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Low’s well-known action principle for the Maxwell-Vlasov equations of ideal
plasma dynamics was originally expressed in terms of a mixture of Eulerian and
Lagrangian variables. By imposing suitable constraints on the variations and ana-
lyzing invariance properties of the Lagrangian, as one does for the Euler equations
for the rigid body and ideal fluids, we first transform this action principle into
purely Eulerian variables. Hamilton's principle for the Eulerian description of
Low’s action principle then casts the Maxwell-Vlasov equations into Euler—
Poincareform for right invariant motion on the diffeomorphism group of position-
velocity phase spac&®. Legendre transforming the Eulerian form of Low’s action
principle produces the Hamiltonian formulation of these equations in the Eulerian
description. Since it arises from Euler—Poincaguations, this Hamiltonian for-
mulation can be written in terms of a Poisson structure that contains the Lie—
Poisson bracket on the dual of a semidirect product Lie algebra. Because of degen-
eracies in the Lagrangian, the Legendre transform is dealt with using the Dirac
theory of constraints. Another Maxwell-Vlasov Poisson structure is known, whose
ingredients are the Lie—Poisson bracket on the dual of the Lie algebra of symplec-
tomorphisms of phase space and the Born—Infeld brackets for the Maxwell field.
We discuss the relationship between these two Hamiltonian formulations. We also
discuss the general Kelvin—Noether theorem for Euler—Poinequations and its
meaning in the plasma context. €998 American Institute of Physics.
[S0022-24888)00506-4

I. INTRODUCTION

A. Reduction of action principles

Due to their wide applicability, the Maxwell-Vlasov equations of ideal plasma dynamics have
been studied extensively. In 1958 Lbwrote down an action principle for them in preparation for
studying stability of plasma equilibria. Low’s action principle is expressed in terms of a mixture
of Lagrangian patrticle variables and Eulerian field variables.

Following the initiative of Arnold and its later developmentsee Ref. 3 for backgroundwe
start with a purely Lagrangian description of the plasma and investigate the invariance properties
of the corresponding action. Using this setup and recent developments in the theory of the Euler—
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Poincaresquation$® due to Holm, Marsden, and Rafiuye are able to cast Low’s action principle
into a purely Eulerian description.

In this paper, we start with thetandardform of Hamilton’s variational principlgin the
Lagrangian representatipandderivethe new Eulerian action principle by a systematic reduction
process, much as one does in the corresponding derivation of Poisson brackets in the Hamiltonian
formulation of the Maxwell-Vlasov equations starting with gtandard canonical bracketsnd
proceeding by symmetry reductidas in Ref. 7. In particular, the Eulerian action principle we
obtain in this way is different from the ones found in Ye and MorrfSayad hocprocedures. We
also mention that the method of reduction of variational principles we develop naturally justifies
constraints on the variations of the so-called “Lin constraint” form, well known in fluid mechan-
ics.

The methods of this paper are based on reduction of variational principles, that is, on La-
grangian reductior(see Refs. 9-12 These methods have also been useful for systems with
nonholonomic constraints. This has been demonstrated in the work of Bladh'® who derived
the reduced Lagrange d'Alembert equations for nonholonomic systems, which also have a con-
strained variational structure. The methods of the present paper should enhance the applicability of
the Lagrangian reduction techniques for even wider classes of continuum systems.

B. Passage to the Hamiltonian formulation

The Hamiltonian structure and nonlinear stability properties of the equilibrium solutions for
the Maxwell-Vlasov system have been thoroughly explored. Some of the key references are
Iwinski and Turski* Morrison!® Marsden and Weinsteih,and Holm, Marsden, Ratiu, and
Weinstein'® See also the introduction and bibliography of Marsé¢mll’ for a guide to the
history and literature of this subject.

In our approach, Lagrangian reduction leads to the Euler—Pdirfoare of the equations,
which is still in the Lagrangian formulation. Using this setup, one may pass from the Lagrangian
to the Hamiltonian formulation of the Maxwell-Vlasov equations by Legendre transforming the
action principle in the Eulerian description at either the level of the group variéblesevel that
keeps track of the particle positionor at the level of the Lie algebra variables. One must be
cautious in this procedure because the relevant Hamiltonian and Lagrangian are degenerate. We
deal with this degeneracy by using a version of the Dirac theory of constraints.

Legendre transforming at the group level leads to a canonical Hamiltonian formulation and
the latter leads to a new Hamiltonian formulation of the Maxwell-Vlasov equations in terms of a
Poisson structure containing the Lie—Poisson bracket on the dual of a semidirect product Lie
algebra. This new formulation leads us naturally to the starting point for Hamiltonian reduction
used by Marsden and Weinstéifsee also Refs. 15 and )18

C. Stability and asymptotics

The new Hamiltonian formulation of the Maxwell-Vlasov system places these equations into
a framework in which one can use the energy-momentum and energy-Casimir methods for study-
ing nonlinear stability properties of their relative equilibrium solutions. This is directly in line with
Low’s intended program, since the study of stability was Low’s original motivation for writing his
action principle. Sample references in this direction are Holm, Marsden, Weinstein, and®Ratiu,
Morrison!® Morrison and PfirscR® Wan?! Batt and Reif? and Batt, Morrison, and Refft.Other
historical references for the Lagrangian approach to the Maxwell-Vlasov equations include
Sturrock?* Galloway and Kin?> and Dewar®

The Eulerian formulation of Low’s action principle also casts it into a form that is amenable
to asymptotic expansions and creation of approximate theiesh as guiding center theorjes
possessing the same mathematical structure arising from the Euler—Pcéettémg. See, for
example, Ref. 27 for applications of this approach of Hamilton’s principle asymptotics in geo-
physical fluid dynamics.

D. Comments on the Maxwell-Vlasov system

The rest of this paper will be concerned with variational principles for the Maxwell-Vlasov
system of equations for the dynamics of an ideal plasma. These equations have a long history
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dating back at least to Jeaffswho used them in a simpler form known as the Poisson—Vlasov
system to study structure formation on stellar and galactic scales. Even before Jeans, ¥Sincare
had investigated the stability of equilibrium solutions of the Poisson—Vlasov system for the
purpose of determining the stability conditions for steller configurations. The history of the efforts
to establish stellar stability conditions using the Poisson—Vlasov system is summarized by
Chandrasekha’ The Poisson—Vlasov system is also used to describe the self-consistent dynam-
ics of an electrostatic collisionless plasma, whereas the Maxwell-Vlasov system is used to de-
scribe the dynamics of a collisionless plasma evolving self-consistently in an electromagnetic
field.

E. Organization of the paper

The paper is organized as follows. In Sec. Il we introduce the Maxwell-Vlasov equations. In
Sec. Il we state the Euler—Poincateorem for Lagrangians depending on parameters along with
the associated Kelvin—Noether theorem. This general theorem plays a key role in our analysis. In
Sec. V we reformulate these equations in a purely Eulerian form and show how they satisfy the
Euler—Poincargheorem. The following section reviews some aspects of the Legendre transfor-
mation for degenerate Lagrangians. In Sec. IV we reprise Low’s action principle for the Maxwell—
Vlasov equations. In Sec. VII we cast the Euler—Poindarenulation of the Maxwell-Vlasov
equations into Hamiltonian form possessing a Poisson structure that contains a Lie—Poisson
bracket. In Sec. VIII we summarize our conclusions.

II. THE MAXWELL-VLASOV EQUATIONS

The Maxwell-Vlasov system of equations describes the single particle distribution for a set of
charged particles of one species moving self-consistently in an electromagnetic field. In this
description, the Boltzmann functiof(x,v,t) is viewed as the instantaneous probability density
function for the particle distribution, i.e., given a regiéh of phase space, the probability of
finding a particle in that region is

fﬂdx dvf(x,v,t), (2.2

where x and v are the current positions and velocities of the plasma particles. Thus, if the
phase-space domain is the whole(x,v) space, the value of this integral at a certain titme
normalized to unity.

As is customary, we assume that the particles of the plasma obey dynamical equations and
that the plasma densitlyis advected as a scalar along the particle trajectories in phase space, i.e.,

of . :
E+X-fo+v'V\,f=0. (2.2

In this equation, and in the sequel, an overdot refers to a time derivative along a phase space
trajectory, andV, and V, denote the gradient operators with respect to position and velocity,

respectively. For pressureless motion in the electromagnetic field of the charged particle distribu-
tion, the acceleration of a particle is given by

q
X=——
m

JA
VP + E—VX(VXXA)

, (2.3

where @/m) denotes the charge-to-mass ratio of an individual partiles the electric potential,
andA is the magnetic vector potential. Substituting this expressiow farEq. (2.2) yields

af
—+v-V,f— A

e = v, f=0. (2.4)

JdA
V,.®+ E—VX(VXXA)

This is theVlasov equation(also called the collisionless Boltzmann, or Jeans equgtibne
system is completed by the Maxwell equations with sources:

JE
VeE=p, V,xB=—+], (2.5
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whereE andB are the electric and magnetic field variables, respectiyeiy the charge density,
andj is the current density. These quantities are expressed in terms of the Boltzmann fdinction
and the Maxwell scalar and vector potentidisand A by

A
E=-V, - —, B=V,XA,

ot

(2.6

Mn0=qdewa0, Kx0=qdeVwa0-
By their definitions,E and B satisfy the kinematic Maxwell equations
B
V. B=0, V,XE=-—. 2.7

ot

Equationg2.4)—(2.7) comprise theMaxwell-Vlasov equationsWhenA is absent, the field is
electrostatic and one obtains the Poisson—Vlasov equations. The Poisson—Vlasov system can also
be used to describe a self-gravitating collisionless fluid, and so it forms a model for the evolution
of galactic dynamicgsee, e.g., Ref. 31

Note that the integral i62.1) is independent of timéas the region and the functidrevolve),
since the vector field defining the motion of partidese Eq(2.3)] is divergence free with respect
to the standard volume element on velocity phase space. Thus, one may integitredr as a
density or as a scalar. For our purposes later, we will need to be careful with the distinction, since
the volume-preserving nature of the flow of particles will be a consequence of our variational
principle and will not be imposed at the outset.

Iil. THE EULER—POINCARE EQUATIONS, SEMIDIRECT PRODUCTS, AND KELVIN'S
THEOREM

A. The general Euler—Poincare ~ equations

Here we recall from Ref. 6 the general form of the Euler—Poinegeations and their
associated Kelvin—Noether theorem. In the next section, we will immediately specialize these
statements for a general invariance gr@ipo the case of plasmas whéhis the diffeomorphism
group, Diff(TR®). We shall state the general theorem for right actions and right invariant
Lagrangians, which is appropriate for the Maxwell-Vlasov situation. The notation is as follows.

(i) There is aright representation of the Lie group on the vector spacé andG acts in the
natural way from theight on TGXV*:(v4,a)h=(v4h,ah).

(i)  p,:g—V is the linear map given by the corresponding right action of the Lie algebra on
Vip,(§)=v¢, andp) :V* —g* is its dual. Theg—action ong* andV* is defined to be
minusthe dual map of thg—action ong andV, respectively, and is denoted ¢ andaé¢
for éeg, neg®, andaeV*. Forv eV andae V*, it will be convenient to write

vOa=pra, ie., (voaé)=(avé)=—(v,ag),
for all £ g. Note thatv O aeg*.

(i) Let ¢ be a manifold on whictG actstrivally and assume that we have a functlornT G
XTXV* —R which is right G-invariant.

(iv) In particular, if ageV*, define the Lagrangiari_ao:TGx TCo—R by Lao(vg Ug)
=L(vg4,Uq.a0). ThenL610 is right invariant under the lift td GX T of the right action of
Gao onGX .

(v)  Right G-invariance ofL permits us to definé:gX TZXV* —R by

(@™, Uy, ag™H)=L(vg,Uq.).
Conversely, this relation defines for ahy X TZ/XV* —R a right G-invariant function
L:TGX TOXV* —R.

(Vi) For a curveg(t) e G, let £(t):=g(t)g(t) "* and define the curve(t) as the unique solu-

tion of the linear differential equation with time-dependent coefficierty = — a(t) &(t)
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with initial condition a(0)=ay. The solution can be equivalently written agt)
=aog(t) .

Theorem 3.1: The following are equivalent:

(i) Hamilton’s variational principle holds:

5 jt‘ * Loy (9(0), 900, 9(t), 9(t) =0, 3.0

for variations ofg andq with fixed endpoints.
(i)  (g(t),q(t)) satisfies the Euler—Lagrange equationslfgor onGX .

(i) The constrained variational principté,
2 .
s["1c&, aw, a0, av) a=o, 32
1
holds ongx ¢, upon using variations of the form
an an
5§=E—ad§n=ﬁ—[§, 7], da=-—an, (3.3

where (t) e g vanishes at the endpoints aAd(t) is unrestricted except for vanishing at
the endpoints.

(iv)  The following system of Euler—Poincaeguationgwith a parametércoupled with Euler—
Lagrange equations holds @i TOX V*:

d 4 ol ol
&%I—adga—g-Fgoa (34)
and
d dl dl B
Ao (3.5

The strategy of the proof is simple: one just determines the form of the variations on the
reduced spacgXx X V* that are induced by variations on the unreduced sfaex T/’ and
includes the relation o&(t) to ag. One then carries the variational principle to the quotient. See
Ref. 6 for details. Here we have included the extra factoroivhich is needed in the present
application; this will be the space of potentials for the Maxwell field. This extra factor does not
substantively alter the arguments.

B. The Kelvin—Noether Theorem

We start with a Lagrangiahao depending on a parametage V* as above and introduce a
manifold Z" on which G acts. We assume this is also a right action and suppose we have an
equivariant map: £ X V* —g** .

In the case of continuum theories, the spaces chosen to be a loop space an@(c,a),u)
for ce # andu e g* will be a circulation. This class of examples also shows whydawe@otwant
to identify the double dua§** with g.

Define theKelvin—Noether quantityl : 2 X gx TOXV* —R by

) 4l )
|(C,§,q,q,a):<.%'(c,a), 6_§(§!q1q1a)>- (36)

Theorem 3.2 (Kelvin—Noether): Fixing coe 7, let £(t),q(t),q(t),a(t) satisfy the Euler—
Poincareequations and defing(t) to be th_e solution ofy(t) = £(t)g(t) and, sayg(0)=e. Let
c()=g(t) "*co and I (t)=1(c(t),&(t),q(t),q(t),a(t)).
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Then

d o oSl
al(t)— .%(c(t),a(t)),£<>a . (3.7

The proof of this theorem is relatively straightforward; we refer to Ref. 6. We shall express
the relation(3.7) explicitly for Maxwell-Vlasov plasmas at the end of Sec. VII.

IV. AN ACTION FOR THE MAXWELL-VLASOV EQUATIONS

A typical element of TR®*=R3xR* will be denotedz=(x,v). We let 75:TR®*—R? and
m, : TR3—R3 be the projectionsr,(z) =x and ,(z) =V onto the first and second factors, respec-
tively.
A. Spaces of fields

We let Diff(TR®) denote the group of*-diffeomophisms froniTR® onto itself. An element
e Diff( TR®) maps plasma particles having initial position and velociy,{,) to their current
position and velocity X,Vv) = #(Xq,Vp). This is the particle evolution map. We shall sometimes
abbreviate Xq,vg)=275, (X,v)=2z, etc. The spatial components a@f(xq,vg) are written as
X(Xq,Vp) and the velocity components &éx,,Vy). We shall also use the following notation:

(i) 7'=C*(R3,R) is the space of electric potentials(x);

(i) .7 is the space of magnetic potenti#i$x);

(i) .7=C*(TR3R) is the space of plasma densitif,V);

(iv) . Zo=Cg(TR3R) is the space of plasma densities with compact support; and
(v)  Z,=Cg(R3R) is a space of test functions, denotek).

The test functionsp(x) are used to localize the variational principle. Thus, once one obtains
Euler—Lagrange equations dependingfgrand ¢, if their validity can be naturally extended for
any fy and g, which will happen in our case, then we shall consider those extended equations to
be the Euler—Lagrange equations of the system. We will usually be interested in the Euler—
Lagrange equations fdip>0 and¢y=1.

B. The Lagrangian and the action

For each choice of the initial plasma distribution functifpand the test functiorp,, we
define the Lagrangian

. - . 1 . 1 .
Lf0,¢0(¢,¢,<b,¢,A,A)=f dxg dvg fo(xo,vo)(zmlx(xo,vo)|2+ Emlx(xo,vo)—v(xo,vo)|2

+q'x<xO,vo>-A(x(xO,vo»—qcb(x(xO,vo)))

2

1 A
+§fdr ©o(r) ‘qu)-i-ﬁ(r) —|Vr><A(r)|2). (4.1
This Lagrangian is the natural generalization of that foM\aparticle system, with terms corre-
sponding to kinetic energy, electric and magnetic field energy, the usual magnetic coupling term
with coupling constang (the electric charge and a constraint that ties the Eulerian fluid velocity
v to X, the material derivative of the Lagrangian particle trajectory. Heamdv are Lagrangian
phase space variables, whife and & are Eulerian field variables. Thus, there should be no

confusion created by the slight abuse of notation in abbreviathkigit and 9d®/dt as® andA,
respectively, in the arguments of the Lagrangian. This Lagrangian is inspired by However,
we have added the term

%m|X(X0 Vo) —V(Xg ,Vo)|2,

which allowsv to be varied independently in the variational treatment.
Consider the action
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6:f dt Ly, (4,80, @,D,AA),

defined on the family of curves/(t),®(t),A(t)) satisfying the usual fixed-endpoint conditions
((t;), (L), A(t)) = (¢ ,P; ,A;), i=1,2. One now applies the standard techniques of the calcu-
lus of variations. In particular, integration by parts can be performed sipcand ¢, have
compact support. Moreover, once the Euler—Lagrange equations have been obtained, their validity
can be easily extended in a natural way fgr-0 and¢y=1.

C. Derivation of the equations

To write the equations of motion, we need some additional notation. Consider the evolution
map ¢ (Xg,Vo) = (X,V) so thaty;, relates the initial positions and velocities of fluid particles to their
positions and velocities at tinte Let u be the corresponding vector field:

T I a+. 9
u(X,v):= e ~(X,v)=:X Vo

so the components ofi are (x,v). Recall that the transport of, as a scalar is given by

f(x,v,t)=foou; 1(x,v), which satisfies

&f—l— V,f=0 4.2
Eu'z_- ()

whereV,=(V,,V,) is the six-dimensional gradient operator(iv) space. Led, be the Jacobian
determinant of the mapping e Diff( TR®), that is, the determinant of the Jacobian matrix
A(X, V)1 3(Xq,Vp)-

Define F(x,v,t) to bef,, transported as density

F(X(X0,V0),V(X0,Vo) 1) d (X0, Vo) = Fo(Xo, Vo),

so that
JF
H'FVZ-(FU):O. (4.3)

Taking variations in our Lagrangiaf#.1) and making use of the preceding equation Forwe
obtain the following equationgaking ¢o=1):

. . 0A .
OX: mx+m(x—v)=—qVXQJ—qEJrqxx(VXxA),
V. x—v=0,
XV (4.4

A
od: Vx'(vxq)+ E):—qf dv F(x,v,t),

V(I)-i-(?A
ot

J
SA: VX (V, X A)=——

+qf dv vF(x,v,t).

The second equation if#.4) treats the Eulerian velocity as a Lagrange multiplier, and ties its
value to the fluid velocitk, hencev=x as well. The first two variational equations in the get)
provide the desired relation for particle acceleration and the last two equations are the Maxwell
equations with source terms. Thus, Hamilton’s principle with Low’s action provides the equations
for self-consistent particle motion in an electromagnetic field, as required, and the description is
completed by substituting
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d VCD-F(?A V, XA
Vi o | V@ F e UX(ViXA)

for the components afi in the transport equatio@.2) to give the Vlasov equatio(2.4).

V. THE MAXWELL-VLASOV SYSTEM AS EULER-POINCARE EQUATIONS

We will now specialize the general Euler—Poincaineorem to the case of plasmas. The
Lagrangian L¢_ . (#,4,®,®,A,A) in Eq. (41) has a right DiffTR®)-symmetry. Let 5
e Diff( TR®), F .7, and define the action of onF by F = (Fen)J, where, as above,, is the
Jacobian determinant of.

The symmetry oL, (#, 4, ®,®,A A) is the property

Lt 071 07,.0,0,AA) =Ly o (1h,5,®,D,AA),

for all 5 e Diff( TR®).

A. Ingredients for Euler—Poincare

Now we apply the general Euler—Poincaféheorem 3.1, takingG=Diff( TR®) and
O=7"X % and the parametex,=f,. As we have explained before, is an auxiliary quantity
that will ultimately take the value unity. In the general Euler—Poinddreorem 3.1 we take

ow

5U=E

—adw, da=-—£,a, (5.1

wherew e g is a vector field ofTR3, £, is the Lie derivative, and gd/= —[u,w] defines agw in
terms of the Lie bracket of vector fieldg),w]. The Euler—Poincarequationg3.4) are

— —=—ad*—+—90a, (5.2
a

where ag is the dual of agand sl/éu is a one-form density. The one-form densi$i{sa) ¢ a

is defined by

o ¢ = f o £ 5.3

35 0aw)= 55 Ewd (5.3
When the quantitiea are tensor fieldsgl/ 5a will be elements of the dual space under the natural
pairing.

We shall apply this result to obtain the Maxwell-Vlasov syst&m)—(2.7) as Euler—
Poincareequations. We begin by recording a formula that will be needed lateru iiebe two
elements ofg, the Lie algebra of vector fields for the diffeomorphism group on a manifaid
Choose the one-form densite g*, and let the pairingc,u):g* X g—R be given by

(c,u)zf dz c-uzf dz c;ul, (5.9
4 VA

wherec; andul, j=1,... n, are components afandu in R" anddz is the volume form on.
Then we can write the desired formula,
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(adjc,w)= J dz adjc-w

=fdz c-aqw
ow'aul
z—fdzci(ulﬁ—wlﬁ)
[ aul
=Jdzw'(cjE+ci(v.u)+(u-V)ci)=(£uc,w). (5.5

Here f,c is the Lie derivative of the the one-form densityvith respect to the vector field, Z/
is the coordinate chart, arg ,ul,w are the components of vectorslifi. Unless otherwise stated,
we sum repeated indices over their rangg¢=1,...nh, wheren is the dimension of 7. We
assume that the vector fields and one-form densities are defined so that integration by parts gives
no contribution at the boundafinclusion of nonzero boundary terms is straightforwaFbrmula
(5.5 for ad; c will be useful later.

By definition, u=(x,v); we will denoteus=x, the spatial part of the phase space velocity
field.

B. The reduced action

We may transform the actiof@.1) into the Eulerian description as the reduced action

Gred=f dt 1(u,®,®,A,A)
1
=J’ dt f dx dv F(x,v,t)(§m|us|2+ m|ug—Vv|?—qd + qug- A

vy [atfa
E t X

We vary this action with respect 1o, F, ® andA:

2

aA
Vi@ + —- — |V X A2 (5.6)

56,ed=f dtf dx dv{F [ (mug+m(us—Vv)+qgA)- Sus—qSd +ug- 5A]

+ 5F[%m|us|2+ %m|us_v|2_q¢)+qus'A]}

+JdtJd V<D+£?A
X X E

Stationary variations ib and A yield

~(VX5<D+ 5%)—(VXXA)~(VXX SA). (5.7)

JA
Vx-(VX<D+E =—qf dv F(x,v,t),

(5.9

17 dA
Vi X(V XA)=— E( V,®+ 3 +qJ dv F(x,v,t)ug.

Thus, Maxwell's equations for the electromagnetic field of the plasma are recovered by requiring
81=0 for all variations of the field potential® andA. To continue toward the Euler—Poincare
form of the Maxwell-Vlasov equations, one must determine the forms of the varialignand
oF in (5.7).

According to the general theory, variations in the particle evolution f#&ad to variations
in the phase space velociiu of the form
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S _aw+ - 5.9
U—E [u,w]=E—ade. (5.9

This Euler—Poincaréorm of the variations may also be verified by a direct tensorial calculation,
which is given in Ref. 6. The spatial part of this equation gives the variation of the spatial part of
the fieldu.

Variations of the fieldy also induce variations of the densify, in the same way as the
parameter variations are induced in the general theory for the Euler—Pogmsatongsee Eq.
(5.1)]. Either from that equation, or by direct calculations, these variations are computed to be

oF=—V,-(Fw), (5.10

which is equivalent to the formula
S(F dx dv)=—£,(F dx dv).

C. Computation of the variations

With these formulas fosu and SF in place, we compute

56red=f dtf dx dv F (mus+m(us—v)+qA)-(%WJr[u,W]”
1
—VZ-(FW)<§(m|uS|2+m|uS—v|2)+quS-A—q<I>). (5.11)

Integrating by parts and dropping boundary terms gives

1%
56red=J’dtf dx dv w- —ﬁ(Fm us+(us—v)+%A —ad)| Fm u5+(u5—v)+%A))
1
+FVZ(§m|uS|2+ %m|us—v|2+qus-A—q<1>”. (5.12

Expanding the ad term using formulg5.5) results in

JF q
— —m| Ug+ (Us—Vv)+ EA

56red=f dtj dx dv w- pr

ot

d q
—Fm— (us+(us—v)+ EA)
—(u‘VZ)( Fm( Ut (Ug— V) + %A) ) —Fm( Ut (Ug—V) + %A)(Vz.u)

_(Fm

q .
Ugj+ (Usj—V;) + = Aj) )VZUJ+FVZ (3ml|ug?+ %m|us—v|2+qus-A—q<I>)}.

(5.13

We expand the products to obtain

56r8d=fdtf dx de-(—m

Ust (Ug—V)+ %A) (V,,u)— Fm[

JF
—+u-VZF)

q
Ut (Ug—V)+ EA) pr

—Fm

i+(u-V) ust(u —v)+EA +EV<D
at Z S S m m z
—Fm( usl-+(usj—v]-)+%Ai)VZuj+quSjVZujerFqAJVZusj

+Fm(usj—vj)VZ(ujS—vjs)+FquSJ-VZAj]. (5.14
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Consider the last two lines of E@5.14. Upon writing w= (w; ,w,), wherew; ,w, e R®, these
lines reduce to

—Fm(ug+ (ug—v)) - (Wq- Vit w,- Vy)u+Fm(ug+ (ug—Vv)) - (Wy- Vyt+w,-V)ug
—FgA-(wq-Vy+wy-VO)u+FgA- (Wq- V+wWy- V) )ug+Fqug- (wy- Vyet+w,- V) )A
—Fm(ug—Vv)-(wy-Vy+w,- Vv = Fqug(wy- V) A—Fm(ug—V)-w,. (5.19

The first three lines cancel to zero because they only involve spatial velocity projections, where
u=ug. The last line follows upon using§,v=0 andV,A=0, which hold, respectively, becauge

is an independent coordinate aAdis a function of space alone. Similarly, and under the addi-
tional observation tha? ,® = (V,®,0) because the potentidl also does not depend on velocity,

the other three lines of Ed5.14) are purely spatial, i.e., the projection onto the last three coor-
dinates would give zero, and hence the contribution to the variation of the atfigQ from w,

comes only from the calculation in E¢5.15. Stationarity of the action under the velocity com-
ponents of the variationy,, then implies

Fm(us—v)=0, i.e., ug=v. (5.16

Consequently, in Eq5.14 we can writeu as(v,a) wherea is yet to be determined, and we can
also replaceis— v with zero. On doing this, the contribution to the variation of the action from
becomes

JF
56red=f dtJ' dx del~{—(mv+qA) E+VZ~(FU))

ov dA
- F( m—- +m(v-Vyv+m(a-V,)v+ Chrrs +qV,®+quXx(V,XA) } . (.17
Here, we have used standard vector identities in obtaining the result
W-qF(Us)V,AL— (U- V) A)=gFw; - (VX (V,XA)). (5.18

Referring to the continuity equatiof#.3) for F and using the identitiegv/dt=0 andV,v=0
reduces Eq(5.17) to

A
ma-+ qVX<1>+qE—qv><(Vx><A) .

56,ed=—f dtf dx dvwy-F

Therefore,6G,,q=0 implies that

IA
ma=—qV,P—q—-+avx(V,XA). (5.19

Now consider what the invariance of the Boltzmann functfoimplies. By Eg.(4.2) and
substitution foru=(v,a) we obtain

of quvq)ﬁA
a T m | T

—VX (V,XA)|-V,f=0, (5.20

and so, along with Eq€5.8), we have recovered the full Maxwell-Vlasov system from station-
arity of the action(5.6) entirely in the Eulerian description.

Downloaded 14 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 39, No. 6, June 1998 Cendra et al. 3149

VI. THE GENERALIZED LEGENDRE TRANSFORMATION

A. Introduction

Before passing to the Hamiltonian description of the Maxwell-Vlasov equations, we pause to
explain the theoretical background of how one does this when there are degeneracies. This section
can be skipped if one is willing to simply take on faith that one shalddhe Legendre transfor-
mation slowly and carefullyhen there are degeneracies.

As explained in Ref. 3, one normally thinks of passing from Euler—Poinequations on a
Lie algebrag to Lie—Poisson equations on the dgél by means of the Legendre transformation.

In some situations involving the Euler—Poincagquations, one starts with a Lagrangian on
gXV* and performs gartial Legendre transformation, in the varialenly, by writing

ol
1= 5 h(u,a)=(u.&)~1({a). (6.1

Since

sh Se\ |o o\
au ) e ) 8 ©2

and sh/sa=—5l/5a, we see that the Euler—PoinCaeguations(3.4) for £eg and a(t)=
—a(t) &(t) imply the Hamiltonian semidirect-product Lie—Poisson equationgferg* . Namely,

d sh d oh
M —alsn 50— sa Ca={u.h}ip, S a= _a% ={a,h}p, (6.3

with (+) Lie—Poisson bracket og* X V* given by

89 89 6h  6h &g
1g.h} p=— M,aq(sh/b‘,u)a +1a, .

da du da du 6.4

If the Legendre transformatioi®.1) is invertible, then one can also pass Lie—Poisson equations to
the Euler—Poincarequations together with the equaticaid) = — a(t) £(t).

It is important in this paper to give a detailed explanation that incorporates the degeneracy of
the parameter-dependent system together with the role of symmetry. Unlike the examples consid-
ered in Ref. 6 such as compressible flow or MHD, in the case of the Maxwell-Vlasov system or
even the Vlasov—Poisson system, the Lagrangjgonqorresponding to the action in E¢b.6)
is degeneratgsince it does not depend on the variablesindv. In other wordsthe degeneracy
and corresponding constraints that appear in Vlasov plasmas are more serious than for fluids or
the heavy top, etclo deal with this degeneracy, we shall use the generalized Legendre transfor-
mation in the context of Lagrangian submanifolds, as described in Ref. 32. This is also related to
the Dirac theory of constraintsee Ref. 3B In particular, we shall take special care to ensure that
the Hamiltonian formulation of the Maxwell-Vlasov system preserves the constraints associated
with the degeneracy of its Lagrangian.

B. The general construction

Let Q be a manifold and7m:T*Q—Q be the cotangent bundle @. ThenTT*Q is a
symplectic manifold with a symplectic form that can be written in two distinct ways as the exterior
derivative of two intrinsic one-forms. These two one-forms are denptadd y and are given in
coordinates by

A=p dg+p dg (6.5

and

x=p dg—q dp, (6.6)
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where @,p) are coordinates fof* Q and (q,p,d,b) are the corresponding coordinates Tor* Q.
For the intrinsic definitions of these forms, see Ref. 33.

Let L:J—R be a Lagrangian defined on a submanifdld TQ called theLagrangian con-
straint. The Legendre transformation is a procedure to obtain a Hamiltd#i&h— R defined on
a submanifoldK C T* Q, called theHamiltonian constraint The Euler—Lagrange equations are

A=dL on J, (6.7
while the Hamilton equations are
x=—dH on K. (6.8
The abbreviated expressiof&7) and(6.8) stand for
A=d(L-T@) on (Tw) ') (6.9
and
x=—d(He7™ 1) on (7)) YK), (6.10

where 7 is the canonical projectionr:TT*Q—T*Q, given in coordinates byr(q,p,q,p)

=(q,p). The mapT is given byT#(q,p,q,p)=(q,q).

Both the Euler—Lagrange and Hamilton equations define the same Lagrangian subrnianifold
of TT*Q. The Lagrangian and HamiltonidnandH are the generating functions with respect to
the one-forms\ and y, respectively.

The generalized Legendre transformatioconsists of the following steps:

Step 1:For each ¢,p) e T*Q define

. J . .
K(q,p)={(q,q)eTqQ‘E(pq—L(q,q)FO : (6.1

and let

K={(q,p) e T*Q|K(q,p)#}. (6.12

Assumption:Assume that for eachqg(p) € K, the submanifoldK(q,p) is connected. This
implies that the stationary value

sta(pg—L(q,q)) (6.13

of pq—L(q,q) on K(q,p) is uniquely defined; that is, it does not dependopn
Step 2:DefineH:K—R as follows:

H(q,p)=stat(pg—L(q,q)). (6.14

C. The generalized Legendre transformation with parameters and symmetry

Now we adapt this methodology to the case of parameter-dependent Lagrangians with sym-
metry. LetLaO:TGx T<Z—R be a Lagrangian depending on a paramatgs V*. Assume thaG

acts onV* on the right and denote bgg the action ofge G on aeV*. Assume also the
following invariance property:

Lah(gh,gh,q,Q)ZLa(g,g,q,Q), (619

for all g,heG, all (q,q) e TZ, and allae V*. A typical element off* Gx T* < will be denoted
(9,a4,9,vq) or simply (9,a,q,v). For eachage V* and @,a) e T*G, define
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. .| d . . . .
Ka(9,2,0,7)=1(9,9,9,9) %(aw vg—La,(9.9,9,0))=0

d . . . .
and E(angvq—Lao(g,g,q,q)):O : (6.16

One can immediately check for ang,eV*, heG, and @,a,q,») e T*GXT*Z that
Kaoh(gh,ah,q,v)zKao(g,a,q,v)h. Define

Kay={(9,2,q,7)|Ky(9,2,0,v) #T}. (6.17)
Then one can easily prove for ahye G thatKath Kaoh. Define

K={(g,2,0,v.a)|Ka(9,@.q,v) #T}. (6.18
ThenKCT*GXT* X V* is an invariant subset under the action®fgiven by @,«,q,v,a)h
=(gh,ah,q,v,ah). Now for eachage V* we defineHaO:KaO—>R by

Hay(9,@.0,7) = ag+vq—L,,(9,9,0.9), (6.19

for any (g9,9,9,9) € Kao(g,a,q, v). Then, according to the general theory explained above, Hamil-
ton’s equations are, for eagye V*, —dH, =x onK, , where

x=a dg—g da+v dgq—q dv. (6.20

One can also easily prove, using the previous equalities,H}gg(tg,a,q,v) has the following
invariance property:

Haoh(ghlahquV)zHao(gvavqiy)' (62])
Let s* be the dual of the semidirect product Lie algebrag®V. Then define’Z Cs* X T* by
Z={(a,q,v,a) e s* XT*|(e,a,q,v,a) e K},

and the Hamiltoniat 5,:.7%2—R by h »(«a,a,q,v)=H,(e,«,q,v). Thus,h, is the restriction to
J¢'Cs* of the right invariant HamiltoniarH:K—R given by H(g,«,q,v,a)=H,(g9,,q,v).

Then, by a natural generalization of semidirect product theory to include constrained Hamiltonian
systems, we have that Hamilton’s equations@iC s* generated b ,, give the evolution of the
system on% determined by the Poisson—Hamilton equatibﬁs{f,h%«} on the Poisson submani-

fold Z'Cs* XT* ¢, where the Poisson structure is defined in a natural way. More precisely, we
have the Dirac brackets ol (see, for instance, Ref. 34 on 3vhich, by reduction, give the
brackets on7. This is the abstract procedure underlying the computations we do in the specific
case of plasmas given in the next section.

VIl. HAMILTONIAN FORMULATION

We now pass to the corresponding Hamiltonian formulation of the Maxwell-Vlasov system
(2.4 and(2.5) in the Eulerian description by taking the Legendre transform of the reduced action
(5.6).

A. The role of the general theory

From the geometrical point of view, we simply apply the generalized Legendre transformation
described abstractly in Sec. VI to the degenerate Lagrangian

Lty 0@, @ AA).
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This Lagrangian is degenerate because it does not depend on the vatiabtebs. The theory
described in Sec. VI may be applied to this actionTq7 X 7°X .#). The action of the group
Diff( TR®) on the factor# for this Lagrangian is given as before, while the actions on the factors
7" and .Z are ftrivial. It is easy to see that the Hamiltonian constraint for eéghis
KfOCT*(Diff( TR3) x 7% .7), defined by the conditions

SL SL
¥=—=0 and m,=—=0.
5P ov

These conditions impose constraints, which for consistency must be dynamically preserved.

B. Calculation of the transformed equations

We will perform the calculations in detail, working with the reduced Lagrangian rather than
the Lagrangian

(0, ,®,D,A,A)

Lto.e0

and settingpg=1 as usual.
We start with the actioii5.6) for the Maxwell-Vlasov system in the Eulerian description,

: . 1 1
Gre,j(u,QD,CD,A,A):f dtf dx dvF(x,v,t)(§m|uS|2+ §m|us—v|2—q<D+quS-A

2

1 oA
+—fdtf dx|V, @+ —| —|V,XA|2 (7.2
2 ot
This leads immediately to
dl A
—=V, 0+ —=—F, (7.2
SA ot

and so(minusg the electric field variabl& is the field momentum density canonically conjugate to
the magnetic potential. Let us define the material momentum density in six dimensions,

ol
E.

m (7.3

We writem=(mg,m,), wheremy is the projection ofn onto the first three coordinate positions,
andm, is the projection onto the last three places. We thinkngfandm,, also as vectors in six
dimensions. From the Lagrangian we see that

mg=F(mug+m(us—v)+gA) and m,=0. (7.9

Proceeding with the Legendre transform of our acti@rl) results in a correspondinge-
duced Hamiltonian function written in terms of the velocities,

1
+m,-at 5 J dx(|E|?+ |V, X A|2+2E-V,D),

(7.9

wherea denotes the projection af onto its last three entries. Transforming this to the momentum
variables gives

1
h=f dx dv F(m|u5|2—§m|v|2+qcb
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1 1
= = _ 2_ = 2 .
h de dv 4Fm|mS+va qFA]| 2mF|v| +qFP+m,-a

le
+§ X

The variation of this Hamiltonian with respectio, a, E, A, F, and® is given by

|E|2+|VX><A|2+2E~VXCI>>. (7.6)

1 2 1 2
§m|us| + §m|us—v| +qus-A

5h:f dx dvju- dm+m,- da—gFus- SA+qF &P —

—qcp)aF +J dX(E+V, @) SE—(V,-E) 8D +V, X (V,XA)- 5A. 7.7

This expression allows one to read off the evolution equations for the electromagnetic field:

oA oh Eev.®. | Ee V.0 IA
e B b les E=mVem o
éh _ )
%=0=—VX~E+qJ dvF, ie., VX.E=qfdvF.=p, (7.9
&E—éh—V VXA fd F i E—V B—j
T SA X(VyXA)—q v Fug, lLe, i «XB—]J.

Note that the constrainth/ §® =0 (Gauss’ law arises from the absence @& dependence ih.

The general theory of Sec. VI shows thatis an element of the second factor of the semi-
direct product and so its evolution is given by Lie dragging as a density. Likewise,Lie
dragged as a scalar ang satisfies a Lie—Poisson evolution equation:

oF of

HZ—VZ-(FU), EZ—U'VZf, (7.9)
om_ 9 I Fa sh

Tt Mg R e

The first two of these equations reflect the assumptions that were made in the definiticasdof
F, while the last equation encodes the dynamics for the system. We first consider the case where
the momentum componenttakes the values 4,5,6. In this case,

om; J j J ]. J 1 9. 1 )
—T=msjﬁ,—u +mvj5,vu —FE(5m|us| +§m|us—v| +quS~A—q<I>)
J aul I IAL ]
=mvj5|—u +Fm(usj—vj) E—Fm(usj—v,-) E(US_US)_unSjE—’_FqECD'
(7.10

wherei=4,5,6. In the second line of E{7.10, we have substituted fang from Egq. (7.4) and
rearranged terms. Hema,=0, becausé does not depend om. Settingm,=0 initially in Eq.
(7.10 ensures thatn,=0 persists throughout the ensuing motion, for potentlalndA that are
independent of/ and provided the constraint holds that=v, as in Eq.(5.16). Likewise, the
Gauss’ law constraint imposed k3h/5® =0 also persists during the ensuing motion, as seen
from the last equation of7.8) and the first equation df7.9), provided the constraini;=v holds
andF vanishes in the limit abv|— .

The spatial part of the evolution equation wf will produce the required single-particle
dynamics. From Eq(7.9), we have
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am, J ,— J c d oh
——=——mu-msuU-F=.
at 9z Yoz 7' 5F

(7.11
Settingi =1,2,3, in Eq.(7.11), then substituting fosh/SF and using the relations
ms=F(mug+m(us—Vv)+gA), m,=0,
and
v,$=0, V,A=0,

yields the spatial components of the motion equation,

amg; a j g . 41 , 1 )
= o MU Mg Ul —F o §m|us| +§m|us—v| +qus-A—qd|. (7.12

Substituting formg and then using the continuity relatiair/ot+V,- (Fu)=0 gives

2si | 9Asi |9 0 n o a®® A
M T4 =~ W oy MUsi— U 7 0Asi— GA U =g —r QE(Uy )
1 0 5
—§m5|—|us—v| . (7.13)

Rearranging this equation results in

17
Ty —vl2
m| P m(9z|uS v|Z. (7.19

J .0 1
—+ul —|us=qE+ qusX (VX A) — >

We may now evaluate this on the constraintsgt v and thereby obtain the Lorentz force,
ma=q(E+vXxB), (7.15

wherea is the acceleration of a fluid parcighe last three components in=(v,a)]. As we have

seen, in this Hamiltonian formulation of the Maxwell-Vlasov equations in the Eulerian descrip-
tion, the acceleration in u is a vector Lagrange multiplier which imposes = 0. Equation(7.15
provides an expression for this Lagrange multiplier in terms of known dynamical variables and, as
a consequence, we regain the equation for the acceleration of a charged patrticle in an electromag-
netic field. The momentum constraimt,=0 remains invariant when the electromagnetic poten-
tials are independent of the phase space velocity coordinatad the velocity constrainig=v

holds. Perhaps not unexpectedly, one finds #hatu=0. Also, (minug the electric field is ca-
nonically conjugate to the vector potential, and the electrostatic potehtjahys the role of a
Lagrange multiplier which imposes Gauss’s law. Thus, our Hamiltonian formulation augments the
usual Maxwell-Vlasov description of plasma dynamics by self-consistently deriving the particle
acceleration by the Lorentz foreea=q(E+vXB) instead of assuming & priori.

C. The Poisson Hamiltonian structure

The general theory outlined briefly in Sec. VI also leads to the Poisson bracket structure for
the Maxwell-Vlasov theory on the Hamiltonian side. However, our Hamiltonian description has a
redundancy, namely the information for the particle trajectories can be recovered from the spatial
plasma density. Explicitly, if we let (f )=(1/2)|v|?+ ®(x) be the single-particle Hamiltonian
determined by the plasma densitythen the flow of this Hamiltonian function can be identified
with the particle evolution maps. We can also think of this as a constraint on the level of
equations of motion, as the Hamiltonian vector fieldHdff ) must equal the time derivative of the
map i, i.e., the particle velocity field in phase space. In other words, as is well known, the particle
dynamics is completely determined by the plasma density dynamics. This may be regarded as a
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constraint on the system that leads to the elimination of the forward map as a dynamical variable.
This “redundancy” is, of course, one of the sources of degeneracy of the Lagrangian and Hamil-
tonian structures.

Thus, the constraint of explicitly enforcing this consistency condition leads to a further “re-
duction” which again may be handled by the Dirac theory of constraints to arrive at the Hamil-
tonian structure in terms of the variablegor equivalentlyf in view of the canonical nature of the
particle transformationsand the electromagnetic potentials. The resulting Poisson bracket struc-
ture is given by the Lie—Poisson structure for the plus the canonical structure for the electro-
magnetic potentials, which was the starting point for Marsden and Weirsigin, carried out the
reduction of this bracket with respect to the action of the electromagnetic gauge group to obtain
the final Maxwell-Vlasov bracket on the space with varialfle§&, andB. This procedure was
motivated by and corrected a bracket founddoyhocmethods in Ref. 15. We need not repeat this
construction.

D. The Kelvin—Noether theorem

A final result worth mentioning is Kelvin’s theorem for the Maxwell-Vlasov particle dynam-
ics. These dynamics, given in the last equatiori7irg), may be rewritten as

a+£ ! dz +d5h—o 7.1
5 TEu|| gmidz -0 (7.16
so that
d 35 ! dzZ=0 (7.17
— —m Z: y .
dt y(t) F !

for a loop y(t) which follows the particle trajectories in phase space. The Kelvin circulation
integral in phase space,

1 )
| = 3€ © M dz, (7.18
Y

may be evaluated on the invariant constraint manifald=0 as

| = § (mug;+qA)dX. (7.19
y(t)

We recognize this integral as tiR@incareinvariant for the single-particle motion in phase space.

The above result follows from the abstract Kelvin—Noether theorem by letfigf{ y: St
—TR3|y continuou$ be the space of continuous loops in single-particle velocity phase space and
letting the group DiffTR®) act on # on the right by ¢,7) e Diff( TR®) XC —>yopeC. The
quantity.7Z" is chosen to be

1
Y

The abstract Kelvin—Noether theorem for the Maxwell-Vlasov equations in Euler—Pofocare
then reproduces the version of Kelvin's theorem giveri7iri?).

VIIl. CONCLUSION

In this paper we have cast Low’s mixed Eulerian—Lagrangian action principle for Maxwell—
Vlasov theory into a purely Eulerian description. In this description we find that Maxwell-Vlasov
dynamics are governed by the Euler—Poinaageations for right invariant motion on the diffeo-
morphism group ofR" (n=6 for three-dimensional Maxwell-Vlasov motiprirhese equations
were recently discovered by Holmt al® who investigated the class of Hamilton’s principles
which are right invariant under the subgroup of the diffeomorphisms which leaves invariant a set
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.7 of tensor fields in the Eulerian variables. The Maxwell-Vlasov motions invariant under this
subgroup are the steady Eulerian solutions, which, thus, are identified as relative equilibria. This
identification of steady Eulerian Maxwell-Vlasov solutions as right invariant equilibria places
these solutions into the Hamiltonian framework required for investigating their nonlinear stability
characteristics using, e.g., the energy-Casimir meilse¢ Ref. 1§ It was this stated goal that

first motivated Low to write his Lagrangian for Maxwell-Vlasov dynamics.

Thus, our formulation of a purely Eulerian action principle and its associated Euler—Poincare
equations and Hamiltonian framework advances Low’s original intention of using his action
principle for studying stability of plasma equilibria by placing the entire Maxwell-Vlasov equa-
tions (including the particle dynamics, field dynamics and probability distribution dynanmits
one self-consistent Hamiltonian picture in the Eulerian descripfids.we discussed, Low used
mixed aspects of both Eulerian and Lagrangian phase space descriptions in his action principle.

Our Eulerian Hamilton’s principle for Maxwell-Vlasov dynamics is constrained, and all of
the corresponding Lagrange multipliers have been resolved. This Hamilton’s principle is thus
available for further approximations, e.g., by Hamilton's principle asymptésies, e.g., Ref. 37

In summary, we have taken an existing action, due to Ldev,the Maxwell-Vlasov system
of equations and demonstrated how to rederive this system as Euler—Poéugetons. The
Euler—Poincardorm emerges from Hamilton’s principle for a system whose configuration space
is a group and whose action is right invariant under a subgroup. This situation commonly appears
in the Eulerian description of continuum mechanics. In the case of continuum mechanics, the
dynamics takes place on the group of diffeomorphisms and the Eulerian variables are invariant
under a subgroup of the diffeomorphism grogphis subgroup corresponds to steady Eulerian
flows with nonzero velocity and vorticity.We showed that this situation also occurs for the
Maxwell-Vlasov equations of plasma dynamics in the Eulerian description, by showing that the
variations considered take the appropriate form, and then deriving the Maxwell-Vlasov equations
from the Hamilton’s principle for the right invariant acti@f.6) in Eulerian variables. We then
passed to the Hamiltonian formulation of this system and found its Lie—Poisson structure.

As discussed in the Introduction, the Euler—Poinctmem of the dynamics is naturally
adapted for applying Lagrange—D’Alembert methods for geometrical constraints and control as in
Ref. 13. In future work, our Euler—Poincai@m of the Maxwell-Vlasov system shall be imple-
mented to describe the control features of a plasma driven by an external antenna, following the
lines of inquiry begun in the oscillation center approximation for plasmas by Siretl@h®
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