The MAXQ Method for Hierarchical Reinforcement Learning
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Hierarchical approaches to reinforcement learning (RL)
problems promise many benefits: (a) improved exploratio
(because exploration can take “big steps” at high levels o
abstraction), (b) learning from fewer trials (because fewer,
parameters must be learned and because subtasks can
nore irrelevant features of the full state) and (c) faster learn
ing for new problems (because subtasks learned on prev
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Abstract

This paper presents a new approach to hier-
archical reinforcement learning based on the
MAXQ decomposition of the value function.
The MAXQ decomposition has both a procedu-
ral semantics—as a subroutine hierarchy—and a
declarative semantics—as a representation of the
value function of a hierarchical policy. MAXQ
unifies and extends previous work on hierarchical
reinforcement learning by Singh, Kaelbling, and
Dayan and Hinton. Conditions under which the
MAXQ decomposition can represent the optimal
value function are derived. The paper defines a
hierarchical Q learning algorithm, proves its con-
vergence, and shows experimentally that it can
learn much faster than ordinary “flat” Q learn-
ing. Finally, the paper discusses some interest-
ing issues that arise in hierarchical reinforcement
learning including the hierarchical credit assign-
ment problem and non-hierarchical execution of
the MAXQ hierarchy.

I ntroduction

ous problems can be re-used).

Recent research has explored three general approaches
reaching these goals. The first approach, introduced b
Dean and Lin (1995), exploits a hierarchical decomposi

n

computation of the optimal policy. The second approach,
introduced by Parr and Russell (1998) relies on a program-
mer to design a hierarchy of abstract machines that con-
strains the possible policies to be considered. Their method
computes the policy that is optimal subject to these hier-
archical constraints by effectively flattening the hierarchy.
We will call this kind of policyhierarchically optimal be-
cause it is the best policy consistent with the imposed hi-
erarchy. The third approach, pioneered by Singh (1992),
Kaelbling (1993), and Dayan and Hinton (1993), also re-
lies on a programmer-designed hierarchy. In this hierarchy,
each subtask is defined in terms of goal states or termina-
tion conditions. Each subtask in the hierarchy corresponds
to its own Markov Decision Problem (MDP), and the meth-
ods seek to compute a policy that is locally optimal for each
subtask. We will call such policigscursively optimalRe-

cent work by Precup, Sutton, and Singh (1998) studies as-
pects of both the first and third approaches.

In this paper, we extend the research on recursively opti-
mal policies by introducing the MAXQ method for hier-
archical reinforcement learning. The methods introduced
by Singh, Kaelbling, and Dayan and Hinton are all spe-
cific to particular tasks. The Feudal Q learning method
of Dayan and Hinton suffers from the problem that at all
non-primitive levels of a Feudal-Q hierarchy, the learning
task can become non-Markovian, and therefore difficult to
solve. In contrast, the MAXQ method is general purpose.
t each level of the hierarchy, the task is Markovian and
an be solved by standard RL methods. In many cases,
state abstractions can be introduced without destroying the
&r?)’timality of the learned policy. Like Kaelbling's work,
MAXQ supports non-hierarchical execution of the learned
Eolicy, which permits it to behave well even when the opti-
mal policy violates the structure of the hierarchy.

'IIRis paper is organized as follows. First, we introduce the
X/IAXQ hierarchy using an example and define its procedu-
ral and declarative semantics. Then we introduce two theo-

tion primarily as a computational device to accelerate the



We seek a policy that maximizes the average reward per
4|R G step. In this domain, this is equivalent to maximizing the
3|0 total reward per episode. The optimal policy—which is
2 non-trivial to implement by hand—attains an average re-
1 = ward per step of 0.92 (computed over 5000 trials). There

are 8,750 possible states: 25 squares, 5 locations for the
oLy B passenger (counting the four starting locations and the

0 1 2 3 4 taxi), 5 destinations, and 14 fuel levels.

_ _ _ This task has a simple hierarchical structure in which there
Figure 1: The Taxi Domain are three sub-tasks: Get the passenger, Refuel the taxi, and
Deliver the passenger. Each subtask involves navigating

rems that describe the conditions under which the MAXQK,) one of the five Iocgtlons ?:']Id tEen pe_rformm_gialfup,
hierarchy can successfully represent the value function of 'luP: O Putdown action. While the taxi is navigating to

a fixed hierarchical policy. Section 4 introduces a Iearninga location, only that location is relevant. We would like to

algorithm for training a MAXQ hierarchy and shows ex- capture this hierarchical structure and take advantage of it
perimentally and theoretically that it works well. Finally, during learning and performance.
the paper shows how a non-hierarchical policy can be comFigure 2 shows a MAXQ graph for this problem. This

puted and executed using the MAXQ hierarchy. graph contains two kinds of nodes: Max nodes (indicated
by triangles) and Q nodes (indicated by ovals). Max nodes
2 TheMAXQ Hierarchy with no children denote primitive actions in the domain;

Max nodes with children represent subtasks. In this sim-

We will introduce the MAXQ method using the simple Taxi P/€ Problem, there are five such subtasks: Najigate(t)
Problem shown in Figure 1. A taxi inhabits a 5-by-5 grid (TOVe the taxi to target locatior), (b) Get (move to the

world. There are four specially-designated locations in thigPassenger's location ar’1d picl§ up the passengenpPyc)
world, marked as R(ed), B(lue), G(reen), and Y(ellow).(move to the passenger’s destlnatlon and put down the pas-
The taxi problem is episodic. In each episode, the taxi startS€N9er). (d)Refuel (move to F andFillup), and (e)Root

in a randomly-chosen state and with a randomly-chosefP€rform the overall task of picking up and delivering the
amount of fuel (ranging from 5 to 12 units). There is a passenger). Notice that tiNavigate task is shared by the

passenger at one of the four locations (chosen randomlyf>et: Put, andRefuel tasks.
and that passenger wishes to be transported to one of thghe immediate children of each Max node are Q nodes.
four locations (also chosen randomly). The taxi must go toEach Q node represents an action that can be performed
the passenger’s location (the “source”), pick up the passeno achieve its parent’s subtask. For example, NtaaGet
ger, go to the destination location (the “destination”), andnode has a child)NavigateForGet which represents the
put down the passenger there. (To keep things uniform, thgction of navigating from the current state to the passen-
taxi must pick up and drop off the passenger even if he/shger’s location. The distinction between Max nodes and Q
is already located at the destination!) The episode endfodes is critical to ensuring that subtasks can be shared and
when the passenger is deposited at the destination locatiofeused. Each Max node will learn tkentext independent
expected cumulative reward of performing its subtask. For
example,MaxNavigate(t) will estimate the expected cu-
smulative reward of navigating from any state to one of the
five target locationg. EachQ node will learn thecon-

There are seven primitive actions in this domain: (a) four
navigation actions that move the taxi one squidteth,

South, East, or West (each of these consumes one unit o
fuel), (b) aPickup action, (c) aPutdown action, and (d) a ; )
Fillup action (which can only be executed when the taxi jstext dependertixpected cumulative reward of performing

at location F(uel)). Each action is deterministic. There is'tS Subtask. For exampl@NavigateForGet(t) will learn
a reward of—1 for each action and an additional reward of & expected cumulative reward of navigating to location

+20 for successfully delivering the passenger. There is 3 and.then completin_g theet task  On the other hand,
reward of 10 if the taxi attempts to execute thetdown ~ ANavigateForPut(t) will learn the expected cumulative re-
or Pickup actions illegally. If a navigation action would ward of navigating to location an.d“ther'\ comp!etlng the
cause the taxi to hit a wall, the action is a no-op, and ther& Ut task Both of these Q nodes will “asklaxNavigate(t)

is only the usual reward of1. Finally, the episode also how much it will cost to get to location) and they will use

ends (with a reward of-20) if the fuel level falls below thiS to help them compute their Q values. The value func-
Zero. tion computed byaxNavigate is context independent and
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Figure 2: A MAXQ graph for the Taxi Domain

can be shared by all three of its parent Q nodes. states are thgoal stateof M;. Below, we will discuss the
details of defining a reward function that will encourage
M; to terminate in one of these goal states. Let us define
TG to be some (arbitrary) policy for subtagk This policy
“attempts” to get from any state i to one of the goal

To define the semantics of the MAXQ graph more formally, states inG;.

let us suppose that the overall task is to solve a Marko
Decision Problem (MDPM defined over a set of stat&s
and actionsA with reward functionR(s'|s,a) (the reward
received upon entering stag after performing actiora

in states) and transition probability functioR(s'|s,a) (the
probability of entering statg as a result of performingin

s). In this paper, we will assume that the MIMPdefines an . . . ;
undiscounted stochastic shortest path problem. All of th The Get policy then chooses one of its child actions, say,

results can be extended to the infinite-horizon discounted '(.:ku.p.' Then theP'Cku,p aCt!OI‘\.IS executed, since Itis a
case primitive. A Max node’s policy is executed until that Max

node enters a terminating state, at which point, “control”
Each Max nodécorresponds to a separate subtisskThe  returns to its parent Max node.
children of Max node are the actions dfl;. Each subtask
M; divides the sef of all states into two disjoint subsets:
S andT;. The setT; is the set ofterminal statesor M;.
SubtaskVl; will terminate whenever the environment enters
one of the states iffl;. A subsetG; C T; of the terminal

In the rest of the paper, we will say that Max naalis the
child of Max nodei if there is a Q node whose parentiis
and whose child is.

“A hierarchical policyfor a MAXQ graph is a set of poli-
ciesti= {1y, ...,T,}, one for each Max node, that indicate
how each Max node should choose its actions. The hierar-
chical policy is executed the same way that subroutines are
executed in ordinary programming languages. TRoet
policy chooses one of its child actions to perform, <zst,

Therefore, we can view the MAXQ graph as a subroutine
call graph. Like subroutines, Max nodes can be parame-
terized. In this graphivaxNavigate takes one parameter,

t, which specifies which of the five locations (R, B, G, Y,
F) is the target of th&MaxNavigate. One way in which the



graph is different from an ordinary program is that the chil-
dren of each Max node arsmordered They can be called

Cl(s.a) = 3 P(s|sa){"(s) (@)
s

in any order, and a Max node can execute each of its chilThese completely define the value-function semantics of
dren multiple times before it completes its subtask. Thethe MAXQ hierarchy. Eacl®) node with parentand child

MAXQ graph is therefore a kind of incompletely-specified
non-deterministic program. One result of learning will be

astores the informatio@(s, a) for each statsin §. Each
Max nodei returns theQ value of the child chosen bg.

to determine a policy for each Max node that tells how and

when to invoke its children. This will make the MAXQ

graph a completely-specified deterministic program (inter-

acting with a non-deterministic environment).

Thus far, our formulation of the MAXQ method is essen-

To compute the value of a hierarchical polimyn states,
we begin atMaxRoot (node 0) and comput@f(s, To(s)).
This requires that we ask our child node = m(s) for
its valueVg (s). Our child recursively asks its child, =
T, (S) for its value, and so on until a leaf nodgis reached.

tially the same as the Feudal Q learning method of Dayanet (ay,ay,...,a,) be the path that was traversed through
and Hinton (1993). However, an important improvementthe MAXQ graph. Now leaf nodey, returnsVJ\(s), to

over Feudal Q learning is the ability to interpret the MAXQ

which its parent add€7 | (s,an) and so on recursively.

graph as a representation of the value function for a hierarThe value returned byaxRoot is

chical policy. Consider Max nodeand defind/"(s) to be
the expected cumulative reward for following the hierarchi-
cal policy Tt starting in states until we enter some state in
T;. For a fixed hierarchical policy, subtaskV; has a well-
defined transition probability functiof’(s'|s, a), which is
the probability that the environment will move from state
s to states whenM; executes actiom. This probability

is well defined, because the chiM, is executing a fixed
policy 1, (as are all of its descendants). Hence, niocin
treat actiona as an atomic action. The immediate reward
for nodei of executinga will be the expected reward for
nodea of moving from the current stateto a terminal state

in T, according to policyt,. This is denote®]'(s). Hence,
we can write

WS = Vi +FREIsAVE). @

wherea = 15(s). This gives us a recursive decomposition

of the value function so that the value function of the root

node is the value function of the entire MNP and each
subtashkV; is a separate MDP.

This recursive expression becomes more useful when wWe&heorem 1 Letti= {m;i=0

switch to the action-value (or “Q”) representation of the
value function. Defin&Q'(s,a) to be the expected cumu-
lative reward for MDPM; of performing actiora in states
and then following the hierarchical poligythereafter. De-

Vo'(S) = Van(8) +C4 ,(s,an) +...+CF (s,a2) + Cg(s,a1)

©)
Figure 3 shows how the sequence of rewards,, ... re-
ceived from the primitive actions is decomposed hierarchi-
cally into the sum of th€ terms.

3 Representation Theorems

Under what conditions can this hierarchy represent the
value function of a fixed, hierarchical policy? We will say
that a MAXQ graph is dull-stategraph if separat€(s, a)
values are stored for each state S. In most applications,
including Figure 1, it will be desirable to introduce an ab-
straction functionX;(s) that will provide a set of features
that abstract essential information from the state. Each
Q node will then store the functio@™(X;(s),a), with one
value for each distinct abstract staggs).

For full-state graphs, it is easy to prove the following theo-
rem by expanding Equations (2—4):

,n} be a hierarchical pol-
icy defined over a full-state MAXQ graph, and let D be
the root node of the graph. Then there exist values for C
(for internal Max nodes) and;\for primitive, leaf Max
nodes) such thaty{s) is the expected cumulative reward of

fine the second term on the right-hand side of Eq. (1) to bé&ollowing policymin state s.

Cl(s,a), which we will call thecompletion function This
is the expected cumulative reward admpletingMDP M;
following policy Tt after executing actiora in states. With
these definitions, we can rewrite Eq. (1) as

Q(s,a) =Va'(s)+Cl(sa) 2
where
e | Qs T(9) i composite
V(s —{ SYPSIs)RE]si) iprimitve O

A more important and difficult question is to understand
the conditions under which an abstract-state MAXQ graph
can exactly represent the value function of a hierarchical
policy. The following theorem establishes one condition:

Theorem 2 For all Max nodes i and actions a, let
Resulfi(s,a) = {s | P'(s|s,a) > 0} be the set of states that
can result from applying abstract action a in state s at node
i while following hierarchical policyrt If the following
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Figure 3: The MAXQ decompositiomy, ..., r14 denote the sequence of rewards received from primitive@astat times 1..,14.

condition holds, then the MAXQ graph with abstraction because their parentlaxRoot, must compare their Q val-
functions X(s,a) can represent the value function of any ues to decide when to refuel to avoid the penalty. T@eir
policy T whose value function can be represented by thdunctions must therefore be able to represent the rewards.

MAXQ graph with no abstraction functions: This requires a change to the decomposition equations. Let

Ri(s|s,a) be the portion of the reward that is assigned to

For all Max nodes i, actions a, statesesS§, ) . .
S nodei. Then we write the following:

and distinct states;ss, € Resulf'(s,a) whenever

C'(s1,2) #C(2,9) itis the case that Xs,, a) # Cl(sa) = S P(|sa)R(S|sa) + V()]  (6)
Xi(s2,8) g
In other words, if an abstraction functiof treats a pair of VT(g) = { QiT[(Sﬂ'ﬁ(S)_) _ | Cqmppsite )
result states; ands, as identical, then their un-abstracted Y« P(s[si)Ri(s]s,i) i primitive

values must be equal. Otherwise, the value function cannqt . . o

be properly represented. The four childrermzxNavigate fl many domz_ilns, we believe it will be easy for the de-
all satisfy this condition. The expected reward of complet-s_Igner of the hlerarf:hy to a_lso decompose the reward func-
ing theMaxNavigate action depends only on the current lo- Flon. However, an _mterestlng problem for futurg researqh
cation of the taxi, the target location, and the amount ofS © d(_avelop a!gorlthms for autonomously solving the hi-
fuel remaining. If we are navigating to F (for refueling), erarchical credit assignment problem.

for example, the expected reward does not depend on the

source or destination locations. 4 A Learning Algorithm

The introduction of abstractions can creathiararchical
credit assignment problemFor example, in our imple-
mentation, we used only the taxi location and the targe
location to represent th€ functions forQNorth, QSouth, tion in each nodé. Hence, we could apply Parr and Rus-

QEast, andQWwest. We wanted these nodes to leam a nalV'sell’s HAM-Q algorithm to learn the best hierarchical pol-

igation policy that was independent of how much fuel re-i%y_ However, because we are committed to employing

The preceding section has shown that the hierarchy can cor-
{ectly represent the value function of any hierarchical pol-
icy if the full state is employed to represent tGefunc-

mained. But this means that when the fuel is exhausted an ) . 4
: . Slate abstractions, we have chosen instead to develop arein-
a —20 penalty is received, these Q nodes cannot represe

the reason for this penalty! This is the hierarchical credit prcement learning algorithm for finding a recursively op-
: ) . . ; timal policy.
assignment problem: to determine which node is respon-
sible for a reward that is received. Our solution is for thelt turns out that in general there can be many different re-
designer of the MAXQ hierarchy to alstecompose the re- cursively optimal policies, and that some of them achieve
ward function When each reward is generated, a marketbetter expected rewards than others. The problem is that
is attached that indicates which Q nodes are potentially rea subtask may have many policies that are locally optimal,
sponsible for this reward. For the20 empty fuel penalty, but some of them are more useful than others for the over-
the QGet, QPut, andQRefuel nodes are held responsible, all task. For example, suppose we changed the taxi domain



so that if the taxi hits a wall, the trial is terminated with a that all locally optimal polic[esftg, give the same transi-

reward of—5. Then forMaxNavigate(t), if the target loca-  tion probability distributionP™(s|s,a). This ensures that
tiont is more than 5 steps away, the locally optimal policy gj| |ocally optimal policies at noda give rise to the same
would be to hit a wall. This would not be part of any hi- MDP at any node that is a parent oh. (A Consequence
erarchically optimal policy, however! Dayan and Hinton of this assumption is that all recursively optimal policies
faced this same problem, and they solved it by providing il have the same value function.) Third, we must as-
penalty of 10 points to subtaskor entering an undesired suyme thatVi|, |Ci|, and|C;| are bounded at all times (this
terminal state (i.e., a state i but not inG;). This has s easy to enforce). Fourth, the exploration policy executed
the proper effect, but in the MAXQ hierarchy, it causes theat each nodé during learning must be a GLIE (greedy in
value function computed by the entire hierarchy to be in-the Jimit with infinite exploration) policy—that is, a policy
correct, because it incorporates the (often non-zero) probahat executes each action infinitely often in every state that
bility of receiving these terminal state penalties. is visited infinitely often, and that is greedy with respect to

A better method is to define, for each Max node MBpa Qi With probability 1. Finally, the learning rates (i) must
parallel Markov decision problei; with the same states, Satisfy the usual conditions:

actions, and tragsition probabilitieslss but with a second T -

reward functiorR; that is zero except for undesired termi- lim Y ai(i)=e and _lim S od(i) < o (12)
nal states, where it provides a large penalty. (We used a T—*& T &

penalty of—100 points). Our learning algorithm will seek _ _ _
a locally optimal policyft" for M. However, it will also ~ Theorem 3 Under the assumptions listed above, with
compute the value function for executifigin the original ~ Probability 1, MAXQ-Q will converge to a recursively op-
MDP M;, and this is the value that will be passed “up” the timal policy for MDP M consistent with MAXQ hierarchy
MAXQ hierarchy. H.

Specifically, our learning algorithm MAXQ-Q is a variant proof Sketch: The proof employs a stochastic approxima-
of Qlearning that performs the following. Ateach compos-tjon argument similar to those introduced to prove the con-
ite Max node, we maintain two tabl&(s,a) andGi(s,a).  vergence of) learning andcSARSA0) (Jaakkola, Jordan, &
The algorithm chooses an actiarto perform accordingto  singh, 1994; Bertsekas & Tsitsiklis, 1996; Singh, Jaakkola,
its current exploration policy. It executes observes the | jttman, & Szpesvari, 1998). The proof is by induction on
resulting states’ and rewardRi(s'[s,a), and computes the  the |evels of the tree, starting at the Max nodes all of whose
following: children are primitive leaf nodes. At these “first-level” Max
nodes, the standard results f@tearning can be applied to

* . ~. !
a = argar,nax[C] (s,8) +Va(s)] 8) prove that theC; values will converge with probability 1
x . A N to the optimal value function. Furthermore, because each
Glsa) = (} o ())G(s) +af(|) . nodei is executing a GLIE exploration policy, the policy
[R(s) +R(s|s,a) +Ci(s,a") +Va(s)] at these nodes will also converge with probability 1 to a
(9) locally optimal policy.
Ci(sa) = (1—o(i))C(sa)+a(i)- Now consider a Max nod¢ all of whose children are ei-
[Ri(S|s,a) +Ci(S,a") + Va: ()] ther primitive nodes or “first-level” Max nodes. Define

(10) P}(s’ |s,i) to be the transition probabilities observed by par-
ent nodej when it invokes child nodein states at timet
Herea* is the best action is' according to the curref  in the learning process. Because the first-level Max nodes
andV values. BotlC andC are updated using’. Ateach are executing GLIE policiesk?}(s\s,i) will converge (with
leaf nodei, the update is slightly different: probability 1) to the state transitio% (s|s,i) that will be
] ] ] produced by any of the locally optimal policies for node
Vi(s) == (1—ar(i)Vi(s) +oe()R(S]s,i).  (11) (by assumption, all of these locally optimally policies
give the same state transition probabilities). This enables
us to prove that nod¢ also converges with probability 1
to the optimalC; values and a locally-optimal policy. The
In order to prove convergence of this algorithm, we mustkey is to decompose the error in any particularbackup
make several assumptions. First, we must assume that afito two terms. One term—corresponding to the difference
deterministic policies in MDPRM are proper (i.e., they all between a sample backup (using the observed state tran-
terminate with probability 1). Second, we must assumesition) and a full Bellman backup (usir@(s’\sJ))—has

The quantitya; (i) is the learning rate for nodet time step
t.



expected value of zero. The other term—corresponding to 2 —
the difference between doing a full Bellman backup using 1 L Mean optimal
the current transition probabilitieﬁ}(é\s,i) and doing a
full Bellman backup using the final transition probabilities
Pj (s|s,i)—converges to zero with probability 1. By apply-
ing a stochastic approximation result (Proposition 4.5 from
Bertsekas and Tsitsiklis, 1996), we can prove that npde
will converge to a locally optimal policy. Hence, by induc-
tion, we can prove that the entire hierarchy converges to a Mf Flat
recursively optimal policyEnd of Proof Sketch. M g
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There is one interesting method that can be employed to o sl o e
accelerate learning in the higher nodes of the graph. When
an _aCtlona IS_ Chosen for Max nOde In Statesv the e-Xe' 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
cution ofa will move the environment through a series of Trial

statessy, ..., S, &+1 = S. If awas indeed the best action Figure 4: Online performance of flat and hierarchical Q leagn
to choose ins;, then it should also be the best action to " the Taxi task. Efich curve is smoothed using a 200-triaimgov
choose (at nodg in statess, throughsy. Hence, equations z}vsgﬁﬁh aTBf’,"ﬁ?,,”zoma' line shows the average performance
(9) and (10) can be applied in all of these states. This re-
flects an important difference between standard subroutine
calls and the MAXQ hierarchy. In standard subroutines,

there is a set of preconditions that must be true at the staftnctions.

of the subroutine. A partially-executed subroutine can Of'Figure 4 compares the online performance of flat and hi-

ten make these preconditions false, so that it is not POSSErarchicalQ learning. For flatQ learning, we employed

ble to interrupt a subroutine and then call it again WithOUtBoltzmann exploration with an initial temperature of 50.
first re-establishing the preconditions. In the MAXQ hier- t1is was decreased by a factor of 0.997 after each suc-

archy, however, a Max nodecan be invoked in any state coqqfy trial. We experimented with many different cool-

s€ S, and it must “complete” execution of the task from ;i sehedules, but we were unable to get flat Q learning to
that state onward. This means that the execution of the Maéonverge to the optimal policy within 50,000 trials. This

node can be interrupted and restarted with no change to thg, g the fastest cooling schedule that was able to attain (at
hierarchy. least briefly) the optimal expected reward. For hierarchical

We applied algorithm MAXQ-Q to the Taxi task using a Q learning, we employed a separate temperature for each
tabular representation of th@ functions. We employed Max node. The starting temperature for all nodes was 50
state abstraction as follows. For ti@North, QSouth, exceptMaxRoot, which used 100. Each node decreased its
QEast, andQWest nodes, theC function ignores the pas- temperature when it successfully reached a goal terminal
senger source and destination locations and the amount &tate. MaxRoot was cooled by a factor of 0.9986, the sec-
fuel. TheC function ofQPickup ignores the passenger des- ond level Max nodes at 0.997, amaxNavigate at 0.995.
tination and fuel, but it must know the source location andin all cases, a learning rate af= 1 was employed, since
taxi location in order to predict the effects of illegaitkup ~ all actions and rewards are deterministic.

actions. SimilarlyQPutdown ignores the passenger source These cooling rates were chosen so that the lower Max

Ioca’Fion_and the_fuel, anQFillup ignore§ the source and ,qes in the graph can become reasonably competent at
destination locations and the fueQNavigateForGet can i ghtasks before the nodes higher in the graph try to
represent it<C function by a single valule, because after |aa If care is not taken, a Max nodlenay conclude that

a successfulavigate, only aPickup remains to complete 5 g pasia is very expensive (because the subtask has not
the G_et action. The same is true f@Ngvngatel_:orPut and yet learned a good policy), and therefore, it setstivalue
QNavigateForRefuel. Because of the hierarchical credit as- for a very low. When this is combined with Boltzmann ex-
signment,QGet and QRefuel need to See the entire state, ploration, the result is that the subtask may never be tried
but QPut can ignore all of the state information, becauseagain Hence, we only performed an update for a Q node

once it succeeds, the task is completed. All of these aby hat node completed its subtask with an average absolute
stractions mean that instead of a set of seven 8,750-eleme§E”man error per step of less than 0.2. (This parameter

Q functions (61,250 values) for fl& learning, the MAXQ was not tuned at all.)

hierarchy requires only 18,253 values to representGhe
Figure 4 shows that the hierarchical method is able to learn



the task much faster and achieve a higher level of perforto one step of policy improvement in the policy iteration
mance than flat Q learning. Of course, both methods couldlgorithm (Bertsekas, 1995). This informally proves the
be improved by employing techniques for accelerating Qfollowing:

learning, such as eligibility traces (e.g., Peng & Williams, )
1996). Theorem 4 For all states s, the value of the policy com-

puted by polling execution of the MAXQ hierarchy-ishe

. ) ) value of the policy computed by hierarchical execution.
5 Non-Hierarchical Execution POIEY . y

Hence, polling execution of a MAXQ graph can produce a
We have shown that the MAXQ hierarchy can learn an op-non-hierarchical policy that is better than the hierarchical
timal policy for an MDP if that policy is a recursively opti- policy represented by the graph.
mal hierarchical. However, there are situations in which the\/Ve

optimal policy is almost—but not quite—hierarchical. For ) X
example, consider a modified Taxi task (the “fickle Taxi MAXQ .hlerarchy by MAXQ'Q fpr 1000 tngls anq then
continuing the training with polling execution. Figure 6

problem”) in which as soon as the taxi picks up the pas- . -
sﬁmws that there is an initial loss of performance when we
senger and moves one square, the passenger can random

change the destination with probability 0.3. This Changesmy/itch to polling execution. This is because during hierar-

comes after the hierarchical policy has committed to exe—Chlca‘I training, the more abstract Q nodesin the graph have

cutingQNavigateForPut(t) for the original destination. As gglyulzgtrlneedxg::iﬁ (;/aLIjJ:jevrveglll?nsta;Le: V;?:rneowg(g:iﬁ d
a result, theviaxNavigate subtask will take the taxi to the q y ' P 9. they

old destination. Then control will return tdaxPut, which in other states as well, and_they rapidly learn the correct
- . : values so that performance is able to reach the level of the
will invoke QNavigateForPut to move the taxi to the new

S optimal non-hierarchical policy. In this domain, polling ex-
destination. : . : .
ecution of the best hierarchical policy can produce the op-
Such “almost hierarchical” MDP’s raise the question of timal policy.
whether there is a way to convert a recursively-optimal hi-

erarchical policy into an optimal non-hierarchical policy. 6 Concluding Remarks

To answer this question, we implemented the Fickle Taxi

domain. We removed all aspects of fuel from the domainThis paper has defined the MAXQ value function decom-
so that we could figure out the optimal policy and hand-position for hierarchical reinforcement learning. The pa-
code it. Figure 5 compares the performance of flat Q learnper has shown that the MAXQ graph can represent the
ing and hierarchical Q learning on this modified task. Thevalue function of any hierarchical policy implemented by
optimal policy can achieve an average reward per step othe graph. A learning algorithm based Qnlearning was
1.172; but the best hierarchical policy (compatible with theintroduced, proved to converge, and shown experimentally
MAXQ graph of Figure 2) can only achieve 1.002. Hier- to perform much better than ordinary, non-hierarchiQal
archical learning with MAXQ-Q is able to attain this level learning.

rapidly. Fk.it Q Igarning app_roaches the optimum, but _doe%he mostimportant aspect of the MAXQ method is the sep-
not reach it within 10,000 trials. We tuned each algor'thmaration between the context-independent policy and value

fo opimize its performancg. We employed a learning rat&nction (represented by the Max nodes) and the context-
of 0.35 and decayed the initial temperature of 50.0 byafacaependent value function (represented by the Q) nodes.

tor of .460 (for flat Q) and .211 (for hierarchical Q) when- This permits the value functions of subtasks to be learned

ever a goal terminal state was reached. independent of their context, and this enhances the re-
An alternative to hierarchical execution of the MAXQ usability of the subtasks and makes it easier to employ state
graph ispolling executionas first suggested by Kaelbling abstraction within the subtasks. However, optimality of the
in her (1993) Hierarchical Distance to Goal method. In thelearned policy is lost in general, and hierarchical credit-
polling approach to MAXQ, each action is chosen by start-assignment problems may be introduced. Fortunately, the
ing atMaxRoot and computing the path (from root to leaf) ability of the MAXQ hierarchy to represent the value func-
with the highesQ value. The primitive action at the end of tion of the hierarchical policy permits the non-hierarchical
this path is then executed, and the process is repeated. THigecution of a one-step greedy policy that is better than the
is equivalent to computing the one-step greedy lookaheabiierarchical policy.

policy given the current value function. If the hierarchi-

cal policy is not optimal, then this one-step greedy policyAcknowledgements. The author thanks Eric Chown for
will be closer to an optimal policy, because it correspondsamany helpful discussions of this work and Valentina Bayer,

tested this on the Fickle Taxi task by first training the
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Figure 5: Online performance of flat and hierarchical Q leagn  Figure 6: Online performance on the Fickle Taxi task. The firs
on the Fickle Taxi task. Each curve is the average of 10 runs;1000 trials are trained hierarchically. The remainingl¢riare
the returns from each run were smoothed by a 200-trial movingtrained while polling.

average.
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