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THE MAXIMUM LIKELIHOOD PRIOR1

BY J. A. HARTIGAN

Yale University

Consider an estimate � * of a parameter � based on repeated observa-
tions from a family of densities f evaluated by the Kullback�Leibler loss�

Ž . Ž .function K � , � * � H log f �f f . The maximum likelihood prior den-� � * �

sity, if it exists, is the density for which the corresponding Bayes estimate
is asymptotically negligibly different from the maximum likelihood esti-
mate. The Bayes estimate corresponding to the maximum likelihood prior
is identical to maximum likelihood for exponential families of densities. In
predicting the next observation, the maximum likelihood prior produces a
predictive distribution that is asymptotically at least as close, in expected
truncated Kullback�Leibler distance, to the true density as the density
indexed by the maximum likelihood estimate. It frequently happens in
more than one dimension that maximum likelihood corresponds to no
prior density, and in that case the maximum likelihood estimate is
asymptotically inadmissible and may be improved upon by using the
estimate corresponding to a least favorable prior. As in Brown, the asymp-
totic risk for an arbitrary estimate ‘‘near’’ maximum likelihood is given by
an expression involving derivatives of the estimator and of the informa-
tion matrix. Admissibility questions for these ‘‘near ML’’ estimates are
determined by the existence of solutions to certain differential equations.

1. Introduction. A common assumption, in both frequentist and
Bayesian approaches to statistical inference, is that observations are sampled

� 4according to a family f of probability densities indexed by a parameter ��

lying in some subset � of R p. In the Bayesian approach, the model is
supplemented by a prior distribution for the parameter � , and then infer-
ences are much simplified by the presence of a full probabilistic model for the
joint distribution of observations and parameter. The selection and justifica-
tion of these priors is an important part of the Bayesian approach. But even
in a classical decision theoretic view, the admissibility of any statistical
technique is usually explored by examining various types of Bayesian approx-
imations to the technique. Thus choosing to use a particular technique may
be cast as choosing to use a particular prior distribution or a particular class
of prior distributions for which that technique is optimal. These ‘‘technical’’
priors offer a useful bridge between frequentist and Bayesian approaches. In
this paper, we describe a prior distribution corresponding asymptotically to
maximum likelihood, as the number of observations n from f approaches ��
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and show that maximum likelihood is asymptotically inadmissible when
there is no such prior.

The most widely used prior distribution of this ‘‘technical’’ type was
Ž .proposed for estimation problems by Jeffreys 1946 . The Jeffreys density,

with respect to p-dimensional Lebesgue measure, is

J � � det1�2 L � ,Ž . Ž .Ž .
Ž . � 2 �where L � is the information matrix � �� ��� �� � log f and � denotes� � �

expectation, given � .
Ž .There are several justifications for the Jeffreys density. Jeffreys 1946

uses the Kullback�Leibler distance

K f , f � � log f �f ;Ž . Ž .� � � � � � �

balls of K-radius r are given equal probability, as r � 0, by the Jeffreys
Ž .density. Perks 1947 notes that a maximum likelihood-based confidence

region of given confidence size has volume asymptotically inversely propor-
Ž .tional to J � as � varies. Thus the Jeffreys prior states that the parameter

value will lie in any one of these confidence regions with asymptotically equal
Ž .probabilities. Welch and Peers 1963 show that the one-sided posterior

intervals of posterior probability � are confidence intervals of size � �
Ž �1�2 . Ž �1 .O n for any smooth prior, but are of size � � O n for the Jeffreys

prior. This justification does not extend to two-sided intervals or to many
dimensions. The Jeffreys density has wide acceptance in one dimension, but

Ž .is not used so much in many dimensions; Jeffreys 1961 recommends against
its use in regression problems where the Jeffreys density produces degrees of
freedom for the error sum of squares not in accord with classical calculations.

Ž .Bernardo 1979 offers a justification again based on the Kullback�Leibler
distance. Determine a prior distribution H to maximize, as the amount of
data x increases, the expected K�L distance between the posterior distribu-
tion H and the prior distribution H:x

I H � log dH �dH f dx dH � .Ž . Ž . Ž .H x �

Bernardo argues that this prior distribution is least informative, because the
data is allowed the greatest weight when the largest possible difference
between prior and posterior is expected. Under certain conditions, for exam-

Ž .ple Clarke and Barron 1994 , the asymptotically optimal prior is the Jeffreys
prior. The Bernardo prior is the least favorable prior in the no-data decision
problem in which the object is to select a single density f, with loss function
Ž . Ž . Ž .K f , f . The least favorable prior maximizing inf HK f , f dH � , the� f �

Bernardo prior, generates the Bayes density f � H f dH which is alsoH �

Ž . Ž .minimax, minimizing max K f , f . See also Berger and Bernardo 1992� � H
for some modifications of the method when nuisance parameters are present.

None of these justifications directly support Jeffreys’ original program for
using the Jeffreys density in parameter estimation problems. In Hartigan
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Ž .1964, 1965 , I proposed the ‘‘asymptotically locally invariant’’ prior M solv-
ing

2� log M � log f � log f� ��1� q � L �Ýi j , k ��� �� �� ��i i j kjk

1and a one-parameter family of invariant priors, including Jeffreys at � � ,2

2� log M � log f � log f � log f � log f � log f� � � � � ��1� L � � � .Ý j , k ��� �� �� �� �� �� ��i i j k i j kjk

It is not necessarily true that any M exists satisfying the first differential
equation in more than one dimension. The necessary and sufficient condition
for a solution is that dq ��� � dq ��� for each i, j.i j j i

For the exponential family in the canonical form

f x � � � exp � Y x � c � ,Ž . Ž . Ž .Ý i iž /
i

the prior M sets � uniform. This prior was proposed for exponential families
� Ž .�by Hurzubazar Jeffreys 1961 .

In this paper, I will argue that choosing maximum likelihood estimation
when using truncated Kullback�Leibler loss is asymptotically equivalent to
choosing the prior M. We use asymptotic expansions of risk functions in
which the first term p�2n is the same for maximum likelihood and for all
Bayes estimates with sufficiently smooth prior densities. Comparisons be-
tween the different methods are based on examination of the 1�n2 terms.

The study of ‘‘third order’’ asymptotic behavior of the maximum likelihood
ˆ Ž . Ž .estimator � was begun by Rao 1961 ; see Ghosh and Subramanyan 1974 ,

Ž . Ž .Pfanzagl and Wefelmeyer 1978 , Ghosh 1994 . A typical result is that an
Ž .efficient estimator T with bias b � �n has asymptotic risk, up to terms inn

�2 ˆŽ .order o n , no less than a ‘‘bias-adjusted’’ likelihood estimator of � * � � �
ˆ ˆŽ . Ž .c � �n where c � is chosen to match the bias in T .n

Ž .Brown 1979 suggests a general program for evaluating the admissibility
of an estimator � , for a general class of estimators and loss functions, by
looking at the behavior of risk differences between the estimator � and a
family of competing estimators � � near � . In the maximum likelihood case,
the competing estimators are the ‘‘bias-adjusted’’ maximum likelihood esti-

Ž .mators studied by Ghosh 1994 . Admissibility questions are now expressed
Ž .in terms of certain differential operators that first appeared in Stein 1956

for the multivariate normal location problem.
The asymptotic behavior of Bayes estimators near maximum likelihood

Ž . Ž .estimators have been studied for loss functions of form L d, � � w d � �
Ž .by Levit 1982, 1983, 1985 ; in particular, he shows that the Bayes estimators

form a complete class within the class of estimators near maximum likelihood
under certain regularity conditions.

Ž .Eguchi and Yanagimoto private communication study bias-adjusted max-
Ž .imum likelihood estimators under reverse Kullback�Leibler loss K � *, � �
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Ž .H log f �f f ; the risk difference between a Bayes estimator and maximum� * � � *
likelihood is expressed in terms of the Laplace�Beltrami operator 	u �

�1Ž .Ž �1Ž . .Ý J ���� JL ���� u , and so maximum likelihood is asymptoticallyi, j j i, j i
inadmissible when there exist superharmonic positive nonconstant u satisfy-

Ž .ing 	u � 0, generalizing Brown’s 1971 result for normal location families.
The Bayes estimators considered by Eguchi and Yanagimoto are chosen to
maximize the posterior density rather than to minimize posterior expected
loss; under the usual Bayes rule, it turns out that the maximum likelihood
prior with this loss function is Jeffreys density.

The present paper follows Brown and Levit for a particular estimator
Ž . Ž .maximum likelihood and a particular loss function Kullback�Leibler . The
Bayes estimate � corresponding to h minimizes the truncated posteriorh

Ž .expectation given n observations of K f , f . The maximum likelihood� � hˆ Ž .estimate � based on n observations, maximizes 
 f x . We will show that� i
ˆ �1� differs from � by order n for every smooth prior density h, but that �h M

ˆ �3�2 � � Ž .differs from � by order n . The truncated risk difference � K f , f �� � � h
Ž .� �2 �3K f , f is order n for every smooth density, but of order n for M. Weˆ� �

identify, via Levit’s complete class theorem modified for Kullback�Leibler
loss, maximum likelihood estimators as inadmissible when they do not satisfy
the simple differential equation necessary for the maximum likelihood prior
to exist. It remains true, as in Stein’s problem, that Bayes estimators may
also be inadmissible, and this question is settled by the existence of solutions
of certain elliptical differential equations, depending on the prior, the infor-
mation matrix and the parameter space.

One application of the maximum likelihood prior is to density estimation.
The maximum likelihood estimative density for the next observation is f . We�̂

compare this estimate to the predictive h-estimate

f x � x � f x h � � x d� .Ž . Ž . Ž .Hh �

Ž . Ž �2 .The K�L distance K f , f is asymptotically O n for any smooth prior h.�̂ h
The limiting distance, for each true value � , is minimized by the choice M,
when it is possible to find a prior of form M. Measuring the loss of a density

ˆ ˆ ˆŽ .estimate f by K f , f , the asymptotic risk for f � f is no less than theˆ� �
ˆ � Ž . Ž .asymptotic risk of f � f for every � . See Aitchison 1975 , Komaki 1996M

�for similar comparisons for exponential families. It turns out that the ratio of
predictive to estimative density is asymptotically the same for all priors, and
this ratio may be used to improve any estimative density based on an efficient
estimator, with the same improvement in the risk.

A referee suggests considering invariant loss functions other than Kull-
Ž . Ž . Žback�Leibler, for example, the Amari 1982 divergences L � *, � � � �

2 .�1� � 1�� � Ž .� 1 � H f f dx , which includes Kullback�Leibler � � 0 , Hellinger� * �
1Ž . Ž . Ž .� � , reverse Kullback�Leibler � � 1 , chi square � � 2 . For each2

choice of �, the maximum likelihood prior is the member of the invariant
1Ž .family of priors proposed in Hartigan 1964 with � � �. The choice � � 12

Žcorresponding to reverse Kullback�Leibler loss studied by Eguchi and
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.Yanagimoto is the Jeffreys density; this is the one member of the family that
always satisfies the condition for existence of the prior. There are some
reasons for preferring Kullback�Leibler loss to the other invariant measures.
One is that Kullback�Leibler loss has historically been the principal device
for developing noninformative priors. The corresponding predictive Bayes
density estimate for the next observation is just the posterior density of the
next observation. Also, maximum likelihood is exactly the Bayes estimate for
the maximum likelihood prior under Kullback�Leibler loss in exponential
families.

Ž .Following Brown 1979 , the same kinds of asymptotic computations are
possible for other than invariant loss functions and other than maximum
likelihood estimator sequences, even in nonparametric settings. We can ask
whether or not an estimator is asymptotically Bayes in the family of bias-ad-
justed estimators and show that it can be beaten asymptotically by another
bias-adjusted estimator if it is not.

2. Truncated expectations and regularity conditions A. We need
Ž �2 .expectations to evaluate risks to terms in O n , but we must work with

ˆ 2 ˆ 3Ž . Ž .Taylor series for the loss of form A � � � � B � � � � 


 where we do
ˆnot know the detailed tail behavior of � � � and do not know the detailed

behavior of the remainder terms in the Taylor series expansion.
Ž .Say a sequence of random variables Y is truncatable denoted Y � t ifn n n

� � � 4 Ž �2 . Ž .for each � � 0, � Y � � � o n ; tail-bounded denoted Y � T if forn n n
� � � 4 Ž �2 .some A, � Y � A � o n . The two orders t , T are adaptations of then n n

Ž �2 .usual stochastic orders o , O , with o n rates necessary for asymptoticp p
risk approximation. For any random variable Y, define its truncated expecta-
tion

� � �� 4 � 4 � 4� Y � � �� Y � �� � Y Y � � � � Y � � .
It may be verified that truncated expectations of truncatable sequences of
random variables satisfy the usual rules of finitely additive expectation up to
Ž �2 . � �o n , namely, that Y , Z truncatable implies Y , aY � bZ truncatable,n n n n n

and
�� Y � Y � o n�2 for Y constant,Ž .n n n

� � �� Y 	 0,n

�� aY � bZ � a�� Y � b��Z � o n�2 .Ž . Ž .n n n n

Observations x , . . . , x are independent and identically distributed from a1 n
density f , � 
 �, a subset of R p. We consider asymptotic behavior at the�

true value � , an interior point of �. For sequences of indices i , i , . . . , i ,0 1 2 r
and for subsets of indices S , S , . . . , S , define1 2 t

n � � �
l � 


 log f x at � � � ,Ž .Ýi i 
 
 
 i � j 01 2 r �� �� ��i i ij�1 1 2 r

L � � l l 


 l for n � 1.S , S , . . . , S � S S S1 2 t 0 1 2 t

The i, j element of the inverse of the matrix L will be denoted L�1.i, j i, j
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ˆThe maximum likelihood estimate � is a value of � maximizing the log
Ž . Ž .likelihood l � � log 
 f x over �. Likelihood derivatives and expectations� j

ˆ ˆ ˆof their products evaluated at � will be denoted l , L . Priori i 
 
 
 i S , . . . , S1 2 r 1 t

densities on � with respect to Lebesgue measure will be denoted by h and
ˆ ˆŽ .h � ���� log h, h � h evaluated at � . The maximum likelihood priori i i i

ˆdensity will be denoted by M, and M , M are defined as for h. The posteriori i
Ž . Ž . Ž . Ž . Ž .density is h � � x � f x � � h � k x where k x is chosen so that the poste-

rior density integrates to 1. The prior h may be improper, but the posterior
will be assumed to be proper except for a set of data values x which will be
assumed to have asymptotically zero probability given � . Posterior truncated0

�� � �� 2 �moments will be written � � � x , � � � x and so forth.

ASSUMPTIONS A.

Ž .A1. All derivatives of log f x up to order 5 exist for each observation x and�

for � in a neighborhood of � .0
A2. All moments exist for the first four derivatives and for the maximum

squared fifth derivatives in a neighborhood of � . The moments are0
differentiable in a neighborhood of � .0

A3. The information matrix L is positive definite.i, j
�ŽŽ .Ž . Ž . . �A4. � ���� ���� 


 ���� f �f � 0, 1 � r � 4.� i i i ���0 1 2 r 0

A5. The prior density h is positive and has two derivatives in a neighborhood
of � .0
ˆ� �A6. � � � � t .0 n

Ž . Ž .A7. Posterior tail probabilities are negligible: H sup f x h � � x d����� � � � x �0

� t �n2.n
Ž .A8. � is K-identifiable; for each � � 0, there exists � � 0 such that K � , �0 0

� �� � implies � � � � � .0

These are versions of the usual Wald regularity conditions that ensure
that maximum likelihood behaves well asymptotically. They are stronger
than usual here because we need to specify the risk behavior neglecting only

�2 ˆŽ .terms in o n . The assumption A6 specifies that � � � be truncatable; it0
will have to be checked by considering global behavior of the likelihood.
Likewise, the assumption A7 ensures that we only need parameter values
near � in evaluating posterior truncated moments and in evaluating the0

Ž .posterior density of a new observation; if f x is bounded, it states that the�

Ž �2 .tail probability for a given x is o n , excluding a set of x values which has
Ž �2 .probability o n given � . Also the assumption A8 is necessary to ensure0

that the Bayes estimate will be close to � . All the other conditions depend0
only on the behavior of the likelihood in the neighborhood of � . The condition0
A4 is the generalization of the information equality L � L � 0 to three1, 2 12
and four derivatives; for example, the third order equation is L � L �1, 2, 3 12, 3
L � L � L � 0, which is seen to be constructed, as are the other13, 2 23, 1 123
equations, by summing expectations of products of derivatives of log likeli-
hood over all the partitions of the set 1, 2, 3. In the calculations we will adopt
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the tensor analysis convention of implicitly summing expressions over the
range of an index that appears twice.

3. Asymptotic behavior of maximum likelihood and Bayes proce-
dures. The asymptotic risk of the maximum likelihood estimator

THEOREM 1. Under assumptions A, when � is true,0

� ˆ� K � , �Ž .� 00

p 1 1 3 3 3
�1 �1� � � p � L L L � L � L � Li , j k , l i , k , jl ik , jl i , jk l i jk l2 ½2n 2 2 2 8n

5 3
�1 �1 �1�L L L 2 L L � L L � L Li , j k , l m , n ik m n , jl ik m jln ik l jm n12 8

3 3 3
�2� L L � L L � L L � o n .Ž .ik l m , n j i , jk m , nl m , ik j , nl 52 2 2

Our various Bayes estimates will have asymptotic risks differing only in
Ž �2 .the O n term.

We will develop an asymptotic formula for the posterior density when the
true parameter value is � . Such formulas have been given previously, under0

Ž .similar assumptions, for example Strassen 1977 ; we need to make sure that
we can compute the Bayes estimate sufficiently accurately to evaluate risks

Ž �2 .to terms in O n . It will turn out to be sufficient to know the truncated
Ž �1 .posterior moments to terms in O n .

ˆ ˆ ˆ� � � �THEOREM 2. Let � � � � � . Under assumptions A, for � � � � � , � � �0
� � ,

2211�2 ˆ ˆ � �h � � x � det �l �2� exp � � l � 1 � n � R � �nŽ . Ž .Ž .ž /i j i j i j n2

� 1ˆ ˆ1 � � h � � � � l ,i i i j k i jk6

� Ž . �where sup R � � T .ˆ���� � � n n
ˆ� �The truncated posterior moments of � � x satisfy, for � � � � � ,0

1� �1 �1 �1 �2ˆ ˆ ˆ ˆ ˆ� �� � � x � �l h � l l l � n T ,i i j j i j k l jk l n2

� �1 �2ˆ� � � � x � �l � n T .i j i j n

All higher order moments of � are n�2 T .n

The Bayes estimate � h minimizes the truncated expected posterior loss
�� Ž h. � �1� K � , � � x . Let q � L L . The maximum likelihood prior density Mi j, k j, ik

satisfies M � q . Such a twice differentiable prior exists for all � 
 � if andi i
only if for each i, j, � q ��� � � q ��� . When M exists, it produces a Bayesi j j i
estimate negligibly different from maximum likelihood.
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THEOREM 3. Under assumptions A, when � is true, with h, q evaluated at0
h ˆ �1 h ˆ �1Ž . Ž . Ž .� , then n � � � � L h � q in probability. Thus, � � � � o n0 j j i, j i i p

precisely when the prior is M.

We compare the asymptotic risk of Bayes estimators with the asymptotic
risk of the maximum likelihood estimator specified in Theorem 1.

THEOREM 4. Under Assumptions A, when � is true,0

� h ˆ� K � , � � K � , �Ž . Ž .� 0 00

� 1
�2 �1 �1 �2� n L h � q � L h h � q q � o n .Ž .Ž .Ž .i , j j j i , j i j i j½ 5�� 2i

More generally, bias-adjusted estimators � * of form

� ˆ ˆ�1 �� � � � L q � q �n,ˆ ˆŽ .i i i , j j j

� Ž .where the q are differentiable functions on �, have asymptotic risk A � , � * :j 0

p � 1
� � �2 � �1 �1lim n � K � , � * � � c � � L q � L q q .Ž . Ž . Ž .� 0 0 i , j j i , j i j0 2n �� 2n�� i

The derivative term may be thought of as the change in variance term, the
Ž .square term as the change in bias term. The constant c � is irrelevant in0

comparing the different estimators. We can now develop a decision theory for
bias-adjusted estimators based on their asymptotic risks.

Define the Bayes asymptotic risk for � * by

p
2 �B � * � lim n � K � , � * � h � d� .Ž . Ž . Ž .H � 0 0 00 2nn��

The Bayes risk is not necessarily the same as the limit of the finite sample
Bayes risks, since contributions from near the boundary of the parameter
space may dominate that limit; in particular Bayes estimates may differ from

Ž �1�2 . Ž �1 .maximum likelihood estimates by O n rather than O n near thep p
boundary.

THEOREM 5. If � is compact with an open interior, assumptions A hold
on an open set that includes �, and the prior density h vanishes on the
boundary of �,

1 � �h �1B � * � B � � L h � q h � q h d� .Ž . Ž . Ž . Ž .H i , j i i j j2

Thus the bias-adjusted estimate � * of minimum Bayes asymptotic risk is
just the Bayes estimate � h when h vanishes on the boundary of �. When the
boundary condition is not met, � h may be shown to be the limit of Bayes
estimates � h* for priors h* vanishing on the boundary.
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4. Exponential families. Suppose the density f is of canonical expo-
nential form

p

log f x � � Y x � a �Ž . Ž . Ž .Ý� i i
i�1

with respect to some x-measure � . Let a and a denote first and secondi i j
derivatives of a. The natural parameter set � is the convex subset of R p for

Ž p Ž ..which H exp Ý � Y x d� is finite. Another useful parametrization is ini�1 i i
terms of the expectation parameters � � a .i i

Assume that � has a nonnull interior. The maximum likelihood prior M is
the uniform density over this parameter set, since l � Y � a and l � �a ,i i i i j i j
so that L � 0. This density may be improper.k , i j

For observations x � x , . . . , x from f , the maximum likelihood estimate1 n �

solves the equations

ˆY x � a � � 0, 1 � i � p.Ž . Ž .Ý ž /i j i
j

Ž . Ž . Ž . Ž . Ž .The loss function K � , d � � � d a � � a � � a d is a convex functioni i i
in d. The Bayes estimator d � � M has the minimum posterior risk when

�K
� x � � a d � a � � x � 0.Ž . Ž .M M i i� di

Ž .For those x for which f x � 0 whenever � is on the boundary of �,�

� f�
0 � � � � Y x � a � x .Ž . Ž .Ž .ÝM M i j i��i j

�1 Ž . Ž .Thus n Ý Y x � a � , and the maximum likelihood estimate and thej i j i M
Ž .M-Bayes estimate coincide. It was noted in Hartigan 1983 that the prior M

�1 Ž . � Ž . �has posterior mean n ÝY x � � a � � x . In the asymptotic theory, wei j M i
need the estimate � M that minimizes truncated expected posterior�

�� Ž . � M MKullback�Leibler loss � K � , d � x ; it may be shown that � � � ��
�n �'Ž .O n e .p

For example, in the p-dimensional normal location problem

1 1 2f x � exp � Y x � � ,Ž . Ž .Ý� i iž /' 22 �

p ˆ �1 Ž .the parameter space is R , M is uniform, � � n Ý Y x , and the poste-i j i j
�1 Ž .rior mean is n Ý Y x coinciding with the maximum likelihood estimator.j j

In the binomial case, n observations from a Bernoulli,

n�xn xf x � � 1 � � ,Ž . Ž .� ž /x

Ž . Ž .the parameter space is the open unit interval 0, 1 , M is log ��1 � �
ˆuniform, � � x�n and the posterior mean is x�n, provided x � 0, x � n; in

the extreme cases the likelihood does not vanish on the boundary, and in fact
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the posterior densities are improper. The extreme cases have negligible
asymptotic probability for 0 � � � 1.

5. Asymptotic admissibility. We have seen that bias-adjusted estima-
� � � 1�1 �1ˆ ˆ Ž . Ž .Ž .tors � � � � L q � q �n have asymptotic risk ���� L q �ˆ ˆi i i, j j j i i, j j 2

�1 � � Ž .L q q . Thus the asymptotic admissibility of � *, following Brown 1979i, j i j
Ž .and Levit 1982, 1983, 1985 , is determined by a simple differential operator,

depending only on the functions q �, the information matrix L and thei
parameter space �. First, let us show that we need only consider Bayes
estimates as candidates for asymptotically admissible � *.

Ž .The complete class theorem due to Levit 1983 holds under conditions A
and for certain symmetric bounded loss functions w.

LEVIT’S THEOREM. For each bias-adjusted estimator � *, there exists a
Bayes estimator � h of the same asymptotic risk.

Although the form of the loss function is usually not crucial in these
asymptotic studies, I have been able to prove only a weaker version of Levit’s
theorem for Kullback�Leibler loss.

THEOREM 6. For each bias-adjusted estimator � *, there exists a Bayes
estimator � h of no greater asymptotic risk.

One consequence of Theorem 6, because the asymptotic risk is convex as a
function of � *, is that if � * is not a Bayes estimator, it is inadmissible.
Suppose that � h is the Bayes estimator of no greater asymptotic risk. The

1 hŽ .estimator � � � � * � � has asymptotic risk2

1 1h �1 h hA � �, � � A � *, � � A � , � � L � * � � � * � � ,Ž . Ž . Ž . Ž . Ž . jii j2 2

Ž .which is never greater than A � *, � and sometimes less, since L is negative
definite and � * � � h by assumption.

In particular, maximum likelihood is asymptotically inadmissible unless
the maximum likelihood prior exists, that is for each i, j, � q ��� � � q ��� .i j j i
These conditions are satisfied for exponential families, for location parameter
models, for mixture models with parameters the mixing probabilities. An

Ž .example where the conditions fail has observations drawn from N 0, 1 with
Ž 2 .probability p and N 0, � with probability 1 � p.

When maximum likelihood fails, I would suggest using instead the least
favorable prior beating it, which may be obtained from the Dirichlet mini-

� Ž . Ž �1Ž .Ž . �mization � � inf D h � H L h � q h � q h d� over the class Hh
 H i, j i i j j
of priors with H h d� � 1 and h � 0 on the boundary of �. Suppose 0 
 �.�

As in the proof of Theorem 6, we define the least favorable prior h* as the
k kŽ . Ž k .limit of h �h 0 as D h � � , if that limit exists.
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The asymptotic risk of the Bayes estimate � h is

� �
h �1�2 1�2 �1�2 �1 1�2A � , � � 2h 	h � 2h L h ,Ž .0 i , j�� ��i j

where 	 denotes an elliptical differential operator. Thus, � h is admissible by
definition if and only if there is no nonzero nonnegative function � for which
there is a positive solution u � h1�2 to the elliptic differential equation in � ,�

	u � � � h�1�2	h1�2 u � 0.Ž .
Consider now asymptotic admissibility of maximum likelihood in the expo-

nential family case where the maximum likelihood prior is the uniform in the
canonical parameter. The qualification asymptotic will be dropped in the
following discussion. Maximum likelihood is admissible if and only if there is
no nonconstant positive superharmonic function u for which 	u � 0 in �
� Ž . Ž .�Brown 1971 , Levit 1982, 1983 .

In one dimension, the maximum likelihood estimate is the solution to
ˆ ˆŽ . Ž .ÝY x � na� � ; the above condition reduces to � being admissible if andi

Ž . Žonly if the range of a� � the range of expected values of the maximum
. Ž .likelihood estimate , is the whole real line. Thus for the Poisson, a� � �

Ž . Ž .exp � and the maximum likelihood estimate ÝY x �n is inadmissible,i
1 ��Ž . Ž .being beaten in asymptotic risk by ÝY x � n � 1 by the amount ei 2

corresponding to the prior density h � e�. Similarly, maximum likelihood is
inadmissible for the binomial and for normal scale parameters and admissi-
ble for normal location. However, if a single point, say � � 0, in the normal
location family, is excluded from �, then the maximum likelihood estimate
becomes inadmissible.

Ž .The expectation parameters � � ���� a provide a 1�1 transformationi i
from � into � say, because a is convex. In view of the one-dimensional
results, we examine admissibility questions in the � space rather than the �

Ž .Ž . Ž .space. Now 	 � a ���� ���� and following Brown 1971 and Leviti j i j
Ž .1985 , the admissibility of maximum likelihood is equivalent to the recur-
rency of a diffusion in � with local variance�covariance a .i j

Ž .Suppose that there exists a hyperplane H � , � such that � �� � � for
2 Ž .� 
 �; then the prior density u � � �� � � satisfies

1 3	u � � � � a �ui j i j4

and so beats maximum likelihood, moving the maximum likelihood estimate
away from the hyperplane.

We might ask, for a parameter space � within which maximum likelihood
is admissible, which subspaces �� retain admissibility? If we delete a set A
which has the property for some spheres S, S�, S� with S�, S� � S � � that
all paths between S� and S� that lie in S pass through A, then � � A will

Žbe inadmissible. Since the recurrent diffusion in � will occasionally pass
from S� to S� in S and so pass through A, the diffusion in � � A will be

.absorbed by the boundary A. For example, with normal location in two
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dimensions, removal of a slit from the plane is enough to render maximum
likelihood inadmissible. Removal of a finite number of points will leave
maximum likelihood admissible.

Ž .The classic Stein 1956 result has maximum likelihood admissible in one
and two dimensions, and inadmissible in three or more dimensions, for
multivariate normal location in the finite sample case. How do these results
generalize to asymptotic admissibility in arbitrary exponential families? Let

Ž .us define the condition number c a to be the ratio of the largest to the
smallest eigenvalue of a . Let � be R p; I conjecture that a has the samei j

Ž .admissibility status as a � I when c a is uniformly bounded. The condition
bounds the partial correlations corresponding to a away from 1 and bounds
the ratios of variances in any two coordinate directions away from zero. Thus
the diffusion acts as if the coordinate directions are proceeding independently
with the same variance.

How do the asymptotic admissibility results relate to finite sample admis-
sibility results? In general, not very well. The risks converge only pointwise,
not uniformly. Thus, near the boundary it is quite possible for the finite n
risks to be quite far from the asymptotic risk and for a procedure that is
everywhere beaten asymptotically at interior points to have superior perfor-
mance close to the boundary for finite n. For example, with normal location,

Ž . 2� � 0, � , the prior density � has asymptotic risk �1�2� beating maxi-
mum likelihood everywhere; but at � � 0, the finite sample risk for this prior
is 1�n, and the finite sample risk for maximum likelihood is 1�4n. Thus in
the neighborhood of 0, maximum likelihood is better in the first-order term. It
is possible to produce an asymptotic risk smaller than that of maximum
likelihood at every interior point and also at the point � � 0 by adding any
positive atom at 0 to the prior density � . However, for any finite n, maximum
likelihood has smaller risk somewhere near 0. For any finite n, maximum
likelihood is inadmissible, since, not being differentiable, it is not generalized
Bayes, and there will be some smaller risk Bayes solution depending on n.

Ž .There is a special case, Brown 1971 , where the asymptotic results do
carry over to finite sample sizes. Consider the multivariate normal location
problem in p dimensions, and take the loss function for an estimate � * � x �

1Ž . Ž .Ž . Ž .q x based on observation x to be W x � * � � � * � � where W is ai, j i j i, j2

nonnegative definite function of x. Then the risk difference from maximum
likelihood may be expressed, using Stein’s estimating principle, by

� 1
� W q � W q q .Ž .� i j j i j i j� x 2i

If we can choose q to make the differential expression negative, we will beat
maximum likelihood. We need only consider q corresponding to prior distri-
butions h on R p. Thus we can show that maximum likelihood is inadmissible
in the finite sample case if we can discover a nonconstant positive solution u

Ž .Ž Ž . .to ��� x W ��� x u � 0, just as in the asymptotic risk case.i i j j
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6. Density estimation. We have defined the loss for an estimate � h as
the Kullback�Leibler distance between the densities f and f h; when a prior� �

density h is available, the optimal Bayes density estimate is the predictive
ˆ Ž .density f � f x � x which minimizes the expected Kullback�Leibler distanceh

ˆŽ . Ž . hgiven x, HK f , f h � � x d� . The estimative density f turns out to be the� �

Ž .density restricted to the family f x that is closest to f in Kullback�Leibler� h
Ž .loss L f , f . It is of interest to compare the risk of the predictive density� h

� Ž . Ž .�hwith that of the estimative density, � K f , f � K f , f .� � � � h
Let

� r f
f � .i 
 
 
 i1 r �� 


 ��i i1 r

THEOREM 7. Under Assumptions A, when � is true,0

�
h� K f , f � K f , fŽ . Ž .� � � � h0 0 0

1 �2 �1 �1 �2� n var L f � L f L � L �f � o n .Ž .Ž .½ 5Ž .i , j i j k , l l i , j , k i j , k8

For example, in the normal location case, the gain is p�4n2. Thus there is
a loss in using the estimative density rather than the predictive density
which is equal to 1�8n2 times the residual variance after predicting L�1 f �fi, j i j
as a linear function of f �f. The difference between the estimative log densityi
and the predictive log density is

1
�1 �1ˆ ˆ ˆ ˆ ˆ ˆ ˆhlog f � log f � t �n � L f � L L � L f �f ,½ 5ž /h � n i , j i j k , l i , j , k i , jk lž /2n

which is orthogonal to densities f in the neighborhood of the maximum�

likelihood estimate; that is, the expectation of the expression and of its
ˆ ˆmultiple with f is zero at � � � . The difference in K�L risk is half them

average square of this difference in log densities evaluated at � . It is0
remarkable that the improvement due to using the predictive density does
not depend on the prior used, nor does the difference in log density. The
improvement is positive except when L�1 f is a linear function of the f ;i, j i j i
there is no improvement in a bounded open set �� if and only if f is a�

mixture of the densities on the boundary of ��, with mixing probabilities
Ž .depending on � all being solutions of the elliptic differential equation
L�1 f � a f .i, j i j i i

Indeed, we can improve the estimative density for any bias-adjusted
estimator by the same addition in the log density, resulting in the same
decrease in Kullback�Leibler risk.

Ž .Aitchison 1975 argues for the value of predictive rather than estimative
densities in general and gives particular arguments in the case of gamma and

Ž .multivariate normal exponential families. Komaki 1996 considers optimal
adjustments of estimative to predictive estimators for exponential families.
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7. Proofs.

Ž .PROOF OF THEOREM 1 Asymptotic risk of maximum likelihood . Algebra is
simplified by assuming that � � 0; we show that the maximum likelihood0

ˆestimate � may be adequately approximated, with truncatable errors, by a
polynomial in l , l , l , l . Then the Kullback�Leibler loss is approxi-i i j i jk i jk l

ˆmated by a polynomial in � , thus by a polynomial in the first four l ’s, from
which the truncated expectation is computed.

At the maximum likelihood estimate, the first derivatives of the log
ˆ� �likelihood are zero, for � � � ,

1 1 4ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ� �0 � l � � l � � l � � � l � � � � l � n � R ,Ž .i i j i j i j i jk j k l i jk l2 6

where sup R � T . From A2, R is bounded by an average of n indepen-�̂ � � n
dent identically distributed terms having all moments; the probability that R

Ž �2 .exceeds K for some K is o n , which justifies the T term necessary for then
truncated expectation calculations.

Standardize the l ’s by

nm � L�1 l , nm � L�1 l � nL , nm � L�1 l , nm � L�1 l .Ž .i i , j j i j i , k k j k j i jk i , l l jk i jk l i , r r jk l

Ž �1�2 . Ž .Note that m , m are O n and that m , m are O 1 . Successivelyi i j p i jk i jk l p
ˆsolving the polynomial equations in � of increasing degree, obtain

1 1�̂ � m � m m � m m m � m m m � m m mi i i j j i jk j k i j k jk jk l k l2 2

21 1� m m m m � m m m � m m m m � nT m m .Ž .i jk k l jl jr s r s i jk l j k l n r r2 6

The error term is arrived at by substituting this expression into the Taylor
ˆŽ .series expansion of l � .i

ˆŽ . � �The Taylor series expansion of log f x about � � 0 gives, for � � � ,�̂

1 1 1 �2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ�K � , � � � � L � � � � L � � � � � L � t n .Ž .0 i j i j i j k i jk i j k l i jk l n2 6 24

ˆReplacing � by its polynomial approximation in m , m , m , m ,i i j i jk i jk l
ˆ �2Ž .�K � , � is approximated by a polynomial in those terms with error t n ,0 n

ˆ� �for � � � . The truncated expectation of each term in the polynomial differs
negligibly from the expectation. Contributions to the truncated expectation

ˆ� �from � � � are negligible by A6.
In evaluating the expectations of polynomials in the m’s, we make frequent

� Ž .�use of the fundamental cumulant identity McCullagh 1987 , that an expec-
tation of a product of random variables is the sum, over all partitions of
variables into components, of the product of the cumulants of the sets of
variables in the different components. Note that the cumulant of a set of
sums of independent identical random variables equals n times the cumulant
of the individual random variables. Only cumulants in the m of order 4 or

Ž .less having four or fewer variables appear in the final expression. For
1example, one of the terms in the polynomial is m L m m m m . None ofi i r r jk l j k l6

the terms involving cumulants of m m need to be considered because theyi r jk l
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are of order more than 4. The cumulant � is negligible because it ism , m , m , mi j k l

order n�n4. Thus the only nonnegligible term in the expectation is
1 M L M M . Similar computations show that the asymptotic riskr jk l i r i, j k , l2

� ˆŽ .� K � , � is as in Theorem 1. �� 00

Ž .PROOF OF THEOREM 2 Asymptotic posterior distribution and moments .
ˆ ˆTo ease notation, take � � 0. Note that the event l negative definite occursi j

Ž �2 . � � � �with probability 1 � o n . For � � � , � � � ,0

log h � f xŽ . Ž .Ž .�

1 1 2 4ˆ ˆ ˆ ˆ ˆ � � � �� l � log h � � � h � � � l � � � � l � � � n � R � ,Ž .Ž . Ž .i i i j i j i j k i jk n2 6

Ž .where sup R � � T ,�� � � � n n

p�2 �1�2ˆ ˆ ˆ � �h � f x d� � h exp l 2� det �l 1 � T �n .Ž . Ž . Ž .Ž .H ž /� i j n
� �� ��

Ž . Ž .It follows from A7, which bounds the tail probability, that H h � f x d��

satisfies the same condition, so that

1 11�2 ˆ ˆ ˆ ˆh � � x � det �l �2� exp � � l � E 1 � � l � � � � l .Ž . ž /i j i j i j i i i j k i jk2 6

Ž � � 2 .2 Ž . � Ž .where E � 1 � n � R � �n , sup R � � T as required.n �� � � � n n
ˆ� �Since the expansion of the posterior density holds only for � � � � � ,0

ˆ� �� � � � � , we may compute only the posterior truncated moments, which
ˆ� �requires integration of the Edgeworth expansion over the region � � � � � .

First, ignoring the error term, the averages of polynomials in � over this
region differ by exponentially small terms from the Gaussian averages over
R p, producing the formulas for truncated moments given in Theorem 2,
without the error terms.

ˆAgain setting � � 0, we evaluate the effect on posterior truncated mo-
Ž � � 2 .2ments of the error term E � 1 � n � R �n by breaking the integrals inton

' ' � � 'two regions, an outer one where n � � n � � A log n, and an inner one
2 2' � � � � � �'where n � � A log n. Note that E � n � � T . Since L is negativen i j

1 2ˆ � �definite by A3, the quadratic term � � l is less than �Kn � for all � withi j i j2
Ž �2 .probability 1 � o n . This term dominates the error term for � small

enough, and thus the integral over the outer region will be of size n�A 2 k.
Choosing A large enough, the contribution to the truncated moments from
the outer region is negligible.

Ž .2In the inner region, the error term is bounded by T A log n �n, and wen
� E � 2 � � 2use the bound e � 1 � E � K E for E � � . The term K E makes a� �

d�4'Ž .contribution T log n� n to a moment of order d, which is less thann
T �n2 for all moments. Replace e E by 1 � E, and expand E more accuratelyn

Ž 0 2 4 6 . Ž � � 3 � � 5. Ž .as T P � T P � T P � T P �n � � � n � R � , where P is a fixedn 0 n 2 n 4 n 6 n i
i'polynomial of degree i in n � , and the T denote different tail boundedn

random variables not depending on � . Considering the truncated posterior
mean, the truncated posterior expectation of � T P �n with respect to then i
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quadratic exponent is T �n2 for each even polynomial, and the posteriorn
Ž � � 3 � � 5. 2expectation of � � � n � R is also T �n . The contributions from E willn n

be a fortiori bounded by T �n2 for all higher truncated posterior moments, asn
required. �

ˆŽ .PROOF OF THEOREM 3 Asymptotic equivalence of � and Bayes estimate .
h � h ˆ� Ž . � � �The Bayes estimate � minimizes � K � , � � x . Assume that � � � � � .0

2 ˆŽ . � �Then g � � x gives probability t �n to the region � � � � � . By A8,n
h h h ˆ h� � Ž . � � � �� � � � � when K � , � � � . Thus if � � � � 2� , the region � � � � �

2 Ž 2 .has probability 1 � t �n , and the posterior risk exceeds � 1 � t �n . Wen n
h ˆ� �will show that an estimate in � � � � � is available with smaller risk.

The Bayes estimate � h will solve

�
h� 4� K � � K � , � � x � 0,Ž .h��i

� 1 3h h h h h� �� K � , � � � � � L � � � � � � � L � � � � MŽ . Ž . Ž . Ž .j j ki j i jkh 2��i

h hˆ ˆ ˆ ˆ� � � � L � � � � � � � L � LŽ . Ž . Ž .j j ki j i jk i j , k

1
h h 3ˆ� � � � � � � L � � M ,Ž . Ž .j k i jk2

h ˆŽ � � � �.where � � max � � � , � � � and M is bounded for � � � .
Using the truncated posterior moments of � given in Theorem 2, we obtain

1 1h �1 �1 �1 �1 �1 �2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ� � � � l h � l l l � L l L � L � T n ,ž /i i i j j i j k l jk l i j lk j , l , k j , lk n2 2

ˆ ˆwhich simplifies, using A4 and replacing L, l by L, to

h �3�2 �1 �1 �1ˆ� � � � T n � L h � L L �n � L h � q �n,i i n i , j j k , l jk , l i , j j j

Ž �1 .which establishes Theorem 3. Note that the risk of this estimate is O n ,
h ˆ� �ruling out any estimate with � � � � 2� . �

Ž .PROOF OF THEOREM 4 Asymptotic risk of Bayes estimators . Let � � 0.0
h ˆ �1 3�2Ž .Define � � � � � � L h � q �n � T �n ,i i i i, j j j n

1 1h h h h h h h�K � , � � � � L � � � � L � R � ,Ž .Ž .0 i j i j i j k i jk2 6

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ�K � , � � � � L � � � � L � R � ,Ž .Ž .0 i j i j i j k i jk2 6

1 1h �5�2ˆ ˆ ˆ ˆ�K � , � � K � , � � � � L � � � L � � � � L � T n .Ž . Ž .0 0 i j i j i j i j i j k i jk n2 2

�1Ž .Only the constant term L h � q �n in � needs to be considered ini, j j j
� ˆcomputing truncated expectations, except for the term � � � L .i j i j

EXPECTATION LEMMA. Let S be any set of indices containing more than one
� ˆ ˆ ˆ �1�2� Ž .� Ž .member. Then � � l � nL � O n .i S S
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PROOF.

ˆ �1n� � L l � T ,i i , j j n

ˆ ˆl � l � � nL � T ,S S j S j n

ˆ ˆL � L � � n L � L � T ,Ž .S S j S j S , j n

�1 �1 �1ˆ ˆ ˆn� l � nL � L l l � L l L � nL � nL l L � LŽ .ž /i S S i , j j S u , k k Su S u , k k Su S , u

'� T n ,n

�ˆ ˆ ˆ �1 �1�2 �1�2� � l � nl � L L � L � L � L � O n � O n .Ž . Ž .Ž .ž /i S S i , j j , S jS j , S jS

ˆ ˆThis lemma is useful because it permits replacement of l by nL terms in �
� ˆ �2Ž .when computing � � � L with error o n ;i j i j

1 1�1 �1 �1 �1 �1 �2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ� � �l h � l l l � L l L � L � T nž /i i j j i j k l jk l i j lk j , l , k j , lk n2 2

is replaced by

�
�1 �1 �1 �2ˆ ˆ ˆ� � � �L q � h �n � L h � q �n � � L h � q �n � T n .ˆŽ . Ž .i j i i i , j i i k i , j i i n��k

It then follows that
� h ˆ� K � , � � K � , �Ž . Ž .� 0 00

� 1
�2 �1 �1 �2� n L h � q � L h h � q q � o n . �Ž .Ž .Ž .i , j j j i , j i j i j�� 2i

Ž .PROOF OF THEOREM 5 Asymptotic Bayes risk . The asymptotic risk of � *
� 1 � ��1 �1Ž .Ž .is given by: ���� L q � L q q . Since h � 0 on the boundary, fixingi i, j j i, j i j2

all coordinates except � ,i
�max � i� � ��1 �1 �10 �hL q � L q � L q h h d� .Ž .Hi , j j i , j j i , j j i imin � i ��i

Thus the difference in Bayes risks becomes the integral of the quadratic in
h , q�,i i

1 � �h �1B � * � B � � L h � q h � q h d� .Ž . Ž . Ž . Ž .H i , j i i j j2

Ž .PROOF OF THEOREM 6 Bayes estimates form a complete class . The proof
Ž .follows Levit 1982, 1983 with adjustments to allow for Kullback�Leibler

loss. In the first case, assume that � is open bounded and connected with a
� Ž .�smooth boundary see Levit 1982 , and that conditions A hold uniformly for

all points in �; that is, each moment of log likelihood derivatives and the first
derivatives of the moments are uniformly bounded, and the information
matrix �L is bounded below by a positive definite matrix. Define the differ-
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� 1 � ��1 �1 �1Ž .Ž Ž .. Ž .Ž .ential operator 	 � ���� L ���� . Let r � ���� L q � L q q .i i, j j i i, j j i, j i j2
1�2 Ž .Let u � h . From Levit 1982 , Theorem 5, the minimum � of the Bayes

Ž . Ž h.risk difference B � * � B � for prior densities h that satisfy h � 0 on the
Ž .boundary of � and H h � d� � 1 occurs for a unique positive ‘‘least favor-�

able’’ twice differentiable h* satisfying the elliptic differential equation

	u* � � � r u* � 0.Ž .

Since � 	 0 by definition of the Bayes risk, and

h*	u* � ru* � u* A � , � � A � , � * ,Ž . Ž .

it follows that Theorem 6 holds for this particular �.
Ž .For general �, we follow Levit 1983 . If � decomposes into connected open

sets, we can prove the theorem separately within each open component, so it
is sufficient to prove the theorem for a connected open set. Assuming 0 
 �,
we approximate � by a sequence of connected bounded open sets � withi
smooth boundaries, such that 0 
 � , � � � , �� � �. Now consider thei i i�1 i
least favorable solutions u for the parameter set � , standardized so thati i

Ž .u 0 � 1; since the minimization is over a larger range of priors h for �k i�1
than for � , the minimum Bayes risks � are nonincreasing in i and convergei i
to some �*, say. We need to show that the sequence of prior root solutions uk
converges on some subsequence in � ; we follow a standard procedure using ai

� Ž . �version of Harnack’s inequality e.g., Taylor 1996 , page 349 to bound the
variation of the solutions u within � .k i

A version of Harnack ’s inequality. Suppose that � is a connected bounded
open set on which 	u � ru � 0. Suppose that �� is a connected open set with

1 2�� � �. Suppose that there exist positive definite matrices L , L and a
1 2 �Ž . �1 � � �bound C such that, for all � 
 �, L � L � L , ���� L � C, r � C.i j, k

� �Then for � small enough, whenever � � � � � , and � , � 
 ��,1 2 1 2

w � � w � k � , L1, L2 , C ,Ž . Ž . Ž .1 2

Ž .where k � � 1 as � � 0.
For each � � 0, cover � with a finite number of spheres within each ofi

Ž . Ž . Ž . Ž .which u � �u � � 1 � � , for k � i. Since u 0 � 1, for each � 
 � ,k 1 k 2 k i
Ž .u � is bounded away from 0 and infinity and converges to some positivek
Ž .u* � on a subsequence. Convergence to, say, u* may be then obtained on

some subsequence for a set of � values dense in � . Harnack’s inequalityi
shows that the function u* obtained is continuous on the dense set, and so
defines a continuous function on � . Now the solution u to the elliptici

Ž .equation 	u � � � r u � 0 is characterized by satisfying for each sphere of
radius r in �,

u � � 	uk d� , � � � � r u � k d� , �Ž . Ž . Ž . Ž . Ž .H H
� � � ���� �r ��� �r
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Žfor a kernel function k which may be interpreted as the density at � of the
expected number of times a diffusion beginning at � passes through the

.element d� before reaching the boundary . The limiting u* will satisfy these
equations with � � �* and so will satisfy on � the elliptic equationi

	u* � �* � r u* � 0.Ž .

A subsequence of such functions defined on each � will converge to ai
solution satisfying the elliptic equation on �, which concludes the proof. �

Ž .PROOF OF THEOREM 7 Predictive densities better than estimative densities .
ˆŽ .We need a generic bound M x, � , � for Taylor series expansions dependent

ˆon the new observation x, the maximum likelihood estimate � and a parame-
ˆŽ .ter � . By definition, sup M x, � , � is assumed to have finiteˆ���� � � � , ���� � � �0 ˆ� �moments, averaging over x, x when � is true. Assume � � � � � .0 0

ˆThen, expanding about � � 0, and using A2, A7,

41 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ � �f x � f 1 � � f �f � � � f �f � � � � f �f � M � ,Ž .� i i i j i j i j k i jk2 6

f x � f x h � � x d�Ž . Ž . Ž .Hh �

� 4 �2� � � � �� � f x h � � x d� 1 � Mt nŽ . Ž . Ž .H 0 � n

1� � �2ˆ ˆ ˆ ˆ ˆ� �� f 1 � � � � x f �f � � � � � x f �f � MT n ,i i i j i j n2

�2ˆ ˆ ˆ ˆhf x � f 1 � a f �f � a f �f � MT n ,Ž .h � i i i j i j n

1 1�1 �1 �1ˆ ˆ ˆ ˆ ˆ� �where a � � l L L � L , a � � l , from the posterior mo-i lk i j j, k , l j, lk i j i j2 2

ments computed in proving Theorem 4. Note that the ratio of the predictive to
the estimative densities does not involve the prior to this order of accuracy.

Ž . Ž . Ž . Ž .hDefine � x � f x �f x � 1 � MT �n. Note that if � x is defined byh � n 0
ˆ ˆ ˆŽ .replacing l in � x with nL, then H� f dx � 0. This identity will enable us to0 i

ˆ ˆshow that the difference in log densities is orthogonal to f �f to the requiredi
order of accuracy,

K f , f h � K f , f � log f �f h f x dxŽ . Ž . Ž .Ž H� � � h h � �

1 12 �2ˆ ˆ ˆ ˆ ˆ� � � � 1 � � f �f � � � f �f f dx � t n .H i i i j i j n2 2

ˆThe only term that makes a random contribution to the expectation as �
ˆ ˆŽ .varies is H� � � � f dx. Using the Expectation lemma of Theorem 4, wei i i

ˆ ˆmay replace l terms in � by corresponding nL terms with eventual error
�2 ˆŽ .o n , producing � satisfying H� f dx � 0, so this term makes no contribu-0 0 i
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tion. The remaining terms, again using the orthogonality, give

1
� h � 2 �2ˆ� K f , f � K f , f � � � f dx � o n .Ž . Ž .Ž . H� � � h � 02 02n

ˆSince � � � � t , Theorem 7 follows. �0 n
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