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A Neutron Matter Model

George A. Baker, Jr.
Theoretical Division, Los Alamos National Laboratory
University of California, Los Alamos, N. M. 87544 USA
(4 May 1999)

The Bertsch, non-parametric model of neutron matter is analyzed and strong indications are
found that, in the infinite system limit, the ground state is a Fermi liquid with an effective mass,
except for a set of measure zero.
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As a challenge to the participants of the Tenth Inter-
national Conference on Recent Progress in Many-Body
Theories, G. F. Bertsch [1] proposed the following model,
inspired as a parameter free model of neutron matter at
subnuclear density. The model is described as follows:

What are the ground state properties of the many-body
system composed of spin-1/2 Fermions interacting via a
zero-range, infinite scattering-length contact interaction.

It may be assumed that the interaction has no two-body
bound states. Also, the zero range is approached with
finite-ranged forces and finite particle number by first tak-
ing the range to zero and then the particle number to in-
finity.

This problem is tricky in the following sense, if one
reverses the limit order and takes the particle number
to infinity before the range goes to zero, one obtains the
well-known nuclear collapse result [2] where the whole
system collapses into a region of the order of the range
of the potential in size. Likewise, if the particles were
Bosons, collapse would occur.

To solve this problem as stated, I employ the formalism
in my review article [3]. Here we continue to use the sum-
mations over states as described therein, before the limit
as the particle number tends to infinity converts those
sums into integrals. This method involves series expan-
sions in powers of the Fermi momentum or alternatively
in powers of the strength of the potential.

For ease of illustration, I will use the following poten-
tial,

N W, ifr<e,
V(T)_{O, if r > e. (1)

In point of fact, the shape of the potential will not matter,
as we will see later. It is useful to note the dimensionless
strength or well-depth parameter of this potential is [2]
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The strength is defined in such a way that s = 1 corre-
sponds exactly to the case of an infinite scattering length,
as called for in this model. The range of this potential is
just ¢, of course. For the limit as ¢ — 0 one may com-
pute, using the standard equations [4], that the phase
shift vanishes for all [ > 0. That is to say, this interac-
tion is only effective in S-states. This result should not



be surprising as the angular-momentum barrier excludes
the wave function from the origin where the potential is
effective. For the current case, we may put two neutrons
in the lowest state (one with spin up and the other with
spin down). This creates a potential for a possible third
neutron of strength s = 2; however, it must go into the
first excited S-state, which requires a strength of s = 9
to bind. [See eq. (13) below.] If we put (somehow) two
neutrons in this state, we get a potential well of s = 4
to attract a fifth neutron, but now we need a strength of
s = 25 to put it in the third excited S-state. And so the
argument goes that an ! = 0 only potential of strength
s = 1 can not bind Fermions into a collapsed state, as
would be the case if the interaction were effective in all
angular momentum states.

It is worthwhile to mention that this type of model
is closely related to the theory of Feshbach resonance
scattering. This theory is very relevant to the study of
atomic Bose-Einstein condensates [5].

The next useful step is to compute the Fourier trans-
form of V(r). We will express things in terms of the
dimensionless variables, § = 7/c and & = ck. We will
write this expression as an intergal, but remember that,
for the time being, it should really have been a sum be-
cause of the finite-sized box in which the finite number
of particles are confined.

V(k) = #/dﬁvm exp(—ik - 7)
= o Yl =00,

Evaluating the integrals we obtain

1
[sink — Kcos k] — —— (4)

o(k) = - 22 K3 k—0 672"

Baker [3] [eq.(4.21)] gives the following expansion for
the many-body energy,

E _ 3n’K% N m2h? Tth
N~ 10M = 4Mc?
as an expansion in the strength of the potential, where

kr is the Fermi momentum. The first term for neutrons
is
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This equation may be rewritten as,
A= — didi [5(0) — s(|ji — 7|
AT i 5lE =7

(7)

Al<kp, |V|<xp
Since we are concerned with the limit as ¢ = 0, and finite
Fermi momentum, kg — 0, thus we only need the value
of 9(A) at A = 0. Hence, for this case we get



Thus, substituting into eq. (5) we get,
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The next step is to examine the higher order terms
of this expansion. The basic organizing principle will be
the number of holes in the Fermi sea created for each
term. The point is that for each new hole, there is a
factor d®k and a denominator proportional to k%, which
works out to an additional over all factor of kg for the
term. Note that here thereis a major distinction between
a finite and an infinite system. In a finite system of N
particles, there can never be more that N such holes in
the Fermi sea, whereas there is no such limitation for an
infinite system. We start with all the two hole-line (in
the diagrammatic representation) terms. These are just
the so-called ladder graphs as only the filled-state filled-
state interactions do not generate additional holes in the
Fermi sea. Baker [3] has carried forward this analysis and
also considered the ladder-type insertions in the other
terms, and he gives (spin—% Fermions) for the expansion
in powers of the Fermi momentum the results [3] [eq.

(4.88)],
EM

— =k%
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+0.015680(kpa)kd AL(0)

—0.018604(kpa)* + ... |, (10)

where a is the scattering length, r¢ is the effective range
and some numerical infelicities which have been noticed
since publication are corrected. To this order for spin—%
and a pure iso-spin state, terms like k%a*logkpr do not
occur. Such terms arise from true three-body scattering,
when the number of spin and iso-spin states is three or
more. The Pauli exclusion principle prevents their occur-
rence here. The other quantities are, for the square-well
case [3],

1, fcoth —1 14 3a



where use has been made of the equations for 6,

a
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For the time being, we will hold the scattering length
fixed and finite, and let ¢ = 0. Thus, ro, 41(0), Ay (0) —
0. What remains is
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+0.00914(kpa)® — 0.018604(kpa)* +...], (14)

which just depends on the scattering length ¢ and not on
the shape of the potential.

It is to be noticed that to extract the desired result
from eq. (14), we need to sum the series for an infinite
value of the argument. Before attempting to do this, we
will take some guidance from the ladder approximation.
Unfortunately, it is well known that for an attractive po-
tential, the ladder approximation is beset with Emery
singularities [6]. It has been argued that these singu-
larities may be the result of an unfortunate choice of a
summation method for an asymptotic series. We will in-
stead use the R-matrix formulation [3], where the Emery
singularities do not occur. I will use the usual approx-
imations in solving for the R-matrix, involving angular
averaging and center of mass averaging. For this appli-
cation we will not need to consider the R-matrix in the
presence of an excited Fermi sea. The R matrix equa-
tion is very similar to the usual K-matrix equation in
ladder approximation, except it has been regularized at
the Fermi surface to avoid the Emery singularities. It is

Ri(k) = %/OOO G1(kr)V (r)a(r)r® dr

2 [ . _
tg(r) = ji(kr) — ;/ Gr(r, T')V(r’)ﬁk’l(r')r'z dr’
0
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"2 1,2\3
F(p, k") = (1) /(flfl —gng )kp< o
(k"2 + ipz —k%)/k"p, otherwise,
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(18)
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where p is used to replace p, in order to change the dependence on (k,p) to that on k alone. The single particle
energies are then given by
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where v is the number of spin and iso-spin states and is just 2 in the case of neutron matter. The contribution of the
R-matrix terms to the total energy is then given by

3

Fp=—
793

br 1 2 .
/0 [E(m) — 5m2]m“ dm. (23)

For the potential under current consideration there is the considerable simplification that V' acts only in the [ = 0
states so that R; =0V > 0.

The difference between the K-matrix in ladder approximation and the R-matrix is in the Green’s function. For the
K-matrix the Green’s function is

) o0 kllz N 'kll,’_ N klIT/
Gra(r,r') = / ]l;(guz _)j;i(v ' (ps k). (24)
0
It has been shown [3] that,
. Ri(k) .
Ki(k) = e : 25
1(k) 1+ (3r — a)Ri(k) (25)
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o 1 v 1 1
= (krp) " H{(F* + sz — k) n[(k% + krp + sz — k) (k% — sz — k)]
1il[k Lo Jir— o+ () W{(ker + Sp+ 1)/ (o + ~p — k)] 26
il e nl(kr + 3p)/ (ke = 5P)} + 7 | Inl(kr + 5P+ K)/ (kr + 5P — k)] (26)

The quantity 7 is lower semi-bounded, but diverges
logarithmically to +o0c. Thus by eq. (25), any time that R
is negative there is a singularity in K. One consequence
of this result is that although it is expected that the
radius of convergence of R in powers of the strength s is
unity, the radius of convergence of the K-matrix series
is zero. As a further point in this regard, if eq. (25) is
expanded in powers of R, since the divergence of 7 is
only logarithmic, the intergals of 7{ all exist. However,
the values increase like j! so that this series is at best
an asymptotic one. In the numerical solution of the R-
matrix equations, I have found that 59 mesh points in r,
10 mesh points in k and 20 mesh points in k" are sufficient
for a few percent accuracy, which is in turn sufficient for
our present needs. The computer code I have used is
an adaptation of that of ref. [7]. Our numerical results
for several strengths are plotted in Fig. 1. It is to be
noticed that in line with eq. (27), the slope at the origin is
negative and is increasing rapidly in size with increasing



well depth. However, outside a small initial region the
curve for ERM/N h2k%. is relatively flat. This behavior
is strongly suggestive of the idea that, in the limit as the
strength of the potential goes to unity and the scattering
length goes to infinity, this curve is discontinuous at the
origin, and is some reasonable function of kg for krp > 0.

We can not use the above method for the complete
energy, but there are two other method which we can
use, and are also available for the R-matrix energy.

An examination of the structure of the terms generated
in the expansion of the R-matrix expansion in powers of
the potential strength shows that they are all propor-
tional to moments of a distribution. For the case of the
ladder approximation to the K-matrix the Green’s func-
tion is a positive definite operator, but this happy feature
is not necessarily true for the Green’s function for the R-
matrix. Thus even for the current case of a single-signed
potential (for background see [8]), the distribution can
be over a range with two signs. Consequently we have
what is called the Hamburger moment problem [9] with
a finite radius of convergence. In this case by means of a
linear fractional transformation the problem can be con-
verted into —s times a series of Stieltjes. Such a series is
the moment generating function for a moment problem
whose distribution has a range which has just a single
sign [9]. It has been shown [9] that in our case of an at-
tractive potential whose strength is less than the radius
of convergence of the R-matrix expansion, all the Padé
approximants form upper bounds to the actual R-matrix
energy [9]. We have deduced the necessary coefficients by
using a tenth order finite difference method (equivalent
to fitting with a tenth order polynomial) at several values
of kpc on the numerical solution of the R-matrix equa-
tion. We have used a spacing of 1/(47?) in the strength
for this computation. Our results are shown in Fig. 2 and
some of the numerical solutions of the R-matrix equation
are shown for comparison. The result we seek is for a zero
range force, ¢ — 0 which is extrapolated in this figure. It
is about —0.18%%k% /M.

The series analogous to that of eq. (14) is also available
[3] for the ladder energy. It is, for the ¢ = 0 limiting case,

AELM 1
= ky s-kra+ 0.055661(kpa)? (27)
+0.032031(kpa)® + 0.019156(kpa)* +...] .

In this equation the numbers were supplied by numerical
integration of some double intergals, and Monte Carlo
evaluation was not required, as was the case in eq. (14).
The coefficients are just the g;’s of reference [3]. By the
solution of eq. (25) for R as a function of K we find that
R, in this limit as ¢ — 0 must also be expandable in pow-
ers of kpa. To derive the coefficients in this expansion,
we would have needed to use similar analytical methods
[3] to those employed in the case of the K-matrix. We
can however see at least part of the picture by computing
for a series of small values of kpc the results for several
fixed values of kpa. The determination of the appro-



priate values of the strength parameters needed for this
exercise is accomplished by expanding eq. (13) for a/c in
powers of #2. Then this series is reverted to give 6% in
powers of a/c. A [3/3] Padé approximant with the built
in asymptotic value of 72 /4 is found to be quite accurate
and to give good results for #2 = 7s/2. I have again used
a tenth order differencing scheme on the numerical solu-
tion of the R-matrix equations. We have chosen a mesh
spacing of kpc = 0.05. The results of the extrapolation
of the R-matrix energies to kpc = 0 are displayed in Fig.
3. These values are not inconsistent with the asymptotic
extrapolation shown in Fig. 2 for s = 1 for the R-matrix
energy.

Since the leading coefficient here should also be 1/(37)
as in eq. (27), we find that our extrapolation in Fig. 3 is
about 2% low for this term. Qur numerics are insufficient
to give good values of the rest of the terms. Merely for
reference, we display in Fig. 4 several Padé approximant
[9] estimates from the series [eq. (27)] for the Ladder
energy approximation. We are interested, as we will be
in the analysis of eq. (14) in the asymptotic behavior as
a — co. The asymptote for the [2/2] Padé approximant is
about 0.24h7 k% /M which is not vastly different from our
estimates for the R-matrix energy, and also corresponds
to no negative energy ground state.

For the case of the complete energy for this model,
I illustrate this behavior in Fig. 5. Again I use the
method of Padé approximants [9] in order to sum the
series in kpa. There is an upper limit of 0.3 for the ratio
EM/[Nh?E2], because the interaction is purely attrac-
tive; so the energy can not exceed the kinetic energy of
the ideal Fermi gas. All the estimates shown agree well
to at least kpa &~ —0.5. The [2/1] Padé approximant ex-
ceeds the upper bound for —kpa > 2.5, and so does not
give a satisfactory value for the case of interest, a - —oo.
This brings us to the [1/1] and the [2/2] Padé approxi-
mant. They both have finite asymptotes, which are of the
right order of magnitude. That for the [2/2] is shown in
Fig. 5. Numerically, the asymptotes are 0.0977h2k%/M
for the [1/1] and 0.1705A%k% /M for the [2/2]. The lat-
ter corresponds to a shift in the complete energy from
the ideal gas energy of AE = —0.1295h2k%./M. These
results correspond to the effective masses, M* = 3.07M
and M* = 1.76 M respectively. Manifestly, neutron mat-
ter is unbound for this potential.

In addition I have analyzed the series in eq. (9) for
various densities, using the data given in ref. [3]. The
[3/1] Padé approximants are the best behaved ones in
this case and I have plotted them in Fig. 6. The extrap-
olated asymptotic value is about —0.17hzk2F/M, vs. the
value of about —0.13h2k%‘/M just quoted for the Fermi
momentum series value just quoted above. In light of
Fig. 2, T estimate a value of (—0.17=40.04)h%k% /M which
corresponds to an effective mass of about 2.3 +0.5.

These results for the ground-state energy mean that
the system is a Fermi liquid, with an effective mass. The
wave-function is expected to correspond to that struc-



ture, aside from a set of exceptional points where 7; = 7,
the origins of the set of relative coordinates between all
the pairs. These funny points however only constitute a
set of measure zero.

I would mention that relatively simple models of neu-
tron matter with a potential consisting of a repulsive
core and an attractive part beyond have been studied
[10] with reasonable results. The potential used there
gives a pretty good representation of the low to medium
energy scattering data.

I would like to acknowledge helpful discussions with A.
Kerman and J. Gubernatis.
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FIG. 1. The numerical evaluation of the R-matrix energy.
The short dashed curve is for s = 0.81, the long dashed
curve is for s = 0.9, the dashed curve is for s = 0.95, and
the solid curve is for s = (0.98.

FIG. 2. The Padé approximant upper bounds on the
R-matrix-approximation energy divided by h2k%, /M for
various potential strengths. Some of the numerical solu-
tions of the R-matrix equation are included for reference.

FIG. 3. The extrapolation of the R-matrix energy to
krc =0 as a function of kpa.

FIG. 4. The ratio of the ladder terms contribution to
the energy per particle divided by h? k% /M.



FIG. 5. Theratio of the many-body energy per particle
to hzk%./M, verses —akp. For the case of interest, a —
—o0 is expected.

FIG. 6. The estimates of the many-body energy
per particle based on the series expansions in potential
strength. The extrapolation to kpc = 0 is also shown.
The error bars reflect only the coefficient uncertainty.
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