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THE MAXIMUM NUMBERS OF FACES OF A CONVEX
POLYTOPE

P. McMULLEN

Abstract. In this paper we give a proof of the long-standing Upper-bound
Conjecture for convex polytopes, which states that, for 1 < j < d < v, the maximum
possible number of j-faces of a c/-polytope with v vertices is achieved by a cyclic
polytope CO', d).

1. Introduction. Let P be a c/-polytope, and for 0 < j < d — 1, let/}(P) denote
the number of its y-faces. (In matters of terminology, we shall follow Griinbaum
[1967] throughout.) Of some practical, as well as considerable theoretical importance
is the problem of determining

Hj(v, d) = max {fj(P) | P a J-polytope, with/0(P) = v}.

The convex hull of v distinct points on the moment curve

M, = {(T, T2, ..., rd) e Ed | - TO < x < ca},

is called a cyclic polytope C(v, d). The combinatorial type of C(v, d) is independent
of the particular choice of the v vertices on Md (see Griinbaum [1967, §4.7]); we
write

fj(v, d) = fj(C(v, d)).

T. S. Motzkin [1957] formulated what has come to be known as

THE UPPER-BOUND CONJECTURE. For all I < j < d < v,

Hj(v,d)=fj(v,d).

In fact, Motzkin's formulation was categorical; however, no proof was subsequently
published, and so it seems more reasonable to call the statement a conjecture.

Since 1957, considerable efforts have been devoted to proving various cases of the
Upper-bound Conjecture. Of particular importance were the contributions of
Fieldhouse [1961], Klee [1964b] and Gale [1964]; it should also be noted that the
cases d < 4 were already known to Bruckner [1893]. For detailed discussions of the
history of these investigations, the reader should consult Griinbaum [1967, §10.1,
1970].
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180 P. McMULLEN

In this paper, we shall give a complete proof of the Upper-bound Conjecture.
Before stating the form in which we shall prove the conjecture, we remark upon two
important properties of the cyclic polytope C(v, d). Firstly, C(v, d) is simplicial;
that is, all its faces are simplices. Secondly, C(v, d) is neighbourly; that is, for each
1 < r < n = [id], every subset of r vertices of C(v, d) is the set of vertices of a
(r — l)-face of Civ, d). (For proofs of these assertions, see, for example, Grtinbaum
[1967, §4.7].) Then we shall prove

THEOREM. Let P be a d-polytope with v vertices. Then for 1 ^ j < d — 1,

fj(P) ^ fj(v, d).

Moreover, if equality is attained for some [i(d — 1)] < j < d — 1, then P is simplicial
and neighbourly, and equality is attained for eachj.

2. The Dehn-Sommerville Equations. Klee [1964b] has shown that if P is any
d-polytope, then there is some simplicial d-polytope Q with the same number of vertices
such that, for 1 < j < d — 1,

In fact, McMullen [1970a] has shown further that, if P is non-simplicial, then the
inequality is strict whenever [i(d — 1)] < j < d — 1. It is thus clear that if we are
interested in the problem of maximizing /}(P), we may without loss of generality
restrict our attention to simplicial polytopes P.

If P is a simplicial d-polytope, then the numbers of its faces satisfy various linear
relations, called

THE DEHN-SOMMERVILLE EQUATIONS. For each - 1 s% fc < d - 2,

where, conventionally, we write / _ i (P ) = 1.

For proofs of this result, see Derm [1905] (in case d = 4, 5), SommerviUe [1927],
and, more recently, Klee [1964a] and Griinbaum [1967].

The Dehn-Sommerville equations can be reformulated in many ways. For
example, we can write fn{P), . . . . / a -^P) (we shall always let n = [id]) in terms of
/o(P), ••-,/„-i(P) (for proofs see, among others, Fieldhouse [1961], Klee [1964a,
1964b], McMullen-Shephard [1970] and McMullen [1970b]). Here we shall find
more useful a reformulation due to SommerviUe [1927] (see also Griinbaum [1967,
§9.2], McMullen-Walkup [1970]). For - 1 < k ^ d - 1, we write

where, as usual,/_j(P) = 1. Then we have

LEMMA 1. The Dehn-Sommerville equations are equivalent to the following
relations. For —1 ^ k ^ n — 1 ( » = [id]),
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The relationship between the numbers fj(P) and gk
w(p) can also be expressed as

follows. For - 1 < j < d - 1,

d - k - l

In view of the relations of Lemma 1, we can rewrite these as

where ^> d_n_x is Kronecker's delta function. It should be particularly noted that
the coefficients are non-negative, and positive if n — 1 < J < d — 1.

If P is a neighbourly d-polytope with v vertices, it is clear that, for
- 1 < ; < n- 1,

This implies that, for - 1 < k < n - 1,

Thus, to prove the Upper-bound Conjecture, in the formulation of the theorem
of this paper, it is enough to prove

LEMMA 2. Let P be a simplicial d-polytope with v vertices. Then for
1 < k s? n - 1,

Notice that equality in all these relations will characterize P as neighbourly.

3. Shelling the boundary complex. The set of faces of a d-polytope P, together
with the empty face 0 (whose dimension is conventionally taken to be — 1), forms a
cell complex dP, the boundary complex of P, whose underlying polyhedron (in the
topological sense) is the boundary bd P of P. Bruggesser-Mani [1970] have proved
that dP is shellable, in the sense that the facets (i.e. the (d — l)-faces) of P may be
labelled F t . ..., Fm (m = /d_i(P)) , in such a way that, for 1 < s < m - 1,

Ms = ^0 Ft,

is a (topological) (d — l)-ball, with the property that, for 2 < s < m — 1, Ms_x n Fs

is a (topological) (d - 2)-ball.
The boundary complex of a polytope can be shelled in many ways; since we

shall later need to choose a shelling with particular properties, we shall give a brief
description of the method of Bruggesser-Mani [1970]. Let L be a line through an
interior point of the polytope P, in general position with respect to the supporting
hyperplanes corresponding to the facets of P. We label the facets Fu ..., Fm in such
a way that, as we proceed along L from the interior of P, we meet successively
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the corresponding support hyperplanes Hu...,Hm. We must regard order along
L in the projective sense, so that we pass through infinity along L. Then if y is any
point on L between Hs and Hs + 1, before passing through infinity, Ms is the set of
points of bd P visible from y, and after passing through infinity, Ms is the set of
points of bd P net visible from y.

If P is a simplicial polytope, for 1 ^ s < m, we write

where fj(Ms) denotes the number of j-faces of P in Ms, with the usual convention
/_i(Ms) = 1. We shall also let Mo = 0 , with/}(M0) = 0 for every ;. Thus, in
particular, gk

w(Mm) = gk
(d)(P) for each k.

We consider the quantity

for 1 < s < m. If 2 < s ^ m — 1, Ms_! n F s is a (d - 2)-ball composed of faces
of the (d — l)-simplex ^ j thus it is the union of all the (d — 2)-faces of Fs which
contain some particular face of Fs. If this face of Fs has dimension d — r — 2 (say),
then, in going from M s _ t to Ms, the new faces of P added are precisely the opposite
r-face of Fs and the ./-faces (r < j < d — 1) of Fs which contain it (including

Fs itself). There are I , . . 1 such y-faces, and so

J^-i( } \d-k~lj\j-r)

the Kronecker delta. It is clear that this equation also holds in the extreme cases
s = 1 (with r = — 1) and s = m (with r = d — 1).

It incidentally follows from this argument that gk
w(P) ^ 0 for each k. Further,

since if we consider the facets of P in the reverse order Fm, ..., Fl, we again obtain
a shelling of dP, with the roles of the r-face and (d — r — 2)-face of Fs interchanged,
we also deduce that gk

d\P) = rf2jt_2(^
>); that is, in view of Lemma 1, we have a

new proof of the Dehn-Sommerville equations.
Since go

w(P) = fo(P) — d, the crucial Lemma 2 is clearly an immediate
consequence of

LEMMA 3. Let P be a simplicial d-polytope with v vertices. Then for
1 < k < d- 1,

{k + \)g«\P) ^ {v - d +

Let x be a vertex of P, and let Px be the vertex-figure of P at x. That is, Px is a
simplicial (d — l)-polytope obtained as the intersection of P with any hyperplane
which strictly separates x from the remaining vertices of P. We shall prove Lemma 3
by comparing the values of ^(''~1)(PX) and gk

(d)(P) in two ways.
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Firstly, we obtain the exact relation

£ rf-V' (Px) = (*+! ) gkW(P) + {d-k) g»l t (P),
x e vert JP

where vert P denotes the set of vertices of P. This can be proved by writing down the
expression for gfs^KPx) m terms of/}_1(Px), and using the relationship

x e vert P

However, we can give a more geometrical proof as follows. Let Fu ..., Fm be a
shelling of dP, as described above. This clearly gives rise to a shelling of the boundary
complex of each vertex-figure of P. Again as above, let us suppose that in adding
the simplex Fs to Ms_x to obtain Ms, the faces of P added consist of an r-face of Fs

and the faces of Fs which contain it; that is, we just increase gr
w by 1. Clearly,

d vertex-figures of P are affected by adding Fs; in r + 1 of them we increase gJ-lV* by
1, and in the remaining d — r — 1, we increase g^d~X) by 1. From this, the expression
above follows at once.

The second relation is
S g\f--1

lHPx)<vg»21(P).
x e vert P

For, consider any vertex-figure Px. The method of Bruggesser-Mani [1970] clearly
allows us to choose a shelling of dP so that, for some s, Fu ..., Fs are the facets of P
which contain x. Then if at any of the first s steps of the shelling we add 1 to gr

w

for P, we also add 1 to gr
( d - 1 ) for Px. We conclude that

from which the second relation follows at once.
These two relations immediately imply the assertion of Lemma 3. In view of the

remarks before Lemmas 2 and 3, we see that we have proved, the theorem; that is,
we have proved the Upper-bound Conjecture.

4. Remarks. It has also been conjectured that the Upper-bound Conjecture
holds for simplicial complexes whose underlying polyhedron is a (d — l)-sphere;
this question has been discussed in some detail by Griinbaum [1970]. The proof
in the case of polytopes cannot be extended to such more general complexes, some
of which are not shellable, and certainly not in the special ways demanded by the
proof above. It is therefore still a possibility that the Upper-bound Conjecture fails
for some triangulated spheres.

Note added in proof (October 1970). An alternative approach to the proof uses
the dual formulation. In this, we consider the subcomplexes consisting of all the faces
of a simple d-polytope P (possibly including P itself) which are contained in variable
closed half-spaces with fixed outward normal vector. For such a complex M, let

so that
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184 THE MAXIMUM NUMBERS OF FACES OF A CONVEX POLYTOPE

We find that gk*(M) increases by 5kr as M acquires (say) r edges of P through some
vertex x, and from this we obtain the relations

(d-

where the sum is taken over the / facets F of P. We deduce that, for
k - d - n, ...,d - 2,

*, x lf~k- 1\
\ d-k J

and equality occurs only when P is the dual of a neighbourly polytope.
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