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The Maximum Weight Connected Subgraph
Problem

Eduardo Álvarez-Miranda and Ivana Ljubić and Petra Mutzel

Abstract The Maximum (Node-) Weight Connected Subgraph Problem (MWCS)

searches for a connected subgraph with maximum total weight in a node-weighted

(di)graph. In this work we introduce a new integer linear programming formulation

built on node variables only, which uses new constraints based on node-separators.

We theoretically compare its strength to previously used MIP models in the literature

and study the connected subgraph polytope associated with our new formulation. In

our computational study we compare branch-and-cut implementations of the new

model with two models recently proposed in the literature: one of them using the

transformation into the Prize-Collecting Steiner Tree problem, and the other one

working on the space of node variables only. The obtained results indicate that the

new formulation outperforms the previous ones in terms of the running time and in

terms of the stability with respect to variations of node weights.

1 Introduction

The Maximum (Node-) Weight Connected Subgraph Problem (MWCS) is the prob-

lem of finding a connected subgraph with maximum total weight in a node-weighted

(di)graph. It belongs to the class of network design problems and has applications

in various different areas such as forestry, wildlife preservation planning, systems

biology, computer vision, and communication network design.
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Department of Statistics and Operations Research, University of Vienna, Austria,

ivana.ljubic@univie.ac.at

Petra Mutzel

Department of Computer Science, TU Dortmund, Germany, petra.mutzel@tu-dortmund.de

1
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Lee and Dooly [18] introduced a cardinality-constrained version of the problem

for building a designed fiber-optic communication network over time, where the

given node weights reflect their degree of importance. They defined the maximum-

weight connected graph problem for an undirected graph with given node weights,

in which they search the connected subgraph of maximum weight consisting of ex-

actly a predescribed number of nodes. The same problem version was considered

already in [14] (the authors called it Connected k-Subgraph Problem) for a Norwe-

gian off-shore oil-drilling application.

Another application arises in the area of system biology [8, 22, 1]. Yamamoto

et al. [22] suggest the cardinality-constrained MWCS in order to detect core source

components in gene networks, which seem to be responsible for the difference be-

tween normal cells and mutant cells. The input graphs are constructed from gene

regulation networks combined with gene expression data provided as node weights.

Maximum weight connected subgraphs are considered to be good candidates for

these core source components. A directed version of the MWCS has been con-

sidered in Backes et al. [1], where the most deregulated connected subnetwork in

regulatory pathways with the highest sum of node scores (arising from expression

data) is searched. In their model, they call a subgraph connected if all the nodes are

reachable from one node, also called the root in the subgraph. The detected roots

are likely to be the molecular key-players of the observed deregulation.

A budgeted version arises in conservation planning, where the task is to select

land parcels for conservation to ensure species viability, also called corridor design

(see, e.g. [7]). Here, the nodes of the graph do not only have node weights associated

with the habitat suitability but also some costs, and the task is to design wildlife

corridors that maximize the suitability with a given limited budget. Also in forest

planning, the MWCS arises as a subproblem, e.g., for designing a contiguous site

for a natural reserve or for preserving large contiguous patches of mature forest [3].

A surprising application of the MWCS arises in activity detection in video se-

quences. Here, a 3D graph is constructed from a video in which the nodes corre-

spond to local video subregions and the edges to their proximity in time and space.

The node weights correspond to the degree of activity of interest, and so the maxi-

mum weight connected subgraph corresponds to the portion of the video that maxi-

mizes a classifier’s score [4].

All the above mentioned applications have in common that the MWCS arises

with node weights only. In many papers, the MWCS has been solved by transform-

ing the given instance to the Prize-Collecting Steiner Tree Problem. Here, the given

graph has non-negative node weights and negative edge costs, and the task is to

find a maximum weight subtree, where the weight is computed as the sum of the

node and edge weights in the subtree. The Prize-Collecting Steiner Tree Problem

has been studied intensively in the literature (see, e.g., [16, 20]), and the publicly

available branch-and-cut (B&C) code of [20] is used in many recent applications to

solve the underlying problems to optimality.

However, in their recent work, Backes et al. [1] attack the MWCS directly, which

has the advantage to avoid variables for the arcs. The authors suggest a new integer

linear programming formulation which is based on node variables only. The inten-
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tion of our research was to study the MWCS straightly, and to suggest tight MIP

formulations that improve the MIP models from the literature in theory and practice.

Our Contribution: We propose a new MIP model for the MWCS based on the

concept of node separators in digraphs. We provide a theoretical and computational

comparison of the new model with other models recently used in the literature.

We show that the new model has the advantage of using only node variables while

preserving the tight LP bounds of the Prize-Collecting Steiner Tree (PCStT) model.

Furthermore, we study the connected subgraph polytope and show under which

conditions the newly introduced inequalities are facet defining. In an extensive

computational study, we compare different MIP models on a set of benchmark

instances used in systems biology and on an additional set of network design

instances. The obtained results indicate that the new formulation outperforms the

previous ones in terms of the running time and in terms of the stability with respect

to variations of node weights.

The paper is organized as follows. Section 2 contains a formal definition of the

MWCS and some complexity results. The following Sections provide four different

MIP formulations and polyhedral studies. Our B&C algorithm and the practical

experiments are discussed in Section 5.

2 The Maximum Weight Connected Subgraph Problem

In this section we formally introduce the MWCS for directed graphs and discuss

some complexity results.

Definition 1 (The Maximum Weight Connected Subgraph Problem, MWCS) Given

a digraph G = (V,A), |V | = n, with node weights p : V → Q, the MWCS is the

problem of finding a connected subgraph T = (VT ,AT ) of G, that maximizes the

score p(T ) = ∑v∈VT
pv and such that there exists a node i ∈ VT (called root or key

player ) such that every other node j ∈VT can be reached from i by a directed path

in T .

The MWCS in undirected graphs is to find a connected subgraph T that maxi-

mizes the score p(T ). However, if G = (V,E) is an undirected graph, without loss of

generality we will consider its bidirected counterpart (V,A) where A is obtained by

replacing each edge by two oppositely directed arcs. Hence, it is sufficient to present

results that hold for digraphs (which are more general), and the corresponding re-

sults for undirected graphs can be easily derived from them. We assume that in our

MWCS instances always positive and negative node weights are present, otherwise,

the solution would be trivial. Observe that any feasible solution of the MWCS con-

tains a tree with the same solution value. Hence it is equivalent to search a maximum

node-weighted tree in the given graph.
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Furthermore, it can be distinguished between the rooted and unrooted MWCS,

i.e., a root node r can be pre-specified or not. In this paper we will concentrate on

the unrooted MWCS, or simply the MWCS in the rest of the paper.

Regarding the complexity of the MWCS, it has been shown that the problem is

NP-hard (in the supplementary documentation of the paper by [15], the authors pro-

vide an NP-hardness proof sketched by R. Karp). Since it is possible to translate the

problem to the Prize-Collecting Steiner tree problem, all its polynomially solvable

cases carry over to the MWCS. E.g., the PCStT is solvable in polynomial time for

the graph class of bounded treewidth [2].

Furthermore, one can show that the following result holds even when the MWCS

is defined on undirected graphs:

Proposition 1 It is NP-hard to approximate the optimum of the MWCS within any

constant factor 0 < ε < 1.

Proof. For a given MWCS instance, let APP be the objective function value of an

approximate solution, and let OPT be the optimal solution value. Recall that for

a given constant 0 < ε < 1, a given problem can be approximated within factor ε
if and only if APP/OPT ≥ ε, for any problem instance. To prove this result for

the MWCS it is sufficient to make a reduction from the SAT problem that works

similarly to the one given in [9, cf. Theorem 4.1]. By doing so, we can show that for

a given formula φ for SAT, we can build an instance G = (V,E) of the MWCS in

polytime, such that: (i) if φ is a yes-instance, then the optimal MWCS solution on G

has value ε(1+ ε3), and (ii) if φ is a no-instance, then the optimal MWCS solution

on G has value ε2. ⊓⊔

Some applications consider the cardinality-constrained MWCS, where the task is

to find a connected subgraph with K nodes. Hochbaum and Pathria [14] have shown

that this problem version is NP-hard even if all node weights are 0 or 1 and the graph

is either bipartite or planar. For trees and for complete layered DAGs, it is solvable in

polynomial time via dynamic programming [14, 19]. Observe that for this problem

version, the node weights can be assumed to be all positive, and the maximization

variant and the minimization variant are equivalent. Goldschmidt [13] noted that

no approximation algorithm is known with a factor better than O(K), and such an

algorithm is almost trivial to find. The cardinality-constrained MWCS (and also the

MWCS) can be solved by translating it into the edge-weighted version, which has

been studied as the k-Minimum Spanning Tree Problem (k-MST) or k-Cardinality

Tree Problem in the literature (see, e.g., [10, 6]).

3 MIP Formulations for the MWCS

In this section we revise three MIP models for the MWCS recently presented in the

literature, and propose a novel approach based on the concept of node separators in

digraphs.
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The MIP formulations considered in this paper are based on the observation

that if there is a path between i and any other node in T = (VT ,AT ), then we will

search for a subgraph which is an arborescence rooted at i ∈ VT . In our models,

two types of binary variables will be used to describe a feasible MWCS solution

T = (VT ,AT ): binary variables yi associated to nodes i ∈ V will be set to one iff

i ∈VT , and additional binary variables xi will be set to one iff the node i ∈ V is the

key player, i.e., if it is used as the root of the arborescence.

Notation and Preliminaries: A set of vertices S ⊂ V (S 6= /0) and its complement

S = V \R induce two directed cuts: (S,S) = δ+ (S) =
{

(i, j) ∈ A | i ∈ S, j ∈ S
}

and

(S,S) = δ− (S) =
{

(i, j) ∈ A | i ∈ S, j ∈ S
}

. When there is an ambiguity regarding

the graph in which the directed cut is considered, we will sometimes write δG instead

of only δ to specify that the cut is considered w.r.t. graph G. For a set C ⊂ V ,

let D−(C) denote the set of nodes outside of C that have ingoing arcs into C, i.e.,

D−(C) = {i ∈V \C | ∃(i,v) ∈ A,v ∈C}.

A digraph G is called strongly connected (or simply, strong) if for any two dis-

tinct nodes k and ℓ from V , there exists a (k, ℓ) path in G. A node i is a cut point in

a strong digraph G if there exists a pair of distinct nodes k and ℓ from V such that

there is no (k, ℓ) path in G− i.

For two distinct nodes k and ℓ from V , a subset of nodes N ⊆V \ {k, ℓ} is called

(k, ℓ) node separator if and only if after eliminating N from V there is no (k, ℓ) path

in G. A separator N is minimal if N \ {i} is not a (k, ℓ) separator, for any i ∈ N. Let

N (k, ℓ) denote the family of all (k, ℓ) separators. Obviously, if ∃(k, ℓ) ∈ A or if ℓ is

not reachable from k, we have N (k, ℓ) = /0. Let Nℓ = ∪k 6=ℓN (k, ℓ) be the family

of all node separators with respect to ℓ ∈V that we will refer to as ℓ-separators.

For binary variables a ∈ {0,1}|F|, we denote by a(F ′) the sum ∑i∈F ′ ai for any

subset F ′ ⊆ F .

3.1 The Prize-Collecting Steiner Tree Model

In [8] the authors observed that the MWCS on undirected graphs is equivalent to the

Prize-Collecting Steiner Tree Problem (PCStT), in the sense that there exists a trans-

formation from the MWCS into the PCStT such that each optimal solution of the

PCStT on the transformed graph corresponds to an optimal MWCS solution from

the original graph. Recall that, given an undirected graph H = (VH ,EH) with non-

negative node weights p̃v and non-negative edge costs c̃e, the PCStT is the problem

of finding a subtree TH of H that maximizes the function ∑v∈TH
p̃v −∑e∈TH

c̃e, i.e.,

the difference between the collected node prizes and edge costs. The transformation

from the MWCS into the PCStT is given as follows: Given an input graph G of the

MWCS we set H := G and w = minv∈V pv (note, that w < 0). In order to get non-

negative node weights, we set p̃v := pv −w ∀v ∈V and c̃e =−w, for all e ∈ E . This

transformation also works for digraphs, i.e., if H is a digraph, the PCStT consists of

finding a subarborescence of H (rooted at some node i∈V ) that maximizes the given
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objective function. The transformation is correct, since any feasible solution is an

arborescence, which has indegree 1 for every node, and the weight transformations

neutralize each other.

We now present the MIP model proposed in [20] for the PCStT that is used

for solving the MWCS after transforming it into the PCStT (see [8]). Consider a

transformation from a (directed or undirected) PCStT instance into a rooted digraph

Gd = (Vd ,Ad) that works as follows: If the input graph G = (V,E) is undirected,

then we create the arc set A by bidirecting each edge. In any case we now have a

directed graph G = (V,A). The vertex set Vd = V ∪ {r} contains the nodes of the

input graph G and an artificial root vertex r. We add new arcs from the root r to

nodes v whose out-degree is non-empty in order to get the arc set Ad i.e., Ad =
A∪ {(r,v) | v ∈ V and δ+(v) 6= /0}. All arc weights are set to the weights of their

undirected counterparts, and the weight of an arc (r,v) ∈ Ad is set to w.

In the graph Gd , a subgraph Td =
(

VTd
,ATd

)

that forms a directed tree rooted at

r is called a rooted Steiner arborescence. It is a feasible solution of the PCStT if

the out-degree of the root is equal to one. To model feasible Steiner arborescences

in Gd , we will use two types of binary variables: (a) binary variables yi introduced

above associated to all nodes i ∈V , and (b) binary variables zi j , such that zi j = 1 if

arc (i, j) belongs to a feasible Steiner arborescence Td and zi j = 0 otherwise, for all

(i, j) ∈ Ad .

The set of constraints that characterizes the set of feasible solutions of the un-

rooted PCStT is given by:

z(δ−(i)) = yi, ∀i ∈V \ {r} (1)

z(δ− (S))≥ yk, ∀S ⊆V \ {r}, k ∈ S (2)

z(δ+(r)) = 1. (3)

The in-degree constraints (1) guarantee that the in-degree of each vertex of the tree

is equal to one. The directed cut constraints (2) ensure that there is a directed path

from the root r to each costumer k such that yk = 1. The equality (3) makes sure that

the artificial root is connected to exactly one of the nodes. Thus, the MWCS can be

formulated using the following model that we will denote by (PCStT):

max

{

∑
v∈V

(pv −w)yv + ∑
(i, j)∈Ad

wzi j | (y,z) satisfies (1)-(3), (y,z) ∈ {0,1}n+|Ad |
}

.

The (PCStT) model uses node and arc variables (y and z) given that it relies on

an equivalence with the PCStT. However, considering Definition 1 it seems more

natural to find a formulation based only in the space of y variables since no arc

costs are involved. In the next section we will discuss several models that enable

elimination of arc variables in the MIP models.
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3.2 Model of Backes et al. 2011

Recently, in [1] a new MIP model for the MWCS is introduced which avoids the

explicit use of arc variables. Let C denote the family of all directed cycles in G. The

new model, that we will denote by (CYCLE), reads as follows:

x(V ) = 1 (4)

xi ≤ yi, ∀i ∈V (5)

y(D−(i))≥ yi − xi, ∀i ∈V (6)

y(C)− x(C)− y(D−(C))≤ |C|− 1, ∀C ∈ C (7)

(x,y) ∈ {0,1}2n. (8)

Inequalities (4) make sure that one node is selected as a root, and inequalities (5)

state that if the node is chosen as a root, it has to belong to the solution. Con-

straints (6) are the in-degree constraints – they ensure that for each node which

is not the root, at least one of the incoming neighbors needs to be taken into the

solution. In a directed acyclic graph, in-degree constraints are sufficient to guaran-

tee connectivity, but in general, imposing only the in-degree constraints may allow

solutions that consist of several disconnected components. To avoid this, cycle con-

straints (7) are added to guarantee connectivity. These constraints make sure that

whenever all nodes from a cycle are taken in a solution, and none of them is set as

the root, at least one of the neighboring nodes from D−(C) has to be taken as well.

Observation 1 Constraints (7) are redundant for those C ∈ C such that C ∪
D−(C) =V.

To see this, observe that using the root constraint (4), the cycle constraints (7) can

be rewritten as follows:

y(C)≤ y(D−(C))+ |C|− 1+ x(C) = y(D−(C))+ |C|− x(D−(C)),

which is always satisfied by the model due to constraints (5) and yi ≤ 1, for all i ∈V .

In this model an artificial root node r is not explicitly introduced. However, it

is not difficult to see that for any feasible MWCS solution there is a one-to-one

mapping between variables zri introduced above and the variables xi, for all i ∈V .

The following result shows that the (CYCLE) model provides very weak upper

bounds, in general.

Lemma 1. Given an instance of the MWCS, let OPT be the value of the optimal

solution, and let UB be the upper bound obtained by solving the LP relaxation of

the (CYCLE) model. Then, there exist MWCS instances for which UB/OPT ∈ O(n).

Proof. Consider an example given in Fig. 1. The variables of the LP relaxation of

the (CYCLE) model are set as follows: yi = xi = 0 for the nodes i with negative

weights; yi = 1/2 and xi = 0 for the nodes i in the 2-cycles, and xi = yi = 1 for the

node in the center. There are Kn = (n−1)/3∈ O(n) branches in this graph. We have

UB = KnM+ 2M and OPT = 2M, which concludes the proof. ⊓⊔
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Fig. 1 An example showing that the LP bounds of the (CYCLE) model can be as bad as O(n). The

labels of nodes represent their weights: M > 0 and L >> M.

3.3 A Model Based on (k, ℓ) Node Separators

We now present an alternative approach to model the MWCS in the space of (x,y)
variables that relies on the constraints that have been recently used by [11] and [3]

to model connectivity in the context of sheet metal design and forest planning, resp.

Notice that for an arbitrary pair of distinct nodes (k, ℓ) in G, if ℓ is taken into the

solution and k is chosen as root, then either (i) there is a direct arc from k to ℓ, or

(ii) at least one node from any (k, ℓ) separator N ∈ N (k, ℓ) has to be taken into the

solution. The latter fact can be stated using the following inequalities that we will

refer to as node-separator constraints:

y(N)− x(N)≥ yℓ+ xk − 1, ∀k, ℓ ∈V, ℓ 6= k, N ∈ N (k, ℓ). (9)

If the nodes k and ℓ are connected by an arc, then N (k, ℓ) = /0, in which case we

need to consider the in-degree inequalities (6) to make sure k is connected to ℓ. Thus,

we can formulate the unrooted MWCS as

(CUT)k,ℓ max

{

∑
v∈V

pvyv | (x,y) satisfies (4)-(6), (9) and (x,y) ∈ {0,1}2n

}

.

Inequalities (9) can be separated in polynomial time in a support graph that splits

nodes into arcs. Given a fractional solution (x̃, ỹ), for each pair of nodes (k, ℓ) such

that ỹℓ+ x̃k −1 > 0 we generate a graph Gkℓ in which all nodes i 6= k, ℓ are replaced

by arcs. Arc capacities are then set to 1, except for the arcs associated to nodes,

whose capacities are set to ỹi − x̃i. If the maximum flow that can be sent from k to ℓ
in Gkℓ is less than ỹℓ+ x̃k−1> 0, we have detected a violated inequality of type (9).

Using the root constraint (4), inequalities (9) can also be reformulated as follows:

y(N)≥ yℓ+ x(N ∪{k})− 1 ⇒ y(N)+ x(V \ (N ∪{k, l}))≥ yℓ− xℓ,
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which can be interpreted as follows: If node ℓ is in the solution and it is not the root,

then for each k ∈V such that N (k, ℓ) 6= /0 and each N ∈ N (k, ℓ), either one of the

nodes from N is part of the solution, or none of the nodes from N ∪{k} is chosen as

the root node.

Inequalities (9) are quite intuitive, however they are not facet defining. In the next

section we will show how the (k, ℓ) node separator constraints can be lifted to obtain

facet defining inequalities.

3.4 A Model Based on Generalized Node Separator Inequalities

Observe that the inequality (9) can be lifted as follows: Assume that N ∈ N (k, ℓ)
also separates another node k′ 6= k from ℓ. Since at most one node can

be set as a root, the right-hand side of (9) can be increased as follows:

y(N)− x(N)≥ yℓ+ xk + xk′ −1. In fact, this motivates us to introduce a generalized

family of node separator inequalities, that can be obtained by a parallel lifting of (9).

Generalized Node-Separator Inequalities: Let ℓ be an arbitrary node in V and let

N ∈ Nℓ be an arbitrary ℓ-separator. Let WN,ℓ be the set of nodes i such that there is

a directed (i, ℓ)-path in G−N. More formally:

WN,ℓ = {i ∈V \N | ∃(i, ℓ) path P in G−N}∪{ℓ}.

Then, for any feasible MWCS solution, the following has to be satisfied: if node ℓ is

part of a solution, then either the root of the solution is in WN,ℓ, or, otherwise, at least

one of the nodes from N has to be taken. Hence, the following inequalities, that we

will refer to as generalized node-separator inequalities, are valid for the MWCS:

y(N)+ x(WN,ℓ)≥ yℓ, ∀ℓ ∈V, N ∈ Nℓ (gNSep)

Notice that the in-degree inequalities (6) are a subfamily of (gNSep): The in-degree

inequality can be rewritten as ∑ j∈D−(ℓ) y j+xℓ ≥ yℓ, i.e., they are a special case of the

generalized node-separator cuts for N = D−(ℓ) in which case WN,ℓ = {ℓ}. In order

to see that (gNSep) are lifted inequalities (9), notice that (gNSep) can be rewritten

as follows:

y(N)− x(N)≥ yℓ+ x(V \ (N ∪WN,ℓ))− 1, ∀ℓ ∈V, N ∈ Nℓ.

Together with this observation this proves that the following model is a valid MIP

formulation for the MWCS:

(CUT) max

{

∑
v∈V

pvyv | (x,y) satisfies (4)-(5), (gNSep) and (x,y) ∈ {0,1}2n

}

.
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Proposition 2 Generalized node-separator inequalities can be separated in poly-

nomial time.

Proof. Consider an auxiliary support graph in which the nodes are splitted as fol-

lows: each node i ∈ V is replaced by an arc (i1, i2). All ingoing arcs into i are now

connected to i1, all outgoing arcs from node i are now connected to i2. In other

words, we create a graph G′ = (V ′,A′) such that V ′ = {i1 | i ∈V}∪{i2 | i ∈V}∪{r}
(r is an artificial root), A′ = {(i2, j1) | (i, j) ∈ A}∪{(i1, i2) | i ∈V}∪{(r, i1) | i ∈V}.

For a given fractional solution (x̃, ỹ) arc capacities in G′ are defined as:

capuv =











ỹi, if u = i1,v = i2, i ∈V,

x̃i, if u = r,v = i1, i ∈V,

1, otherwise.

(10)

We calculate the maximum flow on G′ between r and (ℓ1, ℓ2) in G′ for a node ℓ such

that ỹℓ > 0. To check whether there are violated inequalities of type (gNSep), it only

remains to show that (i) every minimum cut (S,S) in G′ such that the corresponding

flow is less than ỹℓ corresponds to a (gNSep) inequality for the given ℓ ∈ V and

some N ∈ Nℓ, or (ii) that a corresponding violated (gNSep) cut can be generated

from (S,S) in polynomial time. Observe that any minimum cut (S,S) in G′ which is

smaller than ỹℓ can be represented as union of arcs adjacent to the root, plus union

of arcs of type (i1, i2). Hence, each (S,S) cut implies the following inequalities:

∑
(r, j)∈δ−(S)

x j + ∑
(i1,i2)∈δ−(S)

yi ≥ yℓ. (11)

We can now define a partitioning (U,N,W ) of the node set V such that:

W = {i ∈V | i1, i2 ∈ S}, N = {i ∈V | i1 6∈ S, i2 ∈ S}, U =V \ (W ∪N).

Rewriting the inequality (11), we obtain: x(W )+ y(N) ≥ yℓ. Observe that U 6= /0.

Indeed, if U = /0 then N ∪W =V , but then we have x(N)+ y(W ) ≥ x(V ) = 1 ≥ ỹℓ,

i.e., such cuts will never be violated. Hence, given the proper partition (U,N,W ),
the set N is obviously a (k, ℓ) separator for any k ∈ U (after removing (r, i1) arcs

from G′, the arcs (i1, i2) ∈ δ−(S) are arc-separators that separate U from the rest of

the graph). If W contains only nodes that can reach ℓ in G−N, then inequality (11)

belongs to the (gNSep) family. Otherwise we reverse all arcs in G−N and perform

a breadth-first search from ℓ. All nodes that can be reached from ℓ (notice that they

cannot belong to U), by definition, determine the set WN,ℓ. If the original cut (11)

was violated, the new one with the left-hand side equal to y(N)+ x(WN,ℓ) will be

violated as well. ⊓⊔
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3.5 Some More Useful Constraints

In this section we present additional constraints that are useful for practically

solving MWCS instances.

Connected Component Inequalities: In some applications of the MWCS, a K-

cardinality constraint is imposed: ∑i∈V yi = K. For a given node k ∈V , let Pk contain

all the nodes that are further than K−1 hops away from k. In that case, the following

inequalities are valid for the MWCS:

xk + yℓ ≤ 1, ∀ℓ ∈ Pk. (12)

Rewriting the connected component cuts, we obtain:

∑
j 6=k

x j ≥ yℓ, ∀ℓ ∈ Pk,

these constraints can be further strengthened by down lifting the coefficients of the

left-hand side. Whenever node ℓ is in the solution, then either ℓ is the root, or the

root cannot be more than K−1 hops away from ℓ. Let Wℓ be the set of such potential

root nodes including ℓ. We have

x(Wℓ)≥ yℓ, ∀ℓ ∈V.

Out-Degree Inequalities: The following set of inequalities state that whenever a

node i such that pi ≤ 0 is taken into a solution, this is because it leads us to another

node with positive weights:

y(D+(i))≥ yi, ∀i ∈V s.t. pi ≤ 0. (13)

Observe that these constraints are not valid if K-cardinality constraints are imposed.

Symmetry-Breaking Inequalities: In case the input graph is undirected, there ex-

ist many equivalent optimal solutions with different orientations. In order to break

those symmetries, we can impose the following constraint that chooses the node

with the smallest index to be the root of the subgraph:

x j + yi ≤ 1, ∀i < j. (14)

4 Polyhedral Study

Let P denote the connected subgraph (CS) polytope in the space of (x,y) variables:

P = conv{(x,y) ∈ {0,1}2n | (x,y) satisfies (4), (5), (gNSep)}.
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In this section we compare the proposed MIP formulations with respect to their qual-

ity of LP bounds and we show that, under certain conditions, the newly introduced

generalized node-separator inequalities are facet defining for the CS polytope.

4.1 Theoretical Comparison of MIP Models

Let PLP(.) denote the polytope of the LP relaxations of the MIP models presented

above obtained by replacing integrality conditions by 0 ≤ xi,yi ≤ 1, for all i ∈ V ,

and let vLP(.) be the optimal LP values of the associated MIP relaxations. For the

PLP(PCStT) polytope, we set Proj(x,y)(PLP(PCStT)) = {(x,y) ∈ {0,1}2n | xi =
zri and (y,z) ∈ PLP(PCStT)}. We can show that:

Proposition 3 We have:

1. Proj(x,y)(PLP(PCStT)) = PLP(CUT) ( PLP(CUTkℓ) and PLP(CUT) (

PLP(CYCLE).
2. Moreover, there exist MWCS instances such that vLP(CYCLE)/vLP(CUT) ∈

O(n).
3. The polytopes PLP(CYCLE) and PLP(CUTkℓ) are not comparable.

Proof. 1. Proj(x,y)(PLP(PCStT)) = PLP(CUT): We first show that

Proj(x,y)(PLP(PCStT)) ⊆ PLP(CUT). Let (ŷ, ẑ) be a feasible solution for

the relaxation of the PCStT model, we will show that the solution (x̂, ŷ) such

that x̂i = ẑri belongs to PLP(CUT). Let ℓ ∈ V be an arbitrary node such that

ŷℓ > 0, choose some N ∈ Nℓ and consider the associated WN,ℓ ⊂ V . Let Gd

be the corresponding directed instance of the PCStT with the root r (cf. Sec-

tion 3.1). Consider now a cut (W d ,Wd) in Gd where Wd = N ∪WN,ℓ. We have:

δ−
Gd
(Wd) = {(r, i) ∈ Ad | i ∈WN,ℓ}∪Rest, where Rest = {( j, i) ∈ Ad | j ∈W d , i ∈ N}.

Observe that Rest ⊆ δ−
Gd
(N) ⊆ ∪i∈Nδ−

Gd
(i). Therefore, we have:

ŷ(N) = ∑
i∈N

ẑ(δ−
Gd
(i))≥ ẑ(δ−

Gd
(N))≥ ẑ(Rest). (15)

Since (W d ,Wd) is a Steiner cut in Gd , it holds that ẑ(δ−
Gd
(Wd))≥ ŷℓ. This, together

with (15) implies:

ŷ(N)+ x̂(WN,ℓ)≥ ẑ(Rest)+ x̂(WN,ℓ) = ẑ(δ−
Gd
(Wd))≥ ŷℓ.

To show that PLP(CUT)⊆Projy(PLP(PCStT)) consider an LP solution (y̌, x̌)∈
PLP(CUT). We will construct a solution (ŷ, ẑ) ∈ PLP(PCStT) such that y̌ = ŷ and

ẑr j = x̌ j, ∀ j ∈ V . On the graph G′ (see Proof of Proposition 2) with arc capacities

of (i1, i2) set to y̌i for each i ∈V , arc capacities of (r, j1) set to x̌ j, and capacities set

to 1 for the remaining arcs, we are able to send y̌ℓ units of flow from the root r to

every ℓ1 ∈ V ′ such that y̌ℓ > 0. Let f k
i j denote the amount of flow of commodity k,

associated with k1 ∈ V ′, sent along an arc (i, j) ∈ A′. Let f be the minimal feasible
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1

2

3

4

5

6

Fig. 2 An example showing that PLP(CUTkℓ) 6⊆PLP(CYCLE). The LP solution y4 = y5 = y6 = 1,

y1 = y2 = y3 = x1 = x2 = 1/2 is feasible for the (CUTkℓ) model and infeasible for (CYCLE).

multi-commodity flow on G′ (i.e., the effective capacities on G′ used to route the

flow cannot be reduced without violating the feasibility of this flow). We now define

the values of (ŷ, ẑ) as follows: ẑr j = x̌ j ,∀ j ∈V and

ẑi j =

{

maxk∈V f k
i2 j1

, i, j ∈V

maxk∈V f k
r j1

, i = r, j ∈V
,∀(i, j) ∈ A; ŷi = ẑ(δ−(i)) ,∀i ∈V.

Obviously, the constructed solution (ŷ, ẑ) is feasible for the (PCStT) model and, due

to the assumption that f is minimal feasible, it follows that y̌ = ŷ and x̌ is equivalent

to ẑ, which concludes the proof.

PLP(CUT) ( PLP(CYCLE): Let (x̂, ŷ) be an arbitrary point from PLP(CUT).
In order to prove that (x̂, ŷ) ∈ PLP(CYCLE) we only need to show that con-

straints (7) are satisfied (recall that in-degree inequalities (6) are contained

in (gNSep)). Given the Observation 1, it is sufficient to consider cycles C such that

C ∪D−(C) ⊂ V . Since for any such cycle C the set D−(C) defines a separator for

any node ℓ ∈ C, from constraints (gNSep) we have that ŷ(D−(C))+ x̂(C) ≥ ŷℓ. For

the remaining nodes j ∈C, j 6= k, we apply the bounds 1 ≥ ŷ j. Summing up together

these |C| inequalities, we obtain (7).

2. Consider the example given in Fig. 1 for which the (CUT) model finds the opti-

mal solution.

3. The example given in Fig. 1 shows an instance for which the LP solution is fea-

sible for the (CYCLE) and infeasible for the (CUTkℓ) model. The example given in

Fig. 2 shows an instance for which the LP solution is feasible for the (CUTkℓ) and

infeasible for the (CYCLE) model. ⊓⊔

4.2 Facets of the CS Polytope

In this section we establish under which conditions some of the presented inequali-

ties are facet defining for the CS polytope.

Lemma 2. If G is a strong digraph, then the dimension of the polytope P is

dim(P) = 2n− 1.

Proof. We will construct the set of 2n feasible, affinely independent solutions as

follows: Since G is strong, we can find n spanning arborescences by choosing each
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i ∈ V as a root. That way, we build n affinely independent solutions. In addition,

consider n single node solutions (for each i ∈ V ), in which we have xi = yi = 1

and all remaining x j = y j = 0, for all j 6= i. The matrix obtained by merging the

characteristic vectors of these solutions has full rank, 2n. ⊓⊔

Lemma 3. Trivial inequalities xi ≥ 0 are facet defining if G is strong and i is not a

cut point in G.

Proof. Consider a family T of spanning arborescences on the set V \ {i} in which

each j 6= i is taken once as a root. This is possible because G− i remains a strong

digraph. There are n − 1 such solutions, and they are affinely independent. Add

now to T single node solutions, for each j ∈V \ {i}. Finally, add to T a spanning

arborescence in G with a root j 6= i. The matrix associated to incidence vectors from

T has full rank, 2n− 1. ⊓⊔

Lemma 4. Trivial inequalities yi ≤ 1 are facet defining if G is strong.

Proof. Consider a spanning arborescence T rooted at i. We will then apply a pruning

technique in order to generate n affine independent feasible MWCS solutions. We

start with T in which case y consists of all ones. We iteratively remove one by one

leaves from T , until we end up with a single root node i. Thereby, we generate a

family T of n affinely independent solutions. We then add to T n− 1 solutions

obtained by choosing a spanning arborescence rooted at j, for all j 6= i. The matrix

associated to incidence vectors from T , has full rank, 2n− 1. ⊓⊔

Notice that yi ≥ 0 are not facet defining inequalities because yi = 0 implies xi = 0.

Similarly, xi ≤ 1 do not define facets of P because they are dominated by xi ≤ yi.

Lemma 5. Coupling inequalities yi ≥ xi are facet defining if G is strong and i is not

a cut point in G.

Proof. Construct a family T of n affinely independent solutions by applying prun-

ing to a spanning arborescence rooted at i. Add then to T additional n− 1 arbores-

cences on the set V \{i} in which each j 6= i is taken once as a root (this is possible

because G− i remains strong). The matrix associated to incidence vectors from T ,

has full rank, 2n− 1. ⊓⊔

Proposition 4 Given ℓ ∈V and N ∈ Nℓ, the associated (gNSep) inequality is facet

defining if G is strong, N is a minimal ℓ-node separator and the subgraph induced

by WN,ℓ (|WN,ℓ| ≥ 2) is strong.

Proof. We prove the result by the indirect method. Let F(ℓ,N) = {(x,y)∈ {0,1}2n |
y(N)+x(WN,ℓ) = yℓ}. Consider a facet defining inequality of the form ax+by≥ a0.

We will show that if all points in F(ℓ,N) satisfy

ax+by = a0, (16)

then (16) is a positive multiple of (gNSep). Consider ℓ′ ∈W , ℓ′ 6= ℓ. A path from ℓ to

ℓ′, completely contained in WN,ℓ and rooted at ℓ exists in G (WN,ℓ is strong) and it is
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a feasible MWCS solution that belongs to F(ℓ,N). Let (x1,y1) be the characteristic

vector of this path. A subpath obtained after removing ℓ′ from this path, also rooted

at ℓ, is another feasible solution from F(ℓ,N), and let (x2,y2) be the corresponding

characteristic vector. We have: ax1+by1−ax2−by2 = 0. Therefore we have b′ℓ = 0,

for all ℓ′ ∈ W , ℓ′ 6= ℓ. Consider now a node k ∈ U = V \ (N ∪WN,ℓ). To show that

bk = 0, for all k ∈U , we distinguish the following cases:

(1) If D−(k)∩U 6= /0, then there exists an arc (k′,k), k′ ∈ U that builds a feasible

MWCS solution B from F(ℓ,N). Also, the single node solution B′ = {k′} belongs

to F(ℓ,N). After subtracting the equations (16) with the substituted characteristic

vectors of B and B′, we obtain bk = 0.

(2) If there exists an arc (i,k) ∈ A for some i ∈ N, then, consider a path P from

i to ℓ that does not cross N ∪U (such P exists because N is minimal) and a path

P′ = P∪{(i,k)}, in both of them we set i as root. Both P and P′ belong to F(ℓ,N).
After subtracting the equations (16) with the substituted characteristic vectors of P

and P′, we obtain bk = 0.

(3) Finally, if there exists an arc ( j,k) ∈ A for some j ∈ WN,ℓ, we consider a path

Q from ℓ to j in WN,ℓ (such path exists because WN,ℓ is strong) and a path Q′ =
Q∪{( j,k)}. Both Q and Q′ belong to F(ℓ,N). After subtracting the equation (16)

with the substituted characteristic vectors of Q and Q′, we obtain bk = 0. Hence,

the equation (16) can be rewritten as ax+∑i∈N∪{ℓ}bixi = a0. Notice that a single

node solution {k} belongs to F(ℓ,N), for each k ∈ U . By plugging the associated

vector into (16), it follows that ak = a0, for all k ∈ U . Consider now two spanning

arborescences in WN,ℓ, one rooted at ℓ, the other rooted at arbitrary ℓ′ 6= ℓ (this

is possible, because WN,ℓ is strong). After subtracting the equation (16) with the

substituted characteristic vectors of those two arborescences, we obtain aℓ′ = aℓ =
α , for all ℓ′ ∈WN,ℓ. Since N ∈Nℓ and it is minimal, for each i ∈ N there exist k ∈U

such that there exist a path Pk from k to ℓ that crosses N exactly at the node i. Let P′
k

be a subpath of Pk from i to ℓ. Both paths belong to F(ℓ,N) and after subtracting the

associated equations (16), it follows that ai = ak, and hence ai = a0, for all i ∈ N.

So far, (16) can be rewritten as a0x(W N,ℓ)+α x(WN,ℓ)+∑i∈N∪{k} biyi = a0. After

plugging in the characteristic vector of P′
k into this equation, it follows that a0 +

bi + bℓ = a0, and therefore we have bi = −bℓ = β , for all i ∈ N. Equation (16)

becomes now a0x(W N,ℓ)+α x(WN,ℓ)+βy(N)−βyℓ = a0. Notice that solution {ℓ}
also belongs to F(ℓ,N), which implies that α −β = a0. Finally, substituting a0 in

the previous equation, and using the equation (4), x(V ) = 1, we end up with the

following form of (16):

β [−x(W N,ℓ)+ y(N)− yℓ =−1],

which together with equation (4) concludes the proof. ⊓⊔
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5 Computational Results

For testing the computational performance of the presented formulations we have

considered both directed and undirected MWCS instances. The (CYCLE) model of

Backes et al. [1] has been developed for directed graphs (regulatory networks) with

K-cardinality constraints, i.e., any feasible solution has to be comprised by exactly

K nodes (for a given K > 1). Executables of this implementation are available online

(see [12]). For the (PCStT) and (CUT) models we have developed our own B&C

implementations that work with and without cardinality constraints. The real-world

instances used in [1] require K-cardinality constraints. Therefore, in the part of our

computational study conducted on digraphs, we impose cardinality constraints for

all three models, (PCStT), (CUT) and (CYCLE). For the other set of instances we

take the size of the unconstrained optimal solution (obtained by the (CUT) model)

and provide the corresponding value of K as input to the (CYCLE) model.

In the following, we describe (i) components of the designed B&C algorithms

and some implementation details, (ii) a testbed used for the experiments, and (iii)

an extensive analysis of the obtained results.

5.1 Branch-and-Cut Algorithms

Separation of Inequalities: For the (PCStT) model, connectivity inequalities (2)

are separated within the B&C framework by means of the maximum flow algorithm

given by [5]. The separation problem is solved on a support graph whose arc capac-

ities are given by the current LP value of z variables. We randomly select a terminal

v ∈ V such that pv > 0 and yv > 0, and calculate the maximum flow between the

artificial root and v, and insert the corresponding constraint (2), if violated.

For the (CUT) formulation, the separation of (gNSep) is performed by solving

the maximum flow problems as described in the proof of Proposition 2, with arc

capacities given by (10).

In all cases, instead of adding a single violated cut per iteration, we use nested,

back-flow and minimum cardinality cuts (see also [17, 20]) to add as many violated

cuts as possible. We restrict the number of inserted cuts within each separation

callback to 25.

Primal Heuristic: Our primal heuristic finds feasible solutions using the informa-

tion available from the current LP solution in a given node of the branch-and-bound

tree. Although we develop two different B&C algorithms, derived from two MIP

models, the embedded primal heuristics are based on the same idea. We select a

subset of potential “key-players” (nodes with a positive outgoing degree and with

sufficiently large y values) and run a restricted breadth-first search (BFS) from each

of them. Out of the constructed connected components, i.e., feasible solutions of

the MWCS, we select the one with the largest total weight.
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MIP Initialization: We initialize the (PCStT) model with the root out-degree con-

straints (3). For the undirected MWCS, we also add symmetry-breaking constraints

(similar to (14)) and inequalities z ji + zi j ≤ yi, for all e : {i, j} ∈ E since they

avoid too frequent calls of the maximum flow procedure. For the variants where

no cardinality constraint is defined, we also include the flow-balance constraints:

z(δ−(i)) ≤ z(δ+(i)), for all i ∈ V such that pi ≤ 0. These constraints ensure that a

node with non-positive weight can not be a leaf in an optimal PCStT solution.

We initialize the (CUT) model with the constraints (4), (5), (6). For the cases

where no cardinality constraint is imposed, the out-degree constraints (13) are

also included. Finally, the symmetry-breaking constraints (14) are added for the

undirected case.

Implementation: The proposed approaches were implemented using

CPLEXTM12.3 and Concert Technology. All CPLEX parameters were set to

their default values, except the following ones: (i) CPLEX cuts were turned off, (ii)

CPLEX heuristics were turned off, (iii) CPLEX preprocessing was turned off, (iv)

the time limit was set to 1800 seconds (except for the instances from [1]), and (v)

higher branching priorities were given to y variables, in the case of the (PCStT)
models, and to x variables, in the case of the (CUT) model. All the experiments

were performed on a Intel Core2 Quad 2.33 GHz machine with 3.25 GB RAM,

where each run was performed on a single processor.

5.2 Benchmark Instances

We have considered two sets of benchmark instances arising from applications in

systems biology and from network design.

System Biology Instances: We have considered instances used in [8] and [1]. In [8],

only a single protein-protein interaction network is considered. The instance is pre-

sented as an undirected graph comprised by 2034 nodes (proteins) and 8399 edges

(interactions). The considered protein-protein interaction network corresponds to a

well studied human one and the protein scores come from a lymphoma microarray

dataset (LYMPH). The instance is available at [21].

In [1], six instances of regulatory networks, i.e., directed graphs, were consid-

ered. These instances have the same underlying network (KEGG human regulatory

network of protein complexes), which is a graph comprised by 3917 nodes and

133 310 arcs. The differences between the six benchmark instances of this set

are the scores associated to the proteins (or protein complexes) which depend

on the pathogenic process under consideration. All the instances are available

online (see [12]). For providing a valid comparison with the method proposed

in [1], it is necessary to impose cardinality constraints to the solutions. Values

K ∈ {10,11, . . . ,25} are considered. This leads to 16 different instances for each of
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the six different score settings.

Network Design Instances: These are Euclidean random instances which are gen-

erated as proposed by Johnson, Minkoff, and Phillips in their paper on the Prize-

Collecting Steiner Tree Problem [16]. The topology of these instances is similar to

street networks. First, n nodes are randomly located in a unit Euclidean square. A

link between two nodes i and j is established if the Euclidean distance di j between

them is no more than α/
√

n, for a fixed α > 0.

To generate node weights, we performed the following procedure: δ% of the

nodes are randomly selected to be associated with non-zero weights. Out of them,

ε% are associated with a weight taken uniformly randomly from [−10,0] and the

remaining ones are associated with a weight taken uniformly randomly from [0,10].
When generating these instances we do not impose whether links are directed or

not. When reading the input files we define if the link between i and j corresponds to

an edge e : {i, j} or to an arc a : (i, j). This allows us to use the same set of instances

for both, the directed and the undirected case.

For the computational experiments we considered n ∈ {500,750,1000,1500},

α ∈ {0.6,1.0}, δ ∈ {0.25,0.50,0.75}, ε ∈ {0.25,0.50,0.75}. This leads to 18 in-

stances for each fixed value of n.

5.3 Algorithmic Performance

MWCS on Digraphs: For this study, we consider the instances GSE13671,

GDS1815, HT-29-8, HT-29-24, HT-116-8, HT-116-24 from [1] and our randomly

generated instances.

In Fig. 3, using the box plots we show the log10-values of the running times for

the three approaches considering all instances of [1] and all values of K. There are

16×6= 96 problems in total for each approach. The values marked with an asterisk

correspond to the log10-values of the mean running time (shown as the label next to

the asterisk). The values marked with symbol × correspond to the log10-values of

the maximum running times (the label next to it shows the name of the instance, K,

and the running time). The obtained results indicate that, for this group of instances,

(PCStT) is the approach with the worst performance since most of the running times

are at least one order of magnitude larger than the ones of the other two approaches.

When comparing (CUT) and (CYCLE), one can observe that the distribution of the

running times of the (CYCLE) model has a larger dispersion (the box is wider) and

its outliers are almost one order of magnitude larger than the maximum running

times of the (CUT) model. In a few cases however the (CYCLE) model solves some

instances faster than the (CUT) model (which can be seen from the minimum values

and the values in the first-quartile). Overall, the mean value of the running times

of the (CUT) model is 22 sec which is almost three times smaller than the mean

running time of the (CYCLE) model (77 sec). The value of the maximum running

time of the (CUT) model is 193 sec which is more than 10 times smaller than the
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Fig. 3 Box plots of log10-values of the running times [sec] (instances from [1], K ∈ {10, . . . ,25}).

maximum running time of the (CYCLE) model (2245 sec, reached for K = 18 for

the instance GSE13671, see Fig. 3). The fact that the box of the (CUT) model is

considerably narrower than the box of the (CYCLE) model, indicates that the (CUT)
approach is more robust regarding the variation of the scores of protein complexes

and the value of K.

In Table 1 we report for each instance from [1] the average values (over all

K ∈ {10, . . . ,25}) of the running times and the average number of cuts added for

each of the (PCStT), (CUT) and (CYCLE) models (cf. columns Time(sec), #(2),

#(gNSep) and #(7), respectively). In column δ we show the fraction of nodes with

a score different than 0 and in column ε the fraction of them with a negative score.

The results indicate that the performance of the (CYCLE) model strongly depends

on the instances under consideration (the average running times of GSE13671 are

two orders of magnitude larger that the ones of HT-116-8), which also explains the

dispersion shown in Fig. 3. Likewise, for the (PCStT) model, the average running

time for the instance HT-29-8 is an order of magnitude larger than for the instance

GSE13671. In contrast to the unstable performance of (PCStT) and (CYCLE) mod-

els, the (CUT) model seems to be more independent on the type of considered

instances. From the same table we may conclude that the number of cuts needed to

prove the optimality is one order of magnitude smaller for the (CUT) model than for

the other two models. This means that the (gNSep) cuts are more effective in closing

the gap than the (7) and (2) cuts. Regarding δ and ε, it seems that the (CUT) model

is not sensitive to their values, while the (CYCLE) model performs better when ε is

smaller.

For the set of Euclidean network instances, running times of the (CUT) and

(CYCLE) model are given in Fig. 4(a) and 4(b), respectively (for many instances

we reached the time-limit for the (PCStT) model, so we do not consider it here).

This time we group instances according to different combinations of (δ,ε) values.

Each box contains 16× 8 = 128 values obtained for the settings: K ∈ {10, . . . ,25},
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n ∈ {500,750,1000,1500} and α ∈ {0.6,1.0}. Comparing Fig. 4(a) and 4(b) we

observe that although the average running times (marked with asterisk) of the

(CUT) model are in general one order of magnitude smaller than those of the

(CYCLE) model, both of them present a similar pattern: (i) For a given δ, the

increase of ε from 0.25 to 0.75 produces a worsening of the algorithmic perfor-

mance. This worsening is visible not only in the increase of the running times, but

also in their higher dispersion (wider boxes and more outliers). Increasing ε (for

a fixed δ), means that a larger proportion of nodes has a negative weight; since

our goal is to find a connected component of exactly K nodes the more nodes with

negative weight, the more difficult is the task of reaching the “attractive” nodes

that lead to a better solution. (ii) On the other hand, increasing δ from 0.25 to 0.75

produces an improvement of the algorithmic performance, i.e., the more nodes

with non-zero weights, the easier the problems. One possible reason for this could

be the symmetries induced by a large portion of nodes with zero weight (as it is

the case for δ = 0.25). Hence, by decreasing this portion (i.e., increasing δ) the

cutting-planes that are added through the separation become more effective, and

the primal heuristic is able to find more diverse, and eventually better, incumbent

solutions.

MWCS on Undirected Graphs: For this computational comparison we do not im-

pose cardinality constraints. In order to be able to perform a comparison with the

(CYCLE) model that requires a digraph G and K as its input, we run the (CYCLE)
model with (i) G transformed into a digraph, and (ii) with the value of K set to be

the size of the optimal unconstrained MWCS solution (obtained by, e.g., the (CUT)
model). For these graphs we impose a time limit of 1800 seconds. Fig. 5 shows the

performance profile of the three approaches regarding the total running time. Fig. 6

shows the performance profile of the achieved gaps within this time limit. We ob-

serve that also in the case of undirected graphs, the (CUT) approach significantly

outperforms the (CYCLE) and the (PCStT) approach: While the (CUT) approach

produces solutions of less than 1% of gap in almost 100% of the instances, the

(PCStT) approach produces solutions with more than 15% of gap in more than 40%

of the instances. The (CYCLE) approach solves about 50% of instances to optimal-

ity, with most of the gaps of the unsolved instances being below 15%.

In Table 2 we provide more details on these results. Each row corresponds to

a fixed value of n, with 18 different instances obtained by varying δ, ε and α .

Column #NOpt indicates how many out of those 18 instances were not solved to

optimality within the imposed time limit of 1800 seconds. For a given n, and for each

of the three approaches we additionally report on the following values: the average

running time (cf. column Time(sec)); the average gap of those instances that were

not solved to optimality (cf. column Gap(%)), and the average number of inserted

cutting planes (cf. columns #(2), #(gNSep), #(7), respectively). These results show

that the (CUT) model is by far more effective than the (CYCLE) model for this

group of instances. The average running times of the (CUT) model are one order

of magnitude smaller than those of the (PCStT) and (CYCLE) model. All but four

instances can be solved by the (CUT) model to optimality, while in the case of the
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Fig. 4 Dependance of the running times on the (δ,ε) settings.

(CYCLE) and (PCStT) model, 29 and 42 instances remain unsolved, respectively.

The number of cutting planes of type (gNSep) needed to close the gap is one order

magnitude smaller than the number of cuts of type (7) or (2).

So far, it seems clear that for the considered instances the (CUT) model sig-

nificantly outperforms the (PCStT) approach. However for the LYMPH instance

studied in [8], for which δ = 1.0 and ε = 0.97, the (PCStT) model takes only 3.19

seconds to find the optimal solution while the (CYCLE) model takes 15.56 seconds,

and the (CUT) model 50.70 seconds. The optimal solution, whose objective value

is 70.2, is comprised by 37 nodes with positive weight and 9 with negative weight.

It is not easy to derive a concrete answer of why, for this particular instance, the
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Fig. 6 Performance profile of final gaps (%) on random undirected instances.

(PCStT) model is faster than the (CUT) model. The following two factors could be

responsible for this behavior: (i) the sparsity of the graph (the number of edges is ap-

proximately four times the number of nodes, while in random instances this ratio is

almost 10) which means that the number of z variables is not too large, and (ii) there

are significantly less symmetries due to the fact that there are no nodes with zero

weight. These factors might explain why, in this particular case, it becomes easier

to solve the problem with the prize-collecting Steiner tree reformulation, rather than

directly looking for a connected component that maximizes the objective function.
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6 Conclusion

Our work was motivated by the wide range of applications of the MWCS and a

recent work of Backes et al. [1] who were the first ones to propose a MIP model

for the MWCS derived on the set of node variables only. In this paper we were

able to provide a tight MIP model that outperforms the model from [1] both the-

oretically and computationally. The new model also works on the space of node

variables and is valid for all previously studied variants of the MWCS (cardinality

constrained, budget constrained and undirected/directed one). We have studied the

CS polytope and we have shown that the newly introduced family of generalized

node-separator inequalities is facet defining. Our computational study has shown

that the new approach outperforms the previously proposed ones, in particular if the

inputs are digraphs with non-empty subsets of zero-weight nodes.
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Table 1 Average values for instances from [1] (K ∈ {10, . . . ,25}).

(PCStT) (CUT) (CYCLE)

Instance δ ε Time(sec) #(2) Time(sec) #(gNSep) Time(sec) #(7)

GSE13671 0.89 0.73 176.11 1206 17.85 97 341.95 3754

GDS1815 0.92 0.64 878.63 3565 46.09 225 37.95 1264

HT-29-8 0.92 0.66 2846.36 5400 22.03 182 14.17 178

HT-29-24 0.92 0.61 196.56 1292 11.40 61 60.59 1330

HT-116-8 0.92 0.54 623.10 2214 15.26 108 3.21 129

HT-116-24 0.92 0.55 237.78 1149 19.82 93 4.19 130

Average 826.42 2471 22.07 128 77.01 1131

Table 2 Average values for different values of n (random instances, α ∈ {0.6,1.0}, δ,ε ∈ {0.25,0.50,0.75}, 18 problems per each n).

(PCStT) (CUT) (CYCLE)
#nodes #arcs Time(sec) Gap(%) #(2) #NOpt Time(sec) Gap(%) #(gNSep) #NOpt Time(sec) Gap(%) #(7) #NOpt

500 4558 677.24 >15.00 1055 5 15.30 – 69 0 615.36 5.50 4289 6

750 7021 1243.57 >15.00 1552 11 108.78 1.27 99 1 471.68 2.64 1721 4

1000 9108 1304.76 >15.00 1955 12 150.03 0.29 201 1 990.84 6.76 3176 9

1500 14095 1526.41 >15.00 2021 14 453.82 2.08 373 2 1086.19 10.55 2139 10
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