The Maximum Number of Odd Integral Distances Between Points in the Plane

L. Piepmeyer*
Technische Universität Braunschweig, Diskrete Mathematik, Pockelsstrasse 14, D-38106 Braunschweig, Germany

Dedicated to Professor Dr. H.-J. Kanold on the occasion of his eightieth birthday

Abstract

Four points in the plane with pairwise odd integral distances do not exist. The maximum number of odd distances between n points in the plane is proved to be $n^{2} / 3+r(r-3) / 6$ for all n, where $r=1,2,3$ and $n \equiv r(\bmod 3)$. This solves a recently stated problem of Erdôs.

For every dimension d and for every natural number n there exist n points in the Euclidean space E^{d} with pairwise integral distances, since n equidistributed points on a line determine by an appropriate scaling only integral distances. However, the maximum number of points with pairwise odd integral distances in E^{d} is $d+2$ if $d+2 \equiv 0$ $(\bmod 16)$ and $d+1$ in the remaining cases (see [2]; an independent proof was given in [4]). Thus four points in the plane with mutual odd distances do not exist.

Erdôs [1] asked for the maximum number $f(n)$ of odd integral distances occurring between n points in the plane. This maximum $f(n)$ is determined in Theorem 1. The proof is based on a construction given in [3]. Moreover, we make use of Turán's theorem from graph theory (see p. 30 of [5]).

Turán's Theorem. The maximum number of edges in a graph with n vertices that does not contain a complete subgraph with four vertices is

$$
\frac{n^{2}}{3}+\frac{r(r-3)}{6} \text { with } r=1,2 \text {, or } 3, \text { and } n \equiv r(\bmod 3)
$$

The upper bound is attained if and only if the graph is isomorphic to the complete 3-partite graph T_{n} with three vertex classes that have almost the same size.

[^0]Theorem 1. The maximum number $f(n)$ of odd integral distances between n points in the plane is

$$
f(n)=\frac{n^{2}}{3}+\frac{r(r-3)}{6} \quad \text { with } r=1,2 \text {, or } 3, \text { and } n \equiv r(\bmod 3) .
$$

Proof. The upper bound $f(n) \leq n^{2} / 3+r(r-3) / 6$ follows immediately from Turán's theorem if we consider a set \mathcal{S} of n points in the plane with the maximum number of odd integral distances together with the graph $G(\mathcal{S})$ induced by the points and the odd distances of \mathcal{S}. Since $G(\mathcal{S})$ does not contain a complete graph with four vertices the number of edges in $G(\mathcal{S})$ and hence the upper bound for the number of odd integral distances in \mathcal{S} follows by Turán's theorem.

The lower bound $f(n) \geq n^{2} / 3+r(r-3) / 6$ follows by construction of a set $\mathcal{P}_{m}=$ $\left\{p_{0}, \ldots, p_{3 m-1}\right\}$ of $n=3 m$ points in the complex plane with $3 m^{2}$ odd integral distances for each natural number m. Since $G\left(\mathcal{P}_{m}\right)$ is isomorphic to $T_{3 m}$ by Turán's theorem, the deletion of one or two appropriate vertices leaves a $T_{3 m-1}$ or a $T_{3 m-2}$ so that the corresponding point sets prove the lower bound for $n=3 m-1$ or $n=3 m-2$.

For the third root of unity $\rho=(-1+\sqrt{3} i) / 2$ with $i^{2}=-1$, and for $\omega=3+\rho$ let $\eta_{k}=7^{m-[k / 3]} \rho^{k} \omega^{2[k / 3]}$, and $p_{k}=\sqrt{3} \eta_{k}^{2} /\left(3 \cdot 7^{m}\right)$ with $0 \leq k<3 m$. This is the special case $R=7^{m}=(\omega \bar{\omega})^{m}$ of a construction given in [3] (see Fig. 1 for the case $m=2$). The points of the construction consist of the vertices of a regular triangle of side lengths 7^{m} that is rotated $m-1$ times about its center through an angle $\theta=\arccos 71 / 98$.

In [3] it is shown that $\bar{\eta}_{s} \eta_{t}=x+\rho 7^{m}\left|p_{s}-p_{t}\right|$ for $0 \leq s<t<3 m$ and with a real number x. Comparing the imaginary parts implies

$$
\left|p_{s}-p_{t}\right|=\frac{\operatorname{Im}\left(\bar{\eta}_{s} \eta_{t}\right)}{7^{m} \operatorname{Im}(\rho)}=\frac{(2 \sqrt{3} / 3) \operatorname{Im}\left(\bar{\eta}_{s} \eta_{t}\right)}{7^{m}}
$$

With $\bar{\rho}=\rho^{2}$ and $\omega \bar{\omega}=7$ it follows that

$$
\bar{\eta}_{s} \eta_{t}=7^{2 m+\lfloor s / 3\rfloor-\lfloor t / 3\rfloor} \rho^{t+2 s} \omega^{2\lfloor t / 3\rfloor-2\lfloor s / 3\rfloor} .
$$

Fig. 1. Six points with 12 odd distances.

Since all occurring distances $\left|p_{s}-p_{t}\right|$ are integers as shown in [3] the number of odd distances equals the number of odd numbers $(2 \sqrt{3} / 3) \operatorname{Im}\left(\rho^{t+2 s} \omega^{2[t / 3]-2\lfloor s / 3]}\right)$, with $0 \leq s<t<3 m$.

With $\omega^{2}=8+5 \rho, \rho^{2}=-1-\rho$, and $\rho^{3}=1$, and with

$$
\begin{aligned}
(8+5 \rho)^{k}= & \sum_{v \equiv 0(\bmod 3)} 8^{k-v} 5^{v}\binom{k}{v}+\rho \sum_{v=1(\bmod 3)} 8^{k-v} 5^{v}\binom{k}{v} \\
& -(1+\rho) \sum_{v \equiv 2(\bmod 3)} 8^{k-v} 5^{v}\binom{k}{v}
\end{aligned}
$$

it follows that $\omega^{2 k}$ and ρ^{k} are both of the form $a+b \rho$ with integers a, b satisfying $a \equiv 1,0,1(\bmod 2)$ and $b \equiv 0,1,1(\bmod 2)$ for $k \equiv 0,1,2(\bmod 3)$, respectively. Thus $(2 \sqrt{3} / 3) \operatorname{Im}\left(\omega^{2 k} \rho^{l}\right)$ for fixed k is an odd number in exactly two of the three cases $1=0,1,2$. Now it follows for all pairs s, t with $0 \leq\lfloor s / 3\rfloor<\lfloor t / 3\rfloor<m$ that exactly six of all nine distances $\left|p_{s}-p_{t}\right|$ are odd. In the remaining m cases where $\lfloor s / 3\rfloor=\lfloor t / 3\rfloor$ all three distances $\left|p_{s}-p_{t}\right|$ are odd. Altogether there are $6\binom{m}{2}+3 m=3 m^{2}$ odd integral distances in \mathcal{P}_{m} and the proof is complete.

References

1. P. Erdõs, Oral communication, Conference on Graph Theory, Combinatorics, and Computation, 1994, Boca Raton, FL.
2. R. L. Graham, B. L. Rothschild, and E. G. Straus, Are there $n+2$ points in E^{n} with pairwise odd integral distances? Amer. Math. Monthly 81 (1974), 21-25.
3. H. Harborth, A. Kemnitz, and M. Möller, An upper bound for the minimum diameter of integral point sets, Discrete Comput. Geom. 9 (1993), 427-432.
4. M. Rosenfield, Oral communication, Conference on Graph Theory, Combinatorics, and Computation, 1994, Boca Raton, FL.
5. J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 1992.

[^0]: * Current address: Morassistrasse 24, 80469 Munich, Germany. lotharp@informix.com.

