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A phylogeny describes the hierarchical
pattern of descent of some group of species
from a common ancestor. If information is
available on the character states of the con-
temporary species, thepossibility is raised of
using that information in combination with
the phylogeny to reconstruct the historical
events of evolution. These reconstructions
can be used to retrieve a picture of the world
as the species evolved along what would be-
come the branches of the phylogeny. This,
in turn, provides a way to test hypotheses
about evolution and adaptation.

Methods based on the principle of par-
simony reconstruct the ancestral character
states to minimize the number of histori-
cal character changes required to produce
the diversity observed among the contem-
porary species (see Maddison et al., 1984, for
a general account). An alternative to parsi-
mony approaches makes use of the princi-
ple of maximum likelihood. Maximum like-
lihood solutions make the observed data
most likely given some model of the process
under investigation (see Edwards, 1972). In
a phylogenetic context this means recon-
structing the ancestral character states to
make the character states observed among
the contemporary species most probable,
given some statistical model of the way
evolution proceeds. Maximum likelihood
solutions may or may not be the most-
parsimonious solution.

I restrict myself here to using maximum
likelihood models to infer ancestral char-
acter states for binary discrete characters,
that is, for characters that can adopt only
two states, although the generalization to
more than two states requires no new con-
cepts. My approach to reconstructing ances-
tral states makes use of a Markov model of
binary character evolution on phylogenies

(Pagel, 1994). Sanderson (1993) describes
a related model for investigating rates of
gains and losses of characters for which the
ancestral states are assumed to be known.
Schluter (1995), Yang et al. (1995), and Koshi
and Goldstein (1996) derive methods that
are similar to the procedures I will describe
here. However, Yang et al. (1995) and Koshi
and Goldstein (1996) use what I shall term
“global” methods for estimating ancestral
characters, I argue for a “local” approach
on grounds that the global method does not
produce a maximum-likelihood estimate of
the hypothesis of interest. Schluter (1995) re-
ported global and local estimators in his in-
vestigation of artiodactyl ribonucleases, and
Schluter et al. (1997) reported global estima-
tors.

In several recent papers, Schluter (1995;
Schluter et al., 1997) called attention to the
usefulness of reconstructing ancestral char-
acter states for testing ideas about adap-
tation and evolution, and much of what I
say here owes its inspiration to these inves-
tigations. Mooers and Schluter (1999) now
provide important additional examples of
how maximum likelihood methods can re-
turn both more information about ancestral
character states than parsimony approaches,
as well as information that is at odds with
parsimony reconstructions.

I intend this article to act as a primer to
those who are interested in using maximum-
likelihood methods but who may not be
familiar with the mathematics of the ap-
proach. Accordingly, I begin with the sim-
plest case of estimating the ancestral state of
two species.

THE SIMPLEST CASE

Figure 1 shows two species, their charac-
ter states, and the lengths of the branches of
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the phylogenetic tree leading to them from
their ancestor. Branch lengths can be mea-
sured in units of time or in units of the
“opportunity for selection” or “operational
time” (Pagel, 1994, 1997), including such
things as genetic distance or possibly time
scaled by generation time.

FIGURE 1. Phylogenetic tree of two species. Like-
lihood calculations are based on the character states
as shown, given three different sets of branch lengths
L(m, d), L(m, a = 0), and L(m, a = 1) as de�ned in the
text.

Denote the data observed at the tips of
the tree in Figure 1 as d = {d1, d2}, where
here d = {0, 1}, and denote the ancestral
node as n = {a}. For larger trees, both d
and n will contain more elements. We will
presume that the tree and the lengths of its
branches are known and �xed. The character
states at the ancestral nodes will normally
not be known and thus will constitute pa-
rameters to be estimated. Our interest will
be to derive statements that can be used to
suggest that one value at a node is more or
less likely than some other.

Given a model of character evolution, it
will be straightforward to estimate the prob-
ability of observing the data d on any tree.
Let m denote a model of character evolu-
tion that describes a character that can adopt
two states, and we shall suppose that tran-
sitions between character states can proceed
in either direction. I haveearlier (Pagel, 1994,
1997) described a continuous-time Markov
model for this process that represents the
probability of a character transition as a
function of two transition-rate parameters
and time. Let Pij(t) = m( a , b , t) represent
the probability of a transition from charac-

ter state i to character state j along a branch
of length t. The parameter a is the instanta-
neous rate of transition from state 0 to state
1, and b is the instantaneous transition from
state 1 to state 0. These are sometimes re-
ferred to as “forward” and “backward” tran-
sitions, respectively. This formulation leads
to four possible probabilities corresponding
to the beginning and ending states of each
branch of thephylogeny, as shown in Table 1.

TABLE 1. The four possible transitions of a binary
character between the beginning and end of a branch.

State at end of branch

State at beginning of branch 0 1

0 P00(t) = 1 – P01(t) P01(t)
1 P10(t) = 1 – P11(t) P11(t)

Let P(d|m) represent the probability of
the observed data given the model of evo-
lution. Calculating P(d|m) requires estimat-
ing the two transition-rate parameters, as
the branch lengths are assumed known. Let
L(m; d) represent the likelihood of the ob-
served data. It is a property of likelihood
(e.g., Edwards, 1972) that

L(m; d) µ P(d|m) (1)

where the constantof proportionality is arbi-
trary. The difference between the probability
and likelihood approaches is that whereas
probability approaches describe the data for
a given and �xed hypothesis, the likelihood
approach seeks the hypothesis that best de-
scribes the data. In the present context, that
means choosing the values of the transition
rate parameters that maximize Equation 1.
The likelihood associated with this state will
not ordinarily be interpretable as a probabil-
ity: Probabilities sum to 1.0 when all possible
outcomes of the data are entertained; likeli-
hoods, on the other hand, consider the data
as �xed and instead vary with the values of
m. For this reason, it is convenient to write
L(m; d) in a shorthand as simply L(m).
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The likelihood of the data in Figure 1 is
found from

L(m) µ P(d|m)

=
1X

a=0

w(a)P(d|m, a)

=
1X

a=0

w(a)(Pa0(t) . Pa1(t)) (2)

= w(0)(P00(t) . P01(t)) + w(1)(P10(t) . P11(t))

This equation acknowledges that the
probability of observing the characters at
the tips is the sum of two terms. One cor-
responds to the product of the two proba-
bilities that are implied if the node a is 0
and the other to the product if the node a
is 1. These two alternatives for node a are
weighted by their prior probability of occur-
rence. In the absence of any other informa-
tion, the alternative states are equally prob-
able and w(a) = 0.5.

The maximum likelihood solution is to
�nd those values of a and b that make Equa-
tion 2 yield the largest value. Previously
(Pagel, 1994), I have described the Markov
model in more detail, and a computer pro-
gram (Discrete) to calculate the transition-
rate parameters and likelihoods is available
upon request. I have used Discrete to per-
form all of the calculations reported here.

By setting the two branch lengths equal
to 1.0, Equation 2 yields a value of 0.25 for
these data (Figure 1) with ˆa = ˆb = 8.0.
These values of the transition-rate param-
eters make all of the probabilities (Table 1)
equal to 0.50 and thus the overall probabil-
ity is just (0.5 . 0.5) + (0.5 . 0.5), which is then
multiplied by the prior probability of 0.5.

The Most Likely Ancestral State

L(m) was found above by maximizing
over both states at the “root.” This removes
the root (or more generally any ancestral
node) from the likelihood and makes the
likelihood independent of any particular
value. To estimate the more likely of the two
possible ancestral states, two separate likeli-
hoods are found, conditional on the state of
node a.

Write

L(m, a = i) µ w(a = i)P(d|m, a = i) (3)

where i = 0, 1 corresponds to each of the
two alternative states at the node a. The two
likelihoods are estimated separately, having
�xed the root at either a = 0 or a = 1 (Figure
1) and re-estimating the parameters of m;
the two likelihoods will not necessarily sum
to L(m) of Equation 2. The likelihoods for
the ancestral states are estimated this way
because the assignment of a value to the root
(more generally to any node) implies a dif-
ferent set of maximum likelihood transition-
rate parameters (the a and b ’s of m) from
summing over both values at the root.

When the branch lengths are equal, the
model �nds that the likelihood of the ances-
tor being 0 is equal to the alternative of it
being 1 , and thus we cannot distinguish be-
tween these twohypotheses on the data.This
result agrees with that obtained from parsi-
mony. Both approaches also agree with com-
mon sense: Knowing nothing other than that
one species has state 0 and the other state 1,
we must be indifferent, lacking any other in-
formation, as to the state of the ancestor.

Allowing the branches to be of different
lengths, both intuition and the likelihood
result suggest that we might now adopt a
preference for one value at the root over
the other. Letting t2, the branch leading to
species 2, be equal to3 versus a length of 1 for
the other branch, L̂(m, a = 0) is roughly 1.7
times greater than L̂(m, a = 1) (Fig. 1); letting
t2 = 5, L̂(m, a = 0) now exceeds L̂(m, a = 1)
by a factor of 2.0. The logic of this is that
if there has been greater opportunity for
change along a branch, then the endpoint
of that branch is less likely to re�ect the
starting point.

THE GENERAL CASE OF ESTIMATING ANCESTRAL

STATES

Consider the tree in Figure 2, with two an-
cestral nodes, such that n = {a and b}. We
may wish to estimate the ancestral states of
chosen nodes of this tree, or we may wish to
estimate the most likely single set of nodes,
that is, the single best description of the past.
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Finding the Most Likely Set of Ancestral States
We may wish to �nd the particular assign-

ment of states to n that maximizes the like-
lihood of the observed data. To do this, �nd

L(m, n = a, b) µ w(b)P(d|m, n = a, b) (4)

where here w(b) = 0.5, as we have no infor-
mation about the root.

There are four possible assignments for a
binary character at two nodes, and Equation
4 says that we separately calculate each of
them. The largest is themaximum likelihood
estimate of the ancestral nodes. The likeli-
hoods, shown in Figure 2, are always large
when a 1 is placed at node a. Reassuringly,
the largest corresponds to placing a 1 at both
the root (node b) and at node a. As above, the
four likelihoods will not necessarily sum to
P(d|m), which is 0.148 for these data.

It may seem curious that in Equation 4
the right-hand side is multiplied only by
the prior probability of node b, rather than
the joint prior probability of {a, b}. However,
having �xed a prior probability for node b
automatically sets the prior weights for a.
The latter are functions of the relative prob-
abilities of the character transitions in the
branch leading to the node a.

Finding the Most Likely Value at a Single Node

The most likely state at a single node
is found by maximizing Equation 4 while
holding constant only the state of the node
of interest. This is repeated separately for all
possible states at thatnode (here twostates, 0
or 1) and the largest likelihood corresponds
to the maximum likelihood estimate for that
node. If our interest is to estimate the state
of node a, we �nd

L(m, a = i) µ
1X

b=0(a=i)

w(b)P(d|m, a = i) (5)

Holding node a constant, we maximize the
likelihood summed over the two states at
node b. In words, to �nd the likelihood that
node a = i, �nd the probability of the data
on the tree having �xed node a at state i, and
then multiply by the prior weight w(b). For
the data and tree of Figure 2, the likelihood
of character state 1 is 0.5 . 0.211; for state 0,
it is 0.5 . 0.125.

The General Case

Equations 2, 4, and 5 can be generalized
to any tree to �nd the likelihood estimate of
the data, of the state at any given node, or
of the single set of states that maximize the
likelihood. If the tree contained three nodes,
such that n = {a, b, c}, Equation 2 would be
written as

L(m) µ P(d|m)

=
1X

c=0

1X

b=0

1X

a=0

w(c)P(d|m, n)
(6)

and, as before, a single model would be �t to
the data after having summed over all pos-
sible states at each node. To �nd the best set
of states, Equation 4 would be written as

L(m, n = a, b, c) µ w(c)P(d|m, n = a, b, c)
(7)

and eight separate conditional probabilities
would be calculated, estimating a different
set of transition-rate parameters for each.
Similarly, to study the state of a particular
node, for example, node a, Equation 5 would
be written as

L(m, a = i) µ
1X

c=0

1X

b=0

w(c)P(d|m, a = i) (8)

and two separate conditional probabilities
would be found. The eight probabilities de-
rived from Equation 7 and the two derived
from Equation 8 will not in general sum to
L(m).

Local Versus Global Estimators

The estimators of the likelihoods (Eqs. 4,
5, 7, and 8) I shall term ‘local’ estimators be-
cause the parameters of the model of evolu-
tion are found separately for each combina-
tion of ancestral states. The local procedure
is used because the maximum likelihood ap-
proach is to compare the support for differ-
ent hypotheses when they are assumed to
be true. The support for the hypothesis that
the ancestral state at a node is zero derives
from how well the model can be shown to
�t the data when the ancestor in question
is �xed at zero. Support for the hypothesis
that the state is 1 is likewise found by max-
imizing the likelihood but this time having
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616 SYSTEMATIC BIOLOGY VOL. 48

FIGURE 2. Four possible reconstructions of the ancestral character states on a three-species tree, and the likeli-
hoods associated with each reconstruction (see text for de�nition of likelihood).

�xed the ancestral value at 1. The different
possible states at a node become hypotheses
for which we seek to estimate the support,
given the data and our model of evolution.

The local method of estimation differs in
calculation and logic from the estimators
of ancestral states that Yang et al. (1995)
and Koshi and Goldstein (1996) suggest for
nucleotide and amino acid data. These au-
thors �rst estimate L(m) µ P(d|m), as de-
�ned above. They then partition the over-
all likelihood into its additive components
to �nd the proportion of the total likeli-
hood attributable to the different character
states at a given node—the parameters of the
model of evolution having been estimated
only once and then not for any particular
state, but as the single best set maximized
over all possible states. I call these estimates
‘global’ because unlike the local estimators,
the global likelihoods are not estimated as
being conditional on any particular state at
a node or set of nodes, and consequently

they do not re�ect the best possible �t of the
model, given the hypothesis.

Schluter (1995) independently reported
both local and global estimators, as de�ned
above, in his reconstructions of artiodactyl
ribonucleases. Later, Schluter et al. (1997) re-
ported only the global estimators in their in-
vestigations of behavioral and morphologi-
cal characters.

Global estimators are maximum likeli-
hood estimates of the likelihoods of ances-
tral character states, and they cannot be used
to compare the support for alternative hy-
potheses. This is because the global likeli-
hoods have not been maximized under the
assumption that the hypothesis is true. This
can only be done by �xing a node in a given
state and then estimating the parameters of
the model of evolution.

The key point is that the parameters of the
model of evolution assumed to describe the
data may vary, and sometimes greatly, de-
pending on the assignment of a state to a
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given node. We do not have a way of es-
timating the support for a state at a node
independently of these background param-
eters. To calculate conditional probabilities
from a single model �tted to all possible
background states misses this point and as a
result fails then to yield the maximum like-
lihood estimator.

I have calculated local and global like-
lihoods for successive subsets of the tree
of Figure 3, each subset including an ad-
ditional outgroup. For each subset I calcu-
lated the likelihood by using Equation 8 and
the local procedure. I calculated global es-
timates from �rst �nding the single set of
transition-rate parameters ( a , b ) that max-
imized P(d|m) over all possible ancestral
character states at each node and then
merely partitioned it into its two additive
parts.

Table 2 shows the two likelihoods and the
estimated values of a and b for the subset
tree of the �rst three species of Figure 3. Not
only do the transition-rate parameters dif-
fer substantially for different assignments to
node a, but also they produce quite different
likelihoods in comparison with the global
estimators.

TABLE 2. Likelihoods derived from local and global
procedures for the three-species phylogeny of Figure
2. a ’s and b ’s are the forward and backward transition
rates, (see text). Subscript refers to character state at
node a.

Local Global
ˆa 0 = 1.52, ˆb 0 = 1.39,

Probability ˆa 1 = 24, ˆb 1 = 8 ˆa = 11, ˆb = 5.5

L̂(m, a = 0) 0.063 0.050
L̂(m, a = 1) 0.106 0.099
L̂(m) 0.148
L̂(m, a = 1)/ L̂(m, a = 0) 1.69 1.99

The ratio of the likelihoods record the rel-
ative amount of support for different hy-
potheses on the data. Figure 4 plots the nat-
ural logarithm of the ratio of the two local
likelihoods and the two global likelihoods
against the number of outgroups used in

the calculation. The value the ratio takes is a
measure of the relative preference for char-
acter state 1 at node a over character state 0.
A value of 1.0 means that the ratio of the con-
ditional probabilities is ~ 2.7 and a value of
2.0 corresponds to a ratio of ~ 7.4.

As outgroups are added, preference for
a 1 at node a grows rapidly at �rst and
then appears to plateau for these data.
The qualitative pattern of differences be-
tween the local conditional probabilities be-
ing smaller than the global probabilities
is expected. The global solution favors a
1 at node a, and consequently the tran-
sition rate parameters (the a ’s and b ’s)
are biased towards a 1 at node a. The
“global” model accordingly does not �t
the data very well when node a takes the
value 0. In contrast, the local procedure
shows how well the model can �t the
data when it is optimized to the state at
node a.

Global weights are appropriate for �nd-
ing the maximum likelihood description of
the species data, L(m), when no hypothesis is
made about the value of an internal node of
the tree. The relative support for alternative
hypotheses of evolution can then be com-
pared to testwhich best describes the species
data. This is, for example, the approach that
I (Pagel, 1994) used to test hypotheses about
the independentversus correlated evolution
of two characters on a phylogeny.

Interpretation and Hypothesis Testing

To compare two likelihoods, de�ne LR =
–2 loge[Ha=i/ Ha=j] where Ha=i is the smaller of
the two likelihoods, and a refers to any node.
When the two hypotheses are “nested,” the
LR statistic is asymptotically distributed as
a x 2 variate with degrees of freedom equal
to the number of parameters that differ be-
tween the models that de�ne the two hy-
potheses. Two hypotheses are considered
nested if one can be de�ned as a special case
of the other.

Here we wish to compare two hypothe-
ses on the data that are not nested, as they
differ by having assigned a 0 or a 1 to node
a. When the hypotheses are not nested, the
logarithm of the ratio of the likelihoods does
not necessarily follow a x 2 distribution and
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FIGURE 3. Phylogeny of 12 species (10 outgroups to node a), with branch lengths shown. Nodes are identi�ed
by lower-case letters. All species are equidistant from the root.

therefore no p-value can be assigned (see
Goldman [1993] and Pagel [1994] for discus-
sions of how to obtain p-values by simula-
tion for other sorts of nonnested hypothe-
ses). In such cases the LR statistic is usually
interpreted as a measure of “support” (Ed-
wards, 1972), and following Edwards (1972),
a support of ~ 2 log units is frequently taken
as rule-of-thumb evidence that the likeli-
hoods are signi�cantly different.

This is a stringent criterion as, on this
view, not even with 10 outgroups all tak-
ing state 1 is there “signi�cantly” more sup-
port for L(m, a = 1). It is tempting to com-
pare this outcome unfavorably with parsi-
mony, which would unambiguously favor
a 1 at node a. Because forward and back-
ward transitions are nearly equally likely in
this example (estimated transition-rate pa-
rameters are such as to make all probabil-
ities of change = 0.25), support for the two
states at node a does not differ greatly. Other
trees could give more or less support. But it
should be borne in mind that the likelihood
approach also favors a 1 at node a and does
so beginning with the �rst outgroup. What
the likelihood procedure reminds us is that,

if we are willing to take our model of evolu-
tion seriously, a zero at node a is not out of
the question, even if less likely.

Inferring the State at the Root of the Tree: An
Iterative Bayesian-like Approach

The likelihood procedure of Equation 8
can also be applied to estimate the root of
the tree. By de�nition, at the root there are
no further outgroups, and the prior prob-
abilities of the two values are 0.50 in the
absence of any other information. The like-
lihoods as de�ned above can, however, be
used to gather information to shift values
away from these priors.

Let

Pq(r = i) =
L(m, r = i)

1X

r=0

L(m, r = i)

(9)

be the proportion of the two likelihoods at-
tributable to the root node, r, taking state
i. This is not a true conditional probabil-
ity (hence the subscript q to denote quasi-
probability) because the summation in the
denominator is over two probabilities calcu-
lated from the “local” procedure and hence
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FIGURE 4. The “support” for placing a 1 at node a for subsets of the 12-species tree of Figure 3. x-axis, the
number of outgroups to node a that were included in the calculation of support. Thus, two outgroups refer to a
subset tree of Figure 3 based on the �rst four species, and 10 outgroups includes the entire tree. Support is de�ned
as loge[L(m, a = 1)/ L(m, a = 0)]. Large values indicate greater con�dence in 1 relative to 0. The upper curve is
the support derived from using global transition-rate parameters, and the lower curve is that from using local
transition-rate parameters (see text for explanation). Dotted line at y = 2.0 is the conventional line of signi�cance
for this measure of support.

based on different transition-rate parame-
ters. Equation 9 may, however, serve as a
rough posterior weight to give a rule-of-
thumb sense of how much the data can be
used to shift away from the prior weights.

The availability of quasi-posterior
weights suggests the possibility of using
them in a new likelihood calculation as
prior weights. That is, calculate L(m) ac-
cording to Equation 2 and using equal prior
weights. From this, calculate the quasi-
posterior weights, then use them as the prior
weights in a new calculation of L(m). Repeat
this until no further improvement in the
overall likelihood is obtained.

This may seem like cheating or even folly,
but if real uncertainty exists as to the value
of the root, the procedure is unlikely to “run
away” and assign either a 0 or a 1 posterior

weight to the alternative states at the root. It
may also be preferable to direct maximum
likelihood estimation of the relative weights
to apply to the root, the quasi-posterior so-
lution being constrained not to jump all the
way towards a 0 or a 1 posterior weight in
any single calculation. Nevertheless, it is a
nonstandard Bayesian-like procedure, and
much simulation work is required to assess
its behavior. To the extent that the procedure
generates weights that do not go to the ex-
tremes, it may suggest that the evidence for
unambiguously assigning the root to one of
the other states, as do parsimony solutions,
may not always be clear-cut.

I have implemented the procedure in the
program Discrete and applied it to the data
of Figure 3, based on all 12 species. The
two likelihoods for the root are equal and
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TABLE 3. Applying the Bayesian-like procedure to the trees of Figures. 1 and 3.

Unweighted solution Weighted solution

Tree L̂(m, a = 0) L̂(m, a = 1) ŵ(r = 0) ŵ(r = 1) L̂(m, a = 0) L̂(m, a = 1)

12 species, 0.016 0.016 0.50 0.50 0.016 0.016
Figure 3

12 species, 0.015 0.016 0.00 1.0 0.0 0.018
short branch to
root

2 species, t2 = 3 0.24 0.13 1.0 0.0 0.24 0.0

2 species, t2 = 1.15 0.14 0.13 0.83 0.17 0.13 0.12

this makes thequasi-posterior weights equal
(Eq. 9) and equal to the priors (Table 3). As a
consequence, the weighted posterior proba-
bilities do not change. This re�ects the fact
that there is no information to bias the result
towards one or the other value. Shortening
to 0.05 the branch that leads from species
12 to the root leads to a slight increase in
con�dence that the root is 1 under the un-
weighted model and leads to a large increase
in the posterior weights model. Applying
the procedure to the simple tree of Figure
1 with t2 = 3, the posterior weights bias the
likelihoods to a clear preference for a 0 at
node a. Setting t2 = 1.15 for the simple two-
species phylogeny returns an intermediate
result.

SOME PECULIAR FEATURES OF MAXIMUM

LIKELIHOOD AS APPLIED TO DISCRETE

CHARACTERS

Maximum likelihood solutions to charac-
ter evolution can sometimes return puzzling
results when applied to phylogenetic data. I
will brie�y discuss two issues in this section
that can help to explain likelihood solutions

for phylogenetic data: ambiguous or coun-
terintuitive values at the root of the tree, and
testing whether forward and backward tran-
sitions are equally likely.

The likelihoods for the root of the full
(n = 12 species) phylogeny of Figure 3 sug-
gest that 0 and 1 are equally likely (Table 4).
Given that all but one species take the value
of 1, this seems counterintuitive. This re-
sult arises because the maximum likelihood
transition-rate parameters are estimated to
be large, and thus all kinds of change are
equally likely. The model allows change to
happen anywhere on the tree and more than
once in a branch. Placing a 0 at the root of
Figure 2 implies that somewhere along the
branch leading to the outgroup there must
be at least one more transition to 1 than tran-
sitions back to 0 (hence, a is large). A similar
scenario must hold true to yield 1’s for each
of the tips except for species 1. However, to
yield a 0 in species 1, b must also be reason-
ably large relative to a . This, however, places
further pressure on a to be large—to ensure
that any transitions to 0 in other branches of
the tree quickly return to 1. Placing a 1 at the

TABLE 4. Selected conditional probabilities . The transition-rate parameters are derived from a global solution
but do not qualitatively differ from the separate local rate parameters.

Tree L̂(m) L̂(m, a = 0) L̂(m, a = 1) ˆa ˆb

n = 12, Figure 2 0.032 0.016 0.016 13 1

n = 12, all species = 1’s
a ¤= b 0.98 0.49 0.49 49 5 ´ 10–5

a = b 0.49 8.9 ´ 10–4 0.49 1.7 ´ 10–4 1.7 ´ 10–4
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root implies no net changes to 0, except in
the short branch leading to species 1. To en-
sure that this transition happens, the model
makes b moderately large as before, but this
must now be balanced in the rest of the tree
by a large a to ensure that any transitions to
0 quickly go back to 1.

Thus, both values at the root poten-
tially imply frequent character transitions
throughout the tree. The parsimony solution
in this instance implicitly rules out changes
from 1 to 0 everywhere on the tree except in
the branch leading to species 1, and so does
not return an ambiguous assignment to the
root.

A more puzzling result arises when all
species of Figure 2 are assigned a 1. The max-
imum likelihood result for this situation also
suggests that 0 and 1 are equally likely (Table
4). This somewhat disturbing result arises
because the model is forced to consider both
possibilities at the root. It turns out that the
twopossibilities make the same demands on
the transition-rate parameters: Placing a 0 at
the root requires a large a to ensure that all
tips eventually have a 1. Placing a 1 at the
root also requires a large a , this time to en-
sure that any stray 1 ® 0 transitions must
immediately change back to 1. The predic-
tion is that a will be large and b small for
both values at the root, and this is what the
model returns. Surprisingly, the root is am-
biguous even when there is no variance at
the tips.

Here, however, the problem can be dealt
with by asking whether a two-parameter
model allowing unequal forward and back-
ward transition rates is justi�ed for these
data. Restricting a = b and �tting what is
now a one-parameter model to the data will
yield a likelihood that can be compared with
the two-parameter likelihood directly via a
likelihood ratio test: LR = –2 loge[L(m{a =
b }]/ L(m{a , b })], and the test will have 1 df.
For the data of Table 4, the LR statistic is
LR = –2 loge[0.49/ 0.98] = 1.38, which is
not signi�cant and suggests that the two-
parameter model does not lead to a signi�-
cant improvement in the �t of the model to
the data.

Adopting the simpler one-parameter
m{a = b } model, the results now over-

whelmingly prefer a 1 at the root. The con-
clusion that arises from this exercise is that
we should always ask whether the data jus-
tify �tting a two-parameter model. Maxi-
mum likelihood will optimize the model to
the data, independently of whether there
is suf�cient information in the data to jus-
tify unequal rates of forward and backward
transitions. If a one-parameter model (e.g.,
setting a = b ) does not lead to a signi�-
cant reduction in the likelihood, then this
model should be used in preference to the
two-parameter model. Mooers and Schluter
(1999) discuss this idea in more detail.

These kinds of puzzling results can arise
even when the data are not as extreme
as those used here. Usually a puzzling re-
sult can be understood either by applying
the logic of counting implicit transitions or
by testing for the �t of one- versus two-
parameter models to the data. In some cases,
there may be evidence favoring a speci�c
value at the root over another, and �xing the
root to that value can cause the estimates of
the forward and backward transition rates
to settle down.

The continuous-time Markov model takes
into account the lengths of the branches of
the phylogeny in a way that accords with
intuition. This also means that investigators
must be aware of the assumptions implic-
itly built into any set of branch lengths they
may use. If it is believed that the probability
of a character changing state is a function of
time or genetic distance, then branch lengths
re�ecting these sorts of distances should be
employed. If, on the other hand, character
transitions are thought likely to occur in-
dependently of branch length, then setting
all branches to the same length may be ap-
propriate. Pagel (1994) described a branch-
length–scaling feature that can �nd by max-
imum likelihood the optimal scaling of a set
of branches. This included a test for assum-
ing all branches to be of the same length, an
implicitly punctuational view of evolution.

FUTURE PROSPECTS

When methods of character reconstruc-
tion are applied to DNA or RNA, or to
amino acid sequences (e.g., Schluter, 1995;
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Golding and Dean, 1998), investigators can
use the inferred ancestral states to recon-
struct and examine both in vitro and in vivo
the putative ancestral protein. Technological
advances in developmental biology further
raise the fascinating spectre of some day in-
ferring the genotype of, and then producing,
entire ancestral organisms. What Schluter
(1995), Schluter et al. (1997), and Mooers
and Schluter (1999) have gone some way in
showing is that real uncertainty exists over
what state thepast took, and this uncertainty
must be re�ected in the hypothesis tests and
the conclusions drawn from them.

Einstein once remarked that “all of our
science measured against reality is primi-
tive and childlike.” The two-state Markov
transition model is likely to be a useful
starting point for modeling character tran-
sitions on an evolutionary scale, but several
issues for further research already present
themselves. The most pressing issue is, do
we really believe, as the model expects us
to, that the transition-rate parameters apply
equally everywhere on the tree? Mooers and
Schluter (1999) speculate thatwe mightwish
to treat outgroups as having different tran-
sition rates, by virtue of being outgroups.
If rates are not uniform, how might we go
about identifying regions of the tree among
which the transition rates differ? Parsimony
reconstructions can be seen as, in effect, pre-
suming that transition rates are zero in some
parts of the tree and greater than zero else-
where. Is this realistic?

What is urgently needed are data sets
for which the ancestral states are known,
such as the bacteriophage data of Hillis et
al. (1992). I have analyzed (Pagel, unpub-
lished) some of the over 200 restriction en-
zyme sites that Hillis et al. report, using
the two-state Markov model described here,
and typically get accurate reconstructions.
For these molecular data, it would appear
that the Markov assumption of transition
rates applying equally everywhere on the
tree is reasonable.

Another area requiring development is in
the generalization of the two-state Markov
model to three- and four-state characters.
Four-state models for gene sequence data

are available but will not in general be ap-
propriate for other kinds of characters. In-
corporating information from second and
third characters may also prove helpful in
reconstructing ancestral states. If two char-
acters are known to be correlated, and the
state of one is known with some certainty,
that knowledge may be useful in developing
hunches about the state of the other charac-
ter. This is an area for much future investi-
gation.
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