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Low’s well-known action principle for the Maxwell–Vlasov equations of ideal
plasma dynamics was originally expressed in terms of a mixture of Eulerian and
Lagrangian variables. By imposing suitable constraints on the variations and ana-
lyzing invariance properties of the Lagrangian, as one does for the Euler equations
for the rigid body and ideal fluids, we first transform this action principle into
purely Eulerian variables. Hamilton’s principle for the Eulerian description of
Low’s action principle then casts the Maxwell–Vlasov equations into Euler–
Poincare´ form for right invariant motion on the diffeomorphism group of position-
velocity phase space,R6. Legendre transforming the Eulerian form of Low’s action
principle produces the Hamiltonian formulation of these equations in the Eulerian
description. Since it arises from Euler–Poincare´ equations, this Hamiltonian for-
mulation can be written in terms of a Poisson structure that contains the Lie–
Poisson bracket on the dual of a semidirect product Lie algebra. Because of degen-
eracies in the Lagrangian, the Legendre transform is dealt with using the Dirac
theory of constraints. Another Maxwell–Vlasov Poisson structure is known, whose
ingredients are the Lie–Poisson bracket on the dual of the Lie algebra of symplec-
tomorphisms of phase space and the Born–Infeld brackets for the Maxwell field.
We discuss the relationship between these two Hamiltonian formulations. We also
discuss the general Kelvin–Noether theorem for Euler–Poincare´ equations and its
meaning in the plasma context. ©1998 American Institute of Physics.
@S0022-2488~98!00506-4#

I. INTRODUCTION

A. Reduction of action principles

Due to their wide applicability, the Maxwell–Vlasov equations of ideal plasma dynamics
been studied extensively. In 1958 Low1 wrote down an action principle for them in preparation f
studying stability of plasma equilibria. Low’s action principle is expressed in terms of a mix
of Lagrangian particle variables and Eulerian field variables.

Following the initiative of Arnold2 and its later developments~see Ref. 3 for background!, we
start with a purely Lagrangian description of the plasma and investigate the invariance pro
of the corresponding action. Using this setup and recent developments in the theory of the
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Poincare´ equations4,5 due to Holm, Marsden, and Ratiu,6 we are able to cast Low’s action principl
into a purely Eulerian description.

In this paper, we start with thestandard form of Hamilton’s variational principle~in the
Lagrangian representation! andderivethe new Eulerian action principle by a systematic reduct
process, much as one does in the corresponding derivation of Poisson brackets in the Ham
formulation of the Maxwell–Vlasov equations starting with thestandard canonical bracketsand
proceeding by symmetry reduction~as in Ref. 7!. In particular, the Eulerian action principle w
obtain in this way is different from the ones found in Ye and Morrison8 by ad hocprocedures. We
also mention that the method of reduction of variational principles we develop naturally jus
constraints on the variations of the so-called ‘‘Lin constraint’’ form, well known in fluid mech
ics.

The methods of this paper are based on reduction of variational principles, that is, o
grangian reduction~see Refs. 9–12!. These methods have also been useful for systems
nonholonomic constraints. This has been demonstrated in the work of Blochet al.,13 who derived
the reduced Lagrange d’Alembert equations for nonholonomic systems, which also have
strained variational structure. The methods of the present paper should enhance the applica
the Lagrangian reduction techniques for even wider classes of continuum systems.

B. Passage to the Hamiltonian formulation

The Hamiltonian structure and nonlinear stability properties of the equilibrium solution
the Maxwell–Vlasov system have been thoroughly explored. Some of the key referenc
Iwı́nski and Turski,14 Morrison,15 Marsden and Weinstein,7 and Holm, Marsden, Ratiu, an
Weinstein.16 See also the introduction and bibliography of Marsdenet al.17 for a guide to the
history and literature of this subject.

In our approach, Lagrangian reduction leads to the Euler–Poincare´ form of the equations,
which is still in the Lagrangian formulation. Using this setup, one may pass from the Lagra
to the Hamiltonian formulation of the Maxwell–Vlasov equations by Legendre transforming
action principle in the Eulerian description at either the level of the group variables~the level that
keeps track of the particle positions!, or at the level of the Lie algebra variables. One must
cautious in this procedure because the relevant Hamiltonian and Lagrangian are degener
deal with this degeneracy by using a version of the Dirac theory of constraints.

Legendre transforming at the group level leads to a canonical Hamiltonian formulation
the latter leads to a new Hamiltonian formulation of the Maxwell–Vlasov equations in terms
Poisson structure containing the Lie–Poisson bracket on the dual of a semidirect produ
algebra. This new formulation leads us naturally to the starting point for Hamiltonian redu
used by Marsden and Weinstein7 ~see also Refs. 15 and 18!.

C. Stability and asymptotics

The new Hamiltonian formulation of the Maxwell–Vlasov system places these equation
a framework in which one can use the energy-momentum and energy-Casimir methods for
ing nonlinear stability properties of their relative equilibrium solutions. This is directly in line w
Low’s intended program, since the study of stability was Low’s original motivation for writing
action principle. Sample references in this direction are Holm, Marsden, Weinstein, and R16

Morrison,19 Morrison and Pfirsch,20 Wan,21 Batt and Rein22 and Batt, Morrison, and Rein.23 Other
historical references for the Lagrangian approach to the Maxwell–Vlasov equations in
Sturrock,24 Galloway and Kim,25 and Dewar.26

The Eulerian formulation of Low’s action principle also casts it into a form that is amen
to asymptotic expansions and creation of approximate theories~such as guiding center theorie!
possessing the same mathematical structure arising from the Euler–Poincare´ setting. See, for
example, Ref. 27 for applications of this approach of Hamilton’s principle asymptotics in
physical fluid dynamics.

D. Comments on the Maxwell–Vlasov system

The rest of this paper will be concerned with variational principles for the Maxwell–Vla
system of equations for the dynamics of an ideal plasma. These equations have a long
 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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dating back at least to Jeans,28 who used them in a simpler form known as the Poisson–Vla
system to study structure formation on stellar and galactic scales. Even before Jeans, Poin´4,29

had investigated the stability of equilibrium solutions of the Poisson–Vlasov system fo
purpose of determining the stability conditions for steller configurations. The history of the e
to establish stellar stability conditions using the Poisson–Vlasov system is summariz
Chandrasekhar.30 The Poisson–Vlasov system is also used to describe the self-consistent d
ics of an electrostatic collisionless plasma, whereas the Maxwell–Vlasov system is used
scribe the dynamics of a collisionless plasma evolving self-consistently in an electroma
field.

E. Organization of the paper

The paper is organized as follows. In Sec. II we introduce the Maxwell–Vlasov equation
Sec. III we state the Euler–Poincare´ theorem for Lagrangians depending on parameters along
the associated Kelvin–Noether theorem. This general theorem plays a key role in our analy
Sec. V we reformulate these equations in a purely Eulerian form and show how they satis
Euler–Poincare´ theorem. The following section reviews some aspects of the Legendre tran
mation for degenerate Lagrangians. In Sec. IV we reprise Low’s action principle for the Maxw
Vlasov equations. In Sec. VII we cast the Euler–Poincare´ formulation of the Maxwell–Vlasov
equations into Hamiltonian form possessing a Poisson structure that contains a Lie–P
bracket. In Sec. VIII we summarize our conclusions.

II. THE MAXWELL–VLASOV EQUATIONS

The Maxwell–Vlasov system of equations describes the single particle distribution for a
charged particles of one species moving self-consistently in an electromagnetic field. I
description, the Boltzmann functionf (x,v,t) is viewed as the instantaneous probability dens
function for the particle distribution, i.e., given a regionV of phase space, the probability o
finding a particle in that region is

E
V

dx dvf ~x,v,t !, ~2.1!

where x and v are the current positions and velocities of the plasma particles. Thus, i
phase-space domainV is the whole~x,v! space, the value of this integral at a certain timet is
normalized to unity.

As is customary, we assume that the particles of the plasma obey dynamical equatio
that the plasma densityf is advected as a scalar along the particle trajectories in phase spac

] f

]t
1 ẋ•¹xf 1 v̇•¹vf 50. ~2.2!

In this equation, and in the sequel, an overdot refers to a time derivative along a phase
trajectory, and¹x and ¹v denote the gradient operators with respect to position and velo
respectively. For pressureless motion in the electromagnetic field of the charged particle di
tion, the acceleration of a particle is given by

ẍ52
q

m F¹xF1
]A

]t
2v3~¹x3A!G , ~2.3!

where (q/m) denotes the charge-to-mass ratio of an individual particle,F is the electric potential,
andA is the magnetic vector potential. Substituting this expression forv̇ in Eq. ~2.2! yields

] f

]t
1v•¹xf 2

q

m F¹xF1
]A

]t
2v3~¹x3A!G•¹vf 50. ~2.4!

This is theVlasov equation~also called the collisionless Boltzmann, or Jeans equation!. The
system is completed by the Maxwell equations with sources:

¹x•E5r, ¹x3B5
]E

]t
1 j , ~2.5!
 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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whereE andB are the electric and magnetic field variables, respectively,r is the charge density
and j is the current density. These quantities are expressed in terms of the Boltzmann funcf
and the Maxwell scalar and vector potentialsF andA by

E52¹xF2
]A

]t
, B5¹x3A,

~2.6!

r~x,t !5qE dv f ~x,v,t !, j ~x,t !5qE dv vf ~x,v,t !.

By their definitions,E andB satisfy the kinematic Maxwell equations

¹x•B50, ¹x3E52
]B

]t
. ~2.7!

Equations~2.4!–~2.7! comprise theMaxwell–Vlasov equations. WhenA is absent, the field is
electrostatic and one obtains the Poisson–Vlasov equations. The Poisson–Vlasov system
be used to describe a self-gravitating collisionless fluid, and so it forms a model for the evo
of galactic dynamics~see, e.g., Ref. 31!.

Note that the integral in~2.1! is independent of time~as the region and the functionf evolve!,
since the vector field defining the motion of particles@see Eq.~2.3!# is divergence free with respec
to the standard volume element on velocity phase space. Thus, one may interpretf either as a
density or as a scalar. For our purposes later, we will need to be careful with the distinction
the volume-preserving nature of the flow of particles will be a consequence of our varia
principle and will not be imposed at the outset.

III. THE EULER–POINCARÉ EQUATIONS, SEMIDIRECT PRODUCTS, AND KELVIN’S
THEOREM

A. The general Euler–Poincare ´ equations

Here we recall from Ref. 6 the general form of the Euler–Poincare´ equations and their
associated Kelvin–Noether theorem. In the next section, we will immediately specialize
statements for a general invariance groupG to the case of plasmas whenG is the diffeomorphism
group, Diff(TR3). We shall state the general theorem for right actions and right inva
Lagrangians, which is appropriate for the Maxwell–Vlasov situation. The notation is as foll

~i! There is aright representation of the Lie groupG on the vector spaceV andG acts in the
natural way from theright on TG3V* :(vg ,a)h5(vgh,ah).

~ii ! rv :g→V is the linear map given by the corresponding right action of the Lie algebr
V:rv(j)5vj, andrv* :V*→g* is its dual. Theg–action ong* and V* is defined to be
minusthe dual map of theg–action ong andV, respectively, and is denoted bymj andaj
for jPg, mPg* , andaPV* . For vPV andaPV* , it will be convenient to write

vLa5rv*a, i.e., ^vLa,j&5^a,vj&52^v,aj&,
for all jPg. Note thatvLaPg* .

~iii ! Let Q be a manifold on whichG actstrivally and assume that we have a functionL:TG
3TQ3V*→R which is rightG-invariant.

~iv! In particular, if a0PV* , define the LagrangianLa0
:TG3TQ→R by La0

(vg ,uq)
5L(vg ,uq ,a0). ThenLa0

is right invariant under the lift toTG3TQ of the right action of
Ga0

on G3Q .
~v! Right G-invariance ofL permits us to definel :g3TQ3V*→R by

l~vgg
21, uq , ag21!5L~vg ,uq ,a!.

Conversely, this relation defines for anyl :g3TQ3V*→R a right G-invariant function
L:TG3TQ3V*→R.

~vi! For a curveg(t)PG, let j(t):5ġ(t)g(t)21 and define the curvea(t) as the unique solu-
tion of the linear differential equation with time-dependent coefficientsȧ(t)52a(t)j(t)
 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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with initial condition a(0)5a0 . The solution can be equivalently written asa(t)
5a0g(t)21.

Theorem 3.1:The following are equivalent:

~i! Hamilton’s variational principle holds:

dE
t1

t2
La0

~g~t!, ġ~t!, q~t!, q̇~t!! dt50, ~3.1!

for variations ofg andq with fixed endpoints.
~ii ! (g(t),q(t)) satisfies the Euler–Lagrange equations forLa0

on G3Q .
~iii ! The constrained variational principle,32

dE
t1

t2
l~j~t!, q~t!, q̇~t!, a~t!! dt50, ~3.2!

holds ong3Q , upon using variations of the form

dj5
]h

]t
2adjh5

]h

]t
2@j,h#, da52ah, ~3.3!

whereh(t)Pg vanishes at the endpoints anddq(t) is unrestricted except for vanishing a
the endpoints.

~iv! The following system of Euler–Poincare´ equations~with a parameter! coupled with Euler–
Lagrange equations holds ong3TQ3V* :

]

]t

dl

dj
52adj*

d l

dj
1

d l

da
La ~3.4!

and
]

]t

]l

]q̇i
2

]l

]qi 50. ~3.5!

The strategy of the proof is simple: one just determines the form of the variations o
reduced spaceg3Q3V* that are induced by variations on the unreduced spaceTG3TQ and
includes the relation ofa(t) to a0 . One then carries the variational principle to the quotient. S
Ref. 6 for details. Here we have included the extra factor ofQ which is needed in the presen
application; this will be the space of potentials for the Maxwell field. This extra factor does
substantively alter the arguments.

B. The Kelvin–Noether Theorem

We start with a LagrangianLa0
depending on a parametera0PV* as above and introduce

manifold C on which G acts. We assume this is also a right action and suppose we hav
equivariant mapK :C 3V*→g** .

In the case of continuum theories, the spaceC is chosen to be a loop space and^K (c,a),m&
for cPC andmPg* will be a circulation. This class of examples also shows why wedo notwant
to identify the double dualg** with g.

Define theKelvin–Noether quantityI :C 3g3TQ3V*→R by

I ~c,j,q,q̇,a!5 K K ~c,a!,
d l

dj
~j,q,q̇,a!L . ~3.6!

Theorem 3.2 „Kelvin –Noether…: Fixing c0PC , let j(t),q(t),q̇(t),a(t) satisfy the Euler–
Poincare´ equations and defineg(t) to be the solution ofġ(t)5j(t)g(t) and, say,g(0)5e. Let
c(t)5g(t)21c0 and I (t)5I (c(t),j(t),q(t),q̇(t),a(t)).
 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Then

d

dt
I ~ t !5 K K ~c~ t !,a~ t !!,

d l

da
LaL . ~3.7!

The proof of this theorem is relatively straightforward; we refer to Ref. 6. We shall exp
the relation~3.7! explicitly for Maxwell–Vlasov plasmas at the end of Sec. VII.

IV. AN ACTION FOR THE MAXWELL–VLASOV EQUATIONS

A typical element ofTR3>R33R3 will be denotedz5(x,v). We let ps :TR3→R3 and
pv :TR3→R3 be the projectionsps(z)5x andpv(z)5v onto the first and second factors, respe
tively.

A. Spaces of fields

We let Diff(TR3) denote the group ofC`-diffeomophisms fromTR3 onto itself. An element
cPDiff( TR3) maps plasma particles having initial position and velocity (x0 ,v0) to their current
position and velocity (x,v)5c(x0 ,v0). This is the particle evolution map. We shall sometim
abbreviate (x0 ,v0)5z0 , (x,v)5z, etc. The spatial components ofc(x0 ,v0) are written as
x(x0 ,v0) and the velocity components asv(x0 ,v0). We shall also use the following notation:

~i! V 5C`(R3,R) is the space of electric potentialsF~x!;
~ii ! A is the space of magnetic potentialsA(x);
~iii ! F 5C`(TR3,R) is the space of plasma densitiesf (x,v);
~iv! F 05C0

`(TR3,R) is the space of plasma densities with compact support; and
~v! D05C0

`(R3,R) is a space of test functions, denotedw~x!.

The test functionsw~x! are used to localize the variational principle. Thus, once one obt
Euler–Lagrange equations depending onf 0 andw0 , if their validity can be naturally extended fo
any f 0 andw0 , which will happen in our case, then we shall consider those extended equatio
be the Euler–Lagrange equations of the system. We will usually be interested in the E
Lagrange equations forf 0.0 andw051.

B. The Lagrangian and the action

For each choice of the initial plasma distribution functionf 0 and the test functionw0 , we
define the Lagrangian

L f 0 ,w0
~c,ċ,F,Ḟ,A,Ȧ!5E dx0 dv0 f 0~x0 ,v0!S 1

2
muẋ~x0 ,v0!u21

1

2
muẋ~x0 ,v0!2v~x0 ,v0!u2

1qẋ~x0 ,v0!•A~x~x0 ,v0!!2qF~x~x0 ,v0!! D
1

1

2 E dr w0~r !S U¹ rF1
]A

]t
~r !U2

2u¹ r3A~r !u2D . ~4.1!

This Lagrangian is the natural generalization of that for anN-particle system, with terms corre
sponding to kinetic energy, electric and magnetic field energy, the usual magnetic coupling
with coupling constantq ~the electric charge!, and a constraint that ties the Eulerian fluid veloc
v to ẋ, the material derivative of the Lagrangian particle trajectory. Herex andv are Lagrangian
phase space variables, whileA and F are Eulerian field variables. Thus, there should be

confusion created by the slight abuse of notation in abbreviating]A/]t and]F/]t asḞ and Ȧ,
respectively, in the arguments of the Lagrangian. This Lagrangian is inspired by Low.1 However,
we have added the term

1
2 muẋ~x0 ,v0!2v~x0 ,v0!u2,

which allowsv to be varied independently in the variational treatment.
Consider the action
 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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S5E dt Lf 0 ,w0
~c,ċ,F,Ḟ,A,Ȧ!,

defined on the family of curves (c(t),F(t),A(t)) satisfying the usual fixed-endpoint condition
(c(t i),F(t i),A(t i))5(c i ,F i ,A i), i 51,2. One now applies the standard techniques of the ca
lus of variations. In particular, integration by parts can be performed sincef 0 and w0 have
compact support. Moreover, once the Euler–Lagrange equations have been obtained, their
can be easily extended in a natural way forf 0.0 andw051.

C. Derivation of the equations

To write the equations of motion, we need some additional notation. Consider the evo
mapc t(x0 ,v0)5(x,v) so thatc t relates the initial positions and velocities of fluid particles to th
positions and velocities at timet. Let u be the corresponding vector field:

u~x,v!:5ċ t+c t
21~x,v!5: ẋ

]

]x
1 v̇

]

]v
,

so the components ofu are (ẋ,v̇). Recall that the transport off 0 as a scalar is given by
f (x,v,t)5 f 0+c t

21(x,v), which satisfies

] f

]t
1u•¹z f 50, ~4.2!

where¹z5(¹x ,¹v) is the six-dimensional gradient operator in~x,v! space. LetJc be the Jacobian
determinant of the mappingcPDiff( TR3), that is, the determinant of the Jacobian mat
](x,v)/](x0 ,v0).

DefineF(x,v,t) to be f 0 , transported as adensity:

F~x~x0 ,v0!,v~x0 ,v0!,t !Jc~x0 ,v0!5 f 0~x0 ,v0!,

so that

]F

]t
1¹z•~Fu!50. ~4.3!

Taking variations in our Lagrangian~4.1! and making use of the preceding equation forF, we
obtain the following equations~taking w051!:

dx: mẍ1m~ ẍ2 v̇!52q¹xF2q
]A

]t
1qẋ3~¹x3A!,

dv: ẋ2v50,
~4.4!

dF: ¹x•S ¹xF1
]A

]t D52qE dv F~x,v,t !,

dA: ¹x3~¹x3A!52
]

]t S ¹xF1
]A

]t D1qE dv vF~x,v,t !.

The second equation in~4.4! treats the Eulerian velocityv as a Lagrange multiplier, and ties it
value to the fluid velocityẋ, hencev̇5 ẍ as well. The first two variational equations in the set~4.4!
provide the desired relation for particle acceleration and the last two equations are the M
equations with source terms. Thus, Hamilton’s principle with Low’s action provides the equa
for self-consistent particle motion in an electromagnetic field, as required, and the descrip
completed by substituting
 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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S v,2
q

m F¹xF1
]A

]t
2v3~¹x3A!G D

for the components ofu in the transport equation~4.2! to give the Vlasov equation~2.4!.

V. THE MAXWELL–VLASOV SYSTEM AS EULER–POINCARE´ EQUATIONS

We will now specialize the general Euler–Poincare´ theorem to the case of plasmas. T

Lagrangian L f 0 ,w0
(c,ċ,F,Ḟ,A,Ȧ) in Eq. ~4.1! has a right Diff(TR3)-symmetry. Let h

PDiff( TR3), FPF , and define the action ofh on F by Fh5(F+h)Jh where, as above,Jh is the
Jacobian determinant ofh.

The symmetry ofL f 0 ,w0
(c,ċ,F,Ḟ,A,Ȧ) is the property

L f 0h,w0
~ch,ċh,F,Ḟ,A,Ȧ!5L f 0 ,w0

~c,ċ,F,Ḟ,A,Ȧ!,

for all hPDiff( TR3).

A. Ingredients for Euler–Poincare ´

Now we apply the general Euler–Poincare´ Theorem 3.1, takingG5Diff( TR3) and
Q5V 3A and the parametera05 f 0 . As we have explained before,w0 is an auxiliary quantity
that will ultimately take the value unity. In the general Euler–Poincare´ Theorem 3.1 we take

du5
]w

]t
2aduw, da52£wa, ~5.1!

wherewPg is a vector field onTR3, £w is the Lie derivative, and aduw52@u,w# defines aduw in
terms of the Lie bracket of vector fields,@u,w#. The Euler–Poincare´ equations~3.4! are

]

]t

d l

du
52adu*

d l

du
1

d l

da
La, ~5.2!

where adu* is the dual of adu andd l /du is a one-form density. The one-form density (d l /da)La
is defined by

K d l

da
La,wL 52E d l

da
•£wa. ~5.3!

When the quantitiesa are tensor fields,d l /da will be elements of the dual space under the natu
pairing.

We shall apply this result to obtain the Maxwell–Vlasov system~2.4!–~2.7! as Euler–
Poincare´ equations. We begin by recording a formula that will be needed later. Letu,w be two
elements ofg, the Lie algebra of vector fields for the diffeomorphism group on a manifoldM.
Choose the one-form densitycPg* , and let the pairinĝc,u&:g* 3g→R be given by

^c,u&5E
M

dz c•u5E
M

dz cju
j , ~5.4!

wherecj anduj , j 51, . . . ,n, are components ofc andu in Rn anddz is the volume form onM.
Then we can write the desired formula,
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^adu* c,w&5E dz adu* c•w

5E dz c•aduw

52E dz ci S uj
]wi

]zj 2wj
]ui

]zj D
5E dz wi S cj

]uj

]zi 1ci~¹•u!1~u•¹!ci D5^£uc,w&. ~5.5!

Here £uc is the Lie derivative of the the one-form densityc with respect to the vector fieldu, zj

is the coordinate chart, andcj ,uj ,wj are the components of vectors inRn. Unless otherwise stated
we sum repeated indices over their range,i , j 51,...,n, wheren is the dimension ofM. We
assume that the vector fields and one-form densities are defined so that integration by par
no contribution at the boundary~inclusion of nonzero boundary terms is straightforward!. Formula
~5.5! for adu* c will be useful later.

By definition, u5( ẋ,v̇); we will denoteus5 ẋ, the spatial part of the phase space veloc
field.

B. The reduced action

We may transform the action~4.1! into the Eulerian description as the reduced action

Sred5E dt l~u,F,Ḟ,A,Ȧ!

5E dt E dx dv F~x,v,t !S 1

2
muusu21 1

2 muus2vu22qF1qus•AD
1

1

2 E dtE dxU¹xF1
]A

]t U
2

2u¹x3Au2. ~5.6!

We vary this action with respect tous , F, F andA:

dSred5E dtE dx dv $F @~mus1m~us2v!1qA!•dus2qdF1us•dA#

1dF@ 1
2 muusu21 1

2 muus2vu22qF1qus•A#%

1E dtE dxS ¹xF1
]A

]t D •S ¹xdF1d
]A

]t D2~¹x3A!•~¹x3dA!. ~5.7!

Stationary variations inF andA yield

¹x•S ¹xF1
]A

]t D52qE dv F~x,v,t !,
~5.8!

¹x3~¹x3A!52
]

]t S ¹xF1
]A

]t D1qE dv F~x,v,t !us .

Thus, Maxwell’s equations for the electromagnetic field of the plasma are recovered by req
d l 50 for all variations of the field potentialsF andA. To continue toward the Euler–Poinca´
form of the Maxwell–Vlasov equations, one must determine the forms of the variationsdus and
dF in ~5.7!.

According to the general theory, variations in the particle evolution mapc lead to variations
in the phase space velocityd u of the form
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du5
]w

]t
1@u,w#[

]w

]t
2aduw. ~5.9!

This Euler–Poincare´ form of the variations may also be verified by a direct tensorial calculat
which is given in Ref. 6. The spatial part of this equation gives the variation of the spatial p
the fieldu.

Variations of the fieldc also induce variations of the densityF, in the same way as the
parameter variations are induced in the general theory for the Euler–Poincare´ equations@see Eq.
~5.1!#. Either from that equation, or by direct calculations, these variations are computed to

dF52¹z•~Fw!, ~5.10!

which is equivalent to the formula

d~F dx dv!52£w~F dx dv!.

C. Computation of the variations

With these formulas ford u anddF in place, we compute

dSred5E dtE dx dv FF ~mus1m~us2v!1qA!•S ]

]t
w1@u,w# D G

2¹z•~Fw!S 1

2
~muusu21muus2vu2!1qus•A2qF D . ~5.11!

Integrating by parts and dropping boundary terms gives

dSred5E dtE dx dv w•F2
]

]t S FmS us1~us2v!1
q

m
AD D2adu* S FmS us1~us2v!1

q

m
AD D

1F¹zS 1

2
muusu21 1

2 muus2vu21qus•A2qF D G . ~5.12!

Expanding the ad* term using formula~5.5! results in

dSred5E dtE dx dv w•F2
]F

]t
mS us1~us2v!1

q

m
AD2Fm

]

]t S us1~us2v!1
q

m
AD

2~u•¹z!S FmS us1~us2v!1
q

m
AD D2FmS us1~us2v!1

q

m
AD ~¹z•u!

2S FmS us j1~us j2vj !1
q

m
A j D D¹zu

j1F¹z ~ 1
2 muusu21 1

2 muus2vu21qus•A2qF!G .
~5.13!

We expand the products to obtain

dSred5E dtE dx dv w•H 2mS us1~us2v!1
q

m
AD S ]F

]t
1u•¹zF D

2FmS us1~us2v!1
q

m
AD ~¹z•u!2FmF S ]

]t
1~u•¹z! D S us1~us2v!1

q

m
AD1

q

m
¹zFG

2FmS us j1~us j2vj !1
q

m
A j D¹zu

j1Fmus j¹zus
j 1FqA j¹zus j

1Fm~us j2vj !¹z~us
j 2vs

j !1Fqus j¹zA
j J . ~5.14!
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Consider the last two lines of Eq.~5.14!. Upon writing w5(w1 ,w2), wherew1 ,w2PR3, these
lines reduce to

2Fm~us1~us2v!!•~w1•¹x1w2•¹v!u1Fm~us1~us2v!!•~w1•¹x1w2•¹v!us

2FqA•~w1•¹x1w2•¹v!u1FqA•~w1•¹x1w2•¹v!us1Fqus•~w1•¹x1w2•¹v!A

2Fm~us2v!•~w1•¹x1w2•¹v!v 5 Fqus~w1•¹x!A2Fm~us2v!•w2 . ~5.15!

The first three lines cancel to zero because they only involve spatial velocity projections,
u5us . The last line follows upon using¹xv50 and¹vA50, which hold, respectively, becausev
is an independent coordinate andA is a function of space alone. Similarly, and under the ad
tional observation that¹zF5(¹xF,0) because the potentialF also does not depend on velocit
the other three lines of Eq.~5.14! are purely spatial, i.e., the projection onto the last three co
dinates would give zero, and hence the contribution to the variation of the actiondSred from w2

comes only from the calculation in Eq.~5.15!. Stationarity of the action under the velocity com
ponents of the variation,w2 , then implies

Fm~us2v!50, i.e., us5v. ~5.16!

Consequently, in Eq.~5.14! we can writeu as~v,a! wherea is yet to be determined, and we ca
also replaceus2v with zero. On doing this, the contribution to the variation of the action fromw1

becomes

dSred5E dtE dx dv w1•F2~mv1qA!S ]F

]t
1¹z•~Fu! D

2FS m
]v

]t
1m~v•¹x!v1m~a•¹v!v1q

]A

]t
1q¹xF1qv3~¹x3A! D G . ~5.17!

Here, we have used standard vector identities in obtaining the result

w•qF~us j¹zAs
j 2~u•¹z!A!5qFw1•~v3~¹x3A!!. ~5.18!

Referring to the continuity equation~4.3! for F and using the identities]v/]t50 and¹xv50
reduces Eq.~5.17! to

dSred52E dtE dx dv w1•FS ma1q¹xF1q
]A

]t
2qv3~¹x3A! D .

Therefore,dSred50 implies that

ma52q¹xF2q
]A

]t
1qv3~¹x3A!. ~5.19!

Now consider what the invariance of the Boltzmann functionf implies. By Eq.~4.2! and
substitution foru5(v,a) we obtain

] f

]t
1v•¹x f 2

q

m F S ¹xF1
]A

]t D2v3~¹x3A!G•¹vf 50, ~5.20!

and so, along with Eqs.~5.8!, we have recovered the full Maxwell–Vlasov system from stati
arity of the action~5.6! entirely in the Eulerian description.
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VI. THE GENERALIZED LEGENDRE TRANSFORMATION

A. Introduction

Before passing to the Hamiltonian description of the Maxwell–Vlasov equations, we pau
explain the theoretical background of how one does this when there are degeneracies. This
can be skipped if one is willing to simply take on faith that one shoulddo the Legendre transfor
mation slowly and carefullywhen there are degeneracies.

As explained in Ref. 3, one normally thinks of passing from Euler–Poincare´ equations on a
Lie algebrag to Lie–Poisson equations on the dualg* by means of the Legendre transformatio
In some situations involving the Euler–Poincare´ equations, one starts with a Lagrangian
g3V* and performs apartial Legendre transformation, in the variablej only, by writing

m5
d l

dj
, h~m,a!5^m,j&2 l ~j,a!. ~6.1!

Since

dh

dm
5j1 K m,

dj

dm L 2 K d l

dj
,

dj

dm L 5j, ~6.2!

and dh/da52d l /da, we see that the Euler–Poincare´ equations~3.4! for jPg and ȧ(t)5
2a(t)j(t) imply the Hamiltonian semidirect-product Lie–Poisson equations formPg* . Namely,

]

]t
m52ad~dh/dm!

* m2
dh

da
La5$m,h%LP ,

]

]t
a52a

dh

dm
5$a,h%LP , ~6.3!

with ~1! Lie–Poisson bracket ong* 3V* given by

$g,h%LP52 K m,ad~dh/dm!

dg

dm L 1 K a,
dg

da

dh

dm
2

dh

da

dg

dm L . ~6.4!

If the Legendre transformation~6.1! is invertible, then one can also pass Lie–Poisson equation
the Euler–Poincare´ equations together with the equationsȧ(t)52a(t)j(t).

It is important in this paper to give a detailed explanation that incorporates the degener
the parameter-dependent system together with the role of symmetry. Unlike the examples
ered in Ref. 6 such as compressible flow or MHD, in the case of the Maxwell–Vlasov syste
even the Vlasov–Poisson system, the LagrangianLa0

corresponding to the action in Eq.~5.6!
is degenerate, since it does not depend on the variablesḞ and v̇. In other words,the degeneracy
and corresponding constraints that appear in Vlasov plasmas are more serious than for flu
the heavy top, etc.To deal with this degeneracy, we shall use the generalized Legendre tra
mation in the context of Lagrangian submanifolds, as described in Ref. 32. This is also rela
the Dirac theory of constraints~see Ref. 33!. In particular, we shall take special care to ensure t
the Hamiltonian formulation of the Maxwell–Vlasov system preserves the constraints asso
with the degeneracy of its Lagrangian.

B. The general construction

Let Q be a manifold andp:T* Q→Q be the cotangent bundle ofQ. Then TT* Q is a
symplectic manifold with a symplectic form that can be written in two distinct ways as the ext
derivative of two intrinsic one-forms. These two one-forms are denotedl andx and are given in
coordinates by

l5 ṗ dq1p dq̇ ~6.5!

and

x5 ṗ dq2q̇ dp, ~6.6!
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where (q,p) are coordinates forT* Q and (q,p,q̇,ṗ) are the corresponding coordinates forTT* Q.
For the intrinsic definitions of these forms, see Ref. 33.

Let L:J→R be a Lagrangian defined on a submanifoldJ,TQ called theLagrangian con-
straint. The Legendre transformation is a procedure to obtain a HamiltonianH:K→R defined on
a submanifoldK,T* Q, called theHamiltonian constraint. The Euler–Lagrange equations ar

l5dL on J, ~6.7!

while the Hamilton equations are

x52dH on K. ~6.8!

The abbreviated expressions~6.7! and ~6.8! stand for

l5d~L+Tp! on ~Tp!21~J! ~6.9!

and

x52d~H+t21! on ~t!21~K !, ~6.10!

where t is the canonical projectiont :TT* Q→T* Q, given in coordinates byt(q,p,q̇,ṗ)
5(q,p). The mapTp is given byTp(q,p,q̇,ṗ)5(q,q̇).

Both the Euler–Lagrange and Hamilton equations define the same Lagrangian submanD
of TT* Q. The Lagrangian and HamiltonianL andH are the generating functions with respect
the one-formsl andx, respectively.

The generalized Legendre transformationconsists of the following steps:
Step 1:For each (q,p)PT* Q define

K~q,p!5H ~q,q̇!PTqQU ]

]q̇
~pq̇2L~q,q̇!!50J , ~6.11!

and let

K5$~q,p!PT* QuK~q,p!ÞB%. ~6.12!

Assumption:Assume that for each (q,p)PK, the submanifoldK(q,p) is connected. This
implies that the stationary value

statq̇~pq̇2L~q,q̇!! ~6.13!

of pq̇2L(q,q̇) on K(q,p) is uniquely defined; that is, it does not depend onq̇.
Step 2:DefineH:K→R as follows:

H~q,p!5statq̇~pq̇2L~q,q̇!!. ~6.14!

C. The generalized Legendre transformation with parameters and symmetry

Now we adapt this methodology to the case of parameter-dependent Lagrangians with
metry. LetLa0

:TG3TQ→R be a Lagrangian depending on a parametera0PV* . Assume thatG
acts onV* on the right and denote byag the action ofgPG on aPV* . Assume also the
following invariance property:

Lah~gh,ġh,q,q̇!5La~g,ġ,q,q̇!, ~6.15!

for all g,hPG, all (q,q̇)PTQ , and allaPV* . A typical element ofT* G3T* Q will be denoted
(g,ag ,q,nq) or simply (g,a,q,n). For eacha0PV* and (g,a)PT* G, define
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Ka0
~g,a,q,n!5H ~g,ġ,q,q̇!U ]

]ġ
~aġ1nq̇2La0

~g,ġ,q,q̇!!50

and
]

]q̇
~aġ1nq̇2La0

~g,ġ,q,q̇!!50J . ~6.16!

One can immediately check for anya0PV* , hPG, and (g,a,q,n)PT* G3T* Q that
Ka0h(gh,ah,q,n)5Ka0

(g,a,q,n)h. Define

Ka0
5$~g,a,q,n!uKa0

~g,a,q,n!ÞB%. ~6.17!

Then one can easily prove for anyhPG that Ka0h5Ka0
h. Define

K5$~g,a,q,n,a!uKa~g,a,q,n!ÞB%. ~6.18!

ThenK,T* G3T* Q3V* is an invariant subset under the action ofG given by (g,a,q,n,a)h
5(gh,ah,q,n,ah). Now for eacha0PV* we defineHa0

:Ka0
→R by

Ha0
~g,a,q,n!5aġ1nq̇2La0

~g,ġ,q,q̇!, ~6.19!

for any (g,ġ,q,q̇)PKa0
(g,a,q,n). Then, according to the general theory explained above, Ha

ton’s equations are, for eacha0PV* , 2dHa0
5x on Ka0

, where

x5ȧ dg2ġ da1 ṅ dq2q̇ dn. ~6.20!

One can also easily prove, using the previous equalities, thatHa0
(g,a,q,n) has the following

invariance property:

Ha0h~gh,ah,q,n!5Ha0
~g,a,q,n!. ~6.21!

Let s* be the dual of the semidirect product Lie algebras5gsV. Then defineK ,s* 3T* Q by

K 5$~a,q,n,a!Ps* 3T* Q u~e,a,q,n,a!PK%,

and the HamiltonianhK :K→R by hK(a,a,q,n)5Ha(e,a,q,n). Thus,hK is the restriction to
K ,s* of the right invariant HamiltonianH:K→R given by H(g,a,q,n,a)5Ha(g,a,q,n).
Then, by a natural generalization of semidirect product theory to include constrained Hamil
systems, we have that Hamilton’s equations onK ,s* generated byhK give the evolution of the
system onK determined by the Poisson–Hamilton equationsḟ 5$ f ,hK% on the Poisson subman
fold K ,s* 3T* Q , where the Poisson structure is defined in a natural way. More precisely
have the Dirac brackets onK ~see, for instance, Ref. 34 or 3! which, by reduction, give the
brackets onK . This is the abstract procedure underlying the computations we do in the sp
case of plasmas given in the next section.

VII. HAMILTONIAN FORMULATION

We now pass to the corresponding Hamiltonian formulation of the Maxwell–Vlasov sy
~2.4! and~2.5! in the Eulerian description by taking the Legendre transform of the reduced a
~5.6!.

A. The role of the general theory

From the geometrical point of view, we simply apply the generalized Legendre transform
described abstractly in Sec. VI to the degenerate Lagrangian

L f 0 ,w0
~c,ċ,F,Ḟ,A,Ȧ!.
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This Lagrangian is degenerate because it does not depend on the variablesḞ and v̇. The theory
described in Sec. VI may be applied to this action onT(F 3V 3A). The action of the group
Diff( TR3) on the factorF for this Lagrangian is given as before, while the actions on the fac
V and A are trivial. It is easy to see that the Hamiltonian constraint for eachf 0 is
K f 0

,T* (Diff( TR3)3V 3A), defined by the conditions

C5
dL

dḞ
50 and mv5

dL

d v̇
50.

These conditions impose constraints, which for consistency must be dynamically preserve

B. Calculation of the transformed equations

We will perform the calculations in detail, working with the reduced Lagrangian rather
the Lagrangian

L f 0 ,w0
~c,ċ,F,Ḟ,A,Ȧ!

and settingw051 as usual.
We start with the action~5.6! for the Maxwell–Vlasov system in the Eulerian description

Sred~u,F,Ḟ,A,Ȧ!5E dtE dx dvF~x,v,t !S 1

2
muusu21

1

2
muus2vu22qF1qus•AD

1
1

2 E dtE dxU¹xF1
]A

]t U
2

2u¹x3Au2. ~7.1!

This leads immediately to

d l

dȦ
5¹xF1

]A

]t
52E, ~7.2!

and so~minus! the electric field variableE is the field momentum density canonically conjugate
the magnetic potential. Let us define the material momentum density in six dimensions,

m[
d l

du
. ~7.3!

We writem5(ms ,mv), wherems is the projection ofm onto the first three coordinate position
andmv is the projection onto the last three places. We think ofms andmv also as vectors in six
dimensions. From the Lagrangian we see that

ms5F~mus1m~us2v!1qA! and mv50. ~7.4!

Proceeding with the Legendre transform of our action~7.1! results in a corresponding~re-
duced! Hamiltonian function written in terms of the velocities,

h5E dx dv FS muusu22
1

2
muvu21qF D1mv•a1

1

2 E dx~ uEu21u¹x3Au212E•¹xF!,

~7.5!

wherea denotes the projection ofu onto its last three entries. Transforming this to the momen
variables gives
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h5E dx dv
1

4Fm
ums1mFv2qFAu22

1

2
mFuvu21qFF1mv•a

1
1

2 E dxSuEu21u¹x3Au212E•¹xF D . ~7.6!

The variation of this Hamiltonian with respect tom, a, E, A, F, andF is given by

dh5E dx dvFu•dm1mv•da2qFus•dA1qFdF2S 1

2
muusu21

1

2
muus2vu21qus•A

2qF D dF G1E dx~E1¹xF!•dE2~¹x•E!dF1¹x3~¹x3A!•dA. ~7.7!

This expression allows one to read off the evolution equations for the electromagnetic field

]A

]t
52

dh

dE
52E2¹xF, i.e., E52¹xF2

]A

]t
,

dh

dF
5052¹x•E1qE dv F, i.e., ¹x•E5qE dvF:5r, ~7.8!

]E

]t
5

dh

dA
5¹x3~¹x3A!2qE dv Fus , i.e.,

]E

]t
5¹x3B2 j .

Note that the constraintdh/dF50 ~Gauss’ law! arises from the absence ofḞ dependence inl .
The general theory of Sec. VI shows thatF is an element of the second factor of the sem

direct product and so its evolution is given by Lie dragging as a density. Likewise,f is Lie
dragged as a scalar andmi satisfies a Lie–Poisson evolution equation:

]F

]t
52¹z•~Fu!,

] f

]t
52u•¹z f , ~7.9!

]mi

]t
52

]

]zj miu
j2mj

]

]zi uj2F
]

]zi

dh

dF
.

The first two of these equations reflect the assumptions that were made in the definitions of and
F, while the last equation encodes the dynamics for the system. We first consider the case
the momentum componenti takes the values 4,5,6. In this case,

2
]mi

]t
5ms j

]

]zi uj1mv j

]

]zi uj2F
]

]zi ~ 1
2 muusu21 1

2 muus2vu21qus•A2qF!

5mv j

]

]zi uj1Fm~us j2v j !
]uj

]zi 2Fm~us j2v j !
]

]zi ~us
j 2vs

j !2qFus j

]As
j

]zi 1Fq
]

]zi F,

~7.10!

where i 54,5,6. In the second line of Eq.~7.10!, we have substituted forms from Eq. ~7.4! and
rearranged terms. Heremv50, becausel does not depend onv̇. Settingmv50 initially in Eq.
~7.10! ensures thatmv[0 persists throughout the ensuing motion, for potentialsF andA that are
independent ofv and provided the constraint holds thatus5v, as in Eq.~5.16!. Likewise, the
Gauss’ law constraint imposed bydh/dF50 also persists during the ensuing motion, as s
from the last equation of~7.8! and the first equation of~7.9!, provided the constraintus5v holds
andF vanishes in the limit asuvu→`.

The spatial part of the evolution equation ofm will produce the required single-particl
dynamics. From Eq.~7.9!, we have
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]mi

]t
52

]

]zj miu
j2mj

]

]zi uj2F
]

]zi

dh

dF
. ~7.11!

Settingi 51,2,3, in Eq.~7.11!, then substituting fordh/dF and using the relations

ms5F~mus1m~us2v!1qA!, mv[0,

and

¹vF50, ¹vA50,

yields the spatial components of the motion equation,

]msi

]t
52

]

]zj msiu
j2ms j

]

]zi uj2F
]

]zi S 1

2
muusu21

1

2
muus2vu21qus•A2qF D . ~7.12!

Substituting forms and then using the continuity relation]F/]t1¹z•(Fu)50 gives

m
]usi

]t
1q

]Asi

]t
52uj

]

]zj musi2us
j ]

]zj qAsi2qA j

]

]zi uj2q
]F

]zi 1q
]

]zi ~us•A!

2
1

2
m

]

]zi uus2vu2. ~7.13!

Rearranging this equation results in

mS ]

]t
1uj

]

]zj Dus5qE1qus3~¹x3A!2
1

2
m

]

]z
uus2vu2. ~7.14!

We may now evaluate this on the constraint setus5v and thereby obtain the Lorentz force,

ma5q~E1v3B!, ~7.15!

wherea is the acceleration of a fluid parcel@the last three components inu5(v,a!#. As we have
seen, in this Hamiltonian formulation of the Maxwell–Vlasov equations in the Eulerian des
tion, the accelerationa in u is a vector Lagrange multiplier which imposesmv50. Equation~7.15!
provides an expression for this Lagrange multiplier in terms of known dynamical variables a
a consequence, we regain the equation for the acceleration of a charged particle in an elec
netic field. The momentum constraintmv50 remains invariant when the electromagnetic pot
tials are independent of the phase space velocity coordinatev and the velocity constraintus5v
holds. Perhaps not unexpectedly, one finds that¹z•u50. Also, ~minus! the electric field is ca-
nonically conjugate to the vector potential, and the electrostatic potentialF plays the role of a
Lagrange multiplier which imposes Gauss’s law. Thus, our Hamiltonian formulation augmen
usual Maxwell–Vlasov description of plasma dynamics by self-consistently deriving the pa
acceleration by the Lorentz forcema5q(E1v3B) instead of assuming ita priori.

C. The Poisson Hamiltonian structure

The general theory outlined briefly in Sec. VI also leads to the Poisson bracket structu
the Maxwell–Vlasov theory on the Hamiltonian side. However, our Hamiltonian description h
redundancy, namely the information for the particle trajectories can be recovered from the
plasma density. Explicitly, if we letH( f )5(1/2)uvu21F f(x) be the single-particle Hamiltonian
determined by the plasma densityf , then the flow of this Hamiltonian function can be identifie
with the particle evolution mapc. We can also think of this as a constraint on the level
equations of motion, as the Hamiltonian vector field ofH( f ) must equal the time derivative of th
mapc, i.e., the particle velocity field in phase space. In other words, as is well known, the pa
dynamics is completely determined by the plasma density dynamics. This may be regarde
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constraint on the system that leads to the elimination of the forward map as a dynamical va
This ‘‘redundancy’’ is, of course, one of the sources of degeneracy of the Lagrangian and H
tonian structures.

Thus, the constraint of explicitly enforcing this consistency condition leads to a further
duction’’ which again may be handled by the Dirac theory of constraints to arrive at the H
tonian structure in terms of the variablesF ~or equivalentlyf in view of the canonical nature of th
particle transformations! and the electromagnetic potentials. The resulting Poisson bracket s
ture is given by the Lie–Poisson structure for thef ’s plus the canonical structure for the electr
magnetic potentials, which was the starting point for Marsden and Weinstein,7 who carried out the
reduction of this bracket with respect to the action of the electromagnetic gauge group to
the final Maxwell–Vlasov bracket on the space with variablesf , E, andB. This procedure was
motivated by and corrected a bracket found byad hocmethods in Ref. 15. We need not repeat th
construction.

D. The Kelvin–Noether theorem

A final result worth mentioning is Kelvin’s theorem for the Maxwell–Vlasov particle dyna
ics. These dynamics, given in the last equation in~7.9!, may be rewritten as

S ]

]t
1£uD S 1

F
midzi D1d

dh

dF
50, ~7.16!

so that

d

dt R
g~ t !

1

F
mi dzi50, ~7.17!

for a loop g(t) which follows the particle trajectories in phase space. The Kelvin circula
integral in phase space,

I 5 R
g~ t !

1

F
mi dzi , ~7.18!

may be evaluated on the invariant constraint manifoldmv50 as

I 5 R
g~ t !

~musi1qAi !dxi . ~7.19!

We recognize this integral as thePoincaréinvariant for the single-particle motion in phase spac
The above result follows from the abstract Kelvin–Noether theorem by lettingC :5$g:S1

→TR3ug continuous% be the space of continuous loops in single-particle velocity phase spac
letting the group Diff(TR3) act on C on the right by (h,g)PDiff( TR3)3C °g+hPC. The
quantityK is chosen to be

^K ~g,F !,a&5 R
g

1

F
a. ~7.20!

The abstract Kelvin–Noether theorem for the Maxwell–Vlasov equations in Euler–Poincare´ form
then reproduces the version of Kelvin’s theorem given in~7.17!.

VIII. CONCLUSION

In this paper we have cast Low’s mixed Eulerian–Lagrangian action principle for Maxw
Vlasov theory into a purely Eulerian description. In this description we find that Maxwell–Vla
dynamics are governed by the Euler–Poincare´ equations for right invariant motion on the diffeo
morphism group ofRn ~n56 for three-dimensional Maxwell–Vlasov motion!. These equations
were recently discovered by Holmet al.6 who investigated the class of Hamilton’s principle
which are right invariant under the subgroup of the diffeomorphisms which leaves invariant
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T of tensor fields in the Eulerian variables. The Maxwell–Vlasov motions invariant under
subgroup are the steady Eulerian solutions, which, thus, are identified as relative equilibria
identification of steady Eulerian Maxwell–Vlasov solutions as right invariant equilibria pla
these solutions into the Hamiltonian framework required for investigating their nonlinear sta
characteristics using, e.g., the energy-Casimir method~see Ref. 16!. It was this stated goal tha
first motivated Low to write his Lagrangian for Maxwell–Vlasov dynamics.

Thus, our formulation of a purely Eulerian action principle and its associated Euler–Poi´
equations and Hamiltonian framework advances Low’s original intention of using his a
principle for studying stability of plasma equilibria by placing the entire Maxwell–Vlasov eq
tions ~including the particle dynamics, field dynamics and probability distribution dynamics! into
one self-consistent Hamiltonian picture in the Eulerian description.~As we discussed, Low use
mixed aspects of both Eulerian and Lagrangian phase space descriptions in his action prin!

Our Eulerian Hamilton’s principle for Maxwell–Vlasov dynamics is constrained, and a
the corresponding Lagrange multipliers have been resolved. This Hamilton’s principle is
available for further approximations, e.g., by Hamilton’s principle asymptotics~see, e.g., Ref. 27!.

In summary, we have taken an existing action, due to Low,1 for the Maxwell–Vlasov system
of equations and demonstrated how to rederive this system as Euler–Poincare´ equations. The
Euler–Poincare´ form emerges from Hamilton’s principle for a system whose configuration sp
is a group and whose action is right invariant under a subgroup. This situation commonly a
in the Eulerian description of continuum mechanics. In the case of continuum mechanic
dynamics takes place on the group of diffeomorphisms and the Eulerian variables are inv
under a subgroup of the diffeomorphism group.~This subgroup corresponds to steady Euler
flows with nonzero velocity and vorticity.! We showed that this situation also occurs for t
Maxwell–Vlasov equations of plasma dynamics in the Eulerian description, by showing th
variations considered take the appropriate form, and then deriving the Maxwell–Vlasov equ
from the Hamilton’s principle for the right invariant action~5.6! in Eulerian variables. We then
passed to the Hamiltonian formulation of this system and found its Lie–Poisson structure.

As discussed in the Introduction, the Euler–Poincare´ form of the dynamics is naturally
adapted for applying Lagrange–D’Alembert methods for geometrical constraints and contro
Ref. 13. In future work, our Euler–Poincare´ form of the Maxwell–Vlasov system shall be imple
mented to describe the control features of a plasma driven by an external antenna, follow
lines of inquiry begun in the oscillation center approximation for plasmas by Similonet al.35
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