The Maximum Idempotent Separating Congruence on *E*-inversive *E*-semigroups

Manoj Siripitukdet

Department of Mathematics, Naresuan University Phitsanulok 65000, Thailand manojs@nu.ac.th

Supavinee Sattayaporn

Department of Mathematics, Uttaradit Rajabhat University Uttaradit 53000, Thailand supavinee.uru@windowslive.com

Abstract

A semigroup S is an E-inversive E-semigroup if for every $a \in S$, there exists an element $x \in S$ such that ax is idempotent and the set of all idempotents of S forms a subsemigroup. The aim of this paper is to investigate the maximum idempotent separating congruence on E-inversive E-semigroups by using a full and weakly self-conjugate subsemigroup.

Mathematics Subject Classification: 20M10

Keywords: *E*-inversive *E*-semigroup, maximum idempotent separating congruence, full, weakly self-conjugate subsemigroup

1 Introduction and Preliminaries

Let S be a semigroup and E(S) denote the set of all idempotents of S. An element a in a semigroup S is called *E-inversive* [1] if there exists $x \in S$ such that ax is idempotent of S. A semigroup S is called an *E-inversive* if every element of S is *E*-inversive. A semigroup S is called an *E-semigroup* if E(S) forms a subsemigroup of S. A semigroup S is said to be a *band* if every element of S is idempotent, and a band S is *rectangular* if for all $x, y \in S, x = xyx$ [3, page 10]. For a semigroup S and $a \in S$, $V(a) := \{x \in S \mid a = axa, x = xax\}$ is the set of all *inverses* of a and $W(a) := \{x \in S \mid x = xax\}$ is the set of all

weak inverses of a. A congruence ρ on a semigroup S is called an *idempotent* separating congruence if every ρ -class contains at most one idempotent.

In an *E*-inversive *E*-semigroup *S*, one important thing to note here is that the maximum idempotent separating congruence on *S* in general may not exist, see [1]. Weipoltshammer [1] described the idempotent separating congruence on an *E*-inversive *E*-semigroup [1, Theorem 6.1] and described the maximum idempotent separating congruence on an *E*-inversive semigroup such that E(S)forms a rectangular band [1, Corollary 6.2]. Basic properties and results of *E*inversive *E*-semigroups were given by Mitsch [3] and Weipoltshammer [1].

In this paper, we investigated characterizations of the maximum idempotent separating congruence on an *E*-inversive *E*-semigroup *S* by using a full and weakly self-conjugate subsemigroups of *S*. The last theorem, we described an idempotent separating congruence on *S* concerning the centralizer $C_S(H)$ of *H* in *S*.

To present the main results we first recall some definitions and a relation on a semigroup which is important here.

A subset H of a semigroup S is full [4] if $E(S) \subseteq H$. A subsemigroup H of a semigroup S is called *weakly self-conjugate* if for all $a \in S, x \in H, a' \in W(a)$, we have $axa', a'xa \in H$. For any subsets H and B of a semigroup S, let

$$H_{\omega_B} := \{ a \in S \mid ba \in H \text{ for some } b \in B \}.$$

If B = H then H_{ω_H} will be denoted by H_{ω} and it is called the *closure* of H. If H is a subsemigroup of a semigroup S, then $H \subseteq H_{\omega}$. H is called a *closed* subsemigroup [4] of S if $H = H_{\omega}$.

For any nonempty subset H of a semigroup S, we define a relation δ on S as follows :

$$\delta := \{(a,b) \in S \times S \mid \text{ for all } a' \in W(a) \text{ there exists } b' \in W(b) \\ \text{ such that } axa' = bxb', a'xa = b'xb \text{ for all } x \in H, \text{ and for} \\ \text{ all } b' \in W(b) \text{ there exists } a' \in W(a) \text{ such that } axa' = bxb', \\ a'xa = b'xb \text{ for all } x \in H\}.$$

Note that δ may be an empty set. If S is an E-inversive semigroup, then $(a, a) \in \delta$ for all $a \in S$, so δ is not an empty set.

For basic concepts in semigroup theory, see[2] and [5] and for examples of *E*-inversive *E*-semigroups, see [1].

The following results are used in this research.

Lemma 1.1. [1] A semigroup S is E-inversive if and only if $W(a) \neq \emptyset$ for all $a \in S$.

Proposition 1.2. [1] For any semigroup S, the following statements are equivalent:

- (i) S is an E-semigroup.
- (ii) W(ab) = W(b)W(a) for all $a, b \in S$.

Proposition 1.3. [1] Let S be an E-semigroup. Then

- (i) for all $a \in S, a' \in W(a), e, f \in E(S), ea', a'f, fa'e \in W(a),$
- (ii) for all $a \in S, a' \in W(a), e \in E(S), a'ea, aea' \in E(S)$,
- (iii) for all $e \in E(S), W(e) \subseteq E(S)$,
- (iv) for all $e, f \in E(S), W(ef) = W(fe)$.

Proposition 1.4. [1] For any E- inversive semigroup S, the following are equivalent.

- (i) E(S) is a rectangular band.
- (ii) For all $a, b \in S, W(a) \cap W(b) \neq \emptyset$ implies W(a) = W(b).

Proposition 1.5. Let S be an E-semigroup. If $a' \in V(a)$ for all $a \in S$ then W(a) = W(a'a)a'W(aa').

Proof. Let $a \in S$ and $a' \in V(a)$. Let $x \in W(a'a)$ and $y \in W(aa')$. By Proposition 1.3(iii) and (i), we have $W(a'a) \subseteq E(S)$, $W(aa') \subseteq E(S)$ and $xa'y \in W(a)$, respectively. So $W(a'a)a'W(aa') \subseteq W(a)$.

Let $z \in W(a)$ and $a' \in V(a)$, a = aa'a. Consider z = zaz = z(aa'a)z = (za)a'(az) and (za)(a'a)(za) = z(aa'a)za = zaza = za. Then $za \in W(a'a)$.

Similarly, we have az = (az)(aa')az and so $az \in W(aa')$. Therefore $z \in W(a'a)a'W(aa')$, so $W(a) \subseteq W(a'a)a'W(aa')$ and W(a) = W(a'a)a'W(aa').

A subset H of a semigroup S is called *unitary* if for all $a \in S$, and for all $h \in H$, $ha \in H$ or $ah \in H$ implies $a \in H$.

We have the following properties :

Proposition 1.6. Let S be an E-inversive semigroup with a full subset H of S. Then H is unitary if and only if H is closed.

Proof. Suppose that H is unitary. Let $x \in H_{\omega}$. Then there exists $h \in H$ such that $hx \in H$, which implies that $x \in H$, and so $H_{\omega} \subseteq H$. Since H is a subsemigroup of S, we have $H \subseteq H_{\omega}$. Hence $H = H_{\omega}$.

Conversely, let $hx, h \in H$. Then $x \in H_{\omega}$. Since H is closed, we have $x \in H$. If $h, xh \in H$ and $x' \in W(x)$, then $(x'xh)x \in H$ since H is full. It follows that $x \in H_{\omega} = H$. Then H is unitary.

Proposition 1.7. Every full and closed subsemigroup of an E-inverse semigroup is E-inversive. **Proof.** Let H be a full and closed subsemigroup of an E-inversive semigroup S. Let $h \in H$ and $h' \in W(h)$. Then $hh' \in E(S) \subseteq H$, so $h' \in H_{\omega}$. Since H is closed, $h' \in H$. This shows that H is an E-inversive subsemigroup of S.

By Propositions 1.6 and 1.7, we have

Proposition 1.8. Every full and unitary subsemigroup of an E-inversive semigroup contains all the weak inverses of its elements.

Proof. Let H be a full and unitary subsemigroup of an E-inversive semigroup S. We shall show that for all $a \in H, a' \in W(a)$ implies $W(a) \subseteq H$. Let $a \in H$ and $a' \in W(a)$. Then $a'a, aa' \in E(S) \subseteq H$. Since H is unitary, it follows that $a' \in H$ and $W(a) \subseteq H$. This shows that H contains all the weak inverses of its elements.

Proposition 1.9. Let S be an E-inversive semigroup. If H is a full and closed subsemigroup of S, then $E \subseteq H_{\omega_E} = H_{\omega}$ where E = E(S).

Proof. Clearly, $E(S) \subseteq H_{\omega_E}$. Let $x \in H_{\omega_E}$. Then there exists $e \in E(S)$ such that $ex \in H$. Since H is full, we have $e \in H$ and so $x \in H_{\omega}$. Therefore $H_{\omega_E} \subseteq H_{\omega}$. Let $y \in H_{\omega}$. By Proposition 1.7, there exists $h' \in W(h) \cap H$ such that $(h'h)y = h'(hy) \in H$. Since $h'h \in E(S)$, we have $y \in H_{\omega_E}$. It follows that $H_{\omega_E} = H_{\omega}$.

Hence the proof is completed.

2 Main Results

The idempotent separating congruence μ on an *E*-inversive *E*-semigroups can be found by Weipoltshammer [1] as follows :

$$\mu := \{(a,b) \in S \times S \mid \text{ for all } a' \in W(a) \text{ there exists} \\ b' \in W(b), aea' = beb', a'ea = b'eb \text{ for all } e \in E(S) \\ \text{and for all } b' \in W(b) \text{ there exists } a' \in W(a), \\ aea' = beb', a'ea = b'eb \text{ for all } e \in E(S) \}.$$
(*)

Let \mathcal{C} be the class of all full and weakly self-conjugate subsemigroups of a semigroup S. For $H \in \mathcal{C}$, we replace E(S) in (*) by H. Then we have

Theorem 2.1. If S is an E-inversive E-semigroup and $H \in C$, then a binary relation

$$\delta := \{(a,b) \in S \times S \mid \text{ for each } a' \in W(a) \text{ there exists} \\ b' \in W(b), a'xa = b'xb, axa' = bxb' \text{ for all } x \in H \\ and \text{ for all } b' \in W(b) \text{ there exists } a' \in W(a), \\ a'xa = b'xb, axa' = bxb' \text{ for all } x \in H \}$$

is an idempotent separating congruence on S. Moreover, if E(S) is a rectangular band with $E(S) = H_{\omega_E}$, then δ is the maximum idempotent separating congruence on S.

Proof. Obviously, δ is reflexive and symmetric. Let a, b, c be elements in S such that $a\delta b$ and $b\delta c$ and let $a' \in W(a)$. Then there exists $b' \in W(b)$ such that a'xa = b'xb, axa' = bxb' for all $x \in H$. Since $b\delta c$ and $b' \in W(b)$, there is $c' \in W(c)$ such that b'xb = c'xc, bxb' = cxc' for all $x \in H$. Thus a'xa = c'xc and axa' = cxc' for all $x \in H$.

Similarly, we can show that for all $c' \in W(c)$, there exists $a' \in W(a)$ such that a'xa = c'xc and axa' = cxc' for all $x \in H$. Hence $a\delta c$.

Let $a, b, c \in S$ with $a\delta b$, and let $a' \in W(a)$. Then there exists $b' \in W(b)$ such that a'xa = b'xb, axa' = bxb' for all $x \in H$. Let $c' \in W(c)$. By $c'a' \in W(ac)$ and $c'b' \in W(bc)$, we get that for all $x \in H$,

$$\begin{aligned} (ac)x(c'a') &= a(cxc')a' \\ &= b(cxc')b' \\ &= (bc)x(c'b') \quad \text{since } cxc' \in H, \end{aligned}$$

and

$$(c'a')x(ac) = c'(a'xa)c$$

= $c'(b'xb)c$
= $(c'b')x(bc)$ since $b'xb \in H$

Hence $ac\delta bc$, so δ is a right compatible. Similarly, we can show that δ is a left compatible. Therefore δ is a congruence on S.

Let e, f be elements in S such that $e\delta f$. Since $e \in W(e)$, there exists $f' \in W(f)$ such that exe = f'xf = fxf' for all $x \in H$.

Since *H* is full, $e \in H$ and e = eee = f'ef = fef', we have ef = (f'ef)f = f'ef = e. Now $f \in W(f)$. There exists $e' \in W(e)$ such that fxf = e'xe = exe' for all $x \in H$. Since $f \in H$, f = fff = e'fe = efe', it follows that ef = e(efe') = efe' = f. Therefore e = f and so δ is an idempotent separating congruence on *S*.

Suppose that E(S) is a rectangular band with $E(S) = H_{\omega_E}$. Let ρ be an arbitrary idempotent separating congruence on S. Let $a, b \in S$ with $a\rho b$, and let $a' \in W(a)$. We choose $b^* \in W(b)$. Then $b^*a\rho b^*b$. Let $b' = a'ab^*aa'$. By Proposition 1.3(i), we have $b' \in W(b)$. For any $x \in H, a'xa \rho a'xb =$ (a'aa')xb. Since $a'a, b^*b \in E(S)$ and E(S) is a rectangular band, it follows that $a'a = (a'a)(b^*b)(a'a)$. Thus $a'xa\rho(a'ab^*ba'a)a'xb$. Since $b^*a\rho b^*b$, we have $a'xa\rho a'a(b^*a)a'aa'xb = a'ab^*aa'xb = b'xb$. Thus $a'xa\rho b'xb$. Now $a'xa, b'xb \in H$ because H is weakly self-conjugate. Since $E(S) = H_{\omega_E}$ and $a'xa = a'a(a'xa) \in$ H, we have $a'xa \in H_{\omega_E} = E(S)$. Similarly, $b'xb = b'b(b'xb) \in H$. Thus $b'xb \in H_{\omega_E} = E(S)$. Since ρ is an idempotent separating congruence on S, we get a'xa = b'xb. The proof of the second part is similar to the proof of the first part. Therefore $\rho \subseteq \delta$.

Hence δ is the maximum idempotent separating congruence on S.

The last theorem, we investigated an idempotent separating congruence on an *E*-inversive *E*-semigroup *S* concerning centralizer $C_S(H)$ of *H* in *S* where $C_S(H) := \{a \in S \mid ha = ah \text{ for all } h \in H\}$. Then we have

Theorem 2.2. Let S be an E-inversive E-semigroup with $H \in C$, and let δ^* be a relation given by

$$\delta^* := \{(a,b) \in S \times S \mid \text{ for all } a' \in W(a) \text{ there exists} \\ b' \in W(b) \text{ such that } a'a = b'b, ab' \in C_S(H) \text{ and for all} \\ b' \in W(b) \text{ there exists } a' \in W(a) \text{ such that } a'a = b'b, \\ ba' \in C_S(H)\}.$$

If H is a commutative subsemigroup, then $\delta^* = \delta$, hence δ^* is an idempotent separating congruence on S.

Proof. Let a, b be elements in S such that $a\delta b$, and let $a' \in W(a)$. Then there exists $b' \in W(b)$ such that axa' = bxb' and a'xa = b'xb for all $x \in H$.

Note that $aa' \in E(S) \subseteq H$ and a'a = a'aa'a = (b'aa')b. By Proposition 1.3(i), $b'aa' \in W(b)$. For any $h \in H$,

$$(ab'aa')h = ab'a(a'aa')h = ab'aa'(haa')$$

= $ab'a(a'ha)a' = ab'b(a'ha)b'$ (since $a'ha \in H$)
= $h(ab'ba')ab' = hab'aa'aa'$
= $h(ab'aa')$.

So $ab'aa' \in C_S(H)$. The proof of the second part is similar to the proof of the first part. Therefore $\delta \subseteq \delta^*$.

Let $a, b \in S$ with $a\delta^*b$, and let $a' \in W(a)$. Then there exists $b' \in W(b)$ such that $a'a = b'b, ab' \in C_S(H)$. We choose $b^* = a'ab'aa'$. By Proposition 1.3(i), we have $b^* \in W(b)$.

For any $x \in H$,

$$a'xa = (a'aa')xa = b'b(a'xa)$$

= a'xa b'b = a'aa'xab'b
= a'aa'ab'xb = (a'ab'aa')xb
= b*xb.

Consider,

$$axa' = ax a'aa' = ax b'ba'$$

$$= ab'bxa' = ab'bxa'aa'$$

$$= ab'bxa'a(a'a)a'$$

$$= ab'bxa'ab'ba' = (bxa'ab')(ab')(ba')$$
(since $ab' \in C_S(H)$ and $bxa'ab' \in H$)
$$= bxa'ab'aa'aa'$$
(since $b'b = a'a$)
$$= bx(a'ab'aa') = bxb^*.$$

Similarly, we can show that for all $b^* \in W(b)$ there exists $a' \in W(a)$ such that $a'xa = b^*xb$ and $axa' = bxb^*$ for all $x \in H$. It follows that $a\delta b$ and hence $\delta^* \subseteq \delta$. Therefore $\delta^* = \delta$ and so δ^* is an idempotent separating congruence on S.

ACKNOWLEDGEMENTS. The authors would like to thank Prof. Emil Minchev for much helpful comments and suggestions during the preparation of this paper.

References

- [1] B. Weipoltshammer, Certain Congruences on *E*-inversive *E*-semigroups, Semigroup Forum, **65** (2002), 233-248.
- [2] J.M. Howie, Fundamentals of Semigroup Theory, oxford university Press, 1995.
- [3] H. Mitsch, Subdirect products of *E*-inversive semigroups, *J. Austral. Math. Soc.*, 48A (1990), 66-78.
- [4] H. Zheng, Group Congruences on E-inversive semigroup, Southeast Asian Bull. Math., 21 (1997), 1-8.
- [5] M. Petrich, Introduction to Semigroups, Merill, Columbus, Ohio, 1973.

Received: September 30, 2008