
The Maximum Linear Arrangement Problem for trees under projectivity and
planarity

Llúıs Alemany-Puiga,∗, Juan Luis Estebana, Ramon Ferrer-i-Canchoa

aQuantitative, Mathematical and Computational Linguistics Research Group, Computer Science Department, Universitat
Politècnica de Catalunya, Jordi Girona 1-3, 08034, Barcelona, Catalonia, Spain

Abstract

A linear arrangement is a mapping π from the n vertices of a graph G to n distinct consecutive integers. Linear
arrangements can be represented by drawing the vertices along a horizontal line and drawing the edges as
semicircles above said line. In this setting, the length of an edge is defined as the absolute value of the difference
between the positions of its two vertices in the arrangement, and the cost of an arrangement as the sum of
all edge lengths. Here we study two variants of the Maximum Linear Arrangement problem (MaxLA), which
consists of finding an arrangement that maximizes the cost. In the planar variant for free trees, vertices have
to be arranged in such a way that there are no edge crossings. In the projective variant for rooted trees,
arrangements have to be planar and the root of the tree cannot be covered by any edge. In this paper we present
algorithms that are linear in time and space to solve planar and projective MaxLA for trees. We also prove
several properties of maximum projective and planar arrangements, and show that caterpillar trees maximize
planar MaxLA over all trees of a fixed size thereby generalizing a previous extremal result on trees.

Keywords: Linear arrangements, Maximum Linear Arrangement Problem, Projectivity, Planarity, One-page
embeddings

1. Introduction

A linear arrangement π of a graph G = (V,E),
n = |V |, is a mapping of the vertices in V to distinct
consecutive integers in [1, n]; it can be seen both as
a linear ordering of the vertices or as a permutation
of the vertices, where vertices lie on a horizontal line
in integer positions. In such an arrangement, the dis-
tance between two vertices u, v ∈ V can be defined as
dπ(u, v) = |π(u) − π(v)|. For any edge uv, dπ(u, v)
represents the length of edge uv in π. We define the
cost of an arrangement π as the sum of all edge lengths
Dπ(G) =

∑
uv∈E dπ(u, v) [16, 29, 5, 23, 15].

The Minimum Linear Arrangement problem (minLA)
consists of minimizing the cost over all n! possible ar-
rangements π of the vertices of a graph G. We denote
this minimum as m [G]. The problem is NP-Hard for
arbitrary graphs [14]. Various polynomial-time algo-
rithms are available to solve minLA for trees [16, 29, 5].
The fastest, to the best of our knowledge, is due to
Chung [5]. On the other hand, the Maximum Linear
Arrangement problem (MaxLA) consists of finding the
maximum cost, denoted here as M [G] [8, 22, 7]; it is
also NP-Hard for arbitrary graphs [8]. Applications of
MaxLA can be found in placement of obnoxious facil-
ities [30], and also in statistical normalization of the

sum of edge lengths in Quantitative Linguistics studies
[31, 18, 12].

There exist several variants of edge length optimiza-
tion problems in linear arrangements [2]; two of them
are the planar and the projective variants. In the planar
variant (minLA/MaxLA under the planarity constraint),
the placement of the vertices of a free tree is con-
strained so that there are no edge crossings. Consider
two undirected edges of a graph st, uv ∈ E. Assume,
without loss of generality (w.l.o.g.), that π(s) < π(t),
π(u) < π(v) and π(s) < π(u); then st and uv cross if
π(s) < π(u) < π(t) < π(v) [4]. Arrangements with-
out edge crossings are known as planar arrangements
[25], and also one-page book embeddings [4]. There are
several O(n)-time algorithms to solve planar minLA

[24, 23, 2]. In the projective variant (minLA/MaxLA un-
der the projectivity constraint), a rooted tree is ar-
ranged so that the arrangement is planar and the root
is not covered. Given an edge uv, assume w.l.o.g.,
π(u) < π(v); then a vertex w is covered by uv if
π(u) < π(w) < π(v). Arrangements of a rooted tree
without edge crossings where the root is not covered are
known as projective [25, 26]. There are several O(n)-
time algorithms to solve projective minLA [23, 15, 2].

Projective minLA can be solved in time O(n), by
arranging the subtrees of the rooted tree on alternating

Preprint submitted to Information Processing Letters 2023-03-22

ar
X

iv
:2

20
6.

06
92

4v
5

 [
cs

.D
S]

 2
1

M
ar

 2
02

3

T r1 T r2T rk−1 T rk
r

Figure 1: The basic layout of a minimum projective arrangement
[23]. The subtrees are arranged on alternating sides of the root
r, from smallest at the center of the arrangement to largest at
the ends. Note that |V (T r

1)| ≥ · · · ≥ |V (T r
k)|. In this figure, k

denotes the degree of r.

sides of the root in the arrangement from smallest to
largest in an inside-out fashion so that vertices of the
same subtree are arranged contiguously [23, 15, 2] (Fig-
ure 1). Planar minLA can be solved in time O(n) [23, 2]
by first finding one of the two centroidal1 vertices c of
the input free tree and then solving projective minLA

for the same tree but rooted at c [23, 2].
Much research has been carried out on the minimum

variant of the problem. However, to the best of our
knowledge, comparatively less research has been con-
ducted on its maximum variant. It was probably first
studied by Harper [20, 21]. On trees, some research
has been carried out on unconstrained MaxLA, de-
noted as M [T], and planar MaxLA, denoted as Mpl [T],
where ‘pl’ stands for ‘planar’, as well as on projective

MaxLA, denoted as Mpr [T r], where ‘pr’ stands for ‘pro-
jective’ [9, 10, 11]. Concerning the unconstrained case,
it has been shown that M [T] is maximized by a bal-
anced bistar (free) tree [11] (denoted as T bb, illustrated
in Figure 2(a)), i.e.,

max
T∈Fn

{M [T]} = M
[
T bb

]

=
1

4

[
3(n− 1)2 + 1− n mod 2

]
,

where Fn is the set of all n-vertex free trees. Exact
values of M [T] have been derived for the class of bistar
trees (which comprises star and quasistar trees, shown
in Figure 2(b,d)), and linear trees (Figure 2(c)) [9, 11].
In [7, 27], Nurse et. al. proposed a O(n4d)-time algo-
rithm to solve unconstrained MaxLA on trees whose
maximum degree is bounded by a constant d.

Here we fill the gap in the literature on the calcu-
lation of MaxLA for a given tree by devising algorithms
that solve projective and planar MaxLA problems for
trees in time and space O(n). Furthermore, we give the
value of Mpr [T r] over all T r ∈ Rn, where Rn is the set
of all n-vertex rooted trees, and generalize a previous
extremal result in [9] by showing that the maximum
value of Mpl [T] over all free trees T ∈ Fn is achieved
at least by caterpillar trees.

We begin by defining notation and concepts in
Section 2. In Section 3, we present an outline of

1See [19, p. 35] for a definition of centroid of a tree.

⌈
n−2

2

⌉ ⌊
n−2

2

⌋

T bba) b)

d)c)

T star

T linear

e) T hub,star

T qstar

Figure 2: Illustration of several types of trees. a) Balanced bistar
tree Tbb of n vertices. b) Star tree T star. c) Linear tree T linear.
d) Quasi-star tree T qstar (a type of bistar tree). e) A star tree
rooted at the hub Thub,star.

an algorithm for trees unifying previous research on
constrained minLA and the new algorithms presented
in this paper for solving constrained MaxLA, thus
highlighting common patterns. In Section 4, we show
that projective MaxLA can be solved in time and
space O(n) using an strategy similar to that used to
solve projective minLA. We provide a O(n)-time and
O(n)-space algorithm to solve planar MaxLA in Section
5. Implementations of all algorithms presented here are
available in the Linear Arrangement Library2 [1].

2. Preliminaries

We denote vertices as u, v, r, w, x, y, z. We denote
integers as a, b, i, j, k, l. We denote free trees as T and
a tree rooted at vertex r as T r; we consider the edges
of a rooted tree to be oriented away from the root.
We denote the degree of a vertex u of a free tree T as
d(u), equal to the number of neighbors, and the out-
degree of a vertex of a rooted tree as dr(u), equal to the
number of out-neighbors, or children, in a rooted tree
T r. Undirected edges are denoted as uv, and directed
edges as (u, v). We denote a subtree of T r rooted at
u ∈ V as T ru ; subtree T rv is an immediate subtree of T ru
if v is a child of u. Let sv(u) = |V (T vu)|; it is easy to see
that for any edge uv, su(v) + sv(u) = n. We say that
the size of a child u of r in T r is sr(u). It will be useful
to order the immediate subtrees of Tuv according to size
in a non-increasing manner. Let su(v, i) be the size of

2Available publicly online at https://github.com/

LAL-project/linear-arrangement-library.

2

the i-th largest immediate subtree of Tuv . For the sake
of brevity, let Tui be the i-th largest immediate subtree
of Tu.

3. Outline of the algorithms

The algorithms for all four problems
projective/planar minLA/MaxLA on trees are all
of a similar structure, which can be summarized with
the following steps.

1. Find an optimal root v. In both projective vari-
ants, v is the root of the tree. In planar minLA,
v is a centroidal vertex [24, 23, 2]; there exists
several algorithms to find it [17, 23]3. In planar

MaxLA, a necessary condition for v is to have a leaf
attached (Lemma 5.4); how to find v is detailed in
Algorithm 4.2 (Supplementary material).

2. Calculate subtree sizes with respect to v.

3. In a top-down fashion, starting at T v,

(a) Sort the immediate subtrees by their size.
This step requires sorting in O(n); counting
sort [6] achieves this goal.

(b) Find an optimal position for the root of the
current subtree. In planar minLA, the im-
mediate subtrees are arranged to both sides
of the root in a balanced manner [23, 2]. In
planar MaxLA, all the immediate subtrees are
placed to the left (or to the right) of the root.

(c) Compute the interval [a, b] in which each im-
mediate subtree is to be arranged (Figure 1
depicts the arrangement in the minimization
variants; Figure 3 depicts the arrangement in
the maximization variants).

(d) Recursively apply step 3 to all immediate sub-
trees.

4. Projective MaxLA

It is easy to describe intuitively the shape of a max-
imum projective arrangement for T r. Note that in or-
der to avoid edge crossings the vertices of any subtree
must be arranged in consecutive positions. The root of
the subtree must be arranged on the leftmost (right-
most) position of the allowed interval to arrange the
subtree. All the subtrees of the subtree being arranged
must be arranged non-increasingly by size, the biggest
one nearest the root and so on, maximizing the length

3In Goldman’s work [17] there is an algorithm that can be
adapted to compute the centroid of a tree and, at the same time,
compute subtree sizes.

of the edges starting at the root. For the initial tree
we put the root, say, at the left side and the allowed
interval is all the positions. This is a right branching
arrangement; if the root is on the rightmost position,
then it is a left branching arrangement. A glance at
Figure 3 will dispel all remaining doubts. In Theorem
4.1, we prove that the arrangement described is indeed
a maximum projective arrangement of a rooted tree.

Theorem 4.1. A maximum projective arrangement of
a rooted tree T r is such that

(i) the immediate subtrees of T ru are arranged non-
increasingly by size, with the smallest one farthest
from u, all at the same side of u in the arrange-
ment, and

(ii) for every directed edge (u, v), if the arrangement
of T ru is left (resp. right) branching then the ar-
rangement of T rv is right (resp. left) branching.

Proof. First, we prove (i) with a strategy similar to
that by Hochberg and Stallmann for the minimization
problem [23, Lemma 6]. Consider a rooted tree T r

and a projective arrangement of T r constructed from a
permutation of its immediate subtrees and the root r.
Note that projective (and planar) arrangements have
to be constructed in this way, otherwise there would
be crossings; thus the arrangements of all immediate
subtrees are constructed likewise, down to the leaves.
W.l.o.g., assume that in the permutation there are more
(or equal number of) vertices to the right of r than to
the left of r.

We define two steps which, when applied to any such
arrangement, the cost never decreases. Step A consists
of swapping two subtrees in the permutation. For two
trees to the right (or to the left) of the root, if the
smaller one is nearer the root, we swap their positions
in the permutation. This always increases the total
cost of the arrangement. Step B consists of moving the
leftmost subtree in the arrangement to the right side
of the arrangement, as far as possible from the root.
This increases the cost of the arrangement since we
assumed, w.l.o.g., that there are more (or equal number
of) vertices to the right of the tree’s root than to its left.

The procedure to construct a maximum projective
arrangement is as follows. Step A is applied to both
sides of the arrangement of T r, as often as needed un-
til all subtrees are eventually arranged non-increasingly
by size with the largest subtree closest to the root, and
the smallest subtree farthest from it. Then, step B is
applied until all subtrees to the left of the root have
been placed to its right. Lastly, apply step A again as
many times as needed to obtain a non-increasing order
of all the subtrees with the largest subtree next to the
root. These steps construct a right branching arrange-
ment, but they are easily modifiable to construct a left

3

r T r1 T r2 T rk

Figure 3: A maximum projective arrangement of T r. The ar-
rangement of T r is right branching, while the arrangements of
T r
1 , . . . , T

r
k are left branching.

branching arrangement by mirroring. Note that the
order of two equally large subtrees in the permutation
of intervals does not matter, since swapping them does
not change the local cost of the subtrees, and the length
of the edges from their roots to their root’s parent does
not change.

Second, we prove (ii). We apply recursively the pro-
cedure above to the subtrees, alternating between right
branching arrangement and left branching in order to
maximize the cost. If a subtree has a left branching
arrangement, each of its immediate subtrees T ru must
have a right branching arrangement and vice versa so
as to maximize the length of the edge (r, u).

Now we list several properties that characterize max-
imum projective arrangements, all of which follow im-
mediately from Theorem 4.1.

Corollary 4.2. In a maximum projective arrangement
π of T r,

(i) The root r is placed at one end of the linear ar-
rangement,

(ii) All leaves of r, if any, are arranged consecutively
at the other end of the linear arrangement,

(iii) The first and last vertices of the arrangement are
adjacent in the tree,

(iv) The arrangements of all immediate subtrees of
any vertex branch towards the same direction.

The cost of the maximum projective arrangement of
T r is, looking at Figure 3, easy to derive. It is the
sum of the maximum projective arrangements of the
subtrees plus the sum of the lengths of the k edges
incident to the root to its children: the length of the
first edge is the size of T r1 , the length of the second
edge is the sum of the sizes of T r1 and T r2 , and so on.
Corollary 4.3 formalizes this cost.

Corollary 4.3. For any rooted tree T r,

Mpr [T r] =

d(r)∑

i=1

Mpr [T ri] +

d(r)∑

i=1

i∑

j=1

sr(r, j).

It is easy to devise an algorithm to solve projective
MaxLA from the description of the maximum arrange-
ment and the formal proof in Theorem 4.1. The algo-
rithm can be viewed as a modification of an algorithm
previously used to solve projective minLA [2, Algo-
rithm 4.1] where the intervals assigned to the subtrees
are calculated differently.

Corollary 4.4. There is an algorithm that, for any
tree T r, solves projective MaxLA in time and space
O(n), giving one of the possibly many maximum pro-
jective arrangements.

Proof. We detail such algorithm and give its proof of
correctness and cost in the Supplementary material
(Theorem 3.1, Algorithm 3.1).

We finish this section with the maximum value of
Mpr [T r] over all rooted trees T r ∈ Rn. We show that
it can be achieved by T hub,star (Figure 2(e)), a star tree
rooted at the vertex of maximum degree (the so-called
hub).

Property 4.5.

max
T r∈Rn

{Mpr [T r]} = Mpr

[
T hub,star

]
=

(
n

2

)
.

Proof. The statement follows from combining two
facts. First, it was shown that [9],

max
T∈Fn

{Mpl [T]} =

(
n

2

)
.

And, since planarity is a generalization of projectivity,
we have that

max
T r∈Rn

{Mpr [T r]} ≤ max
T∈Fn

{Mpl [T]} =

(
n

2

)
.

Second, trivially [10]

Mpr

[
T hub,star

]
= Mpl

[
T star

]
=

(
n

2

)
.

Bear in mind that all linear arrangements of a star
tree are planar because all pairs of edges share a vertex
and thus they cannot cross, and besides, in a star tree
rooted at the hub vertex, all linear arrangements are
projective because the root cannot be covered.

5. Planar MaxLA

We first show that a maximum planar arrangement of
a free tree is in fact a maximum projective arrangement
for the same tree rooted at a certain vertex.

4

Theorem 5.1. Given a free tree T , a maximum pla-
nar arrangement for T is also a maximum projective
arrangement for Tu for some u ∈ V . Formally,

Mpl [T] = max
u∈V
{Mpr [Tu]}.

Proof. Let Πpl(T, u) be the set of planar arrangements
π of T such that π(u) = 1, and let Πpr(T

v, v) be the
set of all projective arrangements π′ of T v such that
π′(v) = 1. Notice that Πpl(T, u) = Πpr(T

u, u) (see [3]
for further details on the relationship between planar
arrangements and projective arrangements). Then it is
easy to see that

Mpl [T] = max
u∈V

max
π∈Πpl(T,u)

{Dπ(T)}

= max
u∈V

max
π∈Πpr(Tu,u)

{Dπ(Tu)}

= max
u∈V
{Mpr [Tu]}.

From Theorem 5.1, we can calculate the maximum
planar arrangement by rooting the tree in every vertex
and keeping the arrangement that yields the maximum
cost. It is easy to see that this strategy has time com-
plexity O(n2) for any tree. Later in this section we
devise a O(n)-time algorithm that follows the outline
in Section 3. In order to achieve this, we first prove
that calculating the cost of a maximum projective ar-
rangement of a tree rooted at v is relatively easy if we
know the cost of the maximum projective arrangement
for the same tree rooted at a neighbor of v.

Lemma 5.2. Let T be a free tree. For any edge uv ∈
E(T), it holds that

Mpr [T v]−Mpr [Tu] = f(v, u)− f(u, v), (1)

where

f(u, v) = [d(u)− j]su(v) +

j∑

i=1

su(u, i)

and j, 1 ≤ j ≤ d(u), is the position of v in the list
of immediate subtrees of Tu sorted non-increasingly by
size.

Proof. Let k (resp. l) be the index of v (resp. u) in
the sorted list of neighbors of u (resp. v), as depicted
in Figures 4(a,b). Now, it is easy to see from Figure
4(c) that, for any edge uv, we can decompose Mpr [Tu]
into four parts: (blue) Mpr [Tu \ Tuv], where Tu \ Tuv
denotes the tree Tu without its immediate subtree Tuv ,
(red) Mpr [Tuv], (orange) the length of the edge from
u to v, and (green) the length of the segment of the
edges from u to uk+1, . . . , ud(u) that cover the subtree

Tuv (which is not counted in Mpr [Tu \ Tuv]) and which is
needed in order to insert Tuv in the maximum projective
arrangement of Tu\Tuv . More formally and in the same
order,

Mpr [Tu] = Mpr [Tu \ Tuv] +Mpr [Tuv]

+
k∑

i=1

su(u, i) + (d(u)− k)su(v).

Likewise for Mpr [T v]. Now, since Tu \ Tuv = T vu and
T v \ T vu = Tuv (Figure 4(a,b)), it is easy to see that

Mpr [T v \ T vu] +Mpr [T vu] = Mpr [Tu \ Tuv] +Mpr [Tuv] .

Hence Equation 1.

Now we explain how to use Lemma 5.2 to solve
planar MaxLA. In order to calculate efficiently the
value Mpr [T v] using the value Mpr [Tu], we use a data
structure, denoted as M, similar to an adjacency list.
M has one entry for each vertex. For any u ∈ V ,M[u]
contains d(u)-many tuples,M[u][i] where 1 ≤ i ≤ d(u),
each of five elements. Let v1, . . . , vd(u) be the neighbors
of u ordered non-increasingly by size. The tuple rela-
tive to (u, vi) ∈ E(Tu) is M[u][i] and contains (1) vi,
(2) the size of Tui , (3) the index i which is the position
of v in the list of sorted neighbors of u, (4) the position
of u in the list of sorted neighbors of vi, and (5) the
sum of the sizes of the subtrees Tu1 , . . . , T

u
i−1. See the

proof of Theorem 4.1 in the Supplementary Materials
for further details. The following theorem outlines the
algorithm.

Theorem 5.3. There is an algorithm that, for any tree
T , solves planar MaxLA in time and space O(n) giv-
ing one of the possibly many maximum planar arrange-
ments.

Proof. The algorithm (Algorithm 4.1, Supplementary
material) first builds structure M, in order to apply
Equation 1 in constant time. Its construction is done in
time and space O(n). The optimum root can be found
with a BFS traversal on the tree starting at an arbitrary
vertex w with the aid of M. The value of Mpr [Tw] is
calculated in O(n) (Corollary 4.4). Every step of the
traversal has cost O(1) usingM and Lemma 5.2. Once
the optimum root is found, say z, we already know the
cost, and a maximum planar arrangement is calculated
in O(n) as a maximum projective arrangement for T z.
We detail such algorithm and give its proof of correct-
ness and cost in the Supplementary material (Theorem
4.1, Algorithm 4.1).

In the algorithm above, we showed that the opti-
mum root to solve planar MaxLA can be found in O(n).
Although the algorithm is efficient, it is also difficult

5

u = vl

u1 uk−1 uk+1

ud(u)
uk = v

v1 vl−1 vl+1 vd(v)

vl = u

u1 uk−1 uk+1 ud(u)

v = uk

v1 vl−1 vl+1

vd(v)

a) b)

u1 uk−1 uk+1 ud(u)

v1 vl−1 vl+1 vd(v) v
u uk

c)

Figure 4: Proof of Lemma 5.2. a) A free tree T rooted at u. b) A free tree T rooted at v. c) A maximum projective arrangement of
Tu. The vertices u and v are adjacent in the tree, that is uv ∈ E. The children of both u and v are ordered: ui is the i-th largest
child of u; similarly for v. Then vertex v is the k-th largest child of u; vertex u is the l-th largest child of v. Same names for vertices
indicate equal vertices.

to understand since it needs to build M, traverse the
whole tree to find the optimum root, and there is no im-
mediate knowledge on the kind of vertex that it finds.
Ideally, the optimum root should be searched using a
characterization easier to understand and calculate as
it happens in planar minLA for trees where the optimal
root is a centroidal vertex. We now identify a necessary
condition for a vertex to be an optimum root to solve
planar MaxLA.

Let V∗(T) be the set of vertices of T for which The-
orem 5.1 holds. More formally,

V∗(T) = {v ∈ V |Mpl [T] = Mpr [T v]}. (2)

We now present a characterization of the vertices in
V∗(T).

Lemma 5.4. For any free tree T , a vertex v ∈ V∗(T)
is either a leaf or an internal vertex with some leaves
adjacent.

Proof. Notice that for n ≤ 4 this is trivially true. In
the following analysis we assume that n ≥ 5.

Let w be an internal vertex that has no leaf adjacent
and let z be the smallest child of w. Here we apply
Lemma 5.2 to show that Mpr [Tw] < Mpr [T z]. By re-
peatedly choosing the smallest child starting at w we
get a sequence of vertices u1, . . . , uj , uj+1 in which

(1) ui+1 is the smallest child of ui, (2) Mpr [Tui] <
Mpr [Tui+1], and (3) uj is the first to have a leaf adja-
cent. We can stop at uj because, by Corollary 4.2(ii),
we have that Mpr [Tuj] = Mpr [Tuj+1], where uj+1 is
any leaf of uj .

Now, let k = dw(z). By our assumption that z is not
a leaf, k ≥ 1. Let π1 be a maximum projective arrange-
ment for Tw (Figure 5(a)), and let π2 be a maximum
projective arrangement for T z (Figure 5(b)). It is easy
to see that Mpr

[
Twwi

]
for all neighbors wi of w (except

z) do not change nor does the length of the edges wwi
from π1 to π2 (1 ≤ i < d(w)). Then, due to Lemma
5.2, Mpr [T z]−Mpr [Tw] = (k + 1)sz(w)− (n− 1) and
Mpr [T z] > Mpr [Tw] iff,

ksz(w) > sw(z)− 1. (3)

If z is not a leaf, Equation 3 holds iff sz(w) > sw(z)
which trivially holds since z is the smallest child of w
and thus subtree T zw is the largest immediate subtree of
T z. Now, if z was a leaf, that is, if w had an adjacent
leaf, it would be easy to see that π2 is just the reverse
of π1. Thus improvement stops at the vertex that has a
leaf adjacent to it. More precisely, if z is a leaf Equation
3 does not hold since k = 0 and sw(z) = 1.

The proof of Lemma 5.4 does not guarantee that re-
peatedly choosing the smallest child yields Mpl [T]. It

6

w w1 wj−1

π1

z

π2

a)

b)

≥ · · · ≥ ≥

wj−1 w1≤ · · · ≤ w zkz1 ≥ · · · ≥

≤ · · · ≤zk z1 z

≥

Figure 5: Proof of Lemma 5.4. Vertex w has neighbors w1, . . . ,
wj ; no neighbor of w is a leaf. Vertex z = wj has children z1,
. . . , zk in Tw. The comparison symbols ≥ and ≤ in the diagram
indicate order of size of the subtrees rooted at the vertices at
every side of the comparison symbols. a) A maximum projective
arrangement π1 of Tw. b) A maximum projective arrangement
π2 of T z .

only guarantees improvement over the starting vertex
when said vertex has no leaves attached. Furthermore,
from Lemma 5.4, 2 ≤ |V∗(T)| (when n ≥ 2); moreover,
in the worst case, that is, in a star tree, |V∗(T)| = n.
Since the vertices in V∗(T) are either leaves or their
only neighbor, we can construct, in time O(n), the set
V1(T) ⊆ V (T) of vertices that have a leaf attached.
It is easy to see that 1 ≤ |V1(T)| ≤ min{n/2, L(T)},
where L(T) is the number of leaves of T . In order to
solve planar MaxLA, we can find the maximum root by
checking all vertices in V1(T) in time O(|V1(T)|n).

The next corollary highlights a significant difference
between the structure of maximum projective arrange-
ments and the structure of maximum planar arrange-
ments. Although the strategies to solve these related
problems have steps in common, there are differences
in the solution. While a maximum projective arrange-
ment can only have leaves at one end if the root vertex
has a leaf adjacent (Corollary 4.2), a maximum planar
arrangement always has leaves at one of the ends.

Corollary 5.5. In a maximum planar arrangement π
of T ,

(i) An internal vertex v with leaves is placed at one
end of the linear arrangement,

(ii) All leaves of v are arranged consecutively at the
other end of the linear arrangement.

Proof. Theorem 5.1 indicates that a maximum planar
arrangement is a maximum projective arrangement of
some rooted tree. Then this corollary follows from com-
bining Corollary 4.2 with Lemma 5.4.

Notice that maximum planar arrangements also sat-
isfy properties in Corollary 4.2(iii,iv).

Although solving planar MaxLA for general trees re-
quires traversing the whole tree to identify the optimum
root, it can be solved quite easily in caterpillar trees.
The next corollary explains how to construct a maxi-
mum planar arrangement for any caterpillar tree, using
the fact that all caterpillars are graceful trees proven by
Rosa [28]. A tree is said to be graceful if one can find
a (bijective) labeling φ : V → {0, . . . , n − 1} such
that each edge uv is uniquely identified by the value
|φ(u)− φ(v)|; see [13] for further details. Then, we de-
fine the arrangement π as π(u) = φ(u) + 1 and then
a graceful tree is one that can be arranged such that
there is exactly one edge of length 1, one of length 2,
and so on, until one edge of length n− 1. It is easy to
see, then, that an arrangement of a tree defined from a
graceful labeling has cost exactly

(
n
2

)
.

The next corollary also generalizes a previous result
[9], namely

max
T∈Fn

{Mpl [T]} = Mpl

[
T star

]

= Mpl

[
T linear

]
=

(
n

2

)
.

(4)

Corollary 5.6.

(i) Rosa’s construction [28] to show that caterpillar
trees are graceful corresponds to maximum planar
arrangements of the same trees,

(ii) For any caterpillar tree T , Mpl [T] =
(
n
2

)
,

(iii) The maximum Mpl [T] over all trees is achieved
at least by caterpillar trees,

(iv) The endpoints of the caterpillar’s backbone are in
V∗(T).

Proof.

(i) First, Rosa [28] showed that all caterpillar trees T
are graceful with the following construction. Iden-
tify the vertices of the caterpillar’s backbone; let
v be the vertex at one end of the backbone. Place
v at one end of the arrangement, and its leaves
at the other end. Let w be the only neighbor of
v that has not yet been placed. Place w next
to the leaves of v, and arrange the leaves of w
next to v. Continue until there are no more ver-
tices to arrange. It is easy to see that Rosa’s con-
struction for caterpillar trees is planar and follows
the characterization of a maximum projective ar-
rangement of T v (Theorem 4.1, Figure 3).

(ii) Follows from (i) and the definition of graceful
trees.

7

(iii) By (ii) and Equation 4, it immediately follows
that all caterpillar trees maximize the value of
MaxLA over all free trees.

(iv) Finally, it trivially follows from (i) that the end-
points of the backbone are in V∗(T) because the
ends of the backbone have the role of a root ver-
tex in the characterization of a maximum planar
arrangement (Theorem 5.1, Equation 2).

6. Conclusions

In this paper we have tackled projective MaxLA

and planar MaxLA. We have presented an algorithm
to solve projective MaxLA in time and space O(n)
which, besides, follows an strategy almost identical to
that used to solve projective minLA. However, the
approach we used to solve planar MaxLA differs from
the approach used to solve planar minLA: we were un-
able to characterize the vertices in V1(T) and thus, by
extension, the vertex v in the outline above (Section
3) for most trees, the exception being caterpillar trees.
Moreover, the bounds to the size of V1(T) are not suf-
ficiently low to simplify the algorithm presented here.
Future work should study stronger characterizations of
V1(T) and search for broader classes of trees for which
|V1(T)| = O(1).

Acknowledgments

We thank M. Mora for helpful comments and discus-
sions. We thank an anonymous reviewer for pointing
us to [17] and to the use of Goldman’s algorithm. We
owe them the clever proposal of the general algorithm
in Section 3. The authors are supported by a recog-
nition 2021SGR-Cat (LQMC) from AGAUR (Gener-
alitat de Catalunya). LAP is funded by Secretaria
d’Universitats i Recerca de la Generalitat de Catalunya
and the Social European Fund. JLE is funded by the
grant PID2019-109137GB-C22 from MINECO.

References

[1] Llúıs Alemany-Puig, Juan Luis Esteban, and Ra-
mon Ferrer-i-Cancho. The linear arrangement li-
brary. a new tool for research on syntactic de-
pendency structures. In Proceedings of the Sec-
ond Workshop on Quantitative Syntax (Quasy,
SyntaxFest 2021), pages 1–16, Sofia, Bulgaria, 12
2021. Association for Computational Linguistics.

[2] Llúıs Alemany-Puig, Juan Luis Esteban, and Ra-
mon Ferrer-i-Cancho. Minimum projective lin-
earizations of trees in linear time. Information
Processing Letters, 174:106204, 2022.

[3] Llúıs Alemany-Puig and Ramon Ferrer-i-Cancho.
Linear-time calculation of the expected sum of
edge lengths in planar linearizations of trees.
arXiv, 2022.

[4] Frank Bernhart and Paul C. Kainen. The book
thickness of a graph. Journal of Combinatorial
Theory, Series B, 27(3):320–331, 1979.

[5] Fan R. K. Chung. On optimal linear arrangements
of trees. Computers & Mathematics with Applica-
tions, 10(1):43–60, 1984.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald
L. Rivest, and Clifford Stein. Introduction to Al-
gorithms. The MIT Press, Cambridge, MA, USA,
2nd edition, 2001.

[7] Matt DeVos and Kathryn Nurse. A maximum
linear arrangement problem on directed graphs.
arXiv, 2018.

[8] Shimon Even and Yossi Shiloach. NP-
Completeness of several arrangement problems.
Technical Report (CS0043), Technion, Israel In-
stitute of Technology, 1975.

[9] Ramon Ferrer-i-Cancho. Hubiness, length, cross-
ings and their relationships in dependency trees.
Glottometrics, 25:1–21, 2013.

[10] Ramon Ferrer-i-Cancho. The placement of the
head that minimizes online memory. A com-
plex systems approach. Language Dynamics and
Change, 5(1):114–137, 2015.

[11] Ramon Ferrer-i-Cancho, Carlos Gómez-Rodŕıguez,
and Juan Luis Esteban. Bounds of the sum of edge
lengths in linear arrangements of trees. Journal
of Statistical Mechanics: Theory and Experiment,
2021:023403, 2 2021.

[12] Ramon Ferrer-i-Cancho, Carlos Gómez-Rodŕıguez,
Juan Luis Esteban, and Llúıs Alemany-Puig. Opti-
mality of syntactic dependency distances. Physical
Review E, 105:014308, 1 2022.

[13] Joseph A. Gallian. Graph labeling. The Electronic
Journal of Combinatorics, 1000, 12 2018.

[14] Michael R. Garey, David Stifler Johnson, and
Larry J. Stockmeyer. Some simplified NP-
Complete graph problems. Theoretical Computer
Science, pages 237–267, 1976.

[15] Daniel Gildea and David Temperley. Optimizing
grammars for minimum dependency length. In
Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 184–
191, Prague, Czech Republic, 06 2007. Association
for Computational Linguistics.

8

[16] Mark K. Goldberg and I. A. Klipker. A mini-
mal placement of a tree on the line. Technical
report, Physico-Technical Institute of Low Tem-
peratures. Academy of Sciences of Ukranian SSR,
USSR, 1976. in Russian.

[17] A. J. Goldman. Optimal center location in simple
networks. Transportation Science, 5(2):212–221,
1971.

[18] Kristina Gulordava and Paola Merlo. Multi-
lingual dependency parsing evaluation: a large-
scale analysis of word order properties using ar-
tificial data. Transactions of the Association for
Computational Linguistics, 4:343–356, 2016.

[19] Frank Harary. Graph Theory. Addison-Wesley,
Reading, MA, 1969.

[20] Lawrence H. Harper. Optimal assignments of num-
bers to vertices. Journal of the Society for In-
dustrial and Applied Mathematics, 12(1):131–135,
March 1964.

[21] Lawrence H. Harper. Optimal numberings and
isoperimetric problems on graphs. Journal of
Combinatorial Theory, 1(3):385–393, 1966.

[22] Refael Hassin and Shlomi Rubinstein. Approxi-
mation algorithms for maximum linear arrange-
ment. Information Processing Letters, 80(4):171–
177, 2001.

[23] Robert A. Hochberg and Matthias F. Stallmann.
Optimal one-page tree embeddings in linear time.
Information Processing Letters, 87(2):59–66, 2003.

[24] Mikhail Anatolievich Iordanskii. Minimal number-
ings of the vertices of trees — approximate ap-
proach. In Lothar Budach, Rais Gatič Bukhara-
jev, and Oleg Borisovič Lupanov, editors, Funda-
mentals of Computation Theory, pages 214–217,
Berlin, Heidelberg, 1987. Springer Berlin Heidel-
berg.

[25] Marco Kuhlmann and Joakim Nivre. Mildly non-
projective dependency structures. In Proceed-
ings of the COLING/ACL 2006 Main Conference
Poster Sessions, COLING-ACL ’06, pages 507–
514, 07 2006.

[26] Igor Mel’čuk. Dependency Syntax: Theory and
Practice. State University of New York Press, Al-
bany, NY, USA, 1988.

[27] Kathryn Nurse. Maximum linear arrangement of
directed graphs. Master’s thesis, Simon Fraser
University, 2019.

[28] Alexander Rosa. On certain valuations of the ver-
tices of a graph. Journal of Graph Theory, pages
349–355, 01 1967.

[29] Yossi Shiloach. A minimum linear arrangement
algorithm for undirected trees. SIAM Journal on
Computing, 8(1):15–32, 1979.

[30] Arie Tamir. Obnoxious facility location on graphs.
SIAM Journal on Discrete Mathematics, 4(4):550–
567, November 1991.

[31] Harry J. Tily. The role of processing complexity
in word order variation and change. PhD thesis,
Stanford University, August 2010. Chapter 3: De-
pendency lengths.

9

Supplementary Material – The Maximum Linear Arrangement

Problem for trees under projectivity and planarity

Llúıs Alemany-Puig∗1, Juan Luis Esteban†1, and Ramon Ferrer-i-Cancho‡1

1Quantitative, Mathematical and Computational Linguistics Research Group, Computer
Science Department, Universitat Politècnica de Catalunya

1 Introduction

Here we give detailed proofs of some of the Corollar-
ies and Theorems from the main text and pseudocode
for the algorithms to solve the problems tackled in this
paper. The theorems, corollaries and lemmas from the
main text are references here in red, bold-face and em-
phasized text. We refer the reader to the main text for
the meaning of notation.

2 Sorting of subtrees by size

The algorithms presented here require sorting the sub-
trees of a rooted tree T r non-increasingly by size. To
this aim, we use a data structure we denote by Lr. It
has n entries: for any vertex u ∈ V , Lr[u] contains
d(u) − 1 tuples (v, sr(v)) where the i-th tuple is the
root of i-th largest immediate subtree of T ru and its
size sr(u). The superscript r in Lr indicates that the
list is rooted on r, i.e., there are no tuples of the form
(p, sr(p)) where p = p(r, u) denotes the parent of u in
T r1. Lr can be constructed in time O(n) and space
O(n) using a result by Hochberg and Stallmann [3],
which was further studied in [1], and is stated next.

Proposition 2.1 (Hochberg and Stallmann [3]). Let
T = (V,E) be a free tree. The values in the set

{(u, v, su(v)), (v, u, sv(u)) | uv ∈ E},

where (x, y, sx(y)) denotes a 3-tuple in which xy ∈ E,
are O(n)-time and O(n)-space computable.

Algorithms 2.1 and 4.2 in [1] show pseudocode for
Proposition 2.1. The former ([1, Algorithm 2.1]) is
used by Algorithm 4.3 under the name compute s ft.
The latter ([1, Algorithm 4.2]) is used by Algorithm

∗lluis.alemany.puig@upc.edu
†esteban@cs.upc.edu
‡rferrer@cs.upc.edu
1The parent of u 6= r in T r is the only vertex v such that

(v, u) ∈ E(T r).

3.1 to construct Lr. In [1], Lr was used to calculate
mpr [T r]; here we need it to compute Mpr [T r]. Read-
ers will find pseudocode to construct Lr in [1, Algo-
rithm 4.2]. That algorithm is used here under the name
sorted adjacency list rt.

3 Projective MaxLA

Algorithm 3.1 solves projective MaxLA. It is a
modification of algorithms previously used to solve
projective minLA [1, Algorithm 4.1]. We also justify
its correctness and cost more formally.

Theorem 3.1 (Corollary 4.4). For any rooted tree T r,
Algorithm 3.1 solves projective MaxLA in time O(n),
space O(n).

Proof. Algorithm 3.1 is a modification of an algorithm
previously used to solve projective minLA [1, Algo-
rithm 4.1]. The algorithm to solve projective MaxLA

is based on Theorem 4.1. The algorithm takes T ru and
uses the subtree-size adjacency list Lr[u] to arrange its
immediate subtrees in a non-increasing fashion in the
interval [a, b] passed as parameter (Theorem 4.1(i)). In
the first call, the interval is [1, n]. Since we have to
construct a left (resp. right) branching arrangement
(Theorem 4.1), we place the root of the subtree at ei-
ther position a or b; the exact end is decided using the
parameter τ which indicates the side in which u has
been placed with respect to its parent in the arrange-
ment, either left or right (Theorem 4.1(ii)). The
interval of positions within the arrangement of the i-th
subtree when τ = left is

a+

i−1∑

j=1

sr(u, j) + 1, a+

i∑

j=1

sr(u, j)

and when τ = right the interval is

b−

i∑

j=1

sr(u, j), b−
i−1∑

j=1

sr(u, j)− 1

 .

1

ar
X

iv
:2

20
6.

06
92

4v
5

 [
cs

.D
S]

 2
1

M
ar

 2
02

3

It is easy to see that its time complexity is O(n). Its
space complexity is also O(n) given the need to con-
struct Lr.

4 Planar MaxLA

Here we present Algorithm 4.1 to solve Planar MaxLA.
We also prove its correctness and cost more formally.

Theorem 4.1 (Theorem 5.3). For any free tree T , Al-
gorithm 4.1 solves planar MaxLA in time and space
O(n).

Proof. The main idea behind Algorithm 4.1 is that it
performs a BFS traversal on the tree and, for every
traversed edge uv, say, from u to v, apply Lemma 5.2
so as to calculate the value Mpr [T v] in time O(1) (using
the fact that Mpr [Tu] is known). The BFS starts at an
arbitrary vertex, say w, for which we calculate Mpr [Tw]
in time O(n) using Algorithm 3.1. Once the traversal
has finished the algorithm will have calculated all values
Mpr [T x] for all x ∈ V .

Algorithm 4.1 simply calls Algorithm 4.2 which first
constructs, using Algorithm 4.3, an adjacency list sim-
ilar to Lr, denoted as M (described in Section 5). Af-
ter that, Algorithm 4.2 performs the BFS traversal ex-
plained above to calculate in constant time Mpr [T v]
from Mpr [Tu] using the values stored inM and apply-
ing them with Lemma 5.2.

The structure M contains a tuple for every directed
edge. Given a directed edge (u, v), the tuple is of the
form (v, su(v), σu(v), σv(u), εu(v)), where v is the root
of the i-th largest immediate subtree of Tu and εu(v)
denotes the sum of the sizes of the first σu(v) largest
immediate subtrees of Tu,

εu(v) =

σu(v)∑

j=1

su(u, j).

Notice that for every edge uv, the entries

M[u][σu(v)] = (v, su(v), σu(v), σv(u), εu(v))

M[v][σv(u)] = (u, sv(u), σv(u), σu(v), εv(u))

are related since the third value in M[u][σu(v)] is the
same as the fourth value in M[v][σv(u)] and the third
inM[v][σv(u)] is the same as the fourth inM[u][σu(v)].

It can be seen in Algorithm 4.3 that the calculation
of the values su(v), σu(v), εu(v) for the tuples in entry
M[u] is correct. It remains to ascertain that the value
σv(u) is also calculated correctly in time O(n). These
values cannot be calculated directly in the first for loop.
This is why they are added as ‘0’ in line 9, and thus an
auxiliary list J (line 4) is used instead: it is first filled

in the first loop (line 10), and is used in the second
loop starting at line 13 to add the values σv(u) in the
corresponding tuples in M[u] (line 14). At the end
of the first for loop, the auxiliary list J contains the
same tuples as S except that J contains extra indices
σv(u): notice that values (v, u, n−su(v), σu(v)) are the
same as (v, u, sv(u), σu(v)), and, furthermore, the same
as (u, v, su(v), σv(u)). Now, let Ju ⊆ J be the subset
of tuples from J starting with vertex u. The relative
order of the tuples from Ju (in J), is the same from the
corresponding tuples in S with the exception of ties
among neighbors v of u with the same size su(v). The
order in which they appear in J is irrelevant, that is,
it is easy to see that for a given u ∈ V and a subset of
neighbors {v1, . . . , vk} of u such that su(vi) = su(vj)
for all i, j ∈ [1, k] we have that σvi(u) = 1. It remains
to distribute them appropriately among the tuples in
M[u]. This is done in the second for loop (line 13).

The size complexity ofM is clearly O(n). The extra
space complexity needed to store the values of Mpr [T x]
for all x ∈ V is also O(n). The call to Algorithm 3.1,
the BFS traversal, and the application of Lemma 5.2
all require time complexity O(n).

References

[1] Llúıs Alemany-Puig, Juan Luis Esteban, and Ra-
mon Ferrer-i-Cancho. Minimum projective lin-
earizations of trees in linear time. Information Pro-
cessing Letters, 174:106204, 2022.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald
L. Rivest, and Clifford Stein. Introduction to Algo-
rithms. The MIT Press, Cambridge, MA, USA, 2nd
edition, 2001.

[3] Robert A. Hochberg and Matthias F. Stallmann.
Optimal one-page tree embeddings in linear time.
Information Processing Letters, 87(2):59–66, 2003.

2

Algorithm 3.1: Projective MaxLA.

1 Function ArrangeMaximumProjective(T r) is
Input: T r rooted tree at r.
Output: A maximum projective arrangement π.

2 Lr ← sorted adjacency list rt(T r) // [1, Algorithm 4.2]

3 π ← {0}n // empty arrangement

4 Arrange Rec(Lr, r, right, 1, n, π) // The starting side is arbitrary.

5 return π

6 Function Arrange Rec(Lr, u, τ, a, b, π) is
Input: Lr as described in Section 2; u the root of the subtree to be arranged; τ the side (relative position of

u with respect to its parent); [a, b] interval of positions of π where to embed T r
u ; π a

partially-constructed arrangement.
Output: π updated with the optimal projective arrangement for T r

u in [a, b].
7 Cu ← Lr[u] // the children of u sorted non-increasingly by size

8 S ← 0 // Cumulative size of the subtrees

9 if τ = left then τnext ← right

10 else τnext ← left

11 for i from 1 to |Cu| do
12 v, nv ← Cu[i] // the i-th child of u, and its size nv = sr(v)
13 if τ is left then anext ← a+ S + 1; bnext ← anext + nv − 1
14 else bnext ← b− S − 1; anext ← bnext − nv + 1
15 Arrange Rec(Lr, v, τnext, anext, bnext, π)
16 S ← S + nv

17 if τ = left then π(u)← a
18 else π(u)← b

Algorithm 4.1: Planar MaxLA.

Input: T free tree.
Output: A maximum planar arrangement π.

1 Function ComputeMaximumPlanarD(T) is
2 s← ComputeOptimalRoot(T) // Algorithm 4.2.

3 return ArrangeMaximumProjective(T s) // Algorithm 3.1.

Algorithm 4.2: Finding an optimal root.

Input: T free tree.
Output: A vertex r that maximizes Mpl [T

r].
1 Function ComputeOptimalRoot(T) is
2 M← Compute M(T) // Algorithm 4.3

3 w ← choose an arbitrary vertex
4 Q← {w} // the queue of the breadth-first search

5 vis← {0}n; vis[w]← 1 // vertices marked as not visited, except w
6 D ← {0}n // an n-zero vector

7 D[w]←Mpr [T
w] // calculated using Algorithm 3.1

8 while |Q| > 0 do
9 u← front(Q) // the next vertex in the queue

10 Q = Q \ {u} // remove u from the queue

11 for X ∈M[u] do
12 if vis[X.v] 6= 1 and d(X.v) > 1 then

// excluding leaves because they do not belong to V1(T)

13 D[X.v]←Mpr

[
TX.v

]
// Lemma 5.2. Use M[X.v][X.σv(u)].εv(u) and D[u]

14 vis[X.v]← 1 // Mark vertex X.v as visited

15 Q← Q ∪ {X.v} // Append X.v to the queue

16 s← argmaxu∈V {D[u]} // D[u] contains Mpr [T
u] for all u ∈ V

17 return s

3

Algorithm 4.3: Calculation of M.

Input: T free tree.
Output: M, whereM[u] contains d(u)-many tuples of the form (v, su(v), σu(v), σv(u), εu(v)).

1 Function Compute M(T) is
2 S ← compute s ft(T) // [1, Algorithm 2.1], Proposition 2.1

3 Sort the tuples (u, v, su(v)) in S non-increasingly by su(v) using counting sort [2]
4 J ← ∅ // J is used to compute the indices σv(u) in every entry of M[u]
5 M← {∅}n // Firstly, fill M partially

6 for (u, v, su(v)) ∈ S do
7 ku ← |M[u]| // The current size of M[u]
8 gu ←M[u][ku − 1].εu(v) // The value εu(v) in the last tuple of M[u]

// By construction, ku = σu(v)
9 M[u]←M[u] ∪ (v, su(v), ku, 0, su(v) + gu) // Append at end in O(1).

// Recall that sv(u) = n− su(v)
10 J ← J ∪ (v, u, n− su(v), ku) // Append at end in O(1).

11 Sort the tuples (u, v, su(v), i) in J (where i = σv(u)) non-increasingly by su(v) with counting sort [2]
// Fill the missing indices σv(u) in the tuples of M[u] using J

12 I ← {1}n
13 for (u, v, su(v), i) ∈ J do
14 M[u][I[u]].σv(u)← i
15 I[u]← I[u] + 1

16 returnM

4

