state

of maximum entropy. In diagram B the insulating partition is partially raised so that an

amount of heat flows from the hot reservoir into the box. This sets up a temperature gradient

which results in a decrease in the entropy of the gas molecules. The dissipation of heat

gradients keeps the gas molecules away from the maximum entropy equilibrium state. This

non-equilibrium state may be a steady state with respect to the temperatures of the hot and

cold reservoirs and the configurational entropy of the gas molecules.

Hot

Hot

Cold

Cold

A

B

3. Entropy production and the MEP principle

In the simple box model, a dial was used to adjust the heat flow such that the gas molecules were

not at thermodynamic equilibrium. For the Earth’s atmosphere and other similarly dissipative systems,

the system itself adjusts to the thermodynamic gradient. The MEP principle proposes that the Earth’s

atmosphere and other complex systems are in particular thermodynamic states of maximum entropy

production. The rate of change of entropy, dS/dt, for these systems can be formulated as

dS

dt
= σ +

X

i

NEEi (2)
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where NEE is the Net Entropy Exchanged across the boundary of the system and σ is the entropy

produced within the system. In steady state where dS/dt = 0, we have

σ = F ·r
✓

1

T

◆

= �
X

i

NEEi (3)

where F is the heat flux (e.g., see [1]) . Consequently, the rate of entropy production within the system

can be calculated from the exchange fluxes of entropy into and out of the system. Such fluxes can

be easier to compute than the entropy production within the system. Figure 3 shows the different

components for the entropy produced within a simple system. In [6], Lorenz et al. formulated a simple

2-box climate model of the Earth, Mars and Titan that was able to accurately predict equatorial and polar

temperatures by assuming that the rate of heat flux from the equator to the pole produced maximum rates

of entropy production. This model is shown in Figure 4.

Figure 3. The rate of change of entropy production of a system over time, is a function

of the entropy produced within the system and the entropy that is imported and exported

into its surroundings. If Reservoir 1 where hotter than Reservoir 2, there would be a flux of

heat through the system from hot to cold. NEE1 would import entropy into the system and

NEE2 would export entropy while σ would be determined by the temperature gradient and

the rate of heat flux.

S

NEE1

Reservoir 

1

Reservoir 

2

NEE2

dS

dt
= σ + NEEi

σ = Fr
1

T

For Mars and Titan while the amount of insolation at the equator and poles are known, temperatures

are not know. The approach was to assume that these atmospheres “select” the rate of heat transport such

that σ is at a maximum. This was essentially the same approached adopted by Paltridge in [5] who solved

a 10-box Earth climate model by assuming that latitudinal heat transport was at a steady state value that

produced maximum rates of entropy production. As with Paltridge’s original study, no explanation was

offered as to why these atmospheres were in these MEP states. However, given that there is a very large

number of different ways for them to organise themselves, the fact that they are in MEP states seems

to suggest that in some respects they “must” be in that state. The hypothesis proposed was that other

atmospheres or other similarly complex systems would also be in MEP states and so a new and powerful

approach to understanding such systems was possible.
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Figure 4. Two box climate model. A simple two box climate model is shown. The equator

receives more energy from the sun (I for insolation) than the poles; Ie > Ip. Longwave

emissions, E, are also larger; Ee > Ep. The difference in insolation sets up a temperature

gradient where the equator is hotter than the poles; Te > Tp. A certain amount of heat, F ,

flows over this gradient with a diffusivity term, D, parameterising how easily this heat flows

polewards. Over decadal time scales, the Earth’s climate is in steady state: energy emitted

equals energy absorbed.

Equator Pole

Ie − Ee − F = Ip − Ep + F

F = D (Te − Tp)

Ie
Ee

Ip Ep

3.1. Ambiguities of and Objections to the MEP Principle

The MEP principle as proposed faced two objections: First, if the MEP principle was applicable to

a range of systems, we should expect empirical confirmation of the MEP principle from other studies.

In the absence of other confirmation of MEP principle, we are faced with the possibility that the MEP

principle is not a universal principle but something particular to the systems studied or even something

particular with how these systems have been modelled. It should also be possible to reproduce them

in controlled conditions. Experiments with fluids that have temperature dependent viscosity [10] would

initially appear to possess the sufficient conditions to be in MEP states, however to date no such states

have been observed [S. Schymanski, personal correspondence]. Second, no mechanism or explanation

was proposed as to how the state of MEP was achieved in these or other systems. A number of studies by

Dewar [8,11,12] have attempted to derive the MEP principle as an extension of the MaxEnt procedure

of Jaynes [13,14]. This is an ongoing project (see Dewar this issue).

A symptom of the absence of an exact analytical understanding of the MEP principle is the inexact

specification of when the MEP principle will and will not be applicable. A common expression within

MEP studies is that MEP will be observed in systems that are “sufficiently complex”, or have “sufficient

degrees of freedom”. Indeed, we began this paper with such an expression. This begs the question: how

complex is sufficiently complex? For example, the Earth’s atmosphere is not in a state of MEP with

respect to short to long wave radiation absorption and emissions because there are no real degrees of

freedom for the system to do otherwise [15]. The question then becomes, what rate of entropy production

is being maximised for any particular system? If the MEP principle is a description of some aspect of

the real world, then our job is to identify those systems that we suspect are MEP systems. The procedure

appears to be that we initially propose some system S1 to be a MEP system. We model this system and
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in doing so produce a function for the rate of entropy production. By finding those parameter values that

maximum this function we are able to produce a set of predictions P1. If P1 are found to agree with

observations, then we have at the same time identified S1 to be an MEP system and produced a useful

set of predictions (e.g., temperatures on the surface of a planet and amount of heat flux). If P1 turns out

to be inaccurate then we conclude that S1 is not an MEP system. The problem then arises of how is the

MEP principle falsified? Any particular study that concludes that the MEP principle does not accurately

predict some aspect of a system can be explained by claiming that the system is not a MEP system.

Consequently, if one requires falsification to be a necessary condition of any scientific theory, the MEP

principle is not a scientific theory.

4. Science and Falsification

In order to evaluate the epistemological basis of the MEP principle, we will consider the role of

falsification in the formulation of scientific theories. The notion of falsification is central to the Popperian

formulation of science [16]. This is how for example, an astronomy theory differs from a astrological

one. An astronomy theory will have well defined terms under which observational evidence can be used

to show that the theory is false. Popper argued that it is impossible to prove any theory is true. Rather we

have a certain degree of confidence that it is true with that confidence being largely based on the quality

of its predictions and how readily it is falsifiable. For example, consider two competing theories. Theory

T1 produces more predictions that can in principle be falsified than theory T2. By Popper’s account,

T1 is the better theory. In a sense it must be better because there is greater opportunity to disprove it.

There is then an inverse relationship between information and probability of a theory being true. T1

will have more information than T2 as it provides more routes for falsification. This means that T1

is less likely to survive as it has more possibilities for being shown to be false. This use of survival

was used in quite a literal sense as Popper envisaged a form of natural selection operating on scientific

theories. Much as natural selection weeds out the weak individuals from a population, so falsification

removes poor theories. This is how we can account for the notion of scientific progress which Popper

formulates thus:

PS1 ! TT1 ! EE1 ! PS2

where PS1 is a Problem Situation at time 1. TT1 is the set of different and competing theories that seek

to explain or solve PS1. EE1 is the process of error elimination or falsification. Empirical and theoretical

data are used to attempt to falsify theories with those theories that survive being part of the process

by which new problems are formulated at time 2, PS2, and so the process continues. In this fashion,

problems beget solutions which beget new problems and scientific progress marches onwards.

The natural law interpretation of the MEP principle is that it can make a number of accurate

predictions for complex systems that defy analysis via other theories. However, as we argued in the

previous section, any empirical evidence that does not agree with a MEP principle prediction does not

represent any falsification of the theory, rather the identification of the “fact” that the system is not a MEP

system. What appears to be required is the formulation of the rules of engagement for the MEP; under

what conditions will the MEP apply to certain systems. In the absence of a set of rules or guidelines that

allow us to identify MEP systems, then the MEP principle itself cannot be a scientific theory because
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it will always be possible to explain erroneous predictions as instances where the MEP principle was

applied incorrectly. The natural law interpretation solution to this problem is to argue that the MEP

principle is a developing theory and that at some point in the future a derivation may be produced that

details exactly under what circumstances systems will and will not produce maximum rates of entropy.

While we acknowledge that there is still some way to go before the MEP principle is firmly established

on analytical grounds, we believe that seeking a formulation of the principle that will guarantee the

production of accurate predictions for the steady states of real world systems to be fundamentally

misguided. Rather, the MEP principle is a procedure or method for increasing our information about

real world systems. The particular utility of the MEP is not to reveal the “true” steady states of systems,

but as a robust inference procedure that allows us to increase the amount of information about the

fundamentally probabilistic states of systems. In order to explain this further, we must first clarify what

we mean by the term “probability” and how it is related to information.

5. Information, Probability and Inference

The natural law interpretation of the MEP principle is that it is a description of particular systems.

There is “something about them” such that they are in particular steady states of entropy production.

There is an inherent probabilistic aspect to the MEP principle and we believe that it is a particular

interpretation of probability that is largely responsible for the natural law interpretation. This is the

“frequentist” interpretation of probability in which the probability of observing an event (e.g., a coin

landing heads up) is proportional to the frequency of that event occurring over a very large number of

trials. In order to produce an exact value for the probability of flipping a head or a tail we would need an

infinite number of trails. That is, the probability of observing a heads or tails is a property of the coin in

the same way that is has intensive and extensive properties such as mass or density. Conducting trials are

analogous to taking measurements in that they are ways of finding out the properties of a system. Within

equilibrium and non-equilibrium statistical mechanics, entropy and rates of entropy production can be

regarded as probabilistic descriptions of aspects of the system. Therefore the frequency of observing that

particular macroscopic state over a very large number of observations is related the Gibbs configurational

entropy of a system:

S = �kB

X

i

pi ln pi (4)

where pi is the probability of the ith microstate for a given energy level. The connection to ergodicity

comes from the frequentist interpretation of probability so that a system will explore those microstates

possible for that energy level. The probability of finding a system in a particular configuration of

microstates is proportional to how long it will be in that particular configuration over a very long period

of time. One conclusion of this is that a system will, if given sufficient time, explore all possible

microstates, no matter how improbable or however long one would need to wait in order to observe

such improbable states.

5.1. Inference and Information

There are alternative interpretations of probability. Dewar’s derivations of the MEP principle are

ultimately predicated on the Bayesian interpretation. Bayesian probability theories are subject to
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criticisms that are beyond the scope of this paper. Here we limit our argument to establishing that point

that the MEP principle is only a cogent theory when one adopts a Bayesian interpretation of probability.

Rather than say that the probability of observing a Bernoulli trial event such as a coin landing heads

up is a property of the coin, we instead say that assigning a probability to observing a heads is a way that

we quantify what we know about the coin. For example, given the two possible outcomes (we ignore

the possibility that the coin can land on its side), we propose the initial hypotheses of H1 that states that

there is a 0.5 probability of the coin landing head’s up and H2 that states there is a 0.5 probability of

tails landing. H1 and H2 are mutually exclusive and p(H1) + p(H2) = 1 . Suppose that we now conduct

a number of trials and that we repeatedly get more heads than tails. We would being to suspect that the

coin is not fair. It may be weighted. H1 and H2 were based on our initial beliefs about the system which

we increasingly believe were not correct. However, given no reasons to suspect the coin (unless it was

being flipped by a known crook!) there are no reasons to ground our beliefs otherwise. Consequently, the

probability we ascribe to events can change as the amount of information we have about a system changes

and so our degree of confidence of a particular hypothesis can change. Information can be obtained not

only by performing trials (flipping the coin), but also making observations and measurements on the

coin. For example we can weigh it, determine its centre of balance, assess how flat it is etc. We can also

examine how the coin is flipped. In [17] Jaynes provides a tour de force in considering whether there is

in fact such a thing as a random coin flip or any truly random process.

Probability can now be seen as assigning a value to our ignorance about a particular system or

hypothesis. Rather than the entropy of a system being a particular property of a system, it is instead

a measure of how much we know about a system. For the gas molecules in a box, at thermodynamic

equilibrium, the probability of a particular molecule being at a particular place is equal to it being at any

other place. We have absolutely no information as to exactly where it and all the other molecules are.

The situation changes as we move away from equilibrium. For example, if there is a temperature gradient

within the molecules, then it is more probable for a particular molecule to be nearer the cold reservoir

rather than the hot reservoir. The more we know about the system, the more information we have on

the boundary conditions, the more probable that a particular prediction for the position of a particular

molecule becomes. Bayesian inference is the procedure which employs these notions of probability

and information. It proceeds on the basis of making predictions about systems which are based on the

available information. These initial predictions are then updated as and when information about the

system is obtained. For the gas molecules, we could produce a set of predictions PG with each element

of PG assigning a probability that the ith molecule was in the jth position (assuming a finite number of

discrete positions). If we observe molecule n at position m, then all the probability functions of PG are

updated to incorporate that information. In the language of the Bayesian Probability Calculus, an initial

hypothesis H has a “prior” probability distribution function. The probability that evidence, E, will be

observed that confirms H is the “posterior” probability distribution function. In the gas molecule case, if

H is the hypothesis that molecule i is in position j, then the probability that H is true given the current

evidence, E, is given with:

P (H|E) =
P (E|H)P (H)

P (E)
(5)
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The process is essentially iterative as posteriors can inform the construction of new priors as new

evidence is obtained and the process is repeated. As our information about systems change, the

probabilities that we assign to events or hypotheses change.

6. MaxEnt and the MEP Principle

Bayesian inference can be seen as a procedure to leverage the most amount of information from what

is currently known about a system. An important component of that procedure is the formulation of the

initial prior functions. That is, given the information to hand, how do we construct initial probability

functions for our hypotheses? Jaynes showed that the best position to adopt is one where the Shannon

informational entropy of the initial probability density functions is maximised [18]. This will produce

prior functions that will make only those assumptions that are justified by the available information.

The Shannon Entropy of a message is proportional to the amount of information that the message

communicates from sender to receiver [19]. For example if John has rolled a six sided die and sends a

message to Jane that the side uppermost is an even number, then Jane has received information that allows

her to ignore three possible sides out of six. In the absence of any message, Jane would assign uniform

probability functions for the priors to all numbers. By constructing prior probability density functions

with the maximum amount of entropy, we ensure that no additional assumptions “sneak in” to our initial

beliefs. MaxEnt can be understood as allowing us to make the least worse initial predictions. MaxEnt

is not a theory about the behaviour or property of real world systems, but a procedure or algorithm that

scientists can use to make the most accurate or probable hypotheses and predictions about systems. As

well as applications to equilibrium thermodynamics, MaxEnt has also been used in image reconstruction

and spectral analysis. Jaynes’ long term (and unfinished) project was to show how the logic of Bayesian

inference underpins all of science.

The MaxEnt approach is briefly illustrated here for the case of the ideal gas. The macroscopic

equations that govern the behavior of the ideal gas such as the ideal gas law can be derived from MaxEnt

in the scope of statistical mechanics. The derivation requires two, very basic constraints: energy and

mass conservation. The energy conservation adds the Lagrange multiplier that yields temperature (or,

more precisely kBT , with kB being the Boltzmann constant), which then forms the basis for deriving

the Boltzmann distribution etc. The example of the ideal gas in a state of thermodynamic equilibrium

should therefore be the limit case of any non-equilibrium thermodynamic state as the most simple or

least constrained.

To describe a state away from thermodynamic equilibrium, we need to add more constraints and

information. If exchange of mass takes place, we get chemical potential and alike as additional Lagrange

multipliers from these additional constraints. To describe gradients, we need to explicitly represent

variables in space and/or time, which adds more and more information. In the context of the ideal

gas, we still, however, stay within the well-established framework of thermodynamics, except that the

assumption of thermodynamic equilibrium holds only at smaller scales.

Dewar has attempted to show that the MEP principle is an extension of Jaynes’ MaxEnt procedure

to non-equilibrium states. Rather than producing predictive hypotheses for their equilibrium states, the

MEP principle instead uses the available information in the most effective way in order to produce

predictive hypotheses about the trajectories that these systems will take over time. If it is assumed that
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the systems are in steady state, then such predictions should be in agreement with observations of the

system. Dewar has characterised the MEP principle as a procedure that turns information (in the form

of constraints) into predictions, perhaps much as a mathematician is a biological machine that turns

coffee into theorems. This can be an iterative procedure much in the same way as Popper envisaged

scientific progress:

I1 ! P1 ! O1 ! I2

Information at time 1, I1, is used to formulate boundary conditions for a model. The MEP principle is

employed to produce a set of predictions, P1. Observations (empirical and theoretical) at time 1, O1, are

compared to P1 with any difference between them being used to update the new boundary conditions at

time 2, I2. In terms of a procedure that increases information about systems, the MEP principle procedure

perhaps somewhat paradoxically produces most information when O1 6= P1. Observations can be seen as

a message from the real world system to the model of that system. If this message has the same content

as the set of predictions, then no additional information about the real world system is communicated.

This may appear paradoxical because a correct prediction surely tells us that the information used to

formulate the boundary conditions was sufficient for the production of accurate predictions. However,

this only confirms the information that was already known. What we are primarily motivated to do is

obtain new information. This only happens when the observation contains a certain amount of “surprise”.

What is important in this procedure is its repetition which will allow the construction of a gradient which

can help guide the formulation of new boundary conditions. This is analogous to the childhood game

of “hunt the thimble” in which an object is hidden with the searchers only being told if they are warmer

(nearer) or colder (further) to the object with reference to their previous guess. In this respect the MEP

principle is conceptually compatible with an inference formulation of science in the terms proposed

by Caticha in [20,21]. Indeed there are tantalising analogues between Caticha’s theories and Dewar’s

recent attempted derivations of the MEP principle which have alluded to an information theoretic (and

we would argue, inference) basis of Hamiltonian dynamics.

7. MEP Principle and the Earth System

When we want to apply MEP to Earth system processes, we first should recognize that we deal

with a world of molecules. Whether we discuss the large-scale motion of Earth’s atmosphere, the

global hydrologic cycle, plate tectonics, or photosynthesizing organisms, these processes all deal with

the transport and transformation of molecules at a highly aggregated scale. These dynamics are all

subject to the energy and mass balance constraints of the Earth system. Hence, when we follow the

MaxEnt approach and interpret MEP from an information theoretical perspective, then these two basic

constraints yield us the classical thermodynamic variables as Lagrange multipliers. The information

theory based interpretation quickly translates into a thermodynamic one. If MEP subjected to these two

constraints does not yield predictions consistent with observations, it should not be seen as the failure

of MEP per se, but rather as the lack of further relevant information, for instance in terms of additional

constraints. Hence, there is no conflict between an information theory based derivation of MEP and the

thermodynamic applications of MEP (as in e.g., [1–4]).
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7.1. Earth System Processes away from Thermodynamic Equilibrium

As stated above, the state of thermodynamic equilibrium would seem to serve as a reference state

that is the most simple in its nature since merely the energy and mass balance contain the relevant

information. Imagine Earth in a state of thermodynamic equilibrium. We would need separate energy

and mass balances for the different states of matter: the gaseous phase (mostly the atmosphere), the liquid

state of water (mostly oceans), and the solid state of water (mostly ice sheets) and of the Earth’s crust

and interior. These balances would yield the typical thermodynamic variables as Lagrange multipliers,

such as the temperatures and pressures of the atmosphere, oceans, ice sheets etc. The overall state of the

Earth would then be characterized by a dozen or so thermodynamic variables in total.

The present-day Earth is far away from thermodynamic equilibrium so we need more information to

describe its state. What does this mean? First, we have variations of thermodynamic variables in space

and time. To describe such gradients, we clearly require more information to describe these. Examples of

such gradients and how these relate to thermodynamic variables are: topographic gradients are reflected

in the differences in height between mountains and the sea floor, resulting in gradients in gravitational

potential; temperature gradients are maintained between the surface and the air aloft, between the tropics

and the poles, and between the oceans and the land. Gradients in relative humidity are gradients in the

chemical potential of water vapor. High concentration of reactive oxygen in Earth’s atmosphere and

reducing conditions in the Earth’s mantle result in chemical potential gradients.

All of these gradients can be expressed in terms of common variables of equilibrium thermodynamics:

radiative temperatures, kinematic temperatures, chemical potentials and so on. The underlying

assumption is that the well known laws of equilibrium thermodynamics still hold and can be applied,

but at a much smaller scale. To do so, we then introduce the notion of local thermodynamic equilibrium.

In other words, to analyse the Earth with equilibrium thermodynamics, we no longer apply equilibrium

thermodynamics at the planetary scale, but rather at a much finer scale. It would then seem logical to

hypothesize that as a system moves away further and further away from thermodynamic equilibrium,

the system would need to be represented at finer and finer scales. Dynamic properties like temporal

variability and spatial heterogeneity are then inherently a result of a system that is driven far away

from thermodynamic equilibrium. This should, for instance, be reflected in the spatial and temporal

autocorrelation structures, as illustrated in Figure 5. At thermodynamic equilibrium, trivially so, we find

the highest autocorrelation since the thermodynamic variables are constant in space and time. As the

system moves further and further away from thermodynamic equilibrium, these structures should show

less and less autocorrelation. Less autocorrelation in turn represents increased “memory” of a system.

Since such a state is associated with greater gradients and more irreversibility and entropy production of

the fluxes that are driven by these gradients, this would suggest that the thermodynamic state of a system

away from equilibrium is directly linked to its memory and its rate of entropy production.
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Figure 5. Illustration of how variables should change as a system is maintained further and

further away from thermodynamic equilibrium. The state of thermodynamic equilibrium is

characterized by global variables (e.g., T, p, ρ) that are constant in space and time. The

further the system is maintained away from equilibrium, the more the state should be

associated with larger and larger gradients in space and time. The characteristic spatial

scale ∆x at which the assumption of thermodynamic equilibrium applies should therefore

decrease correspondingly, resulting in local variables (illustrated by Ti, pi, ρi).
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7.2. Increasing the Resolution of Earth System Models: a Practical Application of the MEP Principle

We conclude this section with a brief discussion on how the MEP principle can be used to inform

Earth System Models and so increase our information about the Earth. The fundamental challenge

all Earth System Models face is finding the spatial and temporal resolution that allows the numerical

solutions to be computationally tractable with the resources currently available but not to coarse grain

the systems so much that important dynamics are lost. There would appear to be an inevitable trade

off between model resolution and time required for computation. The lowest level of resolution is the

“grid” which is a volume of ocean, land and atmosphere. At the scale of its grid, a model will assume

local thermodynamic equilibrium if it parameterizes this grid scale by one set of variables. While there

are probably no obvious violations of the second law in such models, there are nevertheless several

issues related to the thermodynamic formulation of processes within such models. First, fluxes are not

always expressed in terms of thermodynamic gradients that drive fluxes. For instance, it is common

to model condensation leading to instantaneous precipitation while such a conversion should be driven

by the chemical potential gradient associated with supersaturated vapor. Also, in terrestrial vegetation

models, root respiration releases carbon dioxide that quite often is released into the free atmosphere

instantaneously instead of being driven by the emergent gradient that drives the flux from the root to the

soil to the air. In a thermodynamic context, these models contain the formulation of gradients that do not

respond to fluxes and are therefore likely to result in biases in the magnitude of these fluxes.

We propose that the MEP principle applied at the grid scale may help allow better parameterizations

of the grid scale behaviour which will include sub-grid scale spatial heterogeneity and variability within



Entropy 2010, 12 627

time steps of integration. This would then imply that local thermodynamic equilibrium no longer

need to be assumed at the grid scale. For example the MEP principle should allow us to derive

better parameterizations of subgrid scale processes in numerical simulation models, see [22]. Figure 6

shows how the MEP principle can be used to increase the accuracy of the parameterizations of sub-grid

scale processes.

Figure 6. Illustration of (a) a global grid used in climate models. Such grids are used for

a discrete representation of variables, such as temperature, and implicitly assume a state

of thermodynamic equilibrium within the grid. Subgrid scale heterogeneity, as found for

instance in form of pattern formation of vegetation found in semiarid regions (b), illustrate

that subgrid scale processes can operate far from thermodynamic equilibrium. MEP could

help to scale up subgrid scale heterogeneity so that this is adequately represented at the grid

scale, as for instance shown by [22]. Photo credit: Stephen Prince.

a. climate model grid
b. pattern formation 

in semiarid regions

8. Discussion

In this paper we have argued that the MEP principle is not a physical law that describes the

properties of a certain class of system, but is instead a potentially widely applicable method of inference

which we believe has particular utility for increasing our information about non-equilibrium systems

such as the Earth. Our argument required a Bayesian interpretation of probability which centred

around our level of ignorance about systems and their dynamics. Probability is not a description of

some property of a system, but rather a quantification of how much we know about it. The MEP

principle is a potentially iterative procedure in which available information about a system is used to

produce predictive hypotheses which are then compared with observations. Any differences between

observational data and predictions corresponds to additional information about the system that can then

be used to update the model. We argued that the MEP principle procedure is of particular utility because
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like the MaxEnt procedure that is used to produce the most probable predictions for equilibrium systems,

the MEP principle leverages the maximum from the information to hand in order to produce the most

probable predictions for the steady state trajectories of non-equilibrium systems. This interpretation

of the MEP principle means that it is effectively silent on what information is and is not relevant

to the formulation of boundary conditions which are used as Lagrange multipliers within the MEP

principle procedure. It is our job as intelligent, inquisitive agents to capture the required information.

Consequently, the absence of an exact definition of the “sufficient degrees of freedom that a system needs

to possess in order for the MEP principle to be observed” does not represent an outstanding specification

or detail of the MEP principle but is rather an unavoidable conclusion of any inference procedure. The

procedure itself cannot tell us what is and what is not relevant to formulating a model. It can only use

the information that we give it, which it promises to use as effectively as possible.

The other side of this story is that the MEP principle can also be used to find information that is not

necessary for the production of accurate predictions. For example, if our initial information or beliefs

about a state is that it is far from equilibrium and complex with many processes occurring within it, we

may build a commensurately complex model that may produce accurate predictions. Some Earth System

Models and General Circulation Models are very complex systems in their own right and they may very

accurately predict aspects of the Earth’s climate. The MEP principle shows that some of the information

in these models, in fact nearly all the information, is irrelevant when it comes to predicting equatorial

and polar temperatures, and rates of latitudinal heat transport. The MEP principle can be applied in

conjunction with Occam’s Razor in that we should be motivated to find the model that produces accurate

predictions with the minimal amount of information. For example in the 2-box climate model, a single

scalar parameter, D, controlled the rate of heat flux from the equator to the poles. Buried within D must

be the net effects of the properties of the Earth’s atmosphere and oceans. Not including such details tells

us that such information is irrelevant for the purposes of the model. This issue is related to a question

that arose during the MEP workshop in Jena 2009: What if the Earth’s sea was made of vinegar? Given

that the simple 2-box model has no information about the composition of the oceans, then it would

produce exactly the same set of predictions if the oceans were suddenly replaced with vinegar. This

question was in part addressed by [6] that showed the MEP principle was able to accurately predict

aspects of atmospheres that are in many ways very different to the Earth. This demonstrates that for

complex systems such as planetary atmospheres, information that pertains to their composition may

not be required for the production of accurate predictions of some of their properties. If we wished to

understand the role of the Earth’s oceans in the transport of heat, then it may well be necessary to include

more information in our model that may include certain properties of water. The amount of information

we provide to a model is not only determined by what we currently know about the system, but what we

are hoping to find out.

We argued that when employing the MEP principle in the analysis of the Earth system, the

conservation of energy, mass and momentum are unavoidable constraints. This leads to an effective

correspondence of the information theoretic interpretation to a non-equilibrium thermodynamic one

as energy, mass and momentum conservation will supply Lagrange multipliers to the MEP principle

procedure such that the information theoretic aspects can be safely overlaid with physical thermodynamic

concepts. This allows a number of simplifications in model formulations which rest ultimately on
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the MEP principle but which can be formulated in non-information theoretic terms. Given that

our motivation in modelling systems is to increase our understanding of them, we believe that this

interpretation of the MEP principle best captures what scientists are actually doing when they use it.
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