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THE MAXIMUM ON A RANDOM TIME INTERVAL OF A

RANDOM WALK WITH LONG-TAILED INCREMENTS AND

NEGATIVE DRIFT1

BY SERGUEI FOSS AND STAN ZACHARY

Heriot-Watt University

We study the asymptotics for the maximum on a random time interval of
a random walk with a long-tailed distribution of its increments and negative
drift. We extend to a general stopping time a result by Asmussen, simplify its
proof and give some converses.

1. Introduction. Random walks with long-tailed increments have many
important applications in insurance, finance, queueing networks, storage processes
and the study of extreme events in nature and elsewhere. See, for example,
Embrechts, Klüppelberg and Mikosch (1997), Asmussen (1998, 1999) and
Greiner, Jobmann and Klüppelberg (1999) for some background. In this paper we
study the distribution of the maximum of such a random walk over a random time
interval.

Let F be the distribution function of the increments of a random walk {Sn}n≥0

with S0 = 0. Suppose that this distribution has a finite negative mean and that
F is long-tailed in the positive direction (see below for this and other definitions).
Of interest is the asymptotic distribution of the maximum of {Sn} over the
interval [0, σ ] defined by some stopping time σ . Some results for the case where
σ is independent of {Sn} are known (again see below). However, relatively little is
known for other stopping times. Asmussen (1998) gave the expected result for the
case σ = τ , where

τ = min{n ≥ 1 :Sn ≤ 0}(1)

[see also Heath, Resnick and Samorodnitsky (1997) and Greiner, Jobmann and
Klüppelberg (1999)]. This result requires the further condition that the distribution
function F have a right tail which belongs to the class S∗ introduced by
Klüppelberg (1988) (we shall simply write F ∈ S∗). In the present paper we extend
Asmussen’s result to a general stopping time σ . In doing so we also simplify the
derivation of the original result and we show that the condition F ∈ S∗ is necessary
as well as sufficient for it to hold. We also give a useful characterization of the
class S∗. Finally, as a corollary of our results, we give a probabilistic proof of the
known result that any distribution function G ∈ S∗ is subexponential.
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Thus, let {ξn}n≥1 be a sequence of independent identically distributed random
variables with distribution function F . We assume throughout that

Eξn = −m < 0.(NEG)

We further assume throughout that the distribution function F is long-tailed (LT),
that is, that

F(x) > 0 for all x, lim
x→∞

F(x − h)

F (x)
= 1 for all fixed h > 0.(LT)

Here, for any distribution function G on R, G denotes the tail distribution given
by G(x) = 1 − G(x). Define the random walk {Sn}n≥0 by S0 = 0, Sn =

∑n
i=1 ξi

for n ≥ 1. For n ≥ 0, let Mn = max0≤i≤n Si and let M = supn≥0 Sn. Similarly,
for any stopping time σ (with respect to any filtration {Fn}n≥1 such that, for
each n, ξn is measurable with respect to Fn and ξn+1 is independent of Fn), let
Mσ = max0≤i≤σ Si . We are interested in the asymptotic distribution of Mσ for
a general stopping time σ (which need not be a.s. finite). In particular we are
interested in obtaining conditions under which

lim
x→∞

P(Mσ > x)

F (x)
= Eσ.(2)

We require first some further definitions. For any distribution function G

on R define the integrated, or second-tail, distribution function Gs by Gs(x) =

min(1,
∫ ∞
x G(t) dt). A distribution function G on R+ is subexponential if and only

if G(x) > 0 for all x and limx→∞ G∗2(x)/G(x) = 2 (where G∗2 is the convolution
of G with itself). More generally, a distribution function G on R is subexponential
if and only if G+ is subexponential, where G+ = GIR+ and IR+ is the indicator
function of R+. It is known that the subexponentiality of a distribution depends
only on its (right) tail, and that a subexponential distribution is long-tailed. When
F is subexponential, it is elementary that the result (2) holds for any a.s. constant σ .
[The condition (NEG) is not required here. See, e.g., Embrechts, Klüppelberg and
Mikosch (1997) or Sigman (1999).] In the case where F s is subexponential, the
asymptotic distribution of M is known—in particular, P(M > x) = O(F s(x)) as
x → ∞ [see Veraverbeke (1977), Embrechts and Veraverbeke (1982) and, for a
simpler treatment, Embrechts, Klüppelberg and Mikosch (1997)].

A distribution function G on R belongs to the class S∗ if and only if G(x) > 0
for all x and

∫ x

0
G(x − y)G(y) dy ∼ 2mG+G(x) as x → ∞,(3)

where mG+ =
∫ ∞

0 G(x)dx is the mean of G+. It is again known that the property
G ∈ S∗ depends only on the tail of G and that if G ∈ S∗, then both G and Gs are
subexponential; see Klüppelberg (1988).
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Consider first the case where the stopping time σ is independent of the
sequence {ξn}. Here, under the further condition that the distribution function F is
subexponential, the result (2) is well known to hold for any stopping time σ such
that

E expλσ < ∞ for some λ > 0.(4)

In this particular case the condition (NEG) is not required [see, e.g., Embrechts,
Klüppelberg and Mikosch (1997) and references therein]. The condition (4) may
be dropped by suitably strengthening the subexponentiality condition on F [see
Borovkov and Borovkov (2001) and Korshunov (2001)].

The first results for a stopping time σ which is not independent of the se-
quence {ξn} were given by Heath, Resnick and Samorodnitsky [(1997), Proposi-
tion 2.1] and, under more general conditions, by Asmussen [(1998), Theorem 2.1];
see also Greiner, Jobmann and Klüppelberg [(1999), Theorem 3.3]. Asmussen
showed that if, in addition to our present conditions (NEG) and (LT), we have
F ∈ S∗, then the result (2) holds with σ = τ , where τ is as given by (1).
[Asmussen failed to state formally the necessity of some condition of the
form F ∈ S∗. However, this is rectified in the more recent paper by Asmussen,
Kalashnikov, Konstantinides, Klüppelberg and Tsitiashvili (2001). See also
Asmussen, Foss and Korshunov (2002) for further extensions.]

The main result of the present paper is Theorem 1, which shows that, again
under the condition F ∈ S∗, the result (2) holds for a general stopping time σ .
Theorem 1 also shows that for a wide class of stopping times σ , including σ ≡ τ ,
the condition F ∈ S∗ is necessary as well as sufficient for this result. In proving
Theorem 1 we of necessity simplify the derivation of Asmussen’s original result,
which was quite tricky [as was that of Greiner, Jobmann and Klüppelberg (1999)].
The proof requires Theorem 2, which gives a characterization of the class S∗.
One half of this theorem is owing to Asmussen, Kalashnikov, Konstantinides,
Klüppelberg and Tsitiashvili (2001). Finally, as already noted and as a very simple
corollary of Theorem 1, we give a probabilistic proof of the result that any G ∈ S∗

is subexponential.

2. Results. We state first our main result, which is Theorem 1. We give also
Corollaries 1 and 2. We then proceed to the proofs, which are via Theorem 2
and a sequence of lemmas. A further necessary lemma, which is a fairly routine
application of some results from renewal theory, is relegated to the Appendix. As
mentioned above, the proof of part (i) of Theorem 1, in the case σ = τ , follows the
general approach of Asmussen (1998) with some simplification of the argument.
Recall that the conditions (NEG) and (LT) are assumed to hold throughout.

THEOREM 1. (i) Suppose that F ∈ S∗. Let σ ≤ ∞ be any stopping time. Then

lim
x→∞

P(Mσ > x)

F(x)
= Eσ.(5)
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(ii) Suppose that the condition (5) holds for some stopping time σ such that

P(σ > 0) > 0, P(Sσ ≤ 0) = 1 and Eσ < ∞. Then F ∈ S∗.

REMARK 1. Suppose again that the conditions of Theorem 1(i) hold. In the
case Eσ < ∞, it follows from that result [and the well-known result from (LT)
that F(x) = o(F s(x)) as x → ∞] that P(Mσ > x) = o(F s(x)) as x → ∞ (in
contrast to the case σ = ∞ a.s.). In the case σ < ∞ a.s., Eσ = ∞, we have both
F(x) = o(P(Mσ > x)) [by Theorem 1(i)] and, again, P(Mσ > x) = o(F s(x)), in
each case as x → ∞. We give a proof of the latter result in the Appendix. In this
case a rich variety of behavior is possible.

Corollary 1 is owing to Klüppelberg (1988). However, we use the results of this
paper to give a simple probabilistic proof.

COROLLARY 1 (Klüppelberg). Suppose that a distribution function G on R

belongs to S∗. Then G is subexponential.

COROLLARY 2. Suppose that, under the conditions of Theorem 1(i), the

stopping time σ is additionally independent of the sequence {ξn}. Then also

lim
x→∞

P(Sσ > x)

F (x)
= Eσ.

REMARK 2. The results of both Theorem 1(i) and Corollary 2 continue to
hold even when the condition (NEG) is dropped, provided that the mean of the
random variables ξn remains finite and a further condition is imposed on the tail
of the distribution of the stopping time σ . Since (NEG) is assumed throughout the
body of the paper, we give the details as Corollary 3 in the Appendix.

For several of our results and their proofs we require a function h : R+ → R+,
which, since F is long-tailed, may be chosen such that

h(x) ≤
x

2
for all x,(6)

h(x) → ∞ as x → ∞,(7)

F(x − h(x))

F (x)
→ 1 as x → ∞,(8)

there exists x0 with h(x + t) ≤ h(x) + t for all x ≥ x0, t ≥ 0.(9)

Now let π be the distribution of M (= supn≥0 Sn). Theorem 2 below is in part
owing to Asmussen et al. (2001) and provides a useful characterization of the
class S∗. In particular, by taking the function g in the statements (a) and (b) of the
theorem to be the indicator function of the interval [0, c], we obtain the equivalence
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of the condition F ∈ S∗ to a local limit result for π((x, x + c]) for any, and hence
for all, c > 0.

Let G be the class of functions on R+ which are directly Riemann integrable
[see, e.g., Feller (1971), page 362] and nonnegative. Let G∗ be the subclass of G

that consists of those functions which are additionally bounded away from zero on
some interval of nonzero width.

THEOREM 2. For any function g : R+ → R consider the property

lim
x→∞

1

F(x)

∫ ∞

0
π(x + dt)g(t) =

1

m

∫ ∞

0
g(t) dt.(10)

(a) If F ∈ S∗, then (10) holds for all directly Riemann integrable functions g

on R+.
(b) If (10) holds for any given g ∈ G∗, then F ∈ S∗.

PROOF. Result (a) is Corollary 1 of Asmussen et al. (2001). We prove (b).
Note first that, for any g ∈ G,

lim inf
x→∞

1

F(x)

∫ ∞

0
π(x + dt)g(t) ≥

1

m

∫ ∞

0
g(t) dt.(11)

This follows routinely from the lower bound (30) on the distribution π of M given
by Lemma 6 in the Appendix. (In particular we may initially take g to be zero
outside a finite interval and then use Fatou’s lemma to obtain the general result.)

Now suppose that (10) holds with g given by g0 ∈ G∗. Let IA denote the
indicator function of any A ⊂ R+. Then, for all sufficiently small c > 0, we can
find ε > 0, b ≥ 0 and g2 ∈ G such that g0 ≡ g1 + g2, where g1 ≡ εI[b,b+c] ∈ G∗.
Now

lim sup
x→∞

1

F(x)

∫ ∞

0
π(x + dt)g1(t)

≤ lim
x→∞

1

F(x)

∫ ∞

0
π(x + dt)g0(t) − lim inf

x→∞

1

F(x)

∫ ∞

0
π(x + dt)g2(t).

It therefore follows from (10) with g given by g0 and from (11) with g given by
each of g1 and g2 that (10) also holds with g given by g1. Since F is long-tailed,
the property (10) is preserved under any finite shift of the function g. Thus, finally,
we obtain that (10) holds for all g of the form I[0,c] for all sufficiently small c > 0
and, so, by additivity, for all c > 0.

Now fix any c > 0. Let the sequences of random variables {ψn}n≥1 and {Tn}n≥1,
the random variable ν and the constant p be as defined in the Appendix. From (10)



42 S. FOSS AND S. ZACHARY

with g ≡ I[0,c], a variation of the argument at the end of the proof of Lemma 6 gives

c

m
= lim

x→∞

P(M ∈ (x, x + c])

F (x)

≥ P(ν = 2) lim sup
x→∞

P(T2 ∈ (x, x + c])

F (x)

+ lim inf
x→∞

∑

n≥1,
n 
=2

P(ν = n)
P(Tn ∈ (x, x + c])

F (x)

≥ P(ν = 2) lim sup
x→∞

P(T2 ∈ (x, x + c])

F (x)

+
∑

n≥1,
n 
=2

P(ν = n) lim inf
x→∞

P(Tn ∈ (x, x + c])

F (x)
,

where the last line follows from Fatou’s lemma. Thus, from the lower bounds given
by (28) and (29) in the Appendix [and the calculation leading to (30)],

lim sup
x→∞

P(T2 ∈ (x, x + c])

F (x)
≤

2pc

(1 − p)m
,

and hence, again using (29),

lim
x→∞

P(T2 ∈ (x, x + c])

F (x)
=

2pc

(1 − p)m
(12)

(where, as usual, the above equation includes the assertion that the limit exists).
Now, for the function h defined above [in fact we do not require the condition (9)
for this proof], it follows from (6) that

P
(

ψ1 + ψ2 ∈ (x, x + c],ψ1 ≤ h(x),ψ2 ≤ h(x)
)

= 0.

Thus, from (7), (8) and (28),

lim
x→∞

1

F(x)
P

(

ψ1 + ψ2 ∈ (x, x + c],ψi ≤ h(x)
)

=
pc

(1 − p)m
, i = 1,2,

and so, from (12),

P
(

ψ1 + ψ2 ∈ (x, x + c], ψ1 > h(x), ψ2 > h(x)
)

= o
(

F(x)
)

as x → ∞.(13)

Now it is convenient here to take h such that x − 2h(x) is an integer multiple n(x)

of c for all x. Let also d = p/(1 − p)m. Then, as x → ∞,

P
(

ψ1 + ψ2 ∈ (x, x + c],ψ1 > h(x),ψ2 > h(x)
)

≥

∫ x−h(x)

h(x)
P(ψ1 ∈ dt)P

(

ψ2 ∈ (x − t, x − t + c]
)
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∼ dc

∫ x−h(x)

h(x)
P(ψ1 ∈ dt)F (x − t)(14)

= dc

n(x)
∑

k=1

∫ h(x)+kc

h(x)+(k−1)c
P(ψ1 ∈ dt)F (x − t)

=
(

1 + o(1)
)

d2c

∫ x−h(x)

h(x)
F(t)F (x − t) dt,(15)

where (14) follows from (28), and (15) follows from (28) and (LT). Thus, using
also (13), we obtain

∫ x−h(x)

h(x)
F(t)F (x − t) dt = o

(

F(x)
)

as x → ∞.(16)

From (8), F(x− t) = (1+o(1))F (x) as x → ∞, uniformly in t ∈ [0, h(x)]. Hence,
from (7),

∫ h(x)

0
F(t)F (x − t) dt ∼ F(x)

∫ h(x)

0
F(t) dt ∼ mF+F(x) as x → ∞,

and so the condition (16) is equivalent to the condition (3) that F ∈ S∗. �

REMARK 3. Note that a trivial extension of the above proof gives directly
[i.e., without reference to Theorem 2(a)] the result that if (10) holds for any given
g ∈ G∗, then it does so for all directly Riemann integrable functions g.

For any x ≥ 0, define the stopping time

µ(x) = min{n :Sn > x}.

(Thus {µ(x) ≤ n} = {Mn > x}.) For any stopping time σ and any x ≥ 0, define

Aσ,1(x) =
{

µ(x) ≤ σ, Sµ(x)−1 ≤ h(x)
}

,

Aσ,2(x) =
{

µ(x) ≤ σ, Sµ(x)−1 > h(x)
}

,

where h is as given by (6)–(9). Define also

δσ (x) = sup
y≥x

P(Aσ,2(y))

F (y)
.

The following Lemma 1 is, in an obvious sense, very close to what we require for
the proof of Theorem 1. The loose ends are tied up by Lemmas 3, 4 and 5, whereas
Lemma 2 is necessary for the proof of Lemma 3.

LEMMA 1. Let σ be a stopping time such that Eσ < ∞. Then

lim
x→∞

P(Aσ,1(x))

F (x)
= Eσ.
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PROOF. For any x ≥ 0,

P
(

Aσ,1(x)
)

=
∞
∑

n=0

∫ h(x)

−∞
P(σ > n,Mn ≤ x,Sn ∈ dy,Sn+1 > x)

≤
∞
∑

n=0

∫ h(x)

−∞
P(σ > n,Mn ≤ x,Sn ∈ dy)F

(

x − h(x)
)

≤
∞
∑

n=0

P(σ > n)F
(

x − h(x)
)

=
(

1 + o(1)
)

EσF(x) as x → ∞.

We now establish the lower bound. For any positive integer N ,

P
(

Aσ,1(x)
)

≥
N

∑

n=0

∫ h(x)

−h(x)
P

(

σ > n,Mn ≤ h(x), Sn ∈ dy,Sn+1 > x
)

≥
N

∑

n=0

P
(

σ > n,Mn ≤ h(x), Sn ∈ [−h(x),h(x)]
)

F
(

x + h(x)
)

=
(

1 + o(1)
)

F(x)

N
∑

n=0

P(σ > n) as x → ∞,

by (7) and (8). Let N → ∞ to obtain

P
(

Aσ,1(x)
)

≥
(

1 + o(1)
)

EσF (x) as x → ∞. �

Now define

m− =

∫ ∞

0
F(−y) dy.

For any t, x > 0, define

D(−t,−x) = E

(

#
{

n ≥ 0 :Sn > −t, Sn+1 ≤ −t, min
0≤k≤n

Sk > −t − x

})

to be the expected number of downcrossings by {Sn} of −t before the random walk
first reaches −t − x. Define also D(−t) = D(−t,−∞).

LEMMA 2.

lim
t,x→∞

D(−t,−x) =
m−

m
.
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PROOF. Asmussen [(1998), Lemma 2.4] showed that

lim
t→∞

D(−t) =
m−

m
.(17)

For completeness we repeat his proof. Let R given by R(A) =
∑∞

n=0 P(Sn ∈ A)

be the renewal measure associated with the random walk {Sn}. Then there exist
constants a1 and a2 such that R[y, y + x] ≤ a1 + a2x for all x ≥ 0 and for all y.
We have

D(−t) =

∫ ∞

−t
R(dy)F (−t − y) =

∫ ∞

0
R(dz − t)F (−z).

When F is nonlattice, R(dz − t) converges vaguely to Lebesgue measure with
density 1/m as t → ∞. It follows that

lim
t→∞

D(−t) =
1

m

∫ ∞

0
F(−z) dz =

m−

m
.

The usual straightforward modifications are required to establish also (17) in the
lattice case.

Now further, there exists K < ∞ with

sup
t>0

D(−t) = K.(18)

Thus, by the strong Markov property,

D(−t,−x) ≤ D(−t) ≤ D(−t,−x) + KP(M > x)

and so the required result follows from (17) and the fact that P(M > x) → 0 as
x → ∞. �

LEMMA 3. limx→∞ δτ (x) = 0 if and only if F ∈ S∗.

PROOF. The proof is in part an extended and somewhat clarified version of
the argument of Asmussen (1998). Define the reflected random walk (workload
process or Lindley queueing theory recursion) {Wn}n≥0 by

W0 = 0, Wn = max(0,Wn−1 + ξn), n ≥ 1.

Note that, from (NEG), this is an ergodic Markov chain. Note also that Wn = Sn

for n < τ [where τ is as defined by (1)]. It is further convenient to extend the
sequence {ξn}n≥1 to the doubly-infinite sequence {ξn}−∞<n<∞ of independent
identically distributed random variables with distribution function F and to define
also the stationary version {W n}−∞<n<∞ of the above workload process [indexed
on (−∞,∞)] by

W n = max

(

0, sup
j≥0

−j
∑

i=0

ξn+i

)

.(19)
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Note that W n = max(0,W n−1 + ξn) for all n. It is well known that the common
distribution of the W n is given by π [as is clear from (19)].

For any x > 0, let

N−(x) = #
{

n : 1 ≤ n < τ, Sn > x, Sn+1 ≤ x
}

be the number of downcrossings of x in [0, τ ] by {Sn} or {Wn}. Note that, by the
ergodicity of the process {W n},

EN−(x)

Eτ
= P(W 0 > x, W 0 + ξ1 ≤ x)

=

∫ ∞

0
π(x + dt)F (−t).

From (NEG), the function g on R+ defined by g(t) = F(−t) belongs to G∗. Hence,
by Theorem 2,

EN−(x) ∼
m−

m
EτF(x) as x → ∞ if and only if F ∈ S∗.(20)

We also have

E
[

N−(x)I
(

Aτ,1(x)
)]

= E
[

I
(

Aτ,1(x)
)

E
{

N−(x) | Sµ(x)

}]

= E
[

I
(

Aτ,1(x)
)

D
(

−(Sµ(x) − x),−x
)]

.

Since, for any u ∈ (0, h(x)),

P
(

Sµ(x) − x > h(x) | Aτ,1(x), Sµ(x)−1 ∈ du
)

≥
F(x + h(x))

F (x − h(x))

→ 1 as x → ∞,

by (8), the overshoot Sµ(x) − x converges in distribution to ∞ as x → ∞. Hence,
again as x → ∞,

E
[

N−(x)I
(

Aτ,1(x)
)]

∼ P
(

Aτ,1(x)
)m−

m(21)

∼
m−

m
EτF(x).

Here, the first line follows by Lemma 2 (and the spatial homogeneity of the random
walk {Sn}) and the second follows from Lemma 1. It now follows from (20)
and (21) that

E
[

N−(x)I
(

Aτ,2(x)
)]

= o
(

F(x)
)

as x → ∞ if and only if F ∈ S∗.

Since also 1 ≤ E(N−(x) |Aτ,2(x)) ≤ K , where K is as defined by (18), the
required result now follows. �
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LEMMA 4. (i) Suppose that limx→∞ δτ (x) = 0. Let σ be any stopping time

such that Eσ < ∞. Then limx→∞ δσ (x) = 0.
(ii) Suppose that there exists a stopping time σ such that P(σ > 0) > 0,

P(Sσ ≤ 0) = 1 and limx→∞ δσ (x) = 0. Then limx→∞ δτ (x) = 0.

PROOF. To prove (i), note first that it follows from (9) (where x0 is as defined
there) that, for all x ≥ x0 and for all t ≥ 0,

P
(

µ(x + t) ≤ τ, Sµ(x+t)−1 > h(x) + t
)

≤ P
(

µ(x + t) ≤ τ, Sµ(x+t)−1 > h(x + t)
)

(22)
≤ δτ (x)F (x).

Now define the sequence of stopping times {τk}k≥0 by

τ0 = 0, τk = min
{

n :n > τk−1, Sn ≤ Sτk−1

}

, k ≥ 1,(23)

so that τk is the kth decreasing ladder time (and in particular τ1 = τ ). For all k,
since Sτk

≤ 0, it follows from (22) and the temporal and spatial homogeneity of
the random walk {Sn} that

P
(

τk < µ(x) ≤ τk+1, Sµ(x)−1 > h(x) | σ > τk

)

≤ δτ (x)F (x) for all x ≥ x0.

Since also σ is a.s. finite, it follows that, for any x ≥ x0,

P
(

Aσ,2(x)
)

=
∑

k≥0

P
(

τk < µ(x) ≤ τk+1, σ ≥ µ(x), Sµ(x)−1 > h(x)
)

≤
∑

k≥0

P
(

τk < µ(x) ≤ τk+1, σ > τk, Sµ(x)−1 > h(x)
)

=
∑

k≥0

P(σ > τk)P
(

τk < µ(x) ≤ τk+1, Sµ(x)−1 > h(x) | σ > τk

)

≤ δτ (x)F (x)
∑

k≥0

P(σ > τk)

≤ δτ (x)F (x)
∑

k≥0

P(σ > k)

= δτ (x)F (x)Eσ,

so that (i) now follows.
To prove (ii) note first that we may assume, without loss of generality, that

P(σ > 0) = 1 (for otherwise we may simply condition on the event {σ > 0}, which
is assumed to have a nonzero probability). The given conditions on σ then imply
that τ ≤ σ a.s. Thus, for all x > 0, P(Aτ,2(x)) ≤ P(Aσ,2(x)) and so the result
follows immediately. �
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LEMMA 5. Let σ be any stopping time such that Eσ < ∞. Then

lim
x→∞

δσ (x) = 0 if and only if lim
x→∞

P(Mσ > x)

F (x)
= Eσ.

PROOF. We have P(Mσ > x) = P(Aσ,1(x)) + P(Aσ,2(x)), so that the result is
immediate from Lemma 1. �

PROOF OF THEOREM 1. In the case E(σ ) < ∞, the proofs of both (i) and (ii)
are immediate from Lemmas 3, 4 and 5. The extension to the case E(σ ) = ∞ is
by a simple truncation argument. �

PROOF OF COROLLARY 1. Given G ∈ S∗, let {φn}n≥1 be a sequence of i.i.d.
random variables with distribution function G+. Take the sequence {ξn}n≥1 of the
present paper to be given by ξn = φn − b for all n, where b is chosen sufficiently
large that these random variables each have a negative mean. Since the property
that a distribution belongs to S∗ is easily shown to be shift invariant, the common
distribution function F of the random variables ξn belongs to S∗. Thus also F is
long-tailed.

To show that G is subexponential we apply Theorem 1 with σ ≡ 2 to obtain

P(φ1 + φ2 > x) = P(ξ1 + ξ2 > x − 2b)

≤ P(M2 > x − 2b)
(24)

∼ 2F(x − 2b)

∼ 2G+(x) as x → ∞,

where the last line follows since G ∈ S∗ implies that G+ is long-tailed. Further,

P(φ1 + φ2 > x) ≥ P(φ1 > x) + P(φ2 > x) − P(φ1 > x,φ2 > x)

= 2G+(x) −
(

G+(x)
)2

(25)

∼ 2G+(x) as x → ∞.

Hence, from (24) and (25), G is subexponential as required. �

PROOF OF COROLLARY 2. Under the conditions of Theorem 1(i), it follows
from Corollary 1 that F is subexponential. Hence, for any n ≥ 1, P(Sn > x) ∼
nF(x) as x → ∞. If the stopping time σ is independent of the sequence {ξn}
a simple truncation argument now gives

lim inf
x→∞

P(Sσ > x)

F (x)
≥ Eσ.

Since P(Sσ > x) ≤ P(Mσ > x) for all x, the result now follows from Theo-
rem 1(i). �
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REMARK 4. Theorem 1 can also be used to give a (rather circuitous)
probabilistic proof of the result that if G ∈ S∗, then Gs is subexponential. By
taking σ ≡ τ in Theorem 1 and using standard renewal theory, we may show that,
for the shifted version F of G, defined as in the Proof of Corollary 1,

lim
x→∞

1

F s(x)
P(M > x) =

1

m
.

That F s , and so Gs , is subexponential now follows from the converse to
Veraverbeke’s theorem proved by Korshunov (1997).

APPENDIX

We give here some auxiliary results that relate to the successive ladder heights
and to the maximum of the process {Sn}. We also prove the last statement of
Remark 1.

Define η = min{n ≥ 1 :Sn > 0} ≤ ∞ and let

p = P(η = ∞) = P(M = 0).(26)

Note that 0 < p < 1. Let {ψn}n≥1 be a sequence of i.i.d. copies of a positive
random variable ψ such that, for all (measurable) B ⊆ R+,

P(ψ ∈ B) = P(Sη ∈ B | η < ∞).

Let ν be a random variable, independent of the above sequence, such that

P(ν = n) = p(1 − p)n, n = 0,1,2, . . . .

Then it is a standard result that

M =D

ν
∑

i=1

ψi

(here
∑0

1 = 0 by definition). For each n ≥ 1, define also

Tn =
n

∑

i=1

ψi .(27)

LEMMA 6. Under the conditions (NEG) and (LT), for all c > 0 in the case

where F is nonlattice and for all positive multiples c of the span in the case where

F is lattice,

lim
x→∞

P(ψ ∈ (x, x + c])

F (x)
=

pc

(1 − p)m
,(28)

lim inf
x→∞

P(Tn ∈ (x, x + c])

F (x)
≥

npc

(1 − p)m
, n ≥ 2,(29)

lim inf
x→∞

P(M ∈ (x, x + c])

F (x)
≥

c

m
.(30)
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PROOF. The results are reasonably well known. However, the lemma is
adapted to the needs of the present paper and, for completeness, we give also proofs
here. We restrict ourselves to the nonlattice case.

Let Ĥ denote the “taboo” renewal measure on R− = (−∞,0] given by, for
B ⊆ R−,

Ĥ (B) =
∞
∑

n=0

P(Sn ∈ B,Mn = 0).

Note that

lim
x→∞

Ĥ
(

(−x,−x + c]
)

=
pc

m
, c > 0,(31)

and hence there exist finite positive constants a, b such that

Ĥ
(

(−x,0]
)

≤ ax + b, x ≥ 0.(32)

Then, for any c > 0 and all x ≥ 0,

P
(

ψ ∈ (x, x + c]
)

=
1

1 − p

∫ ∞

0
Ĥ (−dt)

[

F(x + t) − F(x + t + c)
]

.(33)

Since F satisfies (LT), we can choose a function h : R+ → R+ that satisfies the
earlier conditions (6)–(8) and such that

h(x)
[

F(x) − F
(

x + h(x) + c
)]

= o
(

F(x)
)

as x → ∞.

Then, from (32),

0 ≤

∫ h(x)

0
Ĥ (−dt)

[

F(x + t) − F(x + t + c)
]

≤
(

ah(x) + b
)[

F(x) − F
(

x + h(x) + c
)]

(34)

= o
(

F(x)
)

as x → ∞.

Furthermore,

p

m

∫ ∞

h(x)

[

F(x + t) − F(x + t + c)
]

dt

=
p

m

∫ h(x)+c

h(x)
F(x + t) dt(35)

∼
pc

m
F(x) as x → ∞,

since F satisfies (LT) and by the condition (8) on h. Finally, it follows from (31)
that, given ε > 0, for all sufficiently large x and hence h(x),
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∣

∣

∣

∣

∣

∫ ∞

h(x)

(

Ĥ (−dt) −
p

m
dt

)

[

F(x + t) − F(x + t + c)
]

∣

∣

∣

∣

∣

(36)
≤ ε

∞
∑

k=0

[

F
(

x + h(x) + kc
)

− F
(

x + h(x) + (k + 2)c
)]

≤ 2εF(x).

The result (28) now follows from (33)–(36).
To show (29) note that, from (6)–(8),

P
(

T2 ∈ (x, x + c]
)

≥ P
(

T2 ∈ (x, x + c],ψ1 ≤ h(x)
)

+ P
(

T2 ∈ (x, x + c],ψ2 ≤ h(x)
)

∼ 2P
(

ψ ∈ (x, x + c]
)

as x → ∞.

Hence result (29) follows for n = 2 from (28); the result for general n now follows
by induction arguments. Finally, (30) follows from Fatou’s lemma and (29), since

lim inf
x→∞

P(M ∈ (x, x + c])

F (x)
= lim inf

x→∞

∑

n≥1

P(ν = n)
P(Tn ∈ (x, x + c])

F (x)

≥
∑

n≥1

P(ν = n) lim inf
x→∞

P(Tn ∈ (x, x + c])

F (x)

≥
c

m
. �

We now prove the claim made in Remark 1. Suppose that the conditions of
Theorem 1(i) hold and that σ < ∞ a.s. Given ε > 0, we can find a positive
integer K and L > 0 such that P(SK > −L, σ ≤ K) ≥ 1 − ε. Then

P(M > x, σ ≤ K) ≥ P(SK > −L, M > x, σ ≤ K)

≥ (1 − ε)P(M > x + L)(37)

=
(

1 + o(1)
)

(1 − ε)P(M > x) as x → ∞,

which follows since the distribution of M is invariant under the obvious shift
operation.

From the above, Theorem 1(i) and Veraverbeke’s theorem [Veraverbeke (1977)],

P(Mσ > x) ≤ P(MK > x) + P(M > x, σ > K)

≤
(

1 + o(1)
)

(

KF(x) +
ε

m
F s(x)

)

as x → ∞.

Hence, since F(x) = o(F s(x)) as x → ∞, we have lim supx→∞ P(Mσ > x)/

F s(x) ≤ ε/m. Now let ε → 0 to obtain the required result.
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Finally, in the following further corollary to Theorem 1, we consider the extent
to which Theorem 1 (i) and Corollary 2 remain true when the condition (NEG) is
dropped.

COROLLARY 3. Suppose that F ∈ S∗ [which, by Corollary 1 implies that F is

subexponential and so satifies (LT)], that the corresponding distribution of the

random variables ξn has a finite mean, but that (NEG) does not necessarily hold.
Let σ < ∞ be a stopping time such that, for some function h satisfying (8),

P(σ > h(x)) = o
(

F(x)
)

as x → ∞.(38)

Then again,

lim
x→∞

P(Mσ > x)

F (x)
= Eσ.(39)

If, additionally, σ is independent of the sequence {ξn}, then (39) also holds with

Mσ replaced by Sσ .

PROOF. Choose any a > Eξ . For each n ≥ 0, define S̃0 = 0, S̃n =
∑n

i=1(ξi − a) (with S̃0 = 0) and M̃n = max0≤i≤n S̃i . Then, for each x,

P(Mσ > x) ≤ P(M̃σ + aσ > x)

≤ P
(

aσ > ah(x)
)

+ P
(

M̃σ > x − ah(x)
)

∼ EσF
(

x − ah(x) + a
)

as x → ∞(40)

∼ EσF(x) as x → ∞.(41)

where (40) follows from Theorem 1(i) and (38), while (41) follows since we may
clearly replace h(x) by ah(x) − a in (8). Further it follows from Lemma 1, which
clearly does not require the condition (NEG), that lim inf P(Mσ > x)/F (x) ≥ Eσ .
Hence (39) is established. The final assertion follows as in the proof of Corol-
lary 2. �

Note that condition (38) need not be unduly restrictive. For example, in the
regularly varying case F(x) = xαL(x) for some function L which is slowly
varying at infinity and some α < −1 (for a finite mean), for a function h to
satisfy (8) it is sufficient that h(x) = o(x) as x → ∞. Hence the tail of the stopping
time σ need only be slightly lighter than that of the random variables ξn.
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